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The ingestion of plastic by marine turtles is now reported for all species. Small juvenile
turtles (including post-hatchling and oceanic juveniles) are thought to be most at risk,
due to feeding preferences and overlap with areas of high plastic abundance. Their
remote and dispersed life stage, however, results in limited access and assessments.
Here, stranded and bycaught specimens from Queensland Australia, Pacific Ocean (PO;
n = 65; 1993–2019) and Western Australia, Indian Ocean (IO; n = 56; 2015–2019)
provide a unique opportunity to assess the extent of plastic (> 1mm) ingestion in five
species [green (Chelonia mydas), loggerhead (Caretta caretta), hawksbill (Eretmochelys
imbricata), olive ridley (Lepidochelys olivacea), and flatback turtles (Natator depressus)].
In the Pacific Ocean, high incidence of ingestion occurred in green (83%; n = 36),
loggerhead (86%; n = 7), flatback (80%; n = 10) and olive ridley turtles (29%; n = 7).
There was an overall lower incidence in IO; highest being in the flatback (28%; n = 18),
the loggerhead (21%; n = 14) and green (9%; n = 22). No macroplastic debris ingestion
was documented for hawksbill turtles in either site although sample sizes were smaller
for this species (PO n = 5; IO n = 2). In the Pacific Ocean, the majority of ingested debris
was made up of hard fragments (mean of all species 52%; species averages 46–97%),
whereas for the Indian Ocean these were filamentous plastics (52%; 43–77%). The
most abundant colour for both sites across all species was clear (PO: 36%; IO: 39%),
followed by white for PO (36%) then green and blue for IO (16%; 16%). The polymers
most commonly ingested by turtles in both oceans were polyethylene (PE; PO-58%;
IO-39%) and polypropylene (PP; PO-20.2%; IO-23.5%). We frame the high occurrence
of ingested plastic present in this marine turtle life stage as a potential evolutionary trap
as they undertake their development in what are now some of the most polluted areas
of the global oceans.
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INTRODUCTION

Plastic debris is now one of the most ubiquitous and long-lasting
pressures to marine systems (Barnes et al., 2009; Jambeck et al.,
2015) and it has now been estimated to interact with over 700
species (Gall and Thompson, 2015; Kühn and Van Franeker,
2020). Plastic presents a threat through ingestion, entanglement,
the degradation of key habitats and wider ecosystem effects.
Plastic ingestion is now widely recognised to occur in all species
of marine turtle (Schuyler et al., 2014; Nelms et al., 2016;
Lynch, 2018), however, population-scale impacts have not been
demonstrated (Senko et al., 2020).

Records of plastic ingestion (> 1 mm) by marine turtles
have been reported in the Atlantic (Musick and Limpus, 1997;
Witherington, 2002; Mascarenhas et al., 2004; Di Beneditto and
Awabdi, 2014; Santos et al., 2016; Colferai et al., 2017; Pham et al.,
2017; Rizzi et al., 2019; Eastman et al., 2020; Machovsky-Capuska
et al., 2020; Rice et al., 2021), the Pacific (Wedemeyer-Strombel
et al., 2015; Ng et al., 2016; Clukey et al., 2017a; Godoy and
Stockin, 2018; Jung et al., 2018a), the Indian Ocean (Hoarau et al.,
2014; Yaghmour et al., 2018) and the Mediterranean Sea (Tomas
et al., 2002; Campani et al., 2013; Camedda et al., 2014; Matiddi
et al., 2017; Domènech et al., 2019; Digka et al., 2020). Drivers
behind marine debris ingestion have included visual selectivity
(Schuyler et al., 2012; Fukuoka et al., 2016; Duncan et al., 2019a),
odour (Pfaller et al., 2020), or failure of discrimination when
mixed with normal dietary items (Di Beneditto and Awabdi,
2014). In addition, synthetic particles (<1 mm) have also been
isolated from marine turtle gut content; however, ingestion
pathways remain poorly understood (Caron et al., 2018; Duncan
et al., 2019b).

While plastic ingestion has been linked to morbidity and
mortality (Stamper et al., 2009; Poppi et al., 2012; Santos
et al., 2015; Orós et al., 2016; Wilcox et al., 2018), it is
particularly difficult to attribute mortality (Bjorndal et al., 1994)
especially when few studies corroborated marine debris ingestion
with associated pathology. Moreover, the effects on sea turtles,
including sub-lethal impacts such as exposure to persistent
organic pollutants (POPs) via marine plastics are not well-
understood (Clukey et al., 2017b; Marn et al., 2020).

Habitat use and behaviours may make marine turtles
particularly vulnerable to impacts of plastic pollution in the
environment at certain points in their life history (Nelms
et al., 2016). For all species other than the flatback turtle
(Natator depressus), post-hatchlings enter the oceanic zone
where they generally occur at low densities over vast areas
(Wildermann et al., 2017; Vandeperre et al., 2019). For flatback
turtles, the post hatchlings forage in the neritic waters over
the Australian continental shelf instead of dispersing into
oceanic waters (Limpus, 2007; Wildermann et al., 2017). This
life stage is surface dwelling, only occasionally being more
demersal when feeding in the vicinity of seamounts, oceanic
banks and ridges that come close to the surface in the oceanic
realm (Bolten, 2003). They exhibit an opportunistic epipelagic
feeding strategy; their omnivorous diets being largely determined
by the combination of relative abundance of potential food
objects in the environment and residency in convergence zones

(Boyle, 2006; Frick et al., 2009, Ryan et al., 2016). In most species
and populations, this life history stage continues until the animals
return to coastal waters, where this oceanic stage transitions
to a benthic foraging, neritic juvenile stage (Bolten, 2003). The
logistics of working in the open ocean makes this life stage
particularly challenging to monitor and to assess the impacts
of anthropogenic threats (Boyle, 2006; Campani et al., 2013;
Schuyler et al., 2014; Nelms et al., 2016).

Small juveniles (including post-hatchlings and oceanic
juveniles) are hypothesised as the life stage most likely to
be highly impacted by plastic pollution as this life stage is
particularly vulnerable to entanglement in floating marine plastic
debris (Wilcox et al., 2015; Duncan et al., 2017), damaging effects
of ingestion (Clukey et al., 2017a; Pham et al., 2017; Vélez-Rubio
et al., 2018; White et al., 2018; Duncan et al., 2019a; Eastman
et al., 2020) and sensitive to potential population-level effects
(Rice et al., 2021). The consumption of non-nutritional items can
lead to dietary dilution resulting in reduced energy and growth
(McCauley and Bjorndal, 1999; Nelms et al., 2016), and has been
shown to cause damage and blockage to the gastrointestinal tract,
cloaca and bladder in some specimen (Bugoni et al., 2001; Lazar
et al., 2011; Ryan et al., 2016; Wilcox et al., 2018). Australia
has some of the most significant marine turtle nesting areas in
the Indo-Pacific region, with nesting sites of green (Chelonia
mydas), loggerhead (Caretta caretta), hawksbill (Eretmochelys
imbricata), and flatback (Natator depressus). The olive ridley
turtle (Lepidochelys olivacea) is a common foraging species in
the deeper sub-tidal waters across northern Australia (Limpus,
2009; Boyle et al., 2017). Post-hatchlings of most of these species,
are largely absent from coastal waters and the characteristic
oceanic juvenile stage occurs in the southwest Pacific or eastern
Indian Ocean (Boyle and Limpus, 2008; Limpus, 2009). The
endemic flatback turtle is the exception; its post-hatchlings do
not leave coastal waters to disperse beyond the continental shelf
(Limpus, 2007; Wildermann et al., 2017). Stranded and bycaught
specimens from the western Pacific Ocean (PO) and eastern
Indian Ocean (IO) provide a unique opportunity to assess the
extent of the exposure of plastic ingestion for five species of
marine turtle at these critical life stages. Here we aim to 1. Assess
the occurrence, type and colour of plastic ingested by this life
stage across multiple species 2. Identify the main polymers of
ingested plastic.

MATERIALS AND METHODS

Study Area and Sample Collection
This study was conducted using specimens from Queensland,
Pacific Ocean (PO) and Western Australia, Indian Ocean
(IO) collected and frozen as part of the ongoing monitoring
of marine wildlife strandings including sea turtles by the
Queensland Department of Environment and Science (DES) and
the Department of Biodiversity, Conservation and Attractions
(DBCA) and Murdoch University; and were made available to
the author team for necropsy (Supplementary Table 1 and
Supplementary Figure 1).
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“Small juveniles” used in this study for the PO included
stranded post-hatchlings and bycaught oceanic juveniles from the
longline fisheries in the Coral Sea and for the IO consisted of
stranded post-hatchlings and juveniles including those that were
likely to have recently undertaken recruitment into inshore areas
(Supplementary Table 1).

Data recorded for each turtle included species, date and
location of capture or stranding (dead) and a series of
morphometric measurements. A total of 121 small juveniles
were sampled. Animals sampled from the PO spanned a period
of 26 years (1993–2019) and five species (green, n = 36;
loggerhead, n = 7; flatback, n = 10; hawksbill, n = 5, olive ridley,
n = 7) (Supplementary Table 1). Stranded turtles from IO were
sampled from 2015 to 2019 with data from four species (green,
n = 22; loggerhead, n = 14; flatback, n = 18; hawksbill, n = 2)
(Supplementary Table 1).

All animals were subject to post-mortem assessments during
which the sex was determined (where possible) by visual
examination of gross gonadal morphology. During necropsy of
PO turtles the entire gastrointestinal tract was removed and initial
contents weighed. The contents were grossly examined then
rinsed through a 1 mm mesh sieve to separate and remove the
plastic for classification and diet items for storage and analysis.
For IO turtles, the entire GI content was examined in detail.
Furthermore, due to reports of plastic presence within sea turtle
bladders (Ryan et al., 2016), the bladder of each turtle in the
current study was thoroughly inspected for plastic.

To normalise for turtle size (for those individuals where
turtle mass was recorded) the body burden of ingested plastic (g
plastic/kg turtle) was calculated following calculations outlined
in Clukey et al. (2017a) and Lynch (2018). Body condition index
(turtle mass kg/SCLˆ3) was also calculated following indices
described in Bjorndal et al. (2000a) and Rice et al. (2021) to
compare with measures of plastic burdens. Curved Carapace
Length (CCL) to Straight Carapace Length (SCL) conversions
were taken from Lynch (2018).

Plastic Classification
Ingested plastic was classified using a system outlined in Duncan
et al. (2019a) which builds upon the Fulmar Protocol and
MSFD (Marine Strategy Framework Directive) Marine Litter
Report 2011 (Descriptor 10) “toolkits” (van Franeker et al.,
2011; Galgani et al., 2014). This involves recording the type of
plastic debris: industrial plastic pellets or nurdles (IND) and user
plastics (USE) which can be split into several sub-categories;
sheetlike plastic (SHE) e.g., plastic bags, threadlike/filamentous
plastic (THR), e.g., remains of rope, foamed plastics (FOAM),
e.g., polystyrene, fragments (FRAG), e.g., hard plastic pieces and
other (POTH), e.g., rubber, elastics, items that are ‘plastic-like’
items that do not clearly fit into another category. Dry weight
(mg) was recorded for each individual piece isolated. Additional
recordings of colour and three-dimensional measurements of
each individual piece were also taken. Colour was recorded
within 11 categories; Clear, White, Pink/Purple, Red, Orange,
Yellow, Green, Blue, Brown, Black, Grey. Width: Length ratios
were calculated (W/L) for all pieces ingested. A ratio close to
1 indicated a square or round piece of debris with ratios <1

leading to rectangular and progressively more linear shapes with
decreasing ratio.

Polymer Identification
The polymer make-up of marine plastic debris may aid in
identifying possible sources of the material. A sub-sample of
retained items was subject to analysis using a PerkinElmer
Frontier Fourier-transform infrared (FT-IR) spectrometer. This
offers a simple, efficient non-destructive method for identifying
and distinguishing polymers, based on infrared absorption
bands representing distinct chemical functionalities present
in the material (Jung et al., 2018b). Analysis was carried
out using a PerkinElmer Spotlight 400 universal diamond –
ATR (attenuated total reflection) attachment, placing each
fragment or fibre onto the diamond surface (after precleaning
the surface with analytical grade ethanol) and applying a
consistent force using the sample clamp. Spectra were collected
over a broad spectral range (630–4,000 cm−1) from an
average of four sample scans with a resolution setting of
4 cm−1. Spectra were corrected for background variation.
The infrared spectra were acquired, processed and analysed
using PerkinElmer Spectrum software (version 10.5.4.738) and
compared against a total of eight commercially available polymer
libraries (adhes.dlb, Atrpolym.dlb, ATRSPE∼1.DLB, fibres.dlb,
IntPoly.spl, poly1.dlb, polyadd1.dlb and POLYMER.DLB, as
supplied by PerkinElmer), checking also against an additional
library compiled at the Greenpeace Research Laboratories in
order to exclude contaminants arising from materials commonly
used in the laboratory. A subsample of 293 plastic pieces were
tested. Spectrum software allowed for the comparison of spectra
obtained for each sample against these nine libraries, reporting
the 10 most likely matches. In each case, matches were then
checked by the analyst to verify the quality of the match and
the reliability of the identification. Match quality scores were
generated for each spectrum, and only scores with >70% match
similarity and/or reliable spectra were accepted.

RESULTS

Plastic Ingestion
The presence of plastic was only found in the gastrointestinal
tract, and not the cloaca or bladder during examination. A large
proportion of the small juveniles sampled had ingested plastic
(>1mm) although this varied by species and by ocean (Figure 1)
with none of the smaller number of hawksbill turtles in either
ocean showing evidence of plastic ingestion. The highest number
of plastic pieces ingested occurred in green turtles, with the
maximum number of pieces ingested by a single animal being 144
and 343 pieces, in samples from the PO and IO, respectively.

For PO species the incidence of ingestion was generally high
[green: 83%, mean number of pieces (mnp) ± SE 18 ± 5, n = 36;
loggerhead: 86%, 3 ± 2, n = 7; flatback: 80%, 9 ± 3, n = 10; olive
ridley: 29%, 4 ± 26, n = 7]. There was a significant difference in
the number of plastic pieces ingested among species [Kruskal-
Wallis (KW): χ2 = 15.98, df = 4, p = 0.003] and mass (g) of
plastic ingested (KW-χ2 = 13.14, df = 4, p = 0.01). Pairwise
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FIGURE 1 | Case studies of plastic ingestion in sea turtles in the Pacific and Indian Ocean (A) Post-hatchling loggerhead turtle found in the Great Southern region of
Western Australia in winter (August 2017) and was a suspect cold-stunned case. Twelve pieces of plastic were found on post-mortem including one piece of hard
plastic that had caused an impaction in the distal large intestine and likely contributed to morbidity, but was not the primary cause of death (i.e., severe
gastrointestinal parasitoses identified on histopathology) (B) stranded post-hatchling green turtle (8.4 cm CCL) from PO with all plastic present in GI tract at
necropsy (C) example of ingested plastic from green turtle in PO illustrating that majority hard fragments, scale in cm.

comparisons using Dunn’s test indicated that green turtle scores
were observed to be significantly different from those of hawksbill
turtles for both number of pieces (p = 0.01) and mass of
ingested plastic (p = 0.01). No other differences were statistically
significant. There was a significant difference in body burden
index among species (KW-χ2 = 16.5, df = 4, p = 0.002). Dunn’s
test indicated that there was a significant difference between
hawksbill/green (p = 0.01) and also hawksbill/flatback (p = 0.02)
turtles, additionally there was a significant difference between
olive ridley/flatback (p = 0.04) and olive ridley/green (p = 0.03)
turtles (Supplementary Figure 2 and Supplementary Table 2).
For IO the incidence of ingestion was generally lower, where
the flatback ranked highest (28%, 3 ± 0.6, n = 18) followed
by the loggerhead (21%, 44 ± 38, n = 14) and green turtle
(9%; 0.8 ± 0.76, excluding the case which ingested 343 pieces;
n = 21). There was, however, no significant difference among
species on the number of pieces ingested (KW- χ2 = 3.89, df = 3,
p = 0.27), the mass (g) of plastic ingested (KW- χ2 = 3.80, df = 3,

p = 0.28) or body burden index (KW- χ2 = 2.51, df = 3, p = 0.47),
(Supplementary Figure 2 and Supplementary Table 2).

For PO green turtles where the largest sample exists; n = 35)
body burdens were highly variable, particularly at smaller sizes
(CCL) (1.61 ± 0.39 mg/g; range: 0–9.2 mg/g), there was no
significant correlation between turtle size and body burden index
(Spearman’s Correlation: R = −0.30, p = 0.11) (Figure 2). For
body condition index (BCI) there was no significant correlation
between BCI and number of pieces (R = 0.24, p = 0.20) or
body burden index (R = -0.06, p = 0.76). However, there was a
significant positive correlation between BCI and mass of ingested
plastic (g) (R = 0.47, p = 0.01) (Supplementary Figure 3 and
Supplementary Table 2). Plastic incidence in IO flatback turtles
(IO) (n = 15) were also highly variable, particularly at smaller
sizes (0.16 ± 0.13 mg/g; range: 0–2.04 mg/g) with significant
negative relationship between size of turtle (CCL) and body
burden (mg/g) (R = -0.52, p = 0.04) (Supplementary Figure 4 and
Supplementary Table 2). For body condition index (BCI) there
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FIGURE 2 | Turtle length and temporal incidence of plastic in green turtle (Chelonia mydas) post-hatchlings in the Pacific (n = 35). Relationship between curved
carapace length and (A) plastic debris body burden index (mg plastic/g turtle) and (B) number of ingested pieces of plastic debris. Relationship between year of
stranding and (C) mass of ingested plastic pieces (g) (D) number of ingested plastic pieces found at necropsy.

was no significant correlation with number of pieces (R = 0.01
p = 0.97) or body burden index(R = -0.18, p = 0.50) or mass of
ingested plastic (g) (R = -0.14, p = 0.61).

For PO green turtles, there were sufficient samples to compare
stranded and bycaught turtles statistically. Of bycaught green
turtles (n = 14) 87% had ingested plastic and had on average
ingested 26 ± 10 pieces (range: 0–144) compared to stranded
conspecifics (n = 22) of which 81% had ingested on average
13 ± 5 (range: 0–92). These two groups were not significantly
different in terms number of ingested pieces (Wilcoxon Rank-
Sum: W = 106.5, p = 0.126; Supplementary Table 2). However,
there was a significant difference in the mass of ingested plastic
(g) with stranded turtles (mean ± SE: 0.14 ± 0.05 g; range: 0–
0.92 g) presenting with lower masses than those that were by
caught (2.07 ± 0.67 g; 0–9.23g; W = 54, p = 0.001). In addition
there was a significant difference in body burden index score
between stranded turtles (1.75 ± 0.61 g/kg; 0–9.25 g/kg; W = 153,
p < 0.001) presenting higher body burden index values than
bycaught turtles (0.45 ± 0.19 g/kg; 0–0.45 g/kg). The significantly
smaller size, thus GI tract volume, of the stranded post-hatchlings
(mean ± SD: 8.9 ± 13.1 cm) compared bycaught oceanic

juveniles (41.7 ± 2.9; T-test, t = -21, p < 0.001; Supplementary
Table 2) potentially accounting for this.

There was a significant difference between green turtles in the
PO and IO with regard to number of ingested pieces (Wilcoxon
Rank-Sum: W = 673, p < 0.001), mass (g) of ingested pieces (PO:
0.89 ± 0.3, IO: 0.4 ± 0.36 g; W = 670, p< 0.001) and body burden
index scores (W = 489, p < 0.001). For flatback turtles significant
differences between oceans were observed for number of ingested
pieces (PO: 9.6 ± 0.5, IO: 0.7 ± 0.3 pieces; W = 153.5, p = 0.001),
mass (g) of ingested pieces (PO: 0.14 ± 0.49 g, IO: 0.01 ± 0.01 g;
W = 152, p = 0.001) and body burden index scores (W = 147,
p = 0.002). For both species all values being higher in PO turtles
than IO turtles. In other species sample size prevented statistically
testing means (Supplementary Table 2).

Ingested Plastic Description
The most abundant type of plastic (for all species) differed
between PO and IO; in PO the majority of debris ingested
by turtles were hard fragments (FRAG; 52%) whereas for IO
these were filamentous (THR; 52%). In both sites this was
followed by sheet plastic (SHE; PO: 38%; IO: 35%) (Figure 3

Frontiers in Marine Science | www.frontiersin.org 5 August 2021 | Volume 8 | Article 699521

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-699521 July 22, 2021 Time: 18:43 # 6

Duncan et al. Plastic and Juvenile Marine Turtles

FIGURE 3 | Type and colour of ingested plastics from post-hatchling gut content; (A) proportion (%) of type of plastic pieces ingested by post-hatchling and oceanic
juveniles for PO and (B) for IO. (C) Proportional makeup of plastics by colour in PO samples (D) IO samples. For all parts CM, Green (Chelonia mydas); CC,
loggerhead (Caretta caretta); EI, hawksbill (Eretmochelys imbricata); ND, flatback turtles (Natator depressus); LO, olive ridley (Lepidochelys olivacea) For parts (A
and B), black circle scaled accordingly, x = no presence of particular type of plastic. SHE, sheetlike plastics; THR, threadlike plastics; FOAM, foamed plastics;
FRAG, hard plastics; POTH, other ‘plastic like’ items; IND, industrial nurdles. For parts (C and D) grey shading = transparent materials and colours represent
colours of the plastic (E) percentage (%) of ingested pieces by polymer for PO and (F) for IO turtles. EVAC, Ethylene/Vinyl Acetate Copolymer, Nylon; PA, Polyamide;
PB, Polybutene; PDMS, Polydimethylisiloxane (silcone); PE, Polyethylene; PI, Polyisoprene; PBA, Polyoctylacrylate; PP, Polyproplene; PS, Polystyrene; PAU,
Polyundecanoamide.

and Supplementary Table 1). Debris ingested spanned all 11
colour categories, the most numerous colour for both sites over
all species was clear (PO: 36%; IO: 39%), followed by white for
PO (36%) and green and blue for IO (16%; 16%) (Figure 3
and Supplementary Table 1). Larger width to length ratio (W/L
ratio) (more square or circular shapes) being the most prevalent
in PO samples (0.61–0.8; 29.8%) whereas the large majority of
items W/L ratio in IO were thin and long (0.0–0.2; 56.3%). The
majority of ingested plastics were >5 mm (PO: 78%; IO: 95%)
(Supplementary Table 1).

Polymer Identification
The most common polymers identified were polyethylene (PE;
PO-58%; IO-39%) and polypropylene (PP; PO-20.2%; IO-
23.5%). Other polymers identified were ethylene vinyl acetate
(EVA), polyamide (PA), polybutene (PB), polyisoprene (PI)
and polystyrene (PS) (Figure 3, Supplementary Figure 5, and
Supplementary Table 1).

Ingestion Over Time
There was an indication of a positive, however, not statistically
significant, relationship between the number of pieces ingested
(R = 0.16; p = 0.36), mass of ingested pieces (g) (R = 0.25,

p = 0.15) or body burden index (R = 0.12, p = 0.50) and the
year of stranding for green turtles in PO (n = 35) (Figure 2).
Variance was high in the other species but small sample sizes
precluded analysis.

DISCUSSION

Plastic Ingestion in Post-hatchling
Marine Turtles
This study demonstrates that small juvenile marine turtles from
the Pacific and Indian Ocean had high incidence of plastic
ingestion (>1 mm). We highlight the prevalence of this in a
number of species and make additions to the limited knowledge
regarding plastic ingestion in relation to the ecology of the
flatback turtle. We also highlight variability of body burden
especially at smaller sizes. Ingestion occurrence appears higher
in samples from the Pacific than the Indian Ocean and may
indicate different vulnerability levels between oceans. However,
owing to limited access to samples from this life stage deeper
analysis was precluded, therefore collaborative combined datasets
to achieve larger samples sizes and longer time series over
multiple ocean basins to assess contributing factors (such as

Frontiers in Marine Science | www.frontiersin.org 6 August 2021 | Volume 8 | Article 699521

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-699521 July 22, 2021 Time: 18:43 # 7

Duncan et al. Plastic and Juvenile Marine Turtles

species, turtle size) will be crucial in the future. Furthermore
frequencies of reported ingestion in this study would likely be
higher with the inclusion of data on plastics < 1 mm, which has
been previously been reported to be ubiquitous in marine turtles
(Duncan et al., 2019b).

In contrast to other studies on this life stage, samples
from the Indian Ocean were dominated by filamentous pieces
that were green and blue in colour and were polyethylene,
polypropylene and nylon in composition. One of the key sources
of marine debris in this area, and indeed in similar studies
of turtles in Northern Australia, is that of abandoned, lost or
otherwise discarded fishing gear (ALDFG) often comprised of
plastic fibres (Kiessling et al., 2003; Gunn et al., 2010; Wilcox
et al., 2013; Van Der Mheen et al., 2020; Nelms et al., 2021;
Pattiaratchi et al., 2021). Evidence from regionally relevant
riverine inputs show polyethylene, polypropylene and nylon
fishing gear can contribute to ALDFG in the environment (Nelms
et al., 2021).This ghost gear has the capacity to breakdown into
bioavailable pieces following long-term degradation (Cole et al.,
2011; Jâms et al., 2020). Juvenile turtles are known to seek refuge
under rafts of sargassum and other floating debris (Witherington
et al., 2012) which may increase their chances of consuming rope
fibres if foraged food is attached to drifting ALDFG. Results from
Pacific Ocean are in concordance with those from other studies,
with the recorded debris dominated by hard plastic fragments,
being predominately clear and white in colour (Ryan et al., 2016;
Clukey et al., 2017a; Pham et al., 2017; White et al., 2018; Eastman
et al., 2020). Smaller post-hatchlings appear to experience the
highest body burden of plastic debris which was also seen in
the North Pacific (Clukey et al., 2017a). Taken together, these
findings underline the potential utility of marine turtles as bio-
indicators of marine litter regionally (Matiddi et al., 2017). For
example the stark difference between the frequency occurrence
ingestion ranges of hawksbills in this study (0%) compared to
100% reported in the Northwest Atlantic and Central Pacific
(Lynch, 2018).

In both oceans, ingested plastics were composed primarily of
polyethylene (PE) and polypropylene (PP) as seen in previous
sea turtle studies (Pham et al., 2017; Jung et al., 2018b; White
et al., 2018). Polyethylene and PP are low density polymers
typically used in single-use, disposable packaging material and
constitute significant proportions of the waste stream leaking
into the ocean, e.g., larval fish nursey grounds (Gago et al., 2018;
Gove et al., 2019). Lower density polymers, such as polypropylene
and polyethylene, dominate sea surface samples but decrease in
abundance through the water column and a different polymer
mix will be found again on the seafloor due to chemical densities
(Brignac et al., 2019; Erni-Cassola et al., 2019). With regards
to the other polymers identified in this study there is also a
profound lack of knowledge regarding the modifications that
plastics undergo once subject to the environment and how this
impacts analytical chemical results, e.g., multi-layer composites
(Silva et al., 2018).

High ingestion abundances suggest significant negative health
consequences are possible. Loggerhead post-hatchling turtles
stranded in Florida had ingested up to 287 pieces and their initial
health condition was reported as poor; animals being categorised

as thin to emaciated and covered in epibiota (Eastman et al.,
2020). While plastic ingestion has been linked to morbidity and
mortality this is often difficult to accurately attribute, due to
the lack of associated pathology (Bjorndal et al., 1994; Stamper
et al., 2009; Poppi et al., 2012; Santos et al., 2015; Orós et al.,
2016). Detailed veterinary diagnostic testing is infrequently used
to support a diagnosis of morbidity or mortality by marine
debris. Furthermore, working with stranded animals has been
suggested to lead to biases (Casale et al., 2016). Surveying plastics
in animals that die from fisheries interactions, however, might
be more likely to exhibit normal healthy body condition than
those that die of other causes (Barco et al., 2016; Casale et al.,
2016). Consequently, longline bycaught turtles used in this study
provide a unique data source to assess the plastic burden in
what may be relatively healthy individuals. In this study an
emaciated green turtle from IO having ingested 343 pieces of
plastic had evidence of gastrointestinal ulceration on necropsy
(adjacent to blockage), along with histopathology and ante-
mortem blood results. However, bycaught green turtles from PO
in this study had ingested maximum values exceeding 100 pieces
and presented good body condition. Therefore, in the future it
would be advantageous to work alongside veterinarians and other
specialists, i.e., veterinary pathologists for access to veterinary
diagnostic testing services.

Additionally it will be important to use this expertise to
explore the relationship between Body Condition Index (BCI)
and plastic ingestion amounts. In this study PO green turtles with
higher BCI were correlated with a higher mass of ingested plastic,
which has also been observed in other green turtle populations;
BCI positively correlated with higher number of ingested pieces
of plastic (Clukey et al., 2017a). This is contrary to potential sub-
lethal effects reported due to plastic ingestion for example dietary
dilution and weight loss (McCauley and Bjorndal, 1999).

Flatback Turtles
The Australian flatback turtle, endemic to the continental
shelf shared by Australia and New Guinea, lacking an oceanic
development phase, still displayed plastic ingestion; with some of
the highest occurrence in both Pacific Ocean and Indian Ocean.
Therefore bioavailable-sized plastic must also be present in neritic
waters (Critchell et al., 2019; Jâms et al., 2020). The presence of
buoyant plastics indicates these turtles are likely to be foraging at
the surface even though they are capable of benthic dives from an
early stage (Salmon et al., 2010). This age class has been recorded
frequently in the Great Barrier Reef waters, over the continental
shelf, feeding on planktonic organisms. However, much more
information is needed on their distribution and diet to be able to
determine the possibility of selective plastic ingestion; as shown
in other neritic stage turtles (Limpus, 2009; Duncan et al., 2019a).

Points of Vulnerability
The probability of interactions between marine turtles and plastic
is directly linked to the feeding ecology and habitat use of the
species and/or life stages, and to the spatial distribution of plastic
in the marine environment (Pham et al., 2017). Fluid dynamic
processes that aggregate organisms into these areas have also
been found to concentrate buoyant, passively floating plastics
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(van Sebille et al., 2012, 2015; Critchell et al., 2015; Gove et al.,
2019). Regionally, these include the East Australian Current
(EAC), Indian Ocean South Equatorial Current (SEC) and the
Leeuwen Current (Limpus and Nicholls, 1988; Whiting et al.,
2008; Boyle et al., 2009; Feng et al., 2011; Robson et al., 2017;
Wildermann et al., 2017; Pattiaratchi et al., 2021). Knowledge
indicates that small juveniles are associated within these currents
or sites of convergence (Ryan et al., 2016; Pham et al., 2017;
Eastman et al., 2020; Rice et al., 2021). Modelling has suggested
that active and directed swimming behaviour appears to play
a major role in post-hatchling distribution during the first
few months of their life (Putman et al., 2012; Scott et al.,
2014; Wildermann et al., 2017; Wolanski, 2017) and behaviour
therefore influences the adoption of oceanic lifestyles and
potential fidelity to discrete oceanic regions (Polovina et al., 2004;
Etnoyer et al., 2006; Mansfield et al., 2009; Barceló et al., 2013).

This active dispersal will be directed by a variety of
environmental cues, such as temperature, resulting in occupying
and residing in convergence zones, with many ocean animals
preferentially feeding within these zones due to high prey
abundance (Bjorndal et al., 2000b; Bost et al., 2009; Miller et al.,
2015; Siegelman et al., 2019; Whitney et al., 2021). Floating
material on the surface of these areas now contains potentially
harmful levels of plastic pollution (Carr, 1987; Wolanski,
2017). This makes this life stage particularly susceptible to
floating plastic ingestion because they feed at or near the
ocean surface in ocean currents in search of planktonic prey
(Witherington, 2002; Witherington et al., 2012; Ryan et al.,
2016). In addition ingestion probability is higher due to feeding
largely in a non-selective manner (Schuyler et al., 2014; Nelms
et al., 2016; Eastman et al., 2020). Indeed, Witherington (2002)
showed there were similar mean proportions of plastic debris
items recovered from habitat and lavage samples of post-
hatchling loggerhead turtles caught in Atlantic downwelling
zones, providing evidence of plastic exposure within occupied
habitat. This could be similar in currents such as the
EAC or SEC currents that the turtles within this study
occupy.

Juvenile Marine Turtles and Plastic
Pollution in Context of Evolutionary
Traps
Evolutionary traps occur when relatively poor-quality resource,
e.g., food or habitat attracts a large number of individuals,
having negative effects on their overall fitness. This phenomenon
occurs when organisms rely on environmental cues to make
life history decisions, however, due to modern anthropogenic
disturbances the environment is being altered rapidly and
former reliable cues may no longer be associated with
conditions favouring adaptive outcomes (Kokko and Sutherland,
2001). Human-induced global environmental change is capable
of rapidly creating a diverse array of ecologically novel
conditions to which animals have not evolved (Robertson
and Blumstein, 2019). Therefore, organisms become “trapped”
by their evolutionary responses. This becomes a concern for
vulnerable species with delayed maturity (such as marine

turtles) when they do not have the behavioural plasticity
to assess and respond to the evolutionarily novel situation
(Kokko and Sutherland, 2001).

One-way traps can arise when the novel element introduced
in the environment (in this case plastic), mimics a traditional
cue from habitat choice, thereby misleading the organism.
Post-hatchlings occupy habitats that in the past were ideal
locations for growth, however, these are now accumulating high
abundances of plastic debris; potentially lowering survivorship
and causing sub-lethal impacts on growth and maturity (Marn
et al., 2020). Indeed it has been shown that plastic ingestion
can create change in relation to nutrient acquisition and fitness
consequences in marine turtles (Machovsky-Capuska et al.,
2020) and be associated with pathology (Ryan et al., 2016)
and potentially morbidity or mortality (Stamper et al., 2009;
Poppi et al., 2012; Santos et al., 2015; Orós et al., 2016). The
elevated occurrence of ingested plastic debris in small juvenile
turtles is of concern as overall mortality and implications for
eventual recruitment into breeding populations are still unknown
(Vandeperre et al., 2019). Indeed within this study, smaller
stranded turtles displayed higher body burdens of plastic than
large bycaught individuals. To further our understanding it will
be crucial to identify methods to measure changes in vital rates
specific to locations and life stage, e.g., changes in somatic
growth or survivorship (Rice et al., 2021). This will increase
knowledge of poorly understood population-level mortality rates
(Senko et al., 2020). Investigating these concepts will be critical as
evolutionary traps are rarely recognised by wildlife conservation
practitioners as a significant conservation threat that should
be integrated into conservation planning and management
(Robertson and Blumstein, 2019).

CONCLUSION

Small juveniles from the Western Pacific and East Indian Ocean
had high incidence of plastic ingestion. The anthropogenic
addition of plastic into the environment could make formerly
reliable cues of developmental habitat no longer adaptive. This
life stage has the potential for being “trapped” by their past
evolutionary responses to develop in what are now some of the
most polluted areas of the global oceans. Future studies should
aim to continue to document the prevalence of plastic. It is also
imperative that methods to assess this in live, in situ specimens
are developed to assess plastic burdens in these developmental
life stages. In addition, understanding the dispersal and foraging
ecology of this cryptic life stage is essential for understanding
their vulnerability in the context of this novel presence of plastic
pollution. In addition future studies to better understand the
physiological and population-level impacts of plastic pollution
on marine turtles.
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