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A B S T R A C T   

Tuberculosis (TB) exhibits considerable spatial heterogeneity, occurring in clusters that may act as hubs of 
community transmission. We evaluated the impact of an intervention targeting spatial TB hotspots in a rural 
region of Ethiopia. To evaluate the impact of targeted active case finding (ACF), we used a spatially structured 
mathematical model that has previously been described. From model equilibrium, we simulated the impact of a 
hotspot-targeted strategy (HTS) on TB incidence ten years from intervention commencement and the associated 
cost-effectiveness. HTS was also compared with an untargeted strategy (UTS). We used logistic cost-coverage 
analysis to estimate cost-effectiveness of interventions. At a community screening coverage level of 95 % in a 
hotspot region, which corresponds to screening 20 % of the total population, HTS would reduce overall TB 
incidence by 52 % compared with baseline. For UTS to achieve an equivalent effect, it would be necessary to 
screen more than 80 % of the total population. Compared to the existing passive case detection strategy, the HTS 
at a CDR of 75 percent in hotspot regions is expected to avert 1,023 new TB cases over ten years saving USD 170 
per averted case. Similarly, at the same CDR, the UTS will detect 1316 cases over the same period saving USD 3 
per averted TB case. The incremental-cost effectiveness-ratio (ICER) of UTS compared with HTS is USD 582 per 
averted case corresponding to 293 more TB cases averted at an additional cost of USD 170,700. Where regional 
TB program spending was capped at current levels, maximum gains in incidence reduction were seen when the 
regional budget was shared between hotspots and non-hotspot regions in the ratio of 40% : 60%. Our analysis 
suggests that a spatially targeted strategy is efficient and cost-saving, with the potential for significant reduction 
in overall TB burden.   

1. Background 

Geographic heterogeneity is a defining characteristic in tuberculosis 
(TB) epidemiology (Shaweno et al., 2018a; Trauer et al., 2018). This 
means that a small fraction of the population bears the highest burden of 
disease, while the majority of the population carries a considerably 
lower burden – raising the possibility that geographically targeted in-
terventions may be particularly effective. However, failure to target 

resources to these locations has been described as one of the reasons for 
slow progress in TB incidence reduction (Reid et al., 2019a). 

Current TB control programs miss a considerable number of cases, 
estimated at 36 % in 2017, which poses an important challenge for 
global TB control (World Health Organisation, 2018). Therefore, active 
screening will likely be critical to reach the missed cases, although 
indiscriminate mass screening is expensive and is currently discouraged 
(World Health Organisation, 2013). Instead, active case finding (ACF) in 
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geographical areas with a high disease prevalence is favoured (World 
Health Organisation, 2013; Theron et al., 2015; World Health Organi-
zation, 2015), although the details of how to implement such a strategy 
are not fully defined. Few studies have evaluated the impact of targeting 
these locations, and there remains no consensus on how to define a 
spatial TB hotspot (Shaweno et al., 2018b). A proof of concept study in 
urban Brazil that evaluated the impact of a hypothetical intervention 
aimed at reducing time to detection showed that spatial targeting was 
superior to community-wide approaches (Dowdy et al., 2012). In 
contrast, results from a study that evaluated the impact of hypothetical 
vaccine targeting spatial hotspots in India showed modest benefits and 
the extent of heterogeneity was an important determinant of impact 
(Shrestha et al., 2016), implying that the effectiveness of spatial tar-
geting was unpredictable and setting-dependent. 

In this study, we estimated the impact of spatially targeted active TB 
contact screening in a remote zone in Ethiopia. 

2. Methods 

The analysis we present here extends our previous work which 
explored the implications of spatial heterogeneity for the spatial spread 
of TB (Shaweno et al., 2018b). 

2.1. Overview of past work 

In our previous study we used spatial analysis techniques (Shaweno 
et al., 2017) to identify TB hotspots in Sheka Zone, Ethiopia, which 
comprised about 22 % of the Zonal population but contained 50 % of 
notified TB cases. The contribution of hotspots to overall dynamics was 
determined by dividing the overall study region into three sub-regions 
based on disease burden and location. These were designated hotspots 
(statistically significant spatial clusters), non-hotspot regions adjacent to 
hotspots (having a shared border with hotspots) and remote regions (no 
shared border) (Shaweno et al., 2018b) (Supplementary Fig. S 1). 

We then used a compartmental transmission dynamic TB model 
which divided the population into five epidemiological compartments 
depending on TB-related infection or disease progression status, and 
three geographic patches (Shaweno et al., 2018b) (Supplementary Fig. S 
2). The transmission dynamics of TB were assumed to be identical in 
each spatial subdivision, except that the per capita effective contact rate 
(β) was calibrated to the local notification rates and the baseline case 
detection rate. 

Mycobacterium tuberculosis (Mtb) transmission within and across re-
gions was captured by constructing models with different contact mix-
ing matrices to represent the strength of interaction within and between 
regions (Shaweno et al., 2018b). We parameterised the model by 
considering identical model parameter values across each of the three 
regions except for case detection rate (CDR) and transmission parame-
ters. The baseline CDR of 65 % was considered in the hotspot region, 
while a lower CDR of 60 % was applied in the non-hotspot regions, based 
on our earlier findings. A full list of model parameters used in or esti-
mated from our previous work including the cross-region coupling rate 
of 4.6 % are provided in the Supplementary Material, Table S 1. 

2.2. Intervention strategies 

We simulated an ACF strategy because the current national TB 
control program in Ethiopia misses a considerable number of TB cases 
(World Health Organisation, 2018). We modelled ACF as a community 
intervention assuming door to door enquiry for chronic cough (≥ 2 
weeks) followed by two sputum samples for microscopy (Kebede et al., 
2014). Individuals with other TB suggestive symptoms who are unable 
to produce cough are referred to the nearest health facility for clinical 
evaluation and chest x-ray. 

This community screening intervention (ACF) was conducted under 
both a spatially targeted strategy (HTS) and a spatially untargeted 

strategy (UTS). Under HTS, we explored the role of spatially targeted 
ACF by incrementally increasing CDR in the hotspot region from the 
baseline value of 65 %, while maintaining the baseline CDR at 60 % in 
the remaining non-hotspot regions. Under UTS, CDR was increased from 
the baseline value in all spatial subdivisions. The model was imple-
mented from equilibrium, with outputs of spatially targeted case finding 
strategy (HTS) compared against the base-case scenario and the spatially 
untargeted case finding strategy (UTS) (Shaweno et al., 2018b). 

The intervention increases TB CDR by reaching the proportion of 
cases that are missed during their course of illness. Hence, the propor-
tion of cases detected and treated under the intervention is the sum of 
the baseline CDR (under existing programmatic conditions) and the 
proportion of missing cases detected by the intervention: 

τi = pi(1 − τ0i) + τ0i  

where i may take two values representing spatial hotspots or the overall 
region, pi represents the coverage of population screening in the spatial 
subdivision of interest, τi represents the intervention CDR in the subdi-
vision, and τ0i refers to the baseline CDR in the subdivision under the 
national TB program. The value of p ranges from 0 (no intervention) to 1 
(full coverage). The intervention case detection proportion (τi) gener-
ated in this way was converted to case detection rate (δi) to be used in 
the model (see appendix for details). 

Because HTS and UTS operate in regions with different population 
sizes, direct comparison of the impact of an increase in local screening 
coverage could be misleading. Hence, to account for differences in ef-
forts of intervention strategies such that impacts are comparable, we 
used two approaches to estimate the efficiency of intervention strate-
gies. In the first approach, we translated local screening coverage in 
spatial hotspots into the proportion of entire population reached (total 
screening coverage) by multiplying local coverage by the proportion of 
total population in it. In the second approach, we determined efficiency 
using cost-coverage and cost-effectiveness analysis as described below. 

2.3. Cost-coverage analysis and cost-effectiveness analysis 

The community intervention screening coverage (pi) in the spatial 
subdivision of interest was used as an input to a logistic cost-coverage 
function that linked spending on programmatic interventions to inter-
vention coverage (Trauer et al., 2017). The cost-effectiveness analysis in 
this study is based on unit costs related to TB service provision collected 
from the literature in the same study region. Specifically, we considered 
the cost of TB screening under the intervention (symptom screening, 
sputum microscopy, and chest x-ray), the cost of passive case detection 
and the cost of treating each TB patient. Recent estimates from the study 
region under the current passive case detection scheme indicate that TB 
patients incur a median of USD 201 total costs before starting anti-TB 
treatment. This unit cost includes both direct and indirect costs 
incurred while seeking TB care. The direct costs include medical costs 
(for consultation, laboratory tests, x-ray, and related services), and 
non-medical costs (for transportation, accommodation, meals, and 
related services while seeking care for TB diagnosis and to collect 
anti-TB drugs). On the other hand, indirect cost captures lost income due 
to inability to work or lost workdays while traveling to seek care, 
diagnosis, and treatment for TB (Asres et al., 2018). The average cost of 
drugs per patient for drug-susceptible TB treatment in Ethiopia is esti-
mated at USD 45 (WHO, 2019). The costing for TB symptom screening 
(USD 0.3125) is based on time spent by health extension workers 
(HEWS) for door to door travel at kebele level, considering an average of 
30 minutes for symptom screening (Clarke et al., 2006). The time costs 
were converted to a monetary value based on the monthly income of 
HEWs in US dollars, taking an average monthly salary of 3000 Ethiopian 
birr (ETB). The intervention assumes that individuals with symptoms 
suggestive of TB (chronic cough) will be asked to produce sputum. 
Smear test will cost an average unit cost of USD 2.5 per TB review in 
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Ethiopia (in 2018) reflecting the direct costs of TB diagnosis incurred by 
a TB control program adjusted for inflation (de Cuevas et al., 2016). 
Individuals unable to produce sputum will be referred to a nearby health 
facility for chest x-ray, and this will cost about USD 2.5 including travel 
time (based on the current public hospital fee). After symptom 
screening, we assume that sputum smear and chest-x-ray are applicable 
to 6.5 % of the total population (Ethiopian Health and Nutrition 
Research Institute, 2011). 

The cost-coverage relationship is then determined by fixing the 
saturation (maximum possible coverage of screening) at 60 %, which 
means that if the intervention is maximally implemented, we would 
detect 60 % of missing cases which is intended to capture the fact that a 
substantial proportion of all active cases cannot be detected through the 
diagnostic algorithm we consider. 

We also calculated average cost-effectiveness ratios (CER) for each 
intervention strategy by comparing cost and impact (reduction in inci-
dence) at a given coverage with the respective values at baseline. The 
incremental cost-effectiveness ratio (ICER) was calculated as the ratio of 
the difference in cost to the difference in the number of active TB cases 
averted between the two interventions (Gray et al., 2011). CER and ICER 
in this study represent cost per active TB case averted. 

Often national TB programs have a fixed budget and it is unclear 
what proportion of this budget should go to the spatial hotspots in 
contrast to the non-hotspot regions for a maximum possible impact. To 
maximise the impact of the available budget, we estimated annual TB 
funding at approximately USD 65,000 across the study Zone (based on 
available budget in the Zone, 2018) and identified the optimal resource 
allocation strategy for this funding envelope. This was achieved by 
implementing a model such that for every proportion of available 
budget going to spatial hotspots, the remaining proportion goes to the 
non-hotspot regions. Similarly, hypothetical annual budget scenarios 
were considered to define the ideal maximum potential gain of spatially 
targeted resource allocation. 

2.4. Sensitivity analysis 

To account for the extent to which variations in parameter values 
were related to variations in outcome variable (incidence rate), we 
carried out a multivariate sensitivity analysis using Latin hypercube 
sampling (Larson et al., 2005). Sensitivity analysis was done for epide-
miological parameters governing transitions between compartments, 
case detection ratio and population mixing, while keeping the inter-
vention (population screening coverage) constant. These included the 
within region transmission parameters βii (β11 within hotspots, β22 with 
in adjacent regions and, β33 within remote regions), between region 
coupling parameter (ρ); fast progression rate (ε); stabilisation rate (κ); 
reactivation rate (ν); and relapse rate (ω). To be able to capture the 
impact of model parameters on the performance of budget allocation, 
we sampled intervention coverage that corresponds to the proportion of 
budget going to spatial hotspots. Plots from these simulations are pre-
sented in the Supplementary Material, Figs. S3-S5). The parameter values 
and their ranges used in the sensitivity analysis are provided in the 
Supplementary Material, Table S 1. The model was coded in 
Matlab-R2015b. 

3. Results 

In our previous work, using our baseline parameter values, we esti-
mated TB incidence at 538 cases per 100,000 per year in a hotspot 
containing one-fifth of the Zone’s population, and 110 and 150 cases per 
100,000 population per year in adjacent and remote regions respec-
tively. The population-wide prevalence and incidence rates were esti-
mated to be 267 cases per 100,000 and 221 cases per 100,000 
population per year, respectively (Shaweno et al., 2018b). 

3.1. Impact of intervention strategies on TB epidemiology 

HTS resulted in a reduction of overall TB incidence by 52 % with 20 
% of the total population reached, which corresponded to achieving a 
CDR of 95 % in the hotspot region. However, to achieve the same benefit 
from UTS, the proportion of people that needed to be reached was about 
four-fold the coverage in the HTS (Fig. 1). Note that if interventions in 
the hotspot region are maximally implemented, they would cover only 
22 % of the entire population, such that the solid lines terminate at 20 %. 

While HTS that reached 20 % of the total population (corresponding 
to a CDR of 95 % in the hotspot region) reduced TB incidence by 78 % in 
the hotspot region, it reduced incidence by 59 % in the adjacent region 
and by only 2.7 % in the remote region after 10 years of implementation. 
However, UTS had the potential for greater impact by extending 
coverage throughout the region and could reduce TB incidence by more 
than 74 % in the region at the programmatic coverage value of 95 %. 

3.2. Cost-coverage curves 

Fig. 2 presents the effect of increased program spending (cost) on 
intervention coverage, reduction in TB incidence, number of people 
screened and averted active TB cases under the two intervention stra-
tegies - UTS and HTS. The logistic cost-coverage plot (panel A) shows 
that the HTS (solid line) saturates early compared to the UTS (broken 
line), which requires considerably more spending to approach satura-
tion because of the greater population to target. The intervention 
spending associated with specific coverage values from the logistic cost- 
coverage curves were retrieved and used to calculate the cost- 
effectiveness ratios as described in the next section. 

3.3. Cost-effectiveness analysis 

The following plot (Fig. 3) compares the total number of persons 
under treatment (Panel A), program cost (Panel B), and the total number 
of prevalent cases (Panel C) between existing passive case detection and 
passive case detection complemented with ACF (HTS) in spatial hot-
spots. In HTS, the number of treated cases increases immediately after 
the launch of intervention and declines thereafter. As a result, compared 
to the passive only scenario, the cost of treatment increases soon after 
the intervention launch and declines thereafter following declines in the 
number of prevalent cases available for detection and treatment. Over 
ten years, the intervention scenario would reduce TB burden from the 
baseline prevalence of 268 per 100,000 per year to 186 per 100,000 at a 
cost of USD 840,000 by treating 65 percent of expected prevalent cases 
under the intervention (5,100). However, the passive case detection 
scenario will incur USD 1,015,500 to treat 62 percent (baseline CDR) of 
expected prevalent cases (6700) under the passive CDR scenario. In line 
with the above description, Panel D shows the cost per averted case of 
HTS compared with passive CDR (ICER) measured per year over ten 
years. The HTS scenario becomes cost saving one year after an inter-
vention begins, with high ICER soon after the start of intervention which 
then becomes less than 0 afterwards indicating the intervention is cost 
saving overall (Fig. 3). 

Over ten years, the passive case detection scenario at a CDR of 62 
percent will incur USD 1, 015,500. However, compared to the passive 
CDR, the HTS scenario that increases CDR to 75 % in hotspot regions is 
expected to avert 1,023 new TB cases at a reduced cost of USD 840,000, 
saving USD 170 per averted case. Similarly, compared to passive CDR, 
UTS will avert a total of 1,316 new cases at a cost of USD 1,010,700, 
saving USD 3 per averted case. The incremental-cost effectiveness-ratio 
(ICER) of UTS compared with HTS is USD 582 per averted case corre-
sponding to 293 more cases averted at an additional cost of USD 
170,700. 
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3.4. Budget allocation to spatial hotspots 

We also explored the relation between cost and its impact on TB 
incidence using various assumed budget envelopes: USD 10,000, USD 
20,000, USD 35,000, USD 50, 000 and USD80,000. Using these enve-
lopes, the relation between the proportion of budget going to spatial 
hotspots and impact (reduction in incidence) is not linear, particularly 
for budget envelopes greater than USD 10,000. In general, for larger 
budget envelopes (USD 50,000, USD65,000 and USD80,000) the 
maximum gains were seen when the regional budget was shared be-
tween hotspots and non-hotspot regions in the ratio of 40% to 60%. 
Using these budget envelopes, when the proportion of the budget allo-
cated to hotspot exceeded 50 %, population incidence rises markedly 

(Fig. 4). With a lower budget envelope maximum gains are seen when all 
or larger proportion of the envelope goes to hotspots (where there are 
larger number of TB cases-incidence rate of 540/100,000 per year. As 
the budget envelope increases, the proportion of general population 
screened increases, consequently increasing the cost per averted case 
(CER). In contrast, at lower budget envelope schemes, the maximum 
gains are observed when all the budget is directed to spatial hotspots, 
hence lower CERs (Fig. 4). 

3.5. Sensitivity analysis 

Sensitivity analysis showed that the estimated reduction in incidence 
was highly sensitive to the impact of hotspot targeting. As expected, the 

Fig. 1. Proportion of entire population screened under the two intervention strategies and the corresponding reduction in TB incidence for the entire study region, 
hotspot regions and the two non-hotspot regions (y-axis). 

Fig. 2. Impact of program spending: Panel A compares cost-coverage analysis of HTS and UTS. Panels B, C and D show impacts of increased program spending on the 
number of people reached, averted number of incident TB cases and incidence. 
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estimated incidence was linearly correlated with parameters governing 
TB transmissions (β’s and ρ), and with parameters governing disease 
progression (fast progression rate, and reactivation rates (ν)) (Fig. 5). 
However, the association between budget allocation and incidence is not 
linear for our target budget envelope as well as other budget envelopes 
exceeding USD 50,000. TB incidence decreases with increasing pro-
portion of budget going to spatial hotspots, with maximum reduction in 
TB incidence observed when 40 percent or less of the target budget goes 
to spatial hotspots and the remaining proportion to no-spatial hotspots 
(Fig. 4, Supplementary Figs. S3, S4, S5). 

4. Discussion 

Using a spatially structured mathematical model, we found that 
targeting spatial hotspots is efficient compared with spatially untargeted 
intervention up to a ceiling of around 20 % overall coverage of the 
population. Compared with the UTS, HTS was predicted to be more 
efficient and cost-effective under most scenarios. Our results suggest 
that to obtain comparable reductions in TB incidence from HTS and UTS, 
the required coverage of the UTS intervention was about four-fold that 
of HTS before approaching saturation in hotspots. While less efficient, 
this strategy has the advantage of allowing further scale-up to reach a 
greater proportion of the population and could achieve a theoretical 

impact of a 60 % reduction in TB incidence if 87 % of the population 
were reached. However, it should be remembered that this level of 
coverage in ACF is much higher than current levels and has not been 
described to date. 

The impact of spatially-targeted ACF is primarily confined to regions 
in close proximity to the hotspots, suggesting that spatial targeting 
would be effective in rural-remote settings such as the ones we studied 
here. The impact of hotspot targeting that resulted in significant 
reduction in the overall TB incidence as well as incidence in the prox-
imal regions reflects significant transmission from hotspots to the other 
regions. However, given that the fitted cross coupling rate is low (4.6 %), 
the impact of spatial targeting in reducing the overall incidence of TB 
primarily reflects the disproportionate burden of TB in hotspot regions, 
which is 3–4 times the disease burden in remote and adjacent regions. 
Consistent with this explanation, passive CDR and entire population 
screening in a hotspot region lead to saturation of effect and an inci-
dence rate that remains above 110 cases per 100,000 population. This 
implies that spatial targeting alone would not achieve disease elimina-
tion, as a considerable burden of transmission persists in non-hotspot 
regions (Shaweno et al., 2018b). 

Fig. 3. Comparison of passive case detection with active case detection based 
on the number of cases detected, cost, overall prevalent cases and ICER. 

Fig. 4. Impact of geographic funding allocation on population TB incidence under six budget envelope scenarios.  

Fig. 5. Sensitivity of impact of intervention to variations in selected model 
parameters (κ -stabilisation rate, ν - reactivation rate, ω - relapse rate,σ - CDR 
corresponding to proportion of budget going hotspots, ρ - coupling parameter, ε 
- fast progression rate, βs – within region per-capita effective contact rates). 
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ACF could yield considerable gains when targeted to population at 
increased risk of developing active TB including household contacts of 
patients with active TB (Fox et al., 2018), areas with high HIV preva-
lence (Corbett et al., 2010) and people in congregate settings (eg. prison) 
(Reid et al., 2019b). Although geographic heterogeneity in TB risk has 
been documented well (Shaweno et al., 2018a), evidence has been 
lacking on the epidemiologic and economic impact of spatially targeted 
ACF and hence remained unimplemented. The study we presented here 
shows, like other high TB risk groups explored in previous studies (Reid 
et al., 2019a; Fox et al., 2018; Corbett et al., 2010), geographically 
targeted ACF would provide considerable gains in TB control. 

The potential effectiveness of spatially targeted ACF is a consequence 
of two main phenomena. First, current passive approaches to case 
detection rely on the index case seeking health care and so miss many 
people with TB. Health care seeking behaviour usually occurs in 
advanced stages of clinically apparent disease and so may have limited 
impact on transmission (Getnet et al., 2017). Conversely, indiscriminate 
population-wide screening could produce high levels of coverage at a 
markedly increased cost and so may not be feasible (Dobler, 2016). This 
provides a rationale for considering spatially-targeted ACF. Moreover, 
spatially-targeted ACF could be feasible because routinely collected data 
and the techniques we propose could be used to identify the hotspots 
(Shaweno et al., 2017). 

Our study suggested that when the available budget is limited, the 
intervention impact increases with increasing budget allocation to hot-
spots. However, at budget envelopes that correspond to currently 
available in the study region, maximum gains in incidence reductions 
were observed when budget is shared between the regions in the ratio of 
40% to 60%. In contrast, at budget envelopes that are up to one-third of 
the current budget, maximum reduction in overall TB burden consis-
tently occurs when all the available budget is allocated to hotspots. 
However, this raises equity concerns as spatial targeting has consider-
able impact locally, in adjacent regions as well as in the overall popu-
lation, but little or no impact on the remote region of the zone. Such 
equity concerns could be offset by improving passive case detection 
across the entire zone (Trauer et al., 2018). 

With the intervention, as the incidence of TB declines, the number of 
people found with chronic cough could decline and so would the number 
undergoing smear microscopy test. Therefore, the expected cost of 
active case finding could decline. However, we do not specifically ac-
count for this phenomenon because the prevalence of TB among popu-
lation with a chronic cough is very low (1.8 %), (Kebede et al., 2014; 
Ethiopian Health and Nutrition Research Institute, 2011) the vast ma-
jority (>98 %) of individuals with chronic cough have no TB and the 
fraction of individuals with chronic cough is unlikely to diminish sub-
stantially as the intervention proceeds. 

Although we predict that spatial targeting could be effective in a high 
burden setting, we may not have fully captured the mechanism leading 
to spatial clustering in TB incidence, which may result from intense 
localised transmission or aggregation of cases among groups of in-
dividuals sharing risk factors for progression (Verma et al., 2014; Haase 
et al., 2007). However, others have also argued that concentration of 
disease in high burden settings is mainly driven by localised trans-
mission (Floyd et al., 2018) and hence our study assumes transmission to 
be the predominant mechanism driving TB epidemiology. An improved 
understanding of drivers of spatial heterogeneity in TB incidence would 
be useful to inform targeted control interventions and hence data that 
describe the extent to which transmission accounts for the local TB 
epidemiology through the use of genotypic methods would further assist 
in the design of intervention studies. 

5. Conclusions 

In summary, our analysis suggests that spatial hotspot target strategy 
is efficient and cost-saving with the potential for significant reduction in 
overall TB burden. 
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