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Abstract 5 

Ant invasions and climate change both pose globally widespread threats to the environment and 6 
economy. I highlight our current knowledge of how climate change will affect invasive ant 7 
distributions, population growth, spread, impact, and invasive ant management. Invasive ants often 8 
have traits that enable rapid colony growth in a range of habitats. Consequently, many invasive ant 9 
species will continue to have large global distributions as environmental conditions change. 10 
Distributions and impacts at community scales will depend on how resident ant communities 11 
respond to local abiotic conditions as well as availability of plant-based carbohydrate resources. 12 
Though target species may change under an altered climate, invasive ant impacts are unlikely to 13 
diminish, and novel control methods will be necessary. 14 
 15 
Introduction 16 
 17 
Ant invasions involve the establishment of non-native ant species in new environments with 18 
amenable abiotic conditions followed by population growth as food and nesting resources are 19 
acquired. Impacts of ant invasions are often realized when incipient populations achieve exceedingly 20 
high abundance and outcompete or harass native fauna, facilitate outbreaks of honeydew-producing 21 
pest insects, disrupt ecological processes, or threaten human health or livelihoods [1,2]. Of the over 22 
16,000 described ant species [3], about 200 are known to have established outside of their native 23 
range (alien ants), and 19 of these are currently considered invasive due to their ecological and 24 
environmental impacts [4].   25 
 26 
Climate change also threatens ecological processes and human well-being. Temperature, rainfall, 27 
and atmospheric carbon dioxide concentration are measurably deviating from historical norms and 28 
already changing population growth rates, species distributions, and species interactions across taxa 29 
[5-7]. Future abiotic change and the specific responses of biotic communities will be multi-faceted 30 
and vary with scale and geography. My aim here is to provide a broad overview of how some of the 31 
common components of climate change (increased temperatures, drought, more variable rainfall, 32 
increased carbon dioxide) will affect the introduction, establishment, spread, and management of 33 
invasive ants (Figure 1). 34 
 35 
Transportation, introduction, and establishment of invasive ants 36 

With increasing global population and trade, opportunities for species transport are set to continue 37 
to increase over the coming decades [8]. Small size and ability to persist in close association with 38 
humans enable many ant species to hitchhike in a variety of commodities [9,10]. The ability to found 39 
a population from a single mated queen, or in some cases with just workers and brood, increases the 40 
probability of establishment.  41 
 42 
Once transported to a new location, an introduced species must establish under local abiotic 43 
conditions before it can spread. Species distribution models for 15 invasive ant species based on 19 44 
bioclimatic variables and combining six future climate change scenarios predict a 6.3-35.8% increase 45 
in suitable land area for five species, a 2.6-64.3% decrease in suitable land for eight species, and little 46 
net change for two species [11*]. Overall, by 2080, 37% of land area in biodiversity hotspots in 47 
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predicted to be suitable for one or more invasive ant species compared to 14.6% in the rest of the 48 
world [11*]. Increases in abiotically suitable locations and subsequent establishment will likely 49 
increase potential for further spread as more locations act as bridgeheads [12]. Decreasing time in 50 
transit or changing abiotic filters may also increase opportunity for additional species or populations 51 
to survive such that species that are alien, but not invasive, or that have not yet moved beyond their 52 
native range, may emerge as new priority invaders. Though predictions of future distributions under 53 
climate change come with many caveats, they collectively indicate that invasive ants will continue to 54 
threaten biodiversity and livelihoods.  55 
 56 
Invasive ant spread and impact 57 
 58 
Following establishment, the spread and impact of introduced ants is dependent on their population 59 
growth, which in turn is linked to their reproductive capabilities and capacity to adapt to their new 60 
environment. Spread and impact are also defined by the ability to compete with resident ant 61 
species, often related to the monopolization of plant-based carbohydrate resources (Figure 1).  62 
Population growth, spread, and impact of invasive ants are all multifaceted processes that will be 63 
influenced by the response of invasive ants and the species with which they interact to climate 64 
change.  65 

Population growth and competition with resident ant species 66 
 67 
Population growth in a new environment requires adapting to a new habitat, and this adaptability to 68 
will benefit invasive ants as the climate changes. The eusocial lifestyle generally affords ants 69 
flexibility to adapt to changes in their environment [13**,14**]. Particular traits such as fast brood 70 
development, dependent colony founding, dynamic nestmate recognition thresholds, nest site 71 
flexibility, high aggression, wide geographic ranges, and uniform worker sizes are predicted to confer 72 
some resilience to environmental change [15**], and are common among invasive ant species. 73 
Invasive ants also tend to have broad diet breadth and rapid colony growth in response to high 74 
resource availability [13**]. They tend to thrive in disturbed environments [1], which may advantage 75 
them following extreme events such as floods, fires, and cyclones.  Invasive species have almost 76 
always gone through a genetic bottleneck in their introduction phase, which should limit their ability 77 
to adapt to changes in conditions in their novel range. However, low genetic diversity in an 78 
introduced ant population often reduces intraspecific aggression and allows allocation of workers 79 
away from defense and toward resource acquisition, ultimately enabling extremely high population 80 
density [1,16].  81 
 82 
Whereas the ability to achieve high population densities is a common component of ant 83 
invasiveness, achieving numerical dominance requires outcompeting resident ants for resources. 84 
Resident ant communities themselves will be adapting to abiotic changes. Individual thermal 85 
tolerance in combination with behavior [17,18], diet [19], interaction with other ant species [20,21], 86 
and land use [22-24] will affect ant population growth and composition of ant assemblages, 87 
potentially decreasing their assemblage stability [25]. Although species and community level 88 
responses will vary, some general trends are predicted. Species that are more specialized in their 89 
nest requirements and task partitioning, or are generally less phenotypically plastic, are expected to 90 
be more vulnerable to climate change [13**,15**]. Communities that lose specialists will tend 91 
towards ant assemblage simplification and may be more prone to invasion by introduced ants. The 92 
risk may be tempered if resident dominant ant species more suited to the abiotic conditions provide 93 
biotic resistance [26,27]. Ant communities in the tropics are likely to be most affected by climate 94 
change because they experience narrower temperature ranges, and tropical species are more likely 95 
to exist near their thermal tolerance [14**]. Temperate regions may have some increases in ant 96 
abundance and richness with rising temperatures leading to higher productivity, at least in the near-97 
term [28], which may reduce their vulnerability to invasion. 98 
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 99 
Invasive and other ants will also likely be challenged by greater fluctuation in moisture availability 100 
with climate change. Ants protect themselves from desiccation with a layer of cuticular 101 
hydrocarbons (CHCs), which also are central to nestmate recognition and communication and 102 
facilitate division of labor and colony organization [29]. More viscous CHC layers are more protective 103 
against water loss, but communication requires some fluidity of the CHC layer [29]. Thus, selection 104 
for survival with increasing aridity may come at a cost to chemical signaling. Further investigation of 105 
CHC profiles is necessary to understand potential trade-offs between functions [29]. Another 106 
possibility is that CHC profiles will converge as habitats become more homogenized, which may 107 
decrease territoriality and thus lessen one barrier to high population densities for ants generally 108 
[15**]. Such possible changes may reduce the competitive advantage of invasive ant species, which 109 
commonly trade-off intraspecific territoriality for high population density [1].  110 
 111 
Responses of invasive and other ants to future climate changes will depend on characteristics of ant 112 
species and the broader ecological community. Behavioral and phenotypic plasticity will be 113 
advantageous [13**,15**], but is unlikely to completely explain future ant invasions. Current global 114 
geographic distributions of invasive ants compared to alien ants indicate that invasive ants have not 115 
shifted their niche, suggesting that biotic interactions and human-associated dispersal are key to 116 
invasive ant spread and impact [30]. For example, the Asian needle ant (Brachyponera chinensis) has 117 
an inflexible, narrow climatic niche but still displaces native ant species because it is aggressive and 118 
its lack of genetic diversity enables it to form large colonies of multiple interacting nests 119 
(supercolonies) [31*]. Long-term prediction of invasive ant spread and impact is further complicated 120 
by invasive ants themselves being agents of environmental change and the many unanswered 121 
questions about their population booms and busts [32].  122 
 123 
 124 
Acquiring plant-based carbohydrate resources 125 
 126 
The availability of plant-associated carbohydrate-rich resources is often a key factor in population 127 
growth for invasive ants that are able to pass through abiotic filters and establish. Honeydew from 128 
sap-sucking insects increases invasive ant colony growth [33-35] and abundance [36,37] across 129 
multiple species and geographic locations [38*]. Floral and extrafloral nectar are also widespread 130 
carbohydrate-rich resources linked to invasive ant success [39-42]. Invasive ants visiting plant-131 
associated carbohydrate-rich resources often affect other insect-plant interactions with 132 
consequences for pollinators [43,44], plant reproduction [45,46], and herbivory [47].  133 
 134 
The availability of honeydew to invasive ants depends on the honeydew producers, their host plants 135 
and natural enemies, and resident ants, all of which may respond to climate change independently. 136 
At the community level, climate change is unlikely to cause honeydew producers to become too rare 137 
to influence ant invasions. The existing mutualisms between invasive ants and sap-sucking 138 
hemipterans are non-specialized and occur despite the interactors usually sharing no evolutionary 139 
history. Many hemipterans recorded as important to ant invasions are themselves introduced, or at 140 
least widespread [38*], and thus likely to thrive on numerous host plants in a variety of habitats. 141 
Interactions with bugs native to the ants’ introduced range may also be important for facilitating 142 
invasion [37]. Honeydew producers may benefit from intermittent drought due to increased 143 
nitrogen availability in phloem [48], which may reduce honeydew excreted per individual [49].  144 
Elevated carbon dioxide and/or temperature affect population growth, behaviour, honeydew 145 
production, and chemical communication of sap-sucking insects sometimes to the benefit of the 146 
ants or their trophobionts, but often dependent on host plants, seasonal timing, ant attendance, or 147 
natural enemies [7,50-54]. Phenological and spatial mismatches characteristic of lagged responses to 148 
warming are more likely between species that share an evolutionary history [5], but more work is 149 
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required to understand its importance for mymrecophilous bugs and their host plants. Future 150 
studies encompassing a broad range of taxa and climates will be most helpful in developing more 151 
precise predictions about the role of honeydew in ant invasions and how changes in the mutualism 152 
may affect broader impacts of ant invasions.  153 
 154 
Climate change is also anticipated to affect floral and extrafloral nectar availability, which would 155 
have consequences for invasive ants and their impacts. In several plant species, water stress reduces 156 
flower abundance, nectar volume, or flower size [55-58] as well as investment in extrafloral nectar 157 
[59,60], but see [61]. Elevated carbon dioxide, temperature, or their combined effects can change 158 
the distribution of floral [62,63] or extrafloral nectar [64,65] across space or time, within individual 159 
plants or at the community level. As with honeydew, invasive ants readily consume floral and 160 
extrafloral nectars despite usually sharing no evolutionary history with their producers and therefore 161 
may be quicker to adapt to spatial or temporal changes in availability of these resources than the co-162 
evolved organisms they are intended to attract.  163 
 164 
Managing ant invasions under a changing climate 165 

Invasive ant management is currently largely reliant on insecticides [66], which may become less 166 
effective as the climate continues to change [67]. To maximize efficacy and reduce risks to non-167 
target species, tailoring applications of insecticidal bait to match the diurnal and seasonal activity 168 
patterns of the target ant species is essential, especially for large-scale programs. Aseasonal rainfall 169 
and temperatures and increased frequency of extreme weather events reduce both the 170 
predictability of ant foraging patterns and the frequency of ideal weather conditions for applying 171 
insecticidal bait [68]. Higher temperatures may increase insecticide detoxification due to higher 172 
enzymatic activity [67]. Even increased sensitivity to an insecticide would be problematic, however, 173 
given that to eliminate the colony workers need to remain alive long enough to share the bait with 174 
nestmates. Investment in improved biosecurity and development of more targeted methods (e.g., 175 
RNAi [69] may be a useful way forward to avoid the potentially diminishing efficacy of insecticides.  176 
 177 
Conclusion 178 

Invasive ants collectively will continue to have wide global distribution and impact.  Even if the 179 
geographic distribution of some of the most currently damaging species declines, the global species 180 
pool of alien and other ants is rich, and new invaders may emerge. The greatest insights may come 181 
from determining which aspects of climate change disproportionately affect or favor invasive ants 182 
relative to native ants based on traits associated with invasiveness. Climate change effects on the 183 
resident ant community and on the availability of plant-based carbohydrate-rich resources are 184 
complex and occur across multiple ecological scales and will continue to be important to 185 
understanding future ant invasions.  A key challenge for the future is understanding the interplay 186 
between species’ physiological tolerances to abiotic conditions and the community context under 187 
which challenging conditions occur.   188 
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Figure 1.  Stages of ant invasion with some of the important characteristics of invasive ants and community and larger scale dynamics relevant to each 

phase.  Characteristics in italics are those currently predicted will be affected by climate change. See text for discussion and references.  
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