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ABSTRACT
We review experimental and theoretical cross sections for electron scattering in nitric oxide (NO) and form a comprehensive set of plausible
cross sections. To assess the accuracy and self-consistency of our set, we also review electron swarm transport coefficients in pure NO and
admixtures of NO in Ar, for which we perform a multi-term Boltzmann equation analysis. We address observed discrepancies with these
experimental measurements by training an artificial neural network to solve the inverse problem of unfolding the underlying electron-NO
cross sections while using our initial cross section set as a base for this refinement. In this way, we refine a suitable quasielastic momentum
transfer cross section, a dissociative electron attachment cross section, and a neutral dissociation cross section. We confirm that the resulting
refined cross section set has an improved agreement with the experimental swarm data over that achieved with our initial set. We also use
our refined database to calculate electron transport coefficients in NO, across a large range of density-reduced electric fields from 0.003 to
10 000 Td.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064376

I. INTRODUCTION

Plasma medicine is a relatively new field that employs low-
temperature atmospheric pressure plasmas (LTAPPs) in order to
induce beneficial effects in biological tissue.1–4 Key to these benefits
is the formation and subsequent synergistic interactions of reac-
tive oxygen and nitrogen species (RONS).1 The accurate modeling,
control, and optimization of LTAPP for plasma medicine applica-
tions are dependent on a complete and detailed understanding of
all plasma–tissue interactions, of which one important subset is the
interaction of electrons with RONS.2–4 One of the most important
RONS is nitric oxide (NO),1 which has been identified as being
effective in both tissue disinfection5 and apoptosis of cancer cells.6,7

A precise description of the interactions between electrons and
NO, in the form of electron-impact cross sections,8 is thus impor-
tant for the predictive understanding of many plasma treatments.
With this motivation in mind, in this investigation, we compile

a comprehensive set of electron–NO cross sections that attempts
to address the shortcomings of those already available in the
literature.

To ensure the accuracy and self-consistency of our
electron–NO cross section set, we calculate corresponding electron
swarm transport coefficients for comparison with measurements in
the literature. Any discrepancies observed in the swarm parameters
can then be addressed through appropriate refinements of the cross
section set. This inverse swarm problem of unfolding cross sections
from swarm measurements has a long and successful history.9–16

Nevertheless, when the amount of available swarm data becomes
limited, the inverse swarm problem becomes ill-posed and is no
longer guaranteed to have a unique solution. Traditionally, this
difficulty was overcome by relying on an expert in swarm analysis
to rule out unphysical solutions and to select the solution that
is the most physically plausible. Recently, however, Stokes et al.
were able to avoid this time-consuming and possibly subjective
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process of manual iterative refinement by employing an artificial
neural network model17 to solve the inverse swarm problem for
the biomolecule analogs tetrahydrofuran (THF, C4H8O)18 and
α-tetrahydrofurfuryl alcohol (THFA, C5H10O2),19 with the former
result being found to be of comparable quality to a conventional
refinement “by hand.”20 This application of machine learning was
originally proposed by Morgan21 in the early 1990s. Given that
machine learning has, in recent years, been applied to problems
from all fields of science, including chemical physics,22 revisiting the
proposal of Morgan with a modern machine learning methodology
and hardware was certainly overdue. However, most pivotal to the
procedure of Stokes et al. was their use of the LXCat project,23–25

allowing for their neural network to be trained on a wealth of “real”
cross sections, thus allowing their model to “learn” what constitutes
a physically plausible cross section set. In this work, we employ a
similar machine learning approach to automatically and objectively
refine electron–NO cross sections, given independent experimental
swarm data.

The remainder of this paper is structured as follows. In Sec. II,
we review relevant experimental and theoretical cross sections and
assemble our initial electron–NO cross section database. In Sec. III,
we assess the accuracy and self-consistency of our initial set by
simulating corresponding transport coefficients, using a multi-term
Boltzmann equation solver, and comparing them to experimental
measurements present in the literature. Section IV details our data-
driven approach to the swarm analysis of the experimental data and
presents the resulting refinements to our initial cross section set.
Section V assesses to what extent our refined set improves the agree-
ment with experimental swarm data over what we proposed initially.
We also use our refined set here to calculate transport coefficients
for electrons in NO across a large range of density-reduced elec-
tric fields. Finally, Sec. VI presents our conclusions and makes some
suggestions for future work.

II. INITIAL CROSS SECTION COMPILATION
There have been three comprehensive attempts to compile

cross section data for electron scattering from NO. The first, by
Brunger and Buckman,26 is now quite dated and so does not figure
in what follows. The second was by Itikawa,27 perhaps the doyen of
scientists who collect and evaluate cross section data, while the most
recent was from Song et al.28 In his compilation, Itikawa27 reported
data for the grand total cross section (TCS); elastic integral cross
section (ICS); elastic momentum transfer cross section (MTCS);
vibrational excitation ICS for the 0→ 1, 0→ 2, and 0→ 3 quanta;
a subset of the electronic-state ICS; a total ionization cross section
(TICS); and a dissociative electron attachment (DEA) cross section.
Unfortunately, in many cases, his recommendations did not cover a
broad enough energy range, nor were all the possible open channels
considered [neutral dissociation (ND) was not addressed], to fulfill
the criteria of Tanaka et al.8 and Brunger29 that databases for mod-
eling and simulation studies (e.g., Refs. 20 and 30–32) must be com-
prehensive and complete. Song et al.,28 where possible, updated the
Itikawa database and then used that as a starting point to solve the
inverse electron-swarm problem19 in NO. In that approach, ICSs are
varied, in conjunction with a two-term approximation Boltzmann
equation solver,24 in order to force agreement between the simu-
lated and measured transport coefficient data.28 The so-determined

ICS set then became their recommended cross section database for
the e +NO collision system. We have several reservations with the
work of Song et al.28 First, there is no a priori rationale provided
by Song et al.28 for why the two-term approximation to solving
Boltzmann’s equation should be valid for all the transport coeffi-
cients they simulated over the range of E/n0 [E = applied electric
field strength and n0 = number density of the background gas (i.e.,
NO here) through which the electron swarm drifts and diffuses] they
considered. Indeed, in Sec. III, we apply a multi-term Boltzmann
solver and determine that the two-term approximation has not con-
verged sufficiently for some of the measurements considered in their
swarm analysis. Second, as part of their swarm analysis, Song et al.28

used the swarm data of Takeuchi and Nakamura33 who determined
their transport coefficients from measured distributions of electron
arrival times.33 It is known that these resulting “arrival time spectra”
transport coefficients are distinct from the bulk (center-of-mass)
transport coefficients provided by many Boltzmann solvers,34,35 and
it is not clear whether Song et al.28 have taken this into account
when performing their swarm analysis. Finally, the ill-posed nature
of the inverse swarm problem18 can potentially lead to uniqueness
issues in the cross sections derived. Namely, while the ICSs deter-
mined by Song et al.28 do lead to transport coefficients that are
largely consistent with the available swarm data, they might not be
the only set that does so. Under those circumstances, the database of
Song et al.28 might not be physical. As a consequence of those con-
cerns, we assemble our initial e +NO cross section database by using
extensively the work of Itikawa.27

Brunger et al.36 reported ICSs for 28 excited electronic states
of NO, but only over the limited incident electron energy range of
15–50 eV. Cartwright et al.37 extended a subset of 9 of those cross
sections, to their various threshold energies and out to 500 eV, in
order to study the excited-state densities and band emissions of NO
under auroral conditions. Here, we extend the remaining 19 excited
electronic-state ICSs to their respective threshold energies38 and
out to 500 eV, with all of these electronic-state ICSs being plotted
in Fig. 1. Note that Xu et al.39 reported some BE f -scaling8 theo-
retical results for the A2Σ+, C2Π, and D2Σ+ electronic states and
found good agreement with the ICSs of Brunger et al.36 for the A-
and C- states. For the D-state, however, a discrepancy was noted
although that may reflect on the applicability of using the BE f -
scaling approach for an electronic state with such a small optical
oscillator strength.40 For vibrational excitation, we essentially adopt
Fig. 1 from Campbell et al.,41 which was constructed from the low-
energy results of Josić et al.42 and Jelisavcic et al.43 and the higher-
energy results of Mojarrabi et al.44 All these ICSs, for the ν = 0–1,
0–2, and 0–3 vibrational quanta, are plotted in Fig. 1. The present
DEA cross sections were taken directly from Table 6 of Itikawa,27

being originally sourced from the work of Rapp and Briglia45 (see
Fig. 1). Similarly, the present TICS was taken directly from Table 5 of
Itikawa,27 with the origin of the cross sections in this case being from
Lindsay et al.46 (again, see Fig. 1). In the case of the elastic scattering,
our initial dataset is constructed below 3.38 eV by subtracting the
present vibrational ICSs of Fig. 1 from the TCS measurement of Alle
et al.47 Above 3.38 eV, we use the recommended data from Table 2
of Itikawa.27 The present elastic ICSs are also plotted in Fig. 1. The
TCSs of our initial cross section compilation were formed as follows.
Below an incident electron energy of 2.6 eV, we used the values of
Alle et al.,47 as digitized from their Fig. 1, while for E0 above 5 eV,
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FIG. 1. Graphical representation for the initial cross section database that we have
assembled as a part of the present study. See also our text and the legend in the
figure.

we employed the values from Table 1 in Itikawa.27 Between 2.6 and
5 eV, we undertook an interpolation that ensured that the TCSs of
Alle et al.47 merged smoothly with those recommended by Itikawa.27

The resultant TCS from this process is shown pictorially in Fig. 1.
Finally, there remains the neutral dissociation cross section. There
are no known measurements or calculations for the ND ICS in
e +NO scattering, so our approach for estimating it was as follows.
The sum of the individual ICSs, for all open scattering channels
at some E0, should be consistent with the TCS, at least to within
the uncertainties on the TCS. In this case, we found that when
we summed all our ICSs, there was a quite narrow energy region
(∼5–20 eV) where it underestimated the TCS (to well outside the
error on our TCS). We, therefore, assigned that residual cross section
strength to be the ICS for ND, with our derived result again being
plotted in Fig. 1.

Figure 1, therefore, summarizes all the ICSs and the TCS
that constitute our initial cross section compilation for input into
our multi-term Boltzmann equation solver,18,19 in order to deter-
mine transport coefficients that can be compared to corresponding
independent results from electron-swarm experiments. The present

error estimates on those ICSs and the TCS largely reflect those given
in the original papers, from which our initial database was derived.
Typically, this would be ∼ ±25% on the elastic ICS, ∼ ±30% on
the vibrational excitation ICS, ∼ ±7% on the TICS, in the range of
∼ ±25%–70% for the various electronic-state ICS, ∼ ±30% on the
DEA ICS, and ∼ ±80% on the ND ICS that we have derived. The
independent TCS dataset would have an error of ∼ ±7%, a little
more than cited in the relevant papers as we have included a small
additional uncertainty due to the so-called “forward angle scatter-
ing effect”48 that was previously not allowed for. It is important
to remember that, when using this initial cross section compila-
tion in conjunction with a multi-term Boltzmann equation solver,
the errors on the ICSs will, in principle, necessarily lead to a band
of allowed solutions for the transport coefficients that are to be
simulated.

Another observation we should make with respect to Fig. 1 is
that it is clear that the TCS we determine from adding up all our var-
ious ICSs (denoted by a black dashed line and called “Final TCS”)
is entirely consistent with the TCS we derived from the indepen-
dent measurements available to us (denoted by a red dashed-dotted
line). While this is a necessary condition for a cross section compi-
lation to be plausibly physical, as we saw in our work on THF18 and
THFA,19 it by no means a priori guarantees that the simulated trans-
port coefficients will reproduce the available swarm data. Finally, it
is also relevant to note here that all the ICSs in the present compila-
tion are rotationally averaged, which is a direct result of the energy
resolution of current-day electron spectrometers not being narrow
enough to resolve the various rotational lines.26

III. MULTI-TERM BOLTZMANN EQUATION ANALYSIS
OF OUR INITIAL SET

To assess the quality of our initial set of electron–NO cross
sections, we apply a well-benchmarked multi-term solution of
Boltzmann’s equation32,49,50 in order to calculate swarm transport
coefficients for comparison to the measured values in the litera-
ture. Chronologically, electron–NO swarm measurements include
drift velocities and transverse characteristic energies by Skinker and
White51 and Bailey and Somerville,52 transverse characteristic ener-
gies by Townsend,53 drift velocities and attachment coefficients by
Parkes and Sugden,54 transverse characteristic energies and ioniza-
tion coefficients by Lakshminarasimha and Lucas,55 transverse and
longitudinal characteristic energies by Mechlińska-Drewko et al.,56

and, most recently, drift velocities and longitudinal diffusion coeffi-
cients by Takeuchi and Nakamura33 (for both pure NO and admix-
tures of NO in Ar).

When performing a Boltzmann equation swarm analysis, it
is essential to precisely interpret what is being measured in each
swarm experiment under consideration.34,57 In this regard, many
of the earlier electron–NO measurements are inadequate as they
are obtained using a “magnetic deflection” experiment58 that mea-
sures a drift velocity that is distinct from the bulk (center-of-mass)
drift velocity measured in pulsed-Townsend experiments57 and pro-
vided by our Boltzmann solver. Ultimately, we choose to calcu-
late comparisons to the drift velocities and longitudinal diffusion
coefficients of Takeuchi and Nakamura,33 the ionization coeffi-
cients of Lakshminarasimha and Lucas,55 the attachment coefficients
of Parkes and Sugden,54 the transverse characteristic energies of
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Lakshminarasimha and Lucas55 and Mechlińska-Drewko et al.,56

and the longitudinal characteristic energies of Mechlińska-Drewko
et al.56 and Takeuchi and Nakamura33 (calculated using their drift
and diffusion measurements). We purposefully leave out the 421 K

measurements of Parkes and Sugden,54 due to an observed pressure
dependence in their measured attachment coefficients that they
attribute to electron detachment from product ions at this tem-
perature. We also neglect the pure NO diffusion measurements

FIG. 2. Transport coefficients calculated for our initial electron–NO cross section set, alongside swarm measurements from the literature for comparison. See also legends
for further details.
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of Takeuchi and Nakamura33 below 11 Td due to the pressure
dependence arising from three-body attachment in this low E/n0
regime.54,59 While their associated drift velocity measurements
also show a pressure dependence, it is to a far lesser extent and
Takeuchi and Nakamura33 are able to consistently estimate pressure-
independent values by extrapolation to zero pressure.33 In almost all
cases considered, we interpret swarm measurements as pertaining to
the center of mass of the swarm (i.e., bulk transport coefficients). The
only exception we make is for the double-shutter drift tube experi-
ment of Takeuchi and Nakamura,33 which measures an “arrival time
spectra” drift velocity, Wm, that is distinct from the bulk drift veloc-
ity when nonconservative effects are present.34 Fortunately, we can
approximate this quantity in terms of our simulated bulk transport
coefficients with35

Wm ≈W − 2αeffDL, (1)

where W is the bulk drift velocity, αeff is the effective first Townsend
ionization coefficient, and DL is the bulk longitudinal diffusion
coefficient.

To perform the transport calculations, we require an appro-
priate quasielastic (elastic + rotation) momentum transfer cross
section, which we obtain by multiplying the present elastic ICS
(from Fig. 1) by the ratio of elastic MTCS to elastic ICS, each taken
from the set of Itikawa.27 When calculating the admixture trans-
port coefficients, we use the argon cross section set present in the
Biagi database.60–62 The resulting simulated transport coefficients
are plotted alongside the aforementioned experimental measure-
ments in Figs. 2(a)–2(f) for drift velocities, diffusion coefficients,
ionization coefficients, attachment coefficients, transverse character-
istic energies, and longitudinal characteristic energies, respectively.
Figure 2(a) shows a qualitative agreement between our simulated
drift velocities and the measurements of Takeuchi and Nakamura.33

In the case of pure NO, our initial cross section set results in drift
velocities that are consistently too small below 2 Td and too large
above 2 Td. In the admixture cases, the onset of negative differential
conductivity (NDC)—the phenomenon of decreasing drift veloc-
ity with increasing E/n0—occurs earlier in our simulations than
is shown by the experiment. Figure 2(b) indicates that our calcu-
lated longitudinal diffusion coefficients in pure NO are too large
by roughly a factor of 2 on average. By comparison, the calculated
admixture diffusion coefficients are much closer to the measure-
ments and exhibit many of their qualitative features. We note that
the two-term approximation is in error by up to 40% for the longi-
tudinal diffusion coefficient measurements near 500 Td. It follows
that a multi-term Boltzmann solver is also necessary here for the
accurate calculation of characteristic energies. Figure 2(c) shows ion-
ization coefficients calculated for our initial set, which are generally
larger than those measured by Lakshminarasimha and Lucas55 (up
to 75% larger in some instances). Quantitatively, there is also room
for improvement here. Figure 2(d) shows the near absence of attach-
ment in our simulations below ∼ 15 Td, in stark contrast to the mea-
surements of Parkes and Sugden.54 This indicates the presence of a
low-energy attachment process that is currently missing from our
initial set. Figure 2(e) shows a good quantitative agreement between
our calculated transverse characteristic energies and those measured
by Lakshminarasimha and Lucas.55 However, the same cannot be
said for the measurements of Mechlińska-Drewko et al.,56 which,
while qualitatively similar, tend to be much smaller than what we

calculate. Figure 2(f) exhibits a disagreement between our calculated
longitudinal characteristic energies and the pure NO measurements
of Mechlińska-Drewko et al.56 and Takeuchi and Nakamura,33 both
of which are consistently smaller than what we calculate. The agree-
ment is much better for the mixture measurements of Takeuchi and
Nakamura,33 although the simulations are still larger than expected
in the case of the 4.99% NO in Ar measurements below 3 Td.

IV. CROSS SECTION REFINEMENT USING
DATA-DRIVEN SWARM ANALYSIS

In Sec. III, we have seen clear discrepancies between the trans-
port coefficients calculated using our initial electron–NO cross
section set and those determined experimentally by a number of
authors. In this section, we apply machine learning in order to
refine our initial set and hopefully improve its agreement with the
measured swarm data plotted in Fig. 2.

A. Machine learning methodology
To obtain a solution to the inverse swarm problem, we utilize

the artificial neural network of Stokes et al.,17–19

y(x) = (A4 ○mish ○A3 ○mish ○A2 ○mish ○A1)(x), (2)

where An(x) ≡Wnx + bn are affine mappings defined
by dense weight matrices Wn and bias vectors bn and
mish(x) = x tanh(ln(1 + ex

)) is a nonlinear activation function63

that is applied element-wise. The output vector, y, contains each
NO cross section of interest as a function of energy, ε, which
is an element of the input vector, x, alongside all of the swarm
measurements plotted in Fig. 2. It should be noted that we apply
suitable logarithmic transformations to ensure that all inputs and
outputs of the network are dimensionless and lie within [−1, 1].
We specify that each bias vector contains 256 parameters, with the
exception of b4, the size of which must match the number of cross
sections in y. The weight matrices are all sized accordingly.

In order to train the neural network [Eq. (2)], we require an
appropriate set of example solutions to the inverse swarm prob-
lem. The choice of cross sections used for training is vital, in order
for the network to provide a self-consistent and physically plausi-
ble set of cross sections that are consistent within all the experi-
mental error bars (including those on the TCS). We derive such
cross sections from the LXCat project,23–25 as described in detail in
Sec. IV B for each of the cross sections considered. Once suitable
training cross sections are found, the corresponding transport coeffi-
cients are determined using our multi-term Boltzmann solver32,49,64

(here, we use a four-term approximation). A small amount of ran-
dom noise is also multiplied by each transport coefficient to roughly
imitate random experimental error. The logarithm of this noise fac-
tor is sampled from a normal distribution with a mean of 0 and a
standard deviation of 0.03 for the drift velocities, 0.05 for the diffu-
sion coefficients, and 0.1 for the ionization coefficients, attachment
coefficients, and characteristic energies considered.

We implement and train the neural network [Eq. (2)] using
the Flux.jl machine learning framework.65 The network is initial-
ized such that its biases are zero and its weights are uniform
random numbers, as described by Glorot and Bengio.66 Train-
ing is performed using the AdaBelief optimiser67 with Nesterov
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momentum,68,69 step size α = 10−3, exponential decay rates β1 = 0.9
and β2 = 0.999, and small parameter ϵ = 10−8. At each iteration,
the optimiser is provided with a different batch of 4096 training
examples, where each batch consists of 32 training cross sections
each evaluated at 128 random energies of the form ε = 10s, where
s ∈ [−2, 3] is sampled from a continuous uniform distribution. For
each batch, the optimiser adjusts the neural network weights and
biases with the aim of further minimizing the mean absolute error in
solving the inverse swarm problem for that batch. Training is con-
tinued for 150 000 iterations, providing an equal number of potential
solutions to the inverse swarm problem. The quality of each of these
solutions is subsequently assessed by calculating their corresponding
transport coefficients and comparing these to the swarm data plot-
ted in Fig. 2. The set that agrees best with the swarm measurements
is presented below as our “refined” set.

B. Refined cross section set
Using our initial cross section set as a base, we apply the

neural network [Eq. (2)] to determine a selection of plausible NO
cross sections underlying the swarm measurements shown in Fig. 2.
In particular, we determine cross sections for quasielastic (elastic
+ rotation) momentum transfer, neutral dissociation, and dissocia-
tive electron attachment.

For dissociative electron attachment, we keep the cross section
from the initial set and determine an additional DEA cross section
using physically plausible training data of the form

σ(ε) = σ1−r
1 (ε)σ

r
2(ε), (3)

where r ∈ [0, 1] is a mixing ratio sampled from a continuous uni-
form distribution and σ1(ε) and σ2(ε) are a random pair of attach-
ment cross sections from the LXCat project.23–25 Beyond the implicit
constraints due to the TCS (discussed below) and the physical con-
straints inherent to the LXCat cross sections, we otherwise leave the
DEA training cross sections completely unconstrained. The result-
ing confidence band of training examples is plotted in Fig. 3(b),
alongside the refined fit provided by the neural network. Figure 3(a),
on the other hand, simply shows that the DEA cross section from the
initial set has remained unchanged in the refined set. As indicated by
the attachment coefficient discrepancy shown in Fig. 2(d), the addi-
tional DEA cross section refined in Fig. 3(b) is largest at low energies.
Below 0.1 eV, the refined DEA is roughly constant at 10−22 m2, a
magnitude comparable to the peak of the other, higher-energy, DEA
process kept from the initial set. From 0.1 to 3 eV, the refined DEA
cross section decays roughly according to a power law before van-
ishing. The refinement increases only very slightly in the vicinity of
the other DEA process, near 9 eV, indicating that it is likely adequate
as is.

For neutral dissociation, we found that fitting a single uncon-
strained ND cross section resulted in a refinement with a threshold
energy much lower than that for the ND proposed in the initial set
(∼ 5.5 eV). It was only after attempting a fit with two unconstrained
ND processes that a refined cross section of similar threshold energy
arose. The training data used for these two processes took the
form

σ(ε) = σ1−r
1 (ε + ε1 − ε1−r

1 εr
2)σ

r
2(ε + ε2 − ε1−r

1 εr
2), (4)

FIG. 3. Neural network regression result for an attachment cross section (b)
present in the refined set alongside that from the initial set (a). See also legends
in the figure.

where σ1(ε) and σ2(ε) are a random pair of excitation cross sec-
tions from the LXCat project,23–25 ε1 and ε2 are their respective
threshold energies, and r ∈ [0, 1] is a uniformly sampled mixing
ratio. We additionally use rejection sampling to enforce that the
threshold energies of the two ND processes are at least 1 eV apart.
The resulting ND training example confidence bands are shown in
Fig. 4. Figure 4(a) indicates that the refined higher-threshold ND
process has a threshold energy that is almost identical to its coun-
terpart in the initial set (at ∼ 5.6 vs ∼ 5.5 eV). While this refine-
ment increases slowly from threshold compared to its counterpart, it
ultimately reaches a slightly larger peak magnitude (1.35 × 10−20 vs
1.05 × 10−20 m2) at a slightly lower energy (11.7 vs 12.3 eV). Beyond
this turning point, the refinement decays monotonically, transition-
ing to a power-law above 50 eV before falling to 5 × 10−22 m2 by
1000 eV. This is in stark contrast to the initial ND cross section,
which lacks a high-energy tail due to its origin as a residual ICS
from the TCS. Figure 4(b) shows that the refined lower-threshold
ND process has a threshold energy of ∼ 0.35 eV. This refined cross
section increases rapidly from threshold, reaching a peak magni-
tude of 3.4 × 10−20 m2 at 0.63 eV. The subsequent decay here is also
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FIG. 4. Neural network regression results for a pair of NO neutral dissociation
cross sections, one with a higher threshold energy (a) than the other (b). The
higher-threshold ND cross section has a comparable threshold energy to the ND
cross section from the initial set, which is plotted alongside for comparison. See
also legends in the figure.

monotonic, albeit somewhat more erratic, reaching a minimum of
3.9 × 10−25 m2 by 1000 eV.

For the quasielastic momentum transfer cross section, we take a
slightly different approach by using the neural network to determine
a suitable energy-dependent scaling of the elastic ICS, which upon
application would yield the refined quasielastic MTCS. The form of
the scaling factors that are used for training is

σ(ε)
σICS(ε)

= (
σQMTCS(ε)

σICS(ε)
)

1−r(ε)
(

σ1(ε)
σ2(ε)

)

r(ε)
, (5)

where σ(ε) is the quasielastic MTCS used for training, σICS(ε) is the
present elastic ICS, σQMTCS(ε) is the present quasielastic MTCS (i.e.,
from the initial set), σ1(ε) and σ2(ε) are random elastic cross sec-
tions formed from elastic cross sections on the LXCat project23–25

that are combined using Eq. (3), and r(ε) is a deterministic energy-
dependent mixing ratio, used to constrain the quasielastic MTCS
training data to lie in the vicinity of the experimental measurements

FIG. 5. Neural network regression results for the NO quasielastic MTCS, alongside
the MTCS from the initial set for comparison. See also legends in the figure.

of Mojarrabi et al.,44

r(ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1 − 0.4
ln( ε

10−2 eV
)

ln( 1.5 eV
10−2 eV

)
, 10−2 eV ≤ ε ≤ 1.5 eV,

0.6, 1.5 eV ≤ ε ≤ 40 eV,

0.6 + 0.4
ln( ε

40 eV )
ln( 103 eV

40 eV )
, 40 eV ≤ ε ≤ 103 eV.

(6)

Furthermore, to ensure each quasielastic MTCS decays at high
energies, we used rejection sampling to ensure that σ1(1000 eV)
< σ2(1000 eV). The resulting quasielastic MTCS confidence band
can be observed in Fig. 5, alongside the refined fit provided by the
neural network, and the initial quasielastic MTCS for comparison.
We see that the refined quasielastic MTCS is almost always larger

FIG. 6. Neural network regression results for the NO TCS, alongside the initial set
TCS for comparison. See also legends in the figure.
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than that from our initial set, with the difference becoming greater at
higher energies. The greatest difference occurs at 103 eV, where the
tail of the refined quasielastic MTCS is almost an order of magnitude
larger than that for the initial set.

When sampling ND and DEA cross sections for training, we
further employ rejection sampling to only keep cross section sets for
training that lie within ±7% of the grand TCS of our initial set (while
also accounting for the uncertainty in the elastic ICS of ±25%). The
resulting confidence band in the grand TCS, due to the training
examples, is plotted in Fig. 6, alongside our initial and refined grand
TCSs. The refined TCS is roughly the same as the initial TCS up to
10 eV, beyond which the refinement exceeds that we initially pro-
posed. The greatest difference arises at 26 eV, with an increase in
magnitude of 89%.

V. MULTI-TERM BOLTZMANN EQUATION ANALYSIS
OF OUR REFINED SET
A. Consistency with swarm measurements

Using our refined set of electron–NO cross sections, we plot
revised simulated transport coefficients in Figs. 7(a)–12(a) for

FIG. 7. (a) Simulated arrival time spectra drift velocities from both our initial
database and our refined database, compared to swarm measurements from the
literature. (b) Corresponding percentage errors in the simulated values relative to
the swarm measurements. See also legends in figures.

comparison to the swarm measurements used to perform the refine-
ment, as well as to the transport coefficients calculated previ-
ously using our initial set. These transport coefficients are accom-
panied by corresponding percentage difference (error) plots in
Figs. 7(b)–12(b). Here, positive percentage differences indicate that
our simulated transport coefficients exceed their experimentally
measured counterparts. Figure 7 shows that our refined set has
brought the simulated drift velocities much closer to the experimen-
tal measurements of Takeuchi and Nakamura.33 This agreement is
particularly good for the pure NO measurements above 3 Td, with
the discrepancies at lower E/n0 possibly attributable to the drift
velocities in this regime being estimated from pressure-dependent
measurements.33 Figure 8 shows a large improvement after refine-
ment for the pure NO diffusion measurements of Takeuchi and
Nakamura.33 However, the outcome is somewhat more mixed in
the case of diffusion measurements in the NO–Ar mixtures, with
the refined set improving the agreement with some of the admix-
ture measurements of Takeuchi and Nakamura,33 while worsening
it with others. Figure 9 shows a significantly improved agreement

FIG. 8. (a) Simulated longitudinal diffusion coefficients from both our initial
database and our refined database, compared to swarm measurements from the
literature. (b) Corresponding percentage errors in the simulated values relative to
the swarm measurements. See also legends in figures.
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FIG. 9. (a) Simulated ionization coefficients from both our initial database and
our refined database, compared to swarm measurements from the literature. (b)
Corresponding percentage errors in the simulated values relative to the swarm
measurements. See also legends in figures.

between the ionization coefficients of the refined set and the mea-
surements of Lakshminarasimha and Lucas.55 As this agreement
was achieved without requiring adjustments to the initial TICS,
this lends further credence to the overall self-consistency of the
refinements that were made. Figure 10 indicates that the attach-
ment coefficient after refinement is non-zero below 20 Td, and
in line with the measurements of Parkes and Sugden.54 The accu-
racy here is now generally within ±50%, which is of the order
of the uncertainty in the experimental measurements. Figure 11
shows a transverse characteristic energy after refinement that agrees
much better with the measurements of Mechlińska-Drewko et al.56

and Lakshminarasimha and Lucas,55 while Fig. 12 shows similar
improvements for the simulated longitudinal characteristic energy
as compared to the measurements of Mechlińska-Drewko et al.56

and Takeuchi and Nakamura.33 In this case, where the neural net-
work was provided with both conflicting sets of pure NO mea-
surements, the refined fit is seen here to be more consistent with
the measurements of Takeuchi and Nakamura33 over those of
Mechlińska-Drewko et al.56

FIG. 10. (a) Simulated attachment coefficients from both our initial database and
our refined database, compared to swarm measurements from the literature. (b)
Corresponding percentage errors in the simulated values relative to the swarm
measurements. See also legends in figures.

B. Transport calculations for pure NO
In Fig. 13, we apply our multi-term Boltzmann solver to our

refined cross section set, in order to determine a variety of transport
coefficients for electrons in NO at T = 300 K over a large range of
reduced electric fields, E/n0, varying from 3 × 10−3 to 104 Td. We
find that at least an eight-term approximation is necessary for all the
considered NO transport coefficients to be accurate to within 1%.
Figure 13(a) shows a plot of mean electron energy alongside that
for the background NO. In the low-field regime, the mean electron
energy is ∼ 146 meV, which is substantially higher than the thermal
background of 3

2 kBT ≈ 38.8 meV, a consequence of the attachment
heating resulting from the refined DEA cross section in Fig. 3(b).
As E/n0 is increased, the onset of the vibrational excitation chan-
nels contributes to a net cooling of the electrons, causing the mean
electron energy to reach a minimum of ∼ 116 meV at ∼ 0.17 Td.
Beyond that point, increasing E/n0 further causes the mean electron
energy to increase monotonically due to heating by the field, with
its ascent occasionally slowing due to the onset of additional exci-
tation channels (∼ 1 Td) and attachment and ionization processes

J. Chem. Phys. 155, 084305 (2021); doi: 10.1063/5.0064376 155, 084305-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 11. (a) Simulated transverse characteristic energies from both our initial
database and our refined database, compared to swarm measurements from the
literature. (b) Corresponding percentage errors in the simulated values relative to
the swarm measurements. See also legends in figures.

(∼ 200 Td). Figure 13(b) shows the rate coefficients for quasielas-
tic momentum transfer, summed discrete excitation, ionization, and
attachment. The quasielastic momentum transfer rate coefficient is
highly correlated with the mean electron energy, although this cor-
relation tapers off near 104 Td with a decrease with increasing E/n0.
Summed excitation and ionization rate coefficients both increase
as expected with increasing E/n0. The summed attachment coeffi-
cient also behaves as expected, with the low-energy and high-energy
attachment cross sections resulting in separate maxima at ∼ 0.19
and ∼ 250 Td, respectively. Figure 13(c) shows the bulk (center-of-
mass) and flux drift velocities of the swarm, which are expected to
differ when nonconservative processes are acting. For example, in
the low-field regime, the preferential attachment of lower-energy
electrons toward the back of the swarm results in a forward shift
in the center of mass, yielding a bulk drift velocity that is larger
compared to its flux counterpart. Here, the bulk drift velocity also
exhibits NDC between ∼ 3.5 × 10−2 and ∼ 5.5 × 10−2 Td. At interme-
diate fields, between ∼ 1 and ∼ 100 Td, net nonconservative effects
are sufficiently small such that the bulk and flux drift velocities coin-
cide. Above ∼ 100 Td, the bulk drift velocity again exceeds the flux,

FIG. 12. (a) Simulated longitudinal characteristic energies from both our initial
database and our refined database, compared to swarm measurements from the
literature. (b) Corresponding percentage errors in the simulated values relative to
the swarm measurements. See also legends in figures.

this time due to ionization preferentially creating electrons at the
front of the swarm. Figure 13(d) shows the bulk and flux diffu-
sion coefficients in directions both longitudinal and transverse to
the field. At very low E/n0, when the electron energy distribution
function (EEDF) is nearly Maxwellian, the preferential attachment
of low-energy electrons removes electrons from the center of the
swarm over those from the edges, causing an effective increase in the
bulk diffusion coefficients compared to their flux counterparts. This
remains the case transversely as E/n0 increases due to the symmetry
of the swarm in the transverse direction. Longitudinally, however,
the additional power input by the field causes faster, higher energy,
electrons to congregate at the front of the swarm, thus introducing
an asymmetry in the longitudinal direction. The subsequent attach-
ment of lower-energy electrons at the back of the swarm causes the
bulk longitudinal diffusion coefficient to drop below its flux coun-
terpart from ∼ 1.2 × 10−2 Td onward. As with the drift velocities,
for intermediate E/n0 between roughly 1 and 100 Td, nonconser-
vative effects are minimal and the bulk and flux diffusion coeffi-
cients coincide. At higher E/n0, above 100 Td, there is a significant
increase in bulk diffusion compared to flux in both the transverse
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FIG. 13. Calculated mean electron energies (a), rate coefficients (b), drift velocities (c), and diffusion coefficients (d) for electrons in NO at T = 300 K (with thermal energy
3
2

kBT ≈ 38.8 meV) over a large range of reduced electric fields. See also the legends for further details.

and longitudinal directions, which we attribute to the preferential
production of electrons due to ionization at the front and sides of the
swarm.

VI. CONCLUSION
We have formed a comprehensive and self-consistent set of

electron–NO cross sections by constructing an initial set from the
literature and then refining it using a multi-term Boltzmann equa-
tion analysis of the available swarm transport data. This refinement
was performed automatically and objectively using a neural network
model [Eq. (2)] that was trained on cross sections derived from the
LXCat project23–25 to ensure that the refinements made were phys-
ically plausible. In summary, by using our initial set as a base, we
obtained from the swarm data a quasielastic MTCS, a DEA cross
section, and a ND cross section. Compared to our initial set, we con-
firmed that our resulting refined cross section database was more
consistent with the swarm data from which it was derived. Finally,

we used our refined set to calculate a variety of transport coeffi-
cients for electrons in NO across a large range of reduced electric
fields. Notably, this revealed significant heating of the swarm above
the thermal background due to our refined low-energy attachment
process.

The machine learning methodology we have employed in this
work has previously18 been shown to produce cross section sets that
are comparable to those refined using conventional swarm analy-
sis, i.e., through manual iterative refinement by an expert. We thus
believe that our refined set of electron–NO cross sections is of sim-
ilarly high quality. That said, we do acknowledge that there is still
some room for improvement in the present fit and it is thus for-
tunate that this machine learning approach makes it straightfor-
ward to revisit NO as new swarm data, cross section constraints,
or LXCat training data become available. On this note, we highlight
that there are presently no swarm measurements available for the
effective first Townsend ionization coefficient. We believe that per-
forming such measurements would be a worthwhile future endeavor
as they would allow one to quantify the attachment coefficient in the
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electropositive regime (above ∼ 75 Td) and thus allow for the possi-
bility of refining the DEA cross section above ∼ 4 eV.

Given the ill-posed nature of the inverse swarm problem, we
also acknowledge that our refined set carries with it some uncer-
tainty. In this sense, an artificial neural network of the form of Eq. (2)
is not ideal as it does not provide uncertainty quantification. In
the future, we may address this by using an appropriate alterna-
tive machine learning model.70–75 We also plan to apply our data-
driven swarm analysis to determine complete and self-consistent
cross section sets for other molecules of biological interest, including
water.76
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