Population structure, genetic connectivity, and signatures of local adaptation of the giant black tiger shrimp (Penaeus monodon) throughout the indo-pacific region

Vu, Nga T.T., Zenger, Kyall R., Nunes Soares Silva, Catarina N.S., Guppy, Jarrod L., and Jerry, Dean R. (2021) Population structure, genetic connectivity, and signatures of local adaptation of the giant black tiger shrimp (Penaeus monodon) throughout the indo-pacific region. Genome Biology and Evolution, 13 (10). evab214.

PDF (Published Version) - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB) | Preview
View at Publisher Website: https://doi.org/10.1093/gbe/evab214


The giant black tiger shrimp (Penaeus monodon) is native to the Indo-Pacific and is the second most farmed penaeid shrimp species globally. Understanding genetic structure, connectivity, and local adaptation among Indo-Pacific black tiger shrimp populations is important for informing sustainable fisheries management and aquaculture breeding programs. Population genetic and outlier detection analyses were undertaken using 10,593 genome-wide single nucleotide polymorphisms (SNPs) from 16 geographically disparate Indo-Pacific P. monodon populations. Levels of genetic diversity were highest for Southeast Asian populations and were lowest for Western Indian Ocean (WIO) populations. Both neutral (n = 9,930) and outlier (n = 663) loci datasets revealed a pattern of strong genetic structure of P. monodon corresponding with broad geographical regions and clear genetic breaks among samples within regions. Neutral loci revealed seven genetic clusters and the separation of Fiji and WIO clusters from all other clusters, whereas outlier loci revealed six genetic clusters and high genetic differentiation among populations. The neutral loci dataset estimated five migration events that indicated migration to Southeast Asia from the WIO, with partial connectivity to populations in both oceans. We also identified 26 putatively adaptive SNPs that exhibited significant Pearson correlation (P < 0.05) between minor allele frequency and maximum or minimum sea surface temperature. Matched transcriptome contig annotations suggest putatively adaptive SNPs involvement in cellular and metabolic processes, pigmentation, immune response, and currently unknown functions. This study provides novel genome-level insights that have direct implications for P. monodon aquaculture and fishery management practices.

Item ID: 70046
Item Type: Article (Research - C1)
ISSN: 1759-6653
Keywords: aquaculture, DArTseq, gene flow, population genetics, prawn, SNP
Copyright Information: © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Date Deposited: 21 Mar 2022 02:29
Downloads: Total: 196
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page