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Global climate and nutrient controls of
photosynthetic capacity
Yunke Peng1,2,3, Keith J. Bloomfield4, Lucas A. Cernusak 5, Tomas F. Domingues6 & I. Colin Prentice 4,7,8✉

There is huge uncertainty about how global exchanges of carbon between the atmosphere

and land will respond to continuing environmental change. A better representation of pho-

tosynthetic capacity is required for Earth System models to simulate carbon assimilation

reliably. Here we use a global leaf-trait dataset to test whether photosynthetic capacity is

quantitatively predictable from climate, based on optimality principles; and to explore how

this prediction is modified by soil properties, including indices of nitrogen and phosphorus

availability, measured in situ. The maximum rate of carboxylation standardized to 25 °C

(Vcmax25) was found to be proportional to growing-season irradiance, and to increase—as

predicted—towards both colder and drier climates. Individual species’ departures from pre-

dicted Vcmax25 covaried with area-based leaf nitrogen (Narea) but community-mean Vcmax25

was unrelated to Narea, which in turn was unrelated to the soil C:N ratio. In contrast, leaves

with low area-based phosphorus (Parea) had low Vcmax25 (both between and within com-

munities), and Parea increased with total soil P. These findings do not support the assumption,

adopted in some ecosystem and Earth System models, that leaf-level photosynthetic capacity

depends on soil N supply. They do, however, support a previously-noted relationship between

photosynthesis and soil P supply.
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Accurate representation of photosynthetic capacity is cri-
tical for modelling the response of terrestrial ecosystems
to environmental change1,2. Earth System models use the

FvCB biochemical model3 to simulate responses of C3 photo-
synthesis to environment. The modelled instantaneous carbon-
assimilation rate is limited either by Vcmax (μmol m–2 s–1), the
maximum rate of carboxylation, or J, the light-dependent electron
transport rate, which is asymptotic at high light towards Jmax

(μmol m–2 s–1). Both assimilation rates depend on temperature
and on the intercellular partial pressure of CO2 (Ci).

Application of the FvCB model3 requires knowledge of three
‘plant-determined’ quantities: Vcmax, Jmax and the ratio of Ci to
the ambient partial pressure of CO2 (Ca). This ratio, here called χ,
is regulated by stomata. Jmax and Vcmax are closely coordinated4,5.
More data are available on Vcmax because it can be inferred from
the light-saturated photosynthetic rate, which is commonly
measured in the field6. Global models have to contend with the
large observed variation (in time and space, and within and
between species) of Vcmax. Data analyses have explored its rela-
tionship to leaf nutrients7–9 and environmental variables10,11.
Until recently, however, most models have assigned constant
values of Vcmax at standard temperature (conventionally 25 °C:
thus Vcmax25) for each of a small number of plant functional types
(PFTs), and allowed the temperature-dependent values to follow
standard (instantaneous) equations of enzyme kinetics. Models
also have to represent the plant-type and environmental depen-
dencies of χ (ref. 12). Most models assign constant per-PFT values
of parameters in one of the two widely used models for the
response of stomatal conductance to vapour pressure deficit (D).
However, these simplifications are not the best possible. Vcmax25

and χ commonly vary at least as much within as between PFTs;
while χ has predicted (and observed) relationships to growth
temperature (Tg) and to elevation above sea level (z) through its
effect on atmospheric pressure, which are neglected in the stan-
dard models10.

One strand of recent research has accordingly focused on a
search for universal responses to environment, applicable to all
(C3) plants. Eco-evolutionary optimality hypotheses12–15 have
been invoked in recent efforts to derive general principles for the
prediction of plant traits and productivity10,11,16–18. The least-
cost hypothesis12,19 proposes that investments in transpiration
capacity (maintaining the water transport pathway) and Vcmax are
balanced so that photosynthesis is achieved at the lowest total cost
in maintenance respiration of leaves and stems. Within this fra-
mework, χ varies over a limited range, consistent with tight reg-
ulation of the balance between water loss and carbon gain12. The
hypothesis predicts that χ should decline with increasing D,
decreasing Tg and increasing z. Each of these predictions is
quantitatively supported by global compilations of χ values
inferred from stable carbon isotope measurements in
leaves10,20,21 and wood22. The coordination hypothesis provides a
framework to predict Vcmax from physical environmental vari-
ables: irradiance (photosynthetic photon flux density, PPFD) and
temperature and CO2 (ref. 23). The ‘strong form’24 of this

hypothesis states that carboxylation and electron transport are co-
limiting under typical daytime growth conditions, so that neither
is in excess. Vcmax25 is observed to increase with PPFD, D and z
(refs. 10,11,21), and to decline with Tg (refs. 24,25). The coordina-
tion hypothesis predicts all these observations. The decline with
Tg is predicted because less Rubisco (the key carboxylation
enzyme) is required to support photosynthesis in warmer
environments24. The increases with D and z are predicted because
greater photosynthetic capacity is required to support a given rate
of carbon assimilation at lower χ (ref. 26).

Positive relationships between photosynthetic capacities and
leaf N (Narea)27,28 and leaf P (Parea)29–32 are also widely observed.
Much leaf N is invested in Rubisco33–36. Leaf P is required inter
alia for cell membranes, nucleic acid synthesis and for ATP and
NADPH production9,37. The predictive power of relationships to
Narea or Parea is often weak11,38–40; however, recent studies8,9 have
proposed a framework in which Vcmax25 is constrained by the
lesser of two functions, one related to Narea and the other to Parea.
Leaf nutrient levels, in turn, may or may not reflect their avail-
ability in the soil. Narea can be related to soil pH (or fertility) but is
not unambiguously related to soil N availability14, while Parea is
related to both soil fertility and total soil P14,41.

Thus, there are two conflicting paradigms to explain worldwide
variation in photosynthetic capacity. One emphasizes its pre-
dictability from climate, based on optimality principles. The other
emphasizes its predictability from leaf nutrients. This second
approach has been extended to embrace the assumption that leaf
nutrients reflect soil nutrient availability—although this is not
universally true42.

To help resolve this contradiction, we assembled a large global
dataset of Vcmax25, Narea and Parea data from multiple species and
sites. In situ soil measurements (pH, C:N ratio and total P) were
available at a subset of the sites. Rather than total soil N, which
mainly relates to soil organic content, we used soil C:N as an
inverse measure of N availability43. We hypothesized that

(1) Photosynthetic capacity is subject to first-order control by
climate, as predicted by the coordination and least-cost
hypotheses. Vcmax25 increases in proportion to PPFD and
increases towards colder and drier environments, due to
greater biochemical investment required when χ is low.

(2) Photosynthetic capacity is reduced, compared to climate-based
predictions, under conditions of low nutrient (N and/or P)
availability.

Results
Theoretically predicted values (see ‘Methods’) of the derivatives of
ln Vcmax25 against ln PPFD, Tg and ln D are given in Table 1, for
comparison with values fitted by statistical models (Table 1,
Fig. 1). The value of 1 for the derivative of ln Vcmax25 with respect
to ln PPFD implies proportionality, i.e. a 10% increase in PPFD
induces a 10% increase in Vcmax25. The value of –0.05 K–1 for the
derivative of ln Vcmax25 with respect to Tg implies that a 1 °C

Table 1 Summary statistics for the climatic dependencies of Vcmax25 (μmol m–2 s–1).

Predictor for Vcmax25 Theoretical value All-species coefficient R2= 0.17 Site-mean coefficient R2= 0.31

ln PPFD 1 0.99 ± 0.22 1.02 ± 0.21
Tg –0.05 K–1 –0.04 ± 0.01 K–1 –0.04 ± 0.01 K–1

ln D 0.07 0.13 ± 0.06 0.13 ± 0.06

Log-transformed photosynthetic capacities standardized to 25 °C were derived for all species and as site means. Theoretical values were obtained by evaluating partial derivatives of Eq. (3) with respect
to each variable at the median climate of the global dataset (PPFD= 400 μmol m–2 s–1, Tg= 25 °C, D= 0.60 kPa). All-species coefficients represent the partial effects of each variable, estimated in a
mixed effects model with site and species as random effects. Site-mean coefficients represent the partial effect of each variable, estimated in a fixed effects model. All fitted values are given
±1 standard error.
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increase in growth temperature is predicted to induce a 5%
decrease in Vcmax25. Regression coefficients of Vcmax25 against the
same climate variables were statistically indistinguishable from
theoretically predicted values (Table 1). Analysis of site-mean
data explained more variance than a mixed-model analysis of all
species (see ‘Methods’), indicating that a greater fraction of var-
iation in photosynthetic capacity can be explained by physical
environmental constraints when considering the whole commu-
nity together, excluding variation within the community. The
response of Vcmax25 to D was slightly steeper in the ‘observed’
than the ‘theoretical’ relationship, but the difference was within

one standard error. From the random term of the all-species
mixed model (see ‘Methods’), species and site identity separately
accounted for 22 and 50% of the variation in Vcmax25 that was
unexplained by the model’s climate variables (Table S1).

No significant bias was shown for the predicted relationship of
Vcmax25 to PPFD, Tg or D (Fig. 2). There was a possible under-
estimation of Vcmax25 at higher D, but this trend was not sig-
nificant either in all-species (Fig. 2c; p= 0.12) or site-mean
(Fig. 2f; p= 0.09) analyses.

Statistical models of photosynthetic capacity (all species and
site means) as a function of climate overestimated Vcmax25 in low-

Fig. 1 Partial residual plots for Vcmax25 in relation to climate variables. Partial residual plots for log-transformed Vcmax25: all-species (a, b, c) and site-
means (d, e, f). Coefficients and standard errors for the fitted lines are given in Supporting Information Table S4.

Fig. 2 Partial residual plots for the model bias of theoretically predicted Vcmax25 values in relation to climate variables. Partial residual plots for the
model bias of theoretically predicted Vcmax25 values in relation to climate variables: all-species (a, b, c) and site means (d, e, f). Coefficients and standard
errors for the fitted lines are given in Supporting Information Table S4.
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P leaves and underestimated Vcmax25 in high-P leaves (Fig. 3b, d).
The all-species statistical model also showed a bias in Vcmax25

related to leaf N (Fig. 3a). This relationship was still apparent (p <
0.0001) after removal of three highly influential points. The three

species with extremely low Narea values (Turpinia pomifera,
Uncaria laevigata and Walsura pinnata) shown in Fig. 3a were
sampled in Yunnan, China (21.6°N, 101.5°E). These species
possessed very low Vcmax25 (21 μmol m–2 s–1) values, probably a

Fig. 3 Partial residual plots for the model bias of statistically fitted Vcmax25 in relation to leaf nutrients. Partial residual plots for the model bias of
statistically fitted Vcmax25 (Table 1) in relation to leaf nutrients, for all-species (a, b) and site-mean (c, d) data. The model bias represents the difference
between predicted and observed Vcmax25, where the predicted Vcmax25 was based on the climate-driven regressions fitted from site-mean and all-species
data as shown in Table 1. Coefficients and standard errors for the fitted lines are given in Supporting Information Table S4.

Fig. 4 Partial residual plots for leaf nutrients in relation to in situ measured soil properties. Partial residual plots for leaf nutrients (site means) in
relation to in situ measured soil properties, for Narea (a, b, c) and Parea (d, e, f) data. Analyses for all species are shown in Fig. S1. Coefficients and
standard errors for the fitted lines are given in Supporting Information Table S4.
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consequence of growth in deep shade. In contrast to the all-
species model, the site-mean model showed no bias with respect
to Narea (Fig. 3c).

Analysis of the subset of the data with in situ soil measure-
ments indicated that Parea increased with soil C:N ratio, total soil
P and soil pH (Figs. 4d–f, S1d–f). Narea increased with soil P
(Figs. 4b, S1b) and decreased with soil pH (Figs. 4c, S1c). No
relationship was found between leaf N and soil C:N ratio
(Figs. 4a, S1a).

Global Vcmax25 could, alternatively, be represented by a mini-
mum function (Eq. 12) of Narea and Parea. This function provided
a better fit to the data than linear regression models with Vcmax25

as a function of Narea and Parea and combinations thereof or a
model including Narea, Parea and their interaction (Table S2). In
site-mean analysis based on the minimum function Parea was
shown to be the principal limiting factor (93% of sites). In all-
species analysis, Narea was shown to be the principal limiting
factor (86% of species; Fig. 5). This contrast agrees with our
findings for model bias: Vcmax25 variations within sites are more
related to leaf N, while variations between sites (community
means) are related to mean leaf P but not to mean leaf N.
However, the goodness of fit of these models based on nutrients
alone (R2= 0.05, 0.12 for all species and site mean, respectively)
was inferior to that of models based on climate alone (R2= 0.17,
0.31).

Discussion
The optimality framework accounts for the major global patterns
of photosynthetic capacity as shown in our dataset. Consistent
with hypothesis (1), global patterns of Vcmax25 were found to be
predictable to first order from PPFD, growth temperature and
vapour pressure deficit. Proportionality to PPFD is consistent
with observations on light gradients44, seasonal dynamics45 and
the cloud immersion effect, which decreases PPFD and Vcmax25 at
mid elevations of tropical mountains39. Vcmax25 was predicted
(and found) to be greater in drier environments: consistent with
the larger biochemical investment required to achieve optimal
photosynthesis when stomata are more closed. We found a
somewhat steeper than predicted response to D and thus a slight
but non-significant underestimation of Vcmax25 at higher D. This
might be because the least-cost hypothesis does not consider the
compounding effect of low soil moisture, which often accom-
panies high D and further decreases stomatal conductance,
therefore preventing excessive transpiration but increasing the

investment in carboxylation capacity22,46,47. In short-term drying
experiments, Vcmax25 typically declines steeply (at different critical
pre-dawn water potential values dependent on species48,49),
although an increase in leaf-level Vcmax25—which may be
accompanied by a reduction in leaf area—can be observed when
plants are allowed to acclimate to moderate drought50–55. These
findings are consistent with the expectation56 that a decrease of
Vcmax under drought conditions is linked to a declining hydraulic
capacity of the soil–root–xylem system, which can be accom-
modated over time by leaf shedding. Vcmax25 showed a negative
response to growth temperature, which is predicted because
greater investment in photosynthetic enzymes is required at lower
temperatures to produce the same catalytic activity10,55. Thermal
acclimation according to this optimality principle is supported by
evidence for a decline of light use efficiency57 and an increase of
photosynthetic nitrogen use efficiency58 towards warmer envir-
onments, and by increased Vcmax25 at higher elevations21,41. The
percentage variance explained by these relationships is modest,
however (31% for site-mean data: Table 1), consistent with
findings by van der Plas et al.59 on the limits to predictability of
ecosystem function from plant traits.

Our hypothesis (2) is partially supported by the analysis of bias
in the statistically fitted model. Consistent with findings by Maire
et al.14, we showed an overestimation of Vcmax25 in leaves with
low Parea. These are typical of sites on acid soils and/or low soil P
availability, including some wet tropical forests14,39. Many tro-
pical soils are characterized by low total soil P due to long-term
weathering60,61, and a dependency of net primary production on
P availability has been shown in tropical forests62. Small-scale
experimental studies have also suggested that low soil P avail-
ability can decrease the light-saturated photosynthetic rate
(Asat)63–65 and Vcmax

66,67. Adaptation strategies to cope with
long-term P deficiency include restricting export of triose phos-
phate to the cytosol68, preventing the phosphorylation of ADP to
ATP37,69, phosphate recycling during photorespiration70 and the
replacement of phospholipids by galactolipids and
sulpholipids71,72, all potentially entailing additional costs to the
plant. On the other hand, photosynthesis in tropical forests is
typically not limited by N73.

The global relationship between Vcmax25 and Narea
74 primarily

reflects the large amount of N invested in Rubisco and other
photosynthetic enzymes75. Leaves with a high photosynthetic
capacity necessarily have a large N content per unit area. Within
vegetation canopies, Vcmax25 and Narea both vary greatly,

Fig. 5 Visualizing the co-limitation of Vcmax25 by Narea and Parea based on the minimum function model. Visualizing the co-limitation of Vcmax25 by
Narea and Parea for global (a) site-mean and (b) all-species analyses, based on the minimum function model. Following Domingues et al.8, blue points
represent cases where Parea was the ‘limiting’ nutrient; red points represent cases where Narea was the ‘limiting’ nutrient. The fitted regression line in (a)
is Narea = ln (5.96 Parea + 2.01) and in (b) is Narea = ln (158.62 Parea + 0.11).
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especially along the light gradient from the canopy top to the
understory—as shown in many empirical studies23,35,76,77 and
further discussed elsewhere78,79. Our data provide no information
on the range of light environments within sites and, therefore, our
finding of a bias (low-N leaves having lower than predicted
Vcmax25) in the all-species analysis is no surprise. However, the
relationship disappeared in the site-mean analysis, indicating
that Vcmax25 at community level is predictable without the need to
consider leaf N. Moreover, we found no support for the
hypothesis (assumed in some ecosystem and Earth System
models) that leaf N is determined by soil N availability—sug-
gesting that the metabolic component of leaf N is determined by
photosynthetic capacity, as proposed by Dong et al.28, rather than
vice versa. We did however find that leaf N increases with soil P,
which is consistent with the observed effect of soil P on photo-
synthetic capacity.

A limitation of our analysis is its implicit assumption that
mesophyll conductance (gm) is not limiting to photosynthesis.
Vcmax as estimated here, therefore, is an ‘apparent’ value and
likely to underestimate the true photosynthetic capacity by a
variable amount, which cannot be predicted from data currently
available at a large scale. However, this simplification reflects the
situation in the great majority of ecosystem models, and it has
been indicated that ‘greater process knowledge of gm will be
required before it can be included [in models]’ (ref. 80, p. 26). A
more comprehensive understanding of the relationships between
leaf nutrients and photosynthesis will depend on advances in
understanding the anatomical and physiological controls of gm
(refs. 81,82), and extensions of leaf-level optimality theory to
consider these controls.

In conclusion, while the short-term control of photosynthesis is
relatively well understood (and modelled), the longer-term con-
trol of photosynthetic capacity is different, and subject to con-
flicting interpretations. Our findings show that the first-order
climatic controls of Vcmax25 are relatively strong and predictable,
indicating that models must account for them. Our results are not
consistent with the model assumption that soil N availability
controls leaf N, which in turn controls Vcmax25. They are, how-
ever, consistent with previous observational and experimental
results indicating the existence of P limitation on leaf P, leaf N
and Vcmax25.

Methods
During photosynthesis, Ci declines relative to Ca because C assimilation removes
CO2 from the intercellular spaces while the stomata impose a resistance to the
diffusion of CO2 into the leaf from the air. The Ci/Ca ratio (χ) is maintained within
a limited range (about 0.5–0.9 in C3 plants) that is determined by the growth
environment83. According to the least-cost hypothesis12,19, χ is controlled by
stomata in such a way as to minimize the sum of the unit costs of the required
capacities for transpiration and carboxylation. A consequence of this hypothesis is
that for any given set of environmental conditions, there is an optimal value of
χ10,12

χopt ¼
Γ*
Ca

þ
ð1� Γ*

Ca
Þξ

ξ þ ffiffiffiffi
D

p ;where ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β K þ Γ*ð Þ
1:6 η*

� �s

ð1Þ

that satisfies the least-cost criterion. Here, Γ* is the photorespiratory compensation
point, i.e. the value of Ci at which gross photosynthesis is zero; Κ is the effective
Michaelis–Menten coefficient of Rubisco (Pa); D is the leaf-to-air vapour pressure
deficit (Pa); η* is the viscosity of water relative to its value at 25 °C and β is the ratio
of the unit costs of maintaining carboxylation and transpiration activities at 25 °C,
estimated as 146 based on a global compilation of leaf stable carbon isotope
measurements10. K is given by

K ¼ KC 1þ O=KOð Þ ð2Þ
where KC and KO are the Michaelis–Menten coefficients of Rubisco for CO2 and
O2, respectively (Pa, reflecting the twin affinities of Rubisco), and O is the partial
pressure of O2 (Pa). Γ*, ΚC and KO are functions of temperature, which we apply
based on in vivo measurements on tobacco plants84. Γ*, Ca and O also vary with
elevation, in direct proportion to atmospheric pressure.

The coordination hypothesis states that under typical daytime growth conditions
photosynthesis is co-limited by carboxylation and electron transport. Optimal
Vcmax is calculated as

Vcmax; opt ¼ φ0Iabs½ðCi þ KÞ=ðCi þ 2Γ*Þ� ð3Þ
where φ0 is the intrinsic quantum efficiency of photosynthesis (mol Cmol–1

photons); Iabs is the PPFD absorbed by the leaf (μmol photons m–2 s–1). These
values were corrected to 25°C using the Arrhenius equation with activation
energies from Bernacchi et al.84,85. Intrinsic quantum efficiency was assumed to
follow the temperature dependency of electron transport in light-adapted leaves85

φ0 ¼ ð0:352þ 0:021 Tg � 3:4 ´ 10�4T2
g Þ=8 ð4Þ

According to Eq. (3) and its derivatives, optimal Vcmax increases in proportion to
PPFD. It also increases with Tg. On the other hand, optimal Vcmax25 declines with
Tg. This is because the enzyme-kinetic effect, leading to a reduced Vcmax25

requirement at higher temperatures (caused by the temperature dependency of
Rubisco activity), is stronger than the photorespiratory effect, leading to an
increased Vcmax requirement at higher temperatures (caused by the temperature
dependencies of K and Γ*). Experimental manipulations of growth temperature86,
repeated measurements on the same plants at different seasons24, global spatial
patterns of Vcmax

11 and variations of Vcmax25 on a long elevation transect41 are all
consistent with the negative temperature dependency of Vcmax25 implied by Eq. (3).

Quantitative predictions of the effect of each climate variable on ln Vcmax25 can
be obtained by taking partial derivatives of Eq. (3) with respect to each variable in
turn21. Logarithmic transformation is appropriate for magnitude variables descri-
bed by multiplicative expressions like these87. The theory predicts approximately
linear relationships of ln Vcmax25 to ln PPFD, ln D and (without transformation)
Tg

21. These derivatives were evaluated at the median climate of the dataset (PPFD
= 400 μmol m–2 s–1, Tg= 25°C, D= 0.60 kPa) using the deriv package in R (ref. 88)
(Table 1).

Photosynthetic data. The leaf-trait dataset comprised measurements at 266 sites
for a total of 1637 species and 5000 individuals, and soil measurements for 39% of
sites (Fig. S2). The dataset consists of field measurements made in natural
(unfertilized) vegetation, from several published data sources7,8,14,20,28,73,89–94. The
numbers of species recorded within each PFT (ref. 95) are provided in Table S3.
Vcmax values were derived either from CO2 response (A–Ci) curves (94% of the
dataset) or the one-point method6 from single measurements of light-saturated net
photosynthesis (Asat) (6% of the dataset). The one-point method provides a way to
estimate Vcmax knowing only Asat, day respiration (Rd), temperature and atmo-
spheric pressure

Vcmax est½ � � Asat þ Rd

� �
Ci þ K
� �

=ðCi � Γ*Þ: ð5Þ
If no respiration measurement was available, the following approximation was used
instead

Vcmax est½ � � Asat=½ðCi � Γ*Þ=ðCi þ KÞ � 0:015� ð6Þ
where Rd is assumed to be 1.5% of Vcmax

6,40,96. Rogers et al.97 indicated that the
one-point method could result in a twofold underestimation of photosynthetic
capacity in the Arctic region. Burnett et al.98 however estimated errors in photo-
synthetic capacity at around 20% at most, suggesting that Vcmax data obtained in
this way (which, in any case, constitute only a small fraction of the dataset) can be
justified in the context of a global survey. If measurements were made at a tem-
perature other than 25 °C, reported Vcmax and Jmax values were standardized to 25°
C using activation energies provided by Bernacchi et al.84,85.

Climate data. Monthly average values of mean daily maximum (Tmax, °C) and
minimum (Tmin, °C) temperatures were extracted at the 0.5° grid location of each
site from Climate Research Unit data (CRU TS 4.01)99, either for the measurement
year or for the period 1991–2010 at sites not reporting measurement year. These
data were three-dimensionally interpolated to actual site locations (longitude,
latitude, elevation) using Geographically Weighted Regression (GWR) in ArcGIS.
Mean daytime air temperature (Tg) was estimated for each month by assuming the
diurnal temperature cycle to follow a sine curve, with daylight hours determined by
latitude and month

Tg ¼ Tmax 1=2þ 1� x2
� �1=2

=2 cos�1 x
n o

þ Tmin 1=2� 1� x2
� �1=2

=2 cos�1 x
n o

; x ¼ � tan λ tan δ

ð7Þ
where λ is latitude and δ is the monthly average solar declination100. Monthly
values of Tg were averaged over the thermal growing season, i.e. months with mean
daily temperature > 0 °C.

Incident solar radiation data were derived from WATCH Forcing Data ERA-
Interim101 at the same period and resolution, and also interpolated by GWR. Solar
radiation (Wm–2) was converted to PPFD by multiplication by the energy-to-flux
conversion factor 2.04 (μmol J–1)102. PPFD was averaged across the thermal
growing season. Mean atmospheric pressures (Patm) were derived using the
barometric formula102,103. D (kPa) was estimated using the Magnus–Tetens
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formula46

D ¼ es � ea; ð8Þ

with

es ¼ 0:611 exp ½17:27 T=ðT þ 237:3Þ�; where T ¼ Tmin þ Tmaxð Þ=2 ð9Þ

and

ea ¼ PatmWairRv½ �= Rd þWairRv½ � ð10Þ
where Wair is the mass mixing ratio of water vapour to dry air; Wair= qair / (1 –

qair), where qair is the specific humidity (kg/kg) derived from WATCH Forcing
Data ERA-Interim101, Rd and Rv are the specific gas constants of dry air and water
vapour, Rd= R/Md and Rv= R/Mv, where R is the universal gas constant (8.314 J–1

K–1), Md is the molar mass of dry air (28.963 g mol–1) and Mv is the molar mass of
water vapour (18.02 g mol–1).

Statistical analysis. The climate data were used to make theoretical predictions of
relationships between photosynthetic capacity and climate variables based on the
optimality framework, and independently, to derive statistical relationships by
multiple regression (Tables S2 and S4). Separate statistical analyses were carried out
for individual species, and for site-averaged measurements. In the analyses of
individual species (i), each data-point represents the average of one or more
measurements on a particular species at a site (n= 2513). In the analyses of site-
averaged measurements (ii), each data-point represents an average for a site (across
all individual and species; n= 266) (Table 1). Analyses of type (i) (‘all species’) data
were carried out by means of a linear mixed effects model using the nlme package
in R88. Climate variables (Tg, D, PPFD) were included as fixed terms, with site and
species as random intercepts. A crossed rather than a fully nested random design
was used because some species occurred at more than one site. Ordinary least
squares multiple linear regression, using the lm function in R88, was used for
analyses of type (ii) (‘site mean’) data. Regression relationships were visualized
using partial residual plots, obtained with the visreg package in R88. Partial residual
plots display the relationship between values of the response variable versus each
predictor variable, after those responses have been adjusted to hold all other pre-
dictors constant at their median values in the dataset. Photosynthetic capacities,
PPFD and D were natural log-transformed before analysis so that the resulting
regression coefficients can be directly compared with theoretical predictions
(Table 1).

Model data comparisons. Model bias (B, %) in Vcmax25 was calculated as follows:

B ¼ 100 Vcmax25 pred
� �� Vcmax25 obs½ �� �

=Vcmax25 obs½ � ð11Þ

where Vcmax25[pred] is a predicted value and Vcmax25[obs] an observed value. Using
theoretically predicted values, we explored whether B was significantly related to
the climate variables. If so, this would indicate that the true responses of Vcmax25 to
climate variables were different from the predicted ones—pointing to something
missing (or wrong) in the theory. Then, we explored whether bias in the values
predicted by the statistical models (both all-species and site-mean models) was
significantly related to leaf Narea and Parea. If found, such bias would indicate effects
of leaf nutrients, additional to the effects of the climate variables considered.

Alternative models for the response to leaf nutrients. An alternative statistical
model for photosynthetic capacity is a ‘minimum function’ of Narea or Parea8. The
following differentiable equation is almost exactly equivalent to a minimum
function (Fig. S3):

Z ¼ � 1=k
� �

ln e�kx þ e�ky
� � ð12Þ

where Z is the response variable (Vcmax25), x and y are the predictor variables (Narea,
Parea) and k≫ 1. Equation (12) is the ‘log-sum-exp’ formula, which provides a
continuous approximation to the minimum function—allowing its use in regres-
sion, and comparison of goodness-of-fit statistics with ordinary linear regression
(Table S2). The larger the value of k, the closer the approximation to the minimum
function. A simple sensitivity analysis showed that large values of k (≥10) gave best
performance (Table S5), indicating that the minimum function fitted the data
better than a smooth transition between N and P limitation. Equation (12) was
fitted to both all-species and site-mean data (Fig. 5). The equation was plotted
using an iterative least squares procedure using the akima, stats and grDevices
packages in R88.

Statistics and reproducibility. Data collection, formulae and statistical analyses
are described in ‘Methods’. All statistical analyses used R software (ref. 88), applying
ordinary linear regression for site-mean analysis and a mixed effects model for all-
species analysis. All R packages applied are referenced in ‘Methods’. The relevant
statistics for the main analyses are presented in Supplementary Information.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
No new data were collected for this analysis. The photosynthesis, leaf-trait and soils data
are available from the authors of papers cited in the ‘Methods’ section7,8,14,20,28,73,89–94.
The complete photosynthesis, climate, leaf-trait and soils datasets underlying all analyses
are also publicly available at Zenodo104 and GitHub: https://github.com/yunkepeng/
VcmaxMS. In case of any issues concerning the observed and predicted data and for all
queries on ancillary information including the climate data, please contact Y.P. (yunke.
peng@usys.ethz.ch) or C.P. (c.prentice@imperial.ac.uk).
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