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Impact of genotypic errors 
with equal and unequal family 
contribution on accuracy 
of genomic prediction 
in aquaculture using simulation
N. Khalilisamani1,2*, P. C. Thomson1,3, H. W. Raadsma1,2 & M. S. Khatkar1,2

Genotypic errors, conflict between recorded genotype and the true genotype, can lead to false or 
biased population genetic parameters. Here, the effect of genotypic errors on accuracy of genomic 
predictions and genomic relationship matrix are investigated using a simulation study based on 
population and genomic structure comparable to black tiger prawn, Penaeus monodon. Fifty full-
sib families across five generations with phenotypic and genotypic information on 53 K SNPs were 
simulated. Ten replicates of different scenarios with three heritability estimates, equal and unequal 
family contributions were generated. Within each scenario, four SNP densities and three genotypic 
error rates in each SNP density were implemented. Results showed that family contribution did 
not have a substantial impact on accuracy of predictions across different datasets. In the absence 
of genotypic errors, 3 K SNP density was found to be efficient in estimating the accuracy, whilst 
increasing the SNP density from 3 to 20 K resulted in a marginal increase in accuracy of genomic 
predictions using the current population and genomic parameters. In addition, results showed that the 
presence of even 10% errors in a 10 and 20 K SNP panel might not have a severe impact on accuracy 
of predictions. However, below 10 K marker density, even a 5% error can result in lower accuracy of 
predictions.

Advanced animal breeding utilizes tools of reproductive biology, molecular genetics, statistics and computer 
programming in order to optimize the breeding design and enhance the desired commercial  traits1. The ultimate 
goal of such programs is to achieve high-production efficiency through long-term genetic gain whilst successfully 
managing the rate of inbreeding using information on pedigree, genotypes, or  haplotypes2–5. The application of 
genomic information in breeding design, i.e. genomic selection (GS), has been widely adopted for enhancing 
commercial traits in animal  breeding6. In aquaculture for example, GS has been shown to predict breeding values 
(BV) more accurately for growth traits in Atlantic  salmon7, common  carp8, Nile  tilapia9, channel  catfish10, large 
yellow  croaker11, yellowtail  kingfish12, yellow  drum13, Pacific  oyster14,  scallop15,16, whiteleg  shrimp17 and banana 
 shrimp18 compared to pedigree-based BV predictions and has recently been reviewed for applications in aqua-
culture by Zenger et al.19. GS uses the information obtained from genotypic markers to improve the accuracy of 
BVs. Estimated BVs inferred from molecular markers are termed genomic estimated breeding values (GEBVs), 
and can be used to accurately select the high-performing candidates for optimising breeding  program20,21.

Among the many types of genomic markers, single nucleotide polymorphisms (SNPs) have primarily been 
used in GS due to four reasons, namely: (1) SNPs are relatively inexpensive to process as genetic markers; (2) 
SNPs are highly abundant and distributed across the genome; (3) they can capture a large proportion of the 
genetic variation through linkage disequilibrium (LD); and (4) their inheritance to the next generation is more 
stable than other markers, allowing multi-generation  tracking22–24. Different sequencing platforms are available 
for detecting and analysing SNPs. This includes (1) genotype-by-sequencing (GBS); (2) fixed high-density SNP 
arrays; and (3) low-density SNP panels. GBS does not necessarily provide genotypic data for all the detected 
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SNPs in the  population25–27. There are situations in quantitative genetics where the analysis requires reliable 
allelic information of the same loci across all the samples. For most applications, fixed arrays (> 40–50 K) are 
sufficient to capture genome-wide information. However, high-density SNP chips are generally expensive. This 
limits their use in routine agricultural applications. Hence, application of low-density SNP panels combined with 
imputation methods to generate higher density SNP genotypes, usually based on a reference  panel25, can be a 
more cost-effective alternative. This approach has recently been extensively used in  GS28–32.

Despite advancements in sequencing technologies, application of any of these three platforms could create 
errors in genotypic data. These errors occur mainly due to the structure of sequencing process and human–envi-
ronmental factors. Genotypic errors might be inherent to the design of the study, e.g., failure of sequencing which 
can result in detection of null alleles or allelic  dropout33,34. In addition, errors in genotypic data could also be 
generated due to human mistake in the laboratory environment, e.g., contamination of DNA  samples35,36. Some 
of the errors can be detected by analysing deviation from Hardy–Weinberg equilibrium (HWE)34,37, LD analysis 
within  populations38, pedigree  reconstruction34,37–40 and comparison with high-quality reference  genotypes33,40. 
Once detected, erroneous genotypes could be filtered out or corrected. To correct the error, one solution could 
be re-genotyping of a sufficiently large number of individuals and compare it with the first set of genotyped 
samples, although this is a labour-intensive and expensive  practice34. However, if the errors are known, imputa-
tion methods, based on, for example, application of maximum likelihood or Bayesian algorithms can be applied 
to estimate most probable  genotypes40,41.

Population genetic studies have shown that genotypic errors could reduce the power of gene mapping and 
association  studies36,38,42–44, bias the estimation of frequency of haplotypes and  genotypes42,44,45, degrade the 
accuracy of parentage assignment via false exclusion of parents from  assignment33,34,46,47, return a false identi-
fication of  individuals47, misrepresent the population  structure47, underestimate the heterozygosity, departure 
from HWE and inbreeding  coefficients41,47. To the best of our knowledge, the only relevant study in simulation 
breeding design using GS in aquaculture was conducted recently on the effect of genotypic error on the accuracy 
of genomic  prediction48. Using population and genome structure from empirical breeding design of rainbow trout 
Oncorhynchus mykiss, they showed that implementing up to 10% error did not significantly impact the accuracy 
of genomic estimated breeding values (GEBV) across three heritabilities (h2: 0.1, 0.2, 0.4).

The objective of the current study was to evaluate the effect of genotypic error, family contribution, SNP den-
sity and heritability on the accuracy of genomic prediction and medium-term selection response. The range of 
these parameters investigated was chosen to mirror those observed in the black tiger prawn, Penaeus monodon.

Methods
Simulation procedure. Generating populations. The QMSim  software49 was used to simulate pedigree 
with its associated SNP genotypes and phenotypic values. Firstly, 400 historic generations with a constant popu-
lation size of 1000 in each generation were simulated. In each historical generation, 500 males and 500 females 
were produced with random selection and random mating. From the last historic population, 50 males and 50 
females were randomly selected to form a base population (G0). Then, these 50 males and 50 females of G0 were 
used as parents and mated randomly to generate 50 full-sib families in the first generation (G01). Within each 
generation, from G01 to G05, 50 sires and 50 dams across families with the highest estimated breeding values 
(EBVs), calculated within QMSim, were selected to generate 50 full-sib families in the next generation. Follow-
ing this breeding design, two broad scenarios based on the size of families were considered:

Scenario 1 (S1): equal family contribution with 100 progeny per family where the probability of producing 
male and female progeny was 0.5. Fifty families with 100 progeny per family produced 5000 individuals per 
generation.

Scenario 2 (S2): unequal family contribution was generated with family sizes of 5, 25, 50, 75, 100, 125, 150, 
175 and 200 progeny with contribution probability of 5, 10, 12, 14, 18, 14, 12, 10 and 5%, respectively. This means 
that on average 5% of families were generated with 5 progeny, 10% with 25 progeny, and 12% with 50 progeny, etc. 
This was to keep the population size per generation as close as possible to number of individuals per generation 
in S1 (5000). In addition, the allocation of the number of progeny and their respective distribution was based 
on the study of maintaining the genetic diversity in P. monodon carried out by Foote, et al.50. They found that 
the highest contribution of a single family for P. monodon bred in captivity was 18%.

Next, each scenario was divided in three datasets referring to the low, medium, and high heritability traits. 
In the first dataset, a trait was simulated with medium heritability (0.3), standardized mean of 0 and phenotypic 
variance of 1. Dominance and epistasis effects were considered absent. The phenotypic values were obtained by 
summing the random error, the polygenic effect, and the sum of the quantitative trait loci (QTL) effects gener-
ated by QMSim software. To allow both QTL and polygenic effects to contribute to variation of the trait, the 
combined effect of all QTLs were sampled from a normal distribution with mean (μ) of 0 and additive genetic 
variance ( σ 2

a  ) of 0.2, allowing a third of the variance (0.1) to be attributed to the polygenic effect. The datasets for 
traits with low (0.05) and high (0.5) heritability were also generated for both S1 and S2 scenarios with additive 
variance ( σ 2

a  ) of 0.03 and 0.3, respectively. Every dataset was simulated in ten independent replicates, extending 
the number of datasets to 60 (2 scenarios (family contributions) × 3 trait heritability × 10 replicates). The sum-
mary of main scenarios and number of datasets is provided in Table 1.

Genome structure. For each replicate of the generated pedigree within each of the simulation scenarios, a 
genome was simulated using 44 chromosomes, a number close to the genome structure of P. monodon51, how-
ever, the length of each chromosome was kept as 100 cM for keeping the design simple to implement. On aver-
age, 1200 SNPs and 85 QTLs were generated per chromosome. The allocation of 1200 SNP per chromosome was 
to make sure that every scenario has at least 20 K informative SNPs in Generation 5. The positioning of SNPs 
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and QTLs was random within each chromosome. This allowed the simulation of 52,800 biallelic SNPs and 3740 
biallelic QTL genotypes across whole genome. The mutation rate for both SNPs and QTLs were set to 2.5× 10−8 
per generation.

Sub‑setting SNPs and implementation of error rates. The combination of three heritabilities implemented in G0, 
two scenarios (S1 and S2) and ten independent replicates, has generated 60 independent datasets (Table 1) with 
their associated pedigree, phenotypic values, and SNP genotypes where genotypes are coded as 0, 1 and 2 for 
homozygote, heterozygote, and other homozygote, respectively. For each datasets, quality control of genotype 
was carried out using minor allelic frequency (MAF) of more than 0.01. After quality control, between 46,022 
and 46,055 polymorphic SNPs was left in Generation 1 across different replicates and family contributions whilst 
in Generation 5, the respective count was between 21,725 and 36,999. From the remaining informative SNPs, 
20 K marker density was randomly sampled within each scenario and generation. For each of these scenarios, 
four SNP densities were then considered (0.5 K, 3 K, 10 K and 20 K), generating a total of 240 datasets. Marker 
panels of 0.5 K, 3 K and 10 K were generated by random sampling from the original SNP panel (20 K).

Finally, for each resulting SNP panel, different genotypic errors were generated with error rates of 0, 1, 5, and 
10%, and implemented into genotypic data as follows. To implement errors in genotypic data, a 3× 3 transition 
probability matrix was assumed:

where P is the transition probability matrix, with elements pij being the probability that a biallelic SNP with true 
genotype i (i = 1, 2, 3: row) is scored as genotype j (j = 1, 2, 3: column), where the diagonal elements ( p11 , p22 and 
p33 ) are probabilities of having genotypes (AA, AB, BB) being correctly scored. Simulated scored genotypes were 
generated from a multinomial distribution using the appropriate row in the matrix P. The transition probability 
matrices used to generate 1, 5 and 10% genotypic errors are shown from left to right in order:

In total 960 datasets (2 main scenarios (family contributions) × 3 heritabilities × 10 replicates × 4 SNPs densi-
ties × 4 levels of genotypic errors) were generated for statistical analysis.

Statistical analysis. Estimating the accuracy of prediction. Following the simulation of populations and 
data preparation, true breeding values (TBV) were calculated by accumulating the QTL and polygenic effects 
for each individual. Then, the rrBLUP  package52 and the predict function in ASReml-R53 were used to calcu-
late genomic estimated breeding values (GEBVs) and EBVs, respectively. To calculate (G)EBVs, we considered 
the situation where traits cannot be measured on the selected animals. Consequently, the (G)EBVs of selected 
candidates were obtained from performance of their sibs. Then, the accuracy of (G)EBVs of candidates were 
calculated as the Pearson correlation of their (G)EBVs and TBVs. To do that, 30% of progeny per generation 
were randomly selected as the test set (selection candidates) and the remaining progeny in that generation as the 
training population (which includes sibs of selection candidates). Next, the phenotypic values of the test popula-
tion were masked and GEBVs in the test set were obtained using the phenotypic values of their sibs and the GRM 
of all individuals within each generation.

where W = {Wij} with Wij = Xij + 1− 2pj , X = {Xij} is the matrix of genotypes for individual i and marker j , 
coded as − 1, 0, and 1. pj is considered as the frequency of the first allele at jth marker and c is a constant value 
equal to 2

∑

j pj(1− pj) . Whereas to obtain EBVs in the test set, the phenotypic values of sibs and numerator 
relationship matrix based on pedigree (NRM) of all individuals in each generation were used. A diagram show-
ing the above-mentioned procedure to obtain (G)EBVs is illustrated in Fig. 1.

Descriptive summary analysis of different factors. There were six factors investigated in this simulation study, 
to assess their effect on accuracy as evaluated using Pearson correlations. These factors and their levels being 

P =

[

p11 p12 p13
p21 p22 p23
p31 p32 p33

]

[

0.990 0.006 0.004

0.005 0.990 0.005

0.004 0.006 0.990

]

,

[

0.9500 0.003 0.0020

0.0025 0.950 0.0025

0.0020 0.003 0.9500

]

,

[

0.90 0.06 0.04

0.05 0.90 0.05

0.04 0.06 0.90

]

G =
WW

′

c

Table 1.  The composition of main scenarios and datasets generated for investigating the effect of genotypic 
error on accuracy of genomic predictions.

Scenario Family contribution

Heritability (h2)

0.05 0.3 0.5 No. of replicates No. of datasets

S1 Equal 10 30

S2 Unequal 10 30

Total – – – – – 60
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heritability (n = 3); family type (n = 2); BV estimation method (n = 2); and within the BV = GEBV sets of simula-
tions, genotypic errors (n = 4); and marker density (n = 4); multiple generations (n = 5). In addition, each of these 
scenarios was evaluated using ten replicates.

Due to the extent of these different factors, the accuracy output was summarised by generating a series of 
two-way table means, averaging over the replicates and other variables. This was obtained using the aggregate 
function in the R statistical  package54. Then, the estimates of prediction and correlation per generation were 
obtained from the average of all ten replicates of estimates in that generation. Finally, the standard error of 
accuracies was obtained from standard deviation of accuracies:

where SE is standard error of accuracies, σ is equal to standard deviation of estimates across ten replicates, and 
n is the number of replicates.

Estimating the effect of genotypic error on the genomic relationship matrix. The effect of genotypic error on the 
GRM was investigated using correlation of off-diagonal elements of the GRM without error with off-diagonal 
elements of matrices obtained from different SNP densities and genotypic error rates. The consideration of off-
diagonal elements was due to the fact that they show the genetic relationship between each pairs of individu-
als. The GRM was constructed according to method of Yang et al.55 implemented within the rrBLUP package. 
Initially the Pearson correlation of off-diagonal elements of GRMs with different error rates were compared. 
However, the Pearson correlation indicates the extent of linear relatedness, but it does not consider the extent 
of equality within the pairs. Consequently, calculation of the Lin’s concordance correlation coefficient (CCC)56 
between the off-diagonal elements of GRMs was also considered as the measurement of reliability. Since Lin’s 
correlation takes into the account both correlation and correspondence, it is a more reliable estimate for express-
ing the impact of genotypic errors on GRM. Consequently, the aggregate function was used to summarize the 
average results over trait heritabilities, replicates and family contributions. All the analysis was carried out using 
R statistical  package54.

Results
Accuracy of pedigree and genomic-based estimated breeding values. The detailed results of 
accuracy of genomic predictions, as measured by the correlation between TBVs and EBVs/GEBVs, for differ-
ent generations, replicates, family type, SNP density and genotypic error rates are provided in Supplementary 
Table S1. Overall, within each heritability, accuracy of EBVs decreased from Generation 1 to 5. On the other 
hand, accuracy of GEBVs increased or decreased over the generations, depending on trait heritability, SNP den-
sity, genotypic error rate, family type and replicate. For instance, using 0.5 K SNP density and without genotypic 
error, accuracy of GEBVs decreased across different trait heritabilities over five generations for equal family 
contribution whilst accuracy increased for unequal family contribution using medium (0.3) and high (0.5) her-
itability traits. In addition, the accuracy of EBVs increased as heritability increased from 0.05 to 0.5 for equal 
and unequal family contributions. The same pattern can be noticed for GEBV accuracies. Moreover, for GEBV 
accuracies, higher SNP density resulted in increase in the accuracy of genomic predictions while increasing the 

SE =
σ
√
n

Figure 1.  A diagram illustrating how GEBVs and EBVs are calculated where the phenotypic values are 
unavailable for the selection candidates.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18318  | https://doi.org/10.1038/s41598-021-97873-5

www.nature.com/scientificreports/

genotypic error rate resulted in a loss of accuracy. The results in the form of two-way summary graphs of mean 
accuracy across different factors of the study are presented as follows. Nevertheless, the standard errors of (G)
EBV accuracies were appreciably small in the Supplementary Table S1 and the figures.

Accuracy of predictions across family types and generations. Accuracy of (genomic) estimated 
breeding values using pedigree-BLUP (BLUP) and genomic-BLUP (GBLUP) for equal versus unequal family 
contribution are provided in Fig. 2, for five consecutive generations. The figure shows that the accuracy of pre-
dictions decreased from generation 1 to 2, with a larger decrease for EBV accuracies. However, there was a slight 
increase in accuracy from Generation 2 to 5 especially for GEBV accuracies. In addition, the accuracy of GEBVs 
was slightly higher as compared to EBV accuracy, with the exception of Generation 1. Nevertheless, accuracy of 
predictions provided in Supplementary Table S1 showed that accuracy of (G)EBVs for equal and unequal family 
contribution scenarios were usually slightly different using high (0.5), medium (0.3) and low (0.05) heritability 
traits across different SNP densities. However, the difference between the two family types across different gen-
erations was small.

Accuracy of predictions within family types and across heritabilities. Accuracies of EBVs and 
GEBVs using BLUP and GBLUP, respectively, for equal versus unequal family contribution are given in Fig. 3. 
The estimates are provided for heritabilities of 0.05, 0.3 and 0.5. The figure shows that accuracy of GEBVs 
increased with increasing heritability from 0.05 to 0.3. From heritability of 0.3 to 0.5, accuracy of GEBVs for 
equal family contribution did not change but it decreased for equal family contribution. The accuracy of EBVs 
increased from heritability of 0.05 to 0.5 for unequal and decreased from heritability of 0.3 to 0.5 for equal family 
contributions. Nevertheless, family type had a small effect on the accuracies obtained for both EBV and GEBV 
estimates. However, using individual estimates (Supplementary Table S1), the difference between two family 
contributions was slightly different and varied across different SNP densities, error rate and replicates. Variation 
in accuracies of BLUP and GBLUP using equal and unequal family types might be due to variation in size of 
families across different scenarios with unequal family contribution.

Accuracy of predictions within heritabilities and across generations. Accuracies of EBV and 
GEBV for heritability of 0.05, 0.3 and 0.5 over five consecutive generation are illustrated in Fig. 4 using BLUP 

Figure 2.  Accuracy of (genomic) estimated breeding values (G)EBV over five generations. The accuracies are 
provided for two family types (equal and unequal). Accuracies in BLUP were averaged over heritabilities and 
replicates, while for GBLUP are estimated by averaging correlations over three heritabilities, ten replicates, four 
marker densities and four genotypic error rates. Standard errors of accuracies are shown as error bars.

Figure 3.  Accuracy of (genomic) estimated breeding values (G)EBV within three heritabilities. The accuracies 
are provided for equal and unequal family contributions. Accuracies in BLUP were averaged over five 
generations and ten replicates, while for GBLUP are estimated by averaging correlations over five generations, 
ten replicates, three marker densities and four genotypic error rates. Standard errors of accuracies are shown as 
error bars.
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and GBLUP. Accuracy of both EBVs and GEBVs decreased from generation 1 to 2, however, the decline was 
much higher for EBV accuracies. From generation 2 to 5 accuracy of predictions for both EBVs did not change, 
whilst for GEBVs using medium (0.3) and high (0.5) heritability accuracy slightly increased. However, there was 
no change for low (0.05) heritability.

Effect of genotypic error rates and family types on accuracy of predictions. Variation of GEBV 
accuracies over different genotypic error rates for equal and unequal family contributions is provided in Fig. 5. 
Overall, GEBV accuracy has dropped slightly from approximately 0.60 to below 0.58 with increases in genotypic 
error rate from 1 to 10%. However, family type had little effect on accuracy of predictions, as mentioned before.

Effect of marker density and family type on accuracy of predictions. Comparison of accuracy of 
GEBVs for SNP densities of 0.5 K, 3 K, 10 K and 20 K over equal and unequal family contributions is presented 
in Fig. 6. The figure illustrates that GEBV accuracy increased as SNP density increased from 0.5 to 20 K. GEBV 
accuracy increased from above 0.5 to slightly over 0.6, approximately, when the SNP density increased from 0.5 
to 20 K. There was a sharp increase in accuracies from 0.5 to 3 K SNP density, followed by a gradual increase in 
accuracy as SNP density increased from 3 to 10 K and 10 to 20 K. In addition, family type once again showed 
little effect on the accuracy of genomic predictions. As mentioned, accuracy of genomic prediction provided in 

Figure 4.  Accuracy of (genomic) estimated breeding values (G)EBV within five generations. The accuracies are 
provided for heritability of 0.05, 0.3 and 0.5. Accuracies in BLUP were averaged over two family types and ten 
replicates, while for GBLUP are estimated by averaging correlations over two family types, ten replicates, four 
marker densities and four genotypic error rates. Standard errors of accuracies are shown as error bars.

Figure 5.  Accuracy of genomic estimated breeding values over genotypic error rates of 0, 1, 5 and 10% for 
equal versus unequal family contribution. Correlations are averaged over different generations, replicates, SNP 
densities and heritability. Standard errors of accuracies are shown as error bars.

Figure 6.  Accuracy of genomic estimated breeding values over marker densities of 0.5, 10 and 20 K for equal 
versus unequal family contribution. Correlations are averaged over different generations, replicates, genotypic 
error rates and heritability. Standard errors of accuracies are shown as error bars.
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Supplementary Table S1 showed that accuracy of GEBVs for the equal family contribution scenario were usually 
slightly higher using low (0.05), medium (0.3) and high (0.5) heritability traits across different SNP densities, 
however this was not a general rule across different scenarios and the difference between the two family types 
across different trait heritabilities was trivial.

Effect of genotypic errors and heritability on accuracy of predictions. The variation in accuracy 
of GEBVs with genotypic error rates of 0, 1, 5 and 10% over the heritabilities of 0.05, 0.3 and 0.5 is depicted in 
Fig. 7. The results showed that with increasing genotypic error, accuracy of GEBVs decreased gradually within 
each heritability. However, there was not a big loss in accuracy with increasing error rates. This was especially 
evident using individual estimates provided in Supplementary Table S1 using more than 3 K SNP density.

Effect of marker densities and heritability on accuracy of predictions. Comparison of GEBV 
accuracies for SNP densities of 0.5, 3, 10 and 20 K over trait heritabilities of 0.05, 0.3 and 0.5 is depicted in Fig. 8. 
The results show that increasing the SNP density has resulted in increasing the accuracy of predictions, as does 
increasing heritability, as reported above.

Effect of marker densities and genotypic error on accuracy of predictions. Changes in the accu-
racy of GEBV for SNP densities of 0.5, 3, 10 and 20 K over genotypic error rates of 0, 1, 5 and 10% are illustrated 
in Fig. 9. Results showed that accuracies have increased with increasing the SNP density, across different geno-
typic error rates. In addition, the difference in accuracy between 0 and 10% genotypic error was marginal across 
20 K and 10 K SNP densities, whilst the difference was more pronounced for 3 K and 0.5 K SNP density.

Effect of generation and genotypic error rates on accuracy of predictions. Changes in the accu-
racy of GEBV over five consecutive generations for SNP densities of 0.5, 3, 10 and 20 K are illustrated in Fig. 10. 
Overall, accuracies have decreased from Generation 1 to 2 and then slightly increased from Generation 2 to 5. 
In addition, the difference between 0 and 1% error was marginal.

Effect of genotypic error on the genomic relationship matrix. A complete list of Pearson and Lin’s 
correlation coefficients between off-diagonal elements of the GRM without error and those with error rates of 
1, 5 and 10% is provided in Supplementary Table S2. The list is organised for both equal and unequal family 
contributions with three heritabilities (0.5, 0.3 and 0.05) and different marker densities (0.5, 3, 10 and 20 K) in 
the study. It should be noted that only genotypes within a generation are used for the analysis of GRM not the 
phenotypic values. Consequently, the results of different scenarios were not affected by heritability or pheno-
type. However, as each simulation was conducted independently, slight changes in correlation estimates were 
noticeable for scenarios from one heritability to another. Overall, the outcome of the effect of genotypic error on 

Figure 7.  Accuracy of genomic estimated breeding values for genotypic error rates of 0, 1, 5 and 10% over 
heritabilities of 0.05, 0.3 and 0.5. Correlations are averaged over different generations, replicates, family types 
and SNP densities. Standard errors of accuracies are shown as error bars.

Figure 8.  Accuracy of genomic estimated breeding values for 0.5, 3, 10 and 20 K SNP densities over 
heritabilities of 0.05, 0.3 and 0.5. Correlations are averaged over different generations, replicates, family types 
and genotypic error rates. Standard errors of accuracies are shown as error bars.
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GRM presented in Supplementary Table S2 suggested that with increasing genotyping error rate, the relatedness 
between pairs of animals is increasingly under-estimated. To clarify this, the comparison of average correlations 
is provided as follows: the Pearson and Lin’s correlations of off-diagonal elements of GRM calculated from geno-
types with 1, 5 and 10% error and off-diagonal of GRM without error are presented in Fig. 11. The illustration 
is provided for SNP densities of 0.5, 3, 10 and 20 K across five generations. The correlations are averaged across 
ten independent replicates, three trait heritabilities (0.5, 0.3 and 0.05) and two family contributions (equal and 
unequal). The results represented in the figure showed that at 1% genotypic error, both Pearson and Lin’s cor-
relation estimates were similar and high (except in Generation 1). Increasing the genotypic error has resulted in 
dramatic decrease in estimated correlations as CCC, in particular, small diagonal elements (measures of related-
ness) are over-estimated while larger elements are under-estimated (i.e., regression to the mean). In comparison 
the decrease in Pearson correlation was not as dramatic except for 0.5 K SNP density. In addition, the standard 
errors were significantly small that could not be shown in the figure.

Discussion
The current study evaluated the effect of genotypic error on accuracy of genomic prediction and estimation of 
GRM, and the study was designed to mirror the genome structure of the black tiger prawn reported by Wilson 
et al.51 and population structure of P. monodon under captivity as described by Foote et al.50. We explored the 
effects of SNP density, heritability, and family type on accuracy of GEBVs. In addition, the effects of family type 
and heritability on accuracy of EBVs was also studied, as well as comparisons of accuracies between EBVs and 
GEBVs. Accuracy of predictions were investigated across five consecutive generations and ten independent rep-
licates in a simulated breeding design. The previously published simulation study on the effect of genotypic error 
on accuracy of genomic predictions based on genome and population structure of rainbow  trout48 showed that 
10% error had no effect on the accuracy of genomic predictions. However, the current breeding design of black 
tiger prawns in Australia is different from rainbow trout breeding. Whilst breeding of rainbow trout is based 
on GS around the globe, in black tiger prawn, it is currently based on mass spawning in the communal rearing 
environment which would result in presence of unequal contribution of  families57–59. The existence of unequal 
family contributions was recently demonstrated using an experiment on the captive breeding of P. monodon in 
 Australia50. In addition, the genome structure of black tiger prawn is also different from rainbow trout, e.g. the 
number of chromosomes, making the re-evaluation of study performed by Dufflocq et al.48 necessary for black 
tiger prawn breeding.

Comparing the accuracy EBVs and GEBVs. The summary analysis over different scenarios in our study 
showed that the accuracy of GEBVs was on average higher than EBV accuracy when two-way descriptive analy-
sis was performed for family types-generations (Fig. 2), family types-heritabilities (Fig. 3) and heritabilities-
generations (Fig. 4) except in generation 1 in which both accuracies were relatively similar. However, detailed 
accuracy outcomes presented in Supplementary Table S1 showed that the GEBV accuracy can be higher or lower 

Figure 9.  Accuracy of genomic estimated breeding values for 0.5, 3, 10 and 20 K SNP densities over genotypic 
error rates of 0, 1, 5 and 10%. Correlations are averaged over different generations, replicates, family types and 
trait heritabilities. Standard errors of accuracies are shown as error bars.

Figure 10.  Accuracy of genomic estimated breeding values for five consecutive generation over 0.5, 3, 10 and 
20 K SNP densities. Correlations are averaged over different SNP densities, replicates, family types and trait 
heritabilities. Standard errors of accuracies are shown as error bars.
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than EBV accuracy, depending on SNP density and genotypic error rate. For example, GBLUP with 10 K and 
20 K SNP density, without error has resulted in higher prediction accuracies than BLUP calculations. In contrast, 
GBLUP with 0.5 K SNP density even without genotypic error has led to lower accuracies compared to BLUP 
estimations.

Obtaining higher EBV compared to GEBV accuracy using any SNP density or genotypic error rate e.g. from 
0.5 K SNP density across different trait heritabilities were in contrast to the results from the simulation study 
performed on a rainbow trout breeding  program48. The simulation study on the rainbow trout showed that 
GBLUP accuracies were normally 8% higher than their corresponding BLUP-based accuracies across herit-
abilities of 0.1, 0.2 and 0.4 and SNP densities of 0.5 K, 3 K, 7 K and 42 K. Comparing accuracy of prediction 
using traditional and genomic-based BLUP in several  simulations60–64 and empirical studies in  aquaculture65–72 
has also demonstrated the higher accuracy values for GEBVs over EBVs. The reason for obtaining higher GEBV 
compared to EBV accuracies using 0.5 K SNP density can be perhaps due to different experimental design and 
parameters in other studies as compared to this study. For example, Dufflocq et al.48 used full-sib families with 
a family size of 32 whilst in this study the family size of full-sib families was 100. This allowed more accurate 
prediction of EBVs in the test population based on the presence of a large number of full-sibs in the training set 
resulting in more variable EBV estimates compared to GEBVs using 0.5 K SNP density.

Effect of family type on accuracy of genomic prediction. This study was unable to find any sub-
stantial differences between equal and unequal family contributions as presented in Figs. 2, 3, 5 and 6 and Sup-
plementary Table S1. The marginal difference between accuracy of prediction inferred from two different family 
contributions could be attributed to the availability of a large number of individuals with phenotypic values in 
the training population. For example, the size of training population for equal family contribution was fixed at 
3500 per generation whilst for unequal family contribution it was changing to a medium extent (200–700) in 
each generation based on the contribution probabilities implemented in the simulation design. As it has been 
shown, a small to medium increase in the size of the training population, e.g. from 2567 to 2787 in wheat, mar-
ginally increased the accuracy of the yield trait from 0.127 to 0.14273.

Effect of heritability on accuracy of genomic prediction. The accuracy of prediction was generally 
increased at higher trait heritabilities as presented in Fig. 8 and Supplementary Table S1. Specifically, an increase 
in the heritability from 0.05 to 0.5 has increased the accuracy of GEBV on average by 18% across different 
scenarios. Higher accuracy of prediction due to increased heritability was as anticipated and has been shown 
 previously21,48,62. However, this pattern was not repeated across different SNP densities as presented in Supple-
mentary Table S1. For example, in the first replicate using 0.5 K SNP density without genotypic error in Genera-

Figure 11.  Comparison of off-diagonal elements of genomic relationship matrix (GRM) without error with 
1, 5 and 10% error for different SNP densities across five generation. The estimates are averaged across ten 
replicates, three trait heritabilities (0.5, 0.3 and 0.05) and two family types (equal and unequal). r signifies the 
Pearson correlation and CCC is Lin’s concordance correlation coefficient. In each plot, the correlation between 
off-diagonal elements of GRM without error and GRM with 1% (0% vs 1%), 5% (0% vs 5%) and 10% error (0% 
vs 10%) are illustrated. Standard errors were significantly small and were unable to be shown.
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tion 5, accuracy of GEBVs for heritabilities of 0.05, 0.3 and 0.5 for equal family contributions was recorded as 
0.309, 0.584 and 0.578, respectively. This inconsistent pattern could be caused by inconsistency of low-density 
markers to capture the relationships between individuals as presented in Fig. 11 and Supplementary Table S2. 
Nevertheless, based on the averages shown in Fig. 8 and Supplementary Table S1, it is very clear in general, even 
at 0.5 K density, that accuracy increased with increasing heritability.

Effect of generation on accuracy of genomic prediction. Our results showed that both EBV and 
GEBV accuracies have decreased over the period of five generations except for GEBV estimates for medium 
heritability trait (0.3) in which accuracy slightly increased as depicted in Fig. 4. This was in clear contrast to other 
simulation studies e.g. Nielsen et al.63 and Dufflocq et al.48. The main difference between our study and the two 
others; in addition to size of full-sib families, was the mating ratio. Whilst in the current study a mating ratio 
of 1:1 was implemented, resulting in 50 full-sib families, Dufflocq, et al.48 used a 1:3 mating ratio, leading to the 
production of 120 half-sib families. This has presumably led to a higher chance of better-performing animals 
to be selected for the next generation. Consequently, this combination of better-performing animals and more 
families has probably resulted in lower inbreeding, higher additive genetic variation, and better accuracy of pre-
diction across  generations63,64. Another explanation would be the effect of selection method on accuracies; called 
the Bulmer effect, and/or the choice of selection method, e.g., selection based on EBVs versus  GS74,75. The choice 
of selection can change the extent of LD or unintentionally create low LD, which in turn can change/reduce the 
accuracy of genomic prediction over  generations63,76. Otherwise, the difference between our study and the others 
could be simply due to the extent of relationships between the training and test population. As such, the higher 
relationship between the two sets can result in higher accuracy of prediction and vice  versa77–79.

Effect of SNP density on accuracy of genomic prediction. The outcome of this study in Supplemen-
tary Table S1 has shown that the accuracy of GEBVs has increased with increasing the SNP densities in indi-
vidual comparisons. The elevation of accuracy due to increasing the SNP density was in agreement with the out-
come of a simulation study of rainbow  trout48 and results of empirical studies on accuracy of prediction for skin 
and fillet  colour80 and, disease  resistance65,68 in Atlantic salmon. In addition, our results showed that accuracy of 
GEBVs did not increase significantly beyond 10 K SNP density. The outcome of this study was also in agreement 
with results of an empirical study on accuracy of disease resistance in rainbow  trout71 and Atlantic  salmon67 
which showed that SNP densities of more than 10 K did not have a meaningful effect on increasing the accuracy 
of genomic predictions. However, the effect of higher marker densities, e.g., 50 or 100 K, on accuracy of genomic 
predictions was not evaluated against 10 or 20 K SNP densities. In addition, in some scenarios especially for 
medium (0.3) and high (0.5) trait heritabilities, even 3 K SNP density efficiently estimated the accuracies. Con-
sequently, it can only be concluded that there was a marginal difference between accuracy of prediction using 
3 K and 20 K SNP densities within this study especially when the genotypic errors was relatively low (< 5%).

Effect of genotypic error on accuracy of GEBV and GRM. The descriptive summary analysis results 
showed that when the genotypic error increased from 0 to 10%, accuracy of GEBVs decreased by approximately 
6% and 7% across different heritabilities (Fig. 7) and generations (Fig. 10), respectively. Overall, the presence of 
10% error only had a marginal impact on accuracy of predictions using more than 10 K SNP density as presented 
in Fig. 9. In addition, based on the results of individual estimations provided in Supplementary Table S1, increas-
ing the error rate from 0 to 10% has resulted in decreasing the GEBV accuracy on average by 20% across different 
scenarios. The presence of 10% error did not have a substantial impact on accuracy of GEBVs using higher than 
10 K SNP density, however, its effect on accuracy using a lower density SNP panel, particularly 0.5 K SNP den-
sity, was more pronounced. The results of both the two-way summary analysis and individual estimates were in 
clear contrast to those reported by Dufflocq et al.48 where no substantial difference between accuracy of genomic 
predictions in the presence of 0% and 10% genotypic errors across different marker densities was reported.

Overall, the Pearson correlations displayed in Fig. 11 for scenarios with 10% error in genotypic data indicate 
that this level of error may not under-estimate the relatedness. However, individual correlations presented in 
Supplementary Table S2 suggested that the presence of 10% error with 10 K or higher marker density would result 
in better accuracy of GEBVs compared to BLUP accuracies using medium (0.3) and high (0.5) trait heritabili-
ties. Whilst Lin’s correlations would imply that 10% error could dramatically underestimate or overestimate the 
relationship between individuals as depicted in Fig. 11, individual Lin’s correlations presented in Supplementary 
Table S2 showed that presence of as much as 10% error using higher than 10 K SNP density had marginal effect 
on relatedness between individuals. However, occurrence of 10% error in the 3 and 0.5 K SNP panel could have 
negative effects on accuracy of genomic prediction in breeding designs, at least for the combination of population 
and genome structure provided in this study.

Implication for design of breeding programs. Currently, a lot of attention in breeding design is being 
directed to imputation methodology to reduce the cost of genotyping. This study has suggested that the presence 
of up to 5% genotypic error even with application of 0.5 K SNP panel might not be problematic. Moreover, the 
presence of up to 10% errors in a 10 and 20 K panel might not have severe impact on accuracy of predictions.

There are several solutions to reduce the effect of genotypic error on accuracy of genomic prediction. A small 
proportion of sporadic errors in genotypic data can be rectified using different imputation methods. However, 
this could be only possible if the existence of error is known/detected. Application of higher marker density could 
be another option. This can be a viable alternative if genotypic data do not have higher error rates. However, 
using higher marker density genotypes can also increase the cost genotyping. Another alternative could be the 
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implementation of a genotypic error term in algorithms and statistical analysis to deal with random misclas-
sification  errors33,40,41, however this approach would require repeated  genotyping34.

Overall, the results of this study suggested that the presence of genotypic errors, as low as 5%, can negatively 
impact the relationships in the GRM and accuracy of genomic predictions if lower than 10 K SNP density is used. 
Below an error rate of 5% (1% specifically), there was little effect of reducing the accuracy, and the correlation 
between off-diagonal of GRMs either using Pearson or Lin’s correlations remained high, even using 0.5 K SNP 
density. As mentioned, random errors can be captured using LD or HWE analysis, pedigree reconstruction, 
comparison with high-quality reference genotypes, etc., as well as additional analysis such as quality control 
checking for Mendelian  inheritance81,82 or incorporating weighted analysis for read  depth83,84. However, even 
if the presence of errors is detected, the correction of such errors would be time consuming, expensive and a 
complicated practice. Consequently, where feasible, the better alternative could be to avoid generating errors, 
e.g., by collection of high-quality samples, reduction of the laboratory-related errors, e.g., environmental con-
tamination, and using precise sequencing procedures.

Received: 20 January 2021; Accepted: 31 August 2021

References
 1. Dekkers, J. C. M. Application of genomics tools to animal breeding. Curr. Genom. 13, 207–212. https:// doi. org/ 10. 2174/ 13892 

02128 00543 057 (2012).
 2. Henryon, M., Berg, P., Ostersen, T., Nielsen, B. & Sørensen, A. C. Most of the benefits from genomic selection can be realized by 

genotyping a small proportion of available selection candidates. J. Anim. Sci. 90, 4681–4689. https:// doi. org/ 10. 2527/ jas. 2012- 5158 
(2012).

 3. Henryon, M., Berg, P. & Sørensen, A. C. Animal-breeding schemes using genomic information need breeding plans designed to 
maximise long-term genetic gains. Livest. Sci. 166, 38–47. https:// doi. org/ 10. 1016/j. livsci. 2014. 06. 016 (2014).

 4. Nguyen, N. H., Hamzah, A. & Thoa, N. P. Effects of genotype by environment interaction on genetic gain and genetic parameter 
estimates in red tilapia (Oreochromis spp.). Front. Genet. 8, 82. https:// doi. org/ 10. 3389/ fgene. 2017. 00082 (2017).

 5. Yáñez, J. M., Newman, S. & Houston, R. D. Genomics in aquaculture to better understand species biology and accelerate genetic 
progress. Front. Genet. 6, 128. https:// doi. org/ 10. 3389/ fgene. 2015. 00128 (2015).

 6. Georges, M., Charlier, C. & Hayes, B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 20, 135–156. 
https:// doi. org/ 10. 1038/ s41576- 018- 0082-2 (2019).

 7. Tsai, H.-Y. et al. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a 
high density SNP array. BMC Genom. 16, 969. https:// doi. org/ 10. 1186/ s12864- 015- 2117-9 (2015).

 8. Palaiokostas, C., Kocour, M., Prchal, M. & Houston, R. D. Accuracy of genomic evaluations of juvenile growth rate in common 
carp (Cyprinus carpio) using genotyping by sequencing. Front. Genet. 9, 82–82. https:// doi. org/ 10. 3389/ fgene. 2018. 00082 (2018).

 9. Yoshida, G. M. et al. Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile 
tilapia (Oreochromis niloticus). G3 (Bethesda) 9, 2597–2607. https:// doi. org/ 10. 1534/ g3. 119. 400116 (2019).

 10. Garcia, A. L. S. et al. Development of genomic predictions for harvest and carcass weight in channel catfish. Genet. Sel. Evol. 50, 
66. https:// doi. org/ 10. 1186/ s12711- 018- 0435-5 (2018).

 11. Dong, L., Xiao, S., Wang, Q. & Wang, Z. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic 
values in large yellow croaker (Larimichthys crocea). BMC Genom. 17, 460. https:// doi. org/ 10. 1186/ s12864- 016- 2756-5 (2016).

 12. Nguyen, N. H., Premachandra, H. K. A., Kilian, A. & Knibb, W. Genomic prediction using DArT-Seq technology for yellowtail 
kingfish Seriola lalandi. BMC Genom. 19, 107–107. https:// doi. org/ 10. 1186/ s12864- 018- 4493-4 (2018).

 13. Liu, G. et al. Evaluation of genomic selection for seven economic traits in yellow drum (Nibea albiflora). Mar. Biotechnol. (NY) 21, 
806–812. https:// doi. org/ 10. 1007/ s10126- 019- 09925-7 (2019).

 14. Gutierrez, A. P., Matika, O., Bean, T. P. & Houston, R. D. Genomic selection for growth traits in pacific oyster (Crassostrea gigas): 
Potential of low-density marker panels for breeding value prediction. Front. Genet. 9, 391–391. https:// doi. org/ 10. 3389/ fgene. 2018. 
00391 (2018).

 15. Wang, Y. et al. Predicting growth traits with genomic selection methods in Zhikong scallop (Chlamys farreri). Mar. Biotechnol. 20, 
769–779. https:// doi. org/ 10. 1007/ s10126- 018- 9847-z (2018).

 16. Dou, J. et al. Evaluation of the 2b-RAD method for genomic selection in scallop breeding. Sci. Rep. 6, 19244. https:// doi. org/ 10. 
1038/ srep1 9244 (2016).

 17. Wang, Q., Yu, Y., Li, F., Zhang, X. & Xiang, J. Predictive ability of genomic selection models for breeding value estimation on 
growth traits of Pacific white shrimp Litopenaeus vannamei. Chin. J. Oceanol. Limnol. 35, 1221–1229. https:// doi. org/ 10. 1007/ 
s00343- 017- 6038-0 (2017).

 18. Nguyen, N. H., Phuthaworn, C. & Knibb, W. Genomic prediction for disease resistance to Hepatopancreatic parvovirus and 
growth, carcass and quality traits in Banana shrimp Fenneropenaeus merguiensis. Genomics 112, 2021–2027. https:// doi. org/ 10. 
1016/j. ygeno. 2019. 11. 014 (2020).

 19. Zenger, K. R. et al. Genomic selection in aquaculture: Application, limitations and opportunities with special reference to marine 
shrimp and pearl oysters. Front. Genet. https:// doi. org/ 10. 3389/ fgene. 2018. 00693 (2019).

 20. Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 
157, 1819–1829 (2001).

 21. Sonesson, A. K. & Meuwissen, T. H. E. Testing strategies for genomic selection in aquaculture breeding programs. Genet. Sel. Evol. 
41, 37–37. https:// doi. org/ 10. 1186/ 1297- 9686- 41- 37 (2009).

 22. Koopaee, H. K. & Koshkoiyeh, A. E. SNPs genotyping technologies and their applications in farm animals breeding programs: 
Review. Braz. Arch. Biol. Technol. 57, 87–95 (2014).

 23. Huang, C.-W. et al. Efficient SNP discovery by combining microarray and lab-on-a-chip data for animal breeding and selection. 
Microarrays (Basel) 4, 570–595. https:// doi. org/ 10. 3390/ micro array s4040 570 (2015).

 24. Negro, S. S. et al. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging 
different haplotypes in association studies. BMC Plant Biol. 19, 318. https:// doi. org/ 10. 1186/ s12870- 019- 1926-4 (2019).

 25. Pandey, M. K. et al. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerat-
ing genetics and breeding in groundnut. Sci. Rep. 7, 40577. https:// doi. org/ 10. 1038/ srep4 0577 (2017).

 26. Jaganathan, D. et al. Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought 
tolerance in chickpea. Mol. Genet. Genom. 290, 559–571. https:// doi. org/ 10. 1007/ s00438- 014- 0932-3 (2015).

https://doi.org/10.2174/138920212800543057
https://doi.org/10.2174/138920212800543057
https://doi.org/10.2527/jas.2012-5158
https://doi.org/10.1016/j.livsci.2014.06.016
https://doi.org/10.3389/fgene.2017.00082
https://doi.org/10.3389/fgene.2015.00128
https://doi.org/10.1038/s41576-018-0082-2
https://doi.org/10.1186/s12864-015-2117-9
https://doi.org/10.3389/fgene.2018.00082
https://doi.org/10.1534/g3.119.400116
https://doi.org/10.1186/s12711-018-0435-5
https://doi.org/10.1186/s12864-016-2756-5
https://doi.org/10.1186/s12864-018-4493-4
https://doi.org/10.1007/s10126-019-09925-7
https://doi.org/10.3389/fgene.2018.00391
https://doi.org/10.3389/fgene.2018.00391
https://doi.org/10.1007/s10126-018-9847-z
https://doi.org/10.1038/srep19244
https://doi.org/10.1038/srep19244
https://doi.org/10.1007/s00343-017-6038-0
https://doi.org/10.1007/s00343-017-6038-0
https://doi.org/10.1016/j.ygeno.2019.11.014
https://doi.org/10.1016/j.ygeno.2019.11.014
https://doi.org/10.3389/fgene.2018.00693
https://doi.org/10.1186/1297-9686-41-37
https://doi.org/10.3390/microarrays4040570
https://doi.org/10.1186/s12870-019-1926-4
https://doi.org/10.1038/srep40577
https://doi.org/10.1007/s00438-014-0932-3


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18318  | https://doi.org/10.1038/s41598-021-97873-5

www.nature.com/scientificreports/

 27. Guppy, J. L. et al. Development and validation of a RAD-Seq target-capture based genotyping assay for routine application in 
advanced black tiger shrimp (Penaeus monodon) breeding programs. BMC Genom. 21, 541. https:// doi. org/ 10. 1186/ s12864- 020- 
06960-w (2020).

 28. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-
wide association studies. PLoS Genet. 5, e1000529. https:// doi. org/ 10. 1371/ journ al. pgen. 10005 29 (2009).

 29. VanRaden, P. M. et al. Genomic imputation and evaluation using high-density Holstein genotypes. J. Dairy Sci. 96, 668–678. 
https:// doi. org/ 10. 3168/ jds. 2012- 5702 (2013).

 30. Sargolzaei, M., Chesnais, J. P. & Schenkel, F. S. A new approach for efficient genotype imputation using information from relatives. 
BMC Genom. 15, 478. https:// doi. org/ 10. 1186/ 1471- 2164- 15- 478 (2014).

 31. Pereira, G. L. et al. Genotype imputation and accuracy evaluation in racing quarter horses genotyped using different commercial 
SNP panels. J. Equine Vet. 58, 89–96. https:// doi. org/ 10. 1016/j. jevs. 2017. 07. 012 (2017).

 32. Berry, D. P. et al. Imputation of non-genotyped sheep from the genotypes of their mates and resulting progeny. Animal 12, 191–198. 
https:// doi. org/ 10. 1017/ S1751 73111 70016 53 (2018).

 33. Johnson, P. C. D. & Haydon, D. T. Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite 
genotypes in the absence of reference data. Genetics 175, 827–842. https:// doi. org/ 10. 1534/ genet ics. 106. 064618 (2007).

 34. Hoffman, J. I. & Amos, W. Microsatellite genotyping errors: Detection approaches, common sources and consequences for paternal 
exclusion. Mol. Ecol. 14, 599–612. https:// doi. org/ 10. 1111/j. 1365- 294X. 2004. 02419.x (2005).

 35. Liu, N., Zhang, D. & Zhao, H. Genotyping error detection in samples of unrelated individuals without replicate genotyping. Hum. 
Hered. 67, 154–162. https:// doi. org/ 10. 1159/ 00018 1153 (2009).

 36. Zych, K. et al. reGenotyper: Detecting mislabeled samples in genetic data. PLoS One 12, e0171324. https:// doi. org/ 10. 1371/ journ 
al. pone. 01713 24 (2017).

 37. Becker, T. et al. Identification of probable genotyping errors by consideration of haplotypes. Eur. J. Human Genet. 14, 450. https:// 
doi. org/ 10. 1038/ sj. ejhg. 52015 65 (2006).

 38. Mitchell, A. A., Cutler, D. J. & Chakravarti, A. Undetected genotyping errors cause apparent overtransmission of common alleles 
in the transmission/disequilibrium test. Am. J. Hum. Genet. 72, 598–610. https:// doi. org/ 10. 1086/ 368203 (2003).

 39. Pompanon, F., Bonin, A., Bellemain, E. & Taberlet, P. Genotyping errors: Causes, consequences and solutions. Nat. Rev. Genet. 6, 
847. https:// doi. org/ 10. 1038/ nrg17 07 (2005).

 40. Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 
1, 71–75. https:// doi. org/ 10. 4137/ bbi. s373 (2007).

 41. Wang, C., Schroeder, K. B. & Rosenberg, N. A. A maximum-likelihood method to correct for allelic dropout in microsatellite data 
with no replicate genotypes. Genetics 192, 651. https:// doi. org/ 10. 1534/ genet ics. 112. 139519 (2012).

 42. Hao, K., Li, C., Rosenow, C. & Hung Wong, W. Estimation of genotype error rate using samples with pedigree information—an 
application on the GeneChip Mapping 10K array. Genomics 84, 623–630. https:// doi. org/ 10. 1016/j. ygeno. 2004. 05. 003 (2004).

 43. Gordon, D. & Finch, S. J. Factors affecting statistical power in the detection of genetic association. J. Clin. Investig. 115, 1408–1418. 
https:// doi. org/ 10. 1172/ JCI24 756 (2005).

 44. Barral, S., Haynes, C., Stone, M. & Gordon, D. LRTae: Improving statistical power for genetic association with case/control data 
when phenotype and/or genotype misclassification errors are present. BMC Genet. 7, 24–24. https:// doi. org/ 10. 1186/ 1471- 2156-
7- 24 (2006).

 45. Zuo, Y., Zou, G., Wang, J., Zhao, H. & Liang, H. Optimal two-stage design for case-control association analysis incorporating 
genotyping errors. Ann. Hum. Genet. 72, 375–387. https:// doi. org/ 10. 1111/j. 1469- 1809. 2007. 00419.x (2008).

 46. Morrissey, M. B. & Wilson, A. J. The potential costs of accounting for genotypic errors in molecular parentage analyses. Mol. Ecol. 
14, 4111–4121. https:// doi. org/ 10. 1111/j. 1365- 294X. 2005. 02708.x (2005).

 47. Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273. https:// doi. 
org/ 10. 1111/j. 1365- 294X. 2004. 02346.x (2004).

 48. Dufflocq, P., Pérez-Enciso, M., Lhorente, J. P. & Yáñez, J. M. Accuracy of genomic predictions using different imputation error rates 
in aquaculture breeding programs: A simulation study. Aquaculture 503, 225–230. https:// doi. org/ 10. 1016/j. aquac ulture. 2018. 12. 
061 (2019).

 49. Sargolzaei, M. & Schenkel, F. S. QMSim: A large-scale genome simulator for livestock. Bioinformatics 25, 680–681. https:// doi. org/ 
10. 1093/ bioin forma tics/ btp045 (2009).

 50. Foote, A. et al. Considerations for maintaining family diversity in commercially mass-spawned Penaeid shrimp: A case study on 
Penaeus monodon. Front. Genet. https:// doi. org/ 10. 3389/ fgene. 2019. 01127 (2019).

 51. Wilson, K. et al. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. 
Aquaculture 204, 297–309. https:// doi. org/ 10. 1016/ S0044- 8486(01) 00842-0 (2002).

 52. Endelman, J. B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4, 250–255. https:// 
doi. org/ 10. 3835/ plant genom e2011. 08. 0024 (2011).

 53. Butler, D., Cullis, B., Gilmour, A. & Gogel, B. (ed Queensland Department of Primary Industries and Fisheries) (Brisbane, 2009).
 54. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2020).
 55. Yang, J. et al. Common SNPs explain a large proportion of heritability for human height. Nat. Genet. 42, 565–569. https:// doi. org/ 

10. 1038/ ng. 608 (2010).
 56. Lin, L.I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989).
 57. Fessehaye, Y. et al. Mating systems and male reproductive success in Nile tilapia (Oreochromis niloticus) in breeding hapas: A 

microsatellite analysis. Aquaculture 256, 148–158. https:// doi. org/ 10. 1016/j. aquac ulture. 2006. 02. 024 (2006).
 58. Cameron Brown, R., Woolliams, J. A. & McAndrew, B. J. Factors influencing effective population size in commercial populations 

of gilthead seabream, Sparus aurata. Aquaculture 247, 219–225. https:// doi. org/ 10. 1016/j. aquac ulture. 2005. 02. 002 (2005).
 59. Blonk, R. J. W., Komen, H., Kamstra, A. & van Arendonk, J. A. M. Estimating breeding values with molecular relatedness and 

reconstructed pedigrees in natural mating populations of common sole, Solea solea. Genetics 184, 213–219. https:// doi. org/ 10. 
1534/ genet ics. 109. 110536 (2010).

 60. Vela-Avitúa, S., Meuwissen, T. H., Luan, T. & Ødegård, J. Accuracy of genomic selection for a sib-evaluated trait using identity-
by-state and identity-by-descent relationships. Genet. Sel. Evol. 47, 9. https:// doi. org/ 10. 1186/ s12711- 014- 0084-2 (2015).

 61. Lillehammer, M., Meuwissen, T. H. E. & Sonesson, A. K. A low-marker density implementation of genomic selection in aquaculture 
using within-family genomic breeding values. Genet. Sel. Evol. 45, 39–39. https:// doi. org/ 10. 1186/ 1297- 9686- 45- 39 (2013).

 62. Nielsen, H. M., Sonesson, A. K. & Meuwissen, T. H. E. Optimum contribution selection using traditional best linear unbiased 
prediction and genomic breeding values in aquaculture breeding schemes. J. Anim. Sci. 89, 630–638. https:// doi. org/ 10. 2527/ jas. 
2009- 2731 (2011).

 63. Nielsen, H. M., Sonesson, A. K., Yazdi, H. & Meuwissen, T. H. E. Comparison of accuracy of genome-wide and BLUP breeding 
value estimates in sib based aquaculture breeding schemes. Aquaculture 289, 259–264. https:// doi. org/ 10. 1016/j. aquac ulture. 2009. 
01. 027 (2009).

 64. Sonesson, A. K. & Ødegård, J. Mating structures for genomic selection breeding programs in aquaculture. Genet. Sel. Evol. 48, 46. 
https:// doi. org/ 10. 1186/ s12711- 016- 0224-y (2016).

https://doi.org/10.1186/s12864-020-06960-w
https://doi.org/10.1186/s12864-020-06960-w
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.3168/jds.2012-5702
https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.1016/j.jevs.2017.07.012
https://doi.org/10.1017/S1751731117001653
https://doi.org/10.1534/genetics.106.064618
https://doi.org/10.1111/j.1365-294X.2004.02419.x
https://doi.org/10.1159/000181153
https://doi.org/10.1371/journal.pone.0171324
https://doi.org/10.1371/journal.pone.0171324
https://doi.org/10.1038/sj.ejhg.5201565
https://doi.org/10.1038/sj.ejhg.5201565
https://doi.org/10.1086/368203
https://doi.org/10.1038/nrg1707
https://doi.org/10.4137/bbi.s373
https://doi.org/10.1534/genetics.112.139519
https://doi.org/10.1016/j.ygeno.2004.05.003
https://doi.org/10.1172/JCI24756
https://doi.org/10.1186/1471-2156-7-24
https://doi.org/10.1186/1471-2156-7-24
https://doi.org/10.1111/j.1469-1809.2007.00419.x
https://doi.org/10.1111/j.1365-294X.2005.02708.x
https://doi.org/10.1111/j.1365-294X.2004.02346.x
https://doi.org/10.1111/j.1365-294X.2004.02346.x
https://doi.org/10.1016/j.aquaculture.2018.12.061
https://doi.org/10.1016/j.aquaculture.2018.12.061
https://doi.org/10.1093/bioinformatics/btp045
https://doi.org/10.1093/bioinformatics/btp045
https://doi.org/10.3389/fgene.2019.01127
https://doi.org/10.1016/S0044-8486(01)00842-0
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1038/ng.608
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.aquaculture.2006.02.024
https://doi.org/10.1016/j.aquaculture.2005.02.002
https://doi.org/10.1534/genetics.109.110536
https://doi.org/10.1534/genetics.109.110536
https://doi.org/10.1186/s12711-014-0084-2
https://doi.org/10.1186/1297-9686-45-39
https://doi.org/10.2527/jas.2009-2731
https://doi.org/10.2527/jas.2009-2731
https://doi.org/10.1016/j.aquaculture.2009.01.027
https://doi.org/10.1016/j.aquaculture.2009.01.027
https://doi.org/10.1186/s12711-016-0224-y


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18318  | https://doi.org/10.1038/s41598-021-97873-5

www.nature.com/scientificreports/

 65. Bangera, R., Correa, K., Lhorente, J. P., Figueroa, R. & Yáñez, J. M. Genomic predictions can accelerate selection for resistance 
against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genom. 18, 121. https:// doi. org/ 10. 1186/ s12864- 017- 3487-y 
(2017).

 66. Barría, A. et al. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in Coho 
Salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3 Genes Genomes Genet. 8, 1183. https:// doi. org/ 10. 1534/ g3. 118. 
200053 (2018).

 67. Correa, K., Bangera, R., Figueroa, R., Lhorente, J. P. & Yáñez, J. M. The use of genomic information increases the accuracy of 
breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet. Sel. Evol. 49, 15. 
https:// doi. org/ 10. 1186/ s12711- 017- 0291-8 (2017).

 68. Tsai, H.-Y. et al. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet. Sel. Evol. 48, 47. 
https:// doi. org/ 10. 1186/ s12711- 016- 0226-9 (2016).

 69. Tsai, H.-Y. et al. genotype imputation to improve the cost-efficiency of genomic selection in farmed Atlantic Salmon. G3 Genes 
Genomes Genet. 7, 1377–1383. https:// doi. org/ 10. 1534/ g3. 117. 040717 (2017).

 70. Vallejo, R. L. et al. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease 
resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genet. Sel. Evol. 49, 17. https:// doi. org/ 
10. 1186/ s12711- 017- 0293-6 (2017).

 71. Yoshida, G. M. et al. Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3 Genes 
Genomes Genet. 8, 719. https:// doi. org/ 10. 1534/ g3. 117. 300499 (2018).

 72. Yoshida, G. M., Carvalheiro, R., Rodríguez, F. H., Lhorente, J. P. & Yáñez, J. M. Single-step genomic evaluation improves accuracy of 
breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics 111, 127–132. https:// 
doi. org/ 10. 1016/j. ygeno. 2018. 01. 008 (2019).

 73. Edwards, S. M. et al. The effects of training population design on genomic prediction accuracy in wheat. Theor. Appl. Genet. 132, 
1943–1952. https:// doi. org/ 10. 1007/ s00122- 019- 03327-y (2019).

 74. Van Grevenhof, E. M., Van Arendonk, J. A. M. & Bijma, P. Response to genomic selection: The Bulmer effect and the potential of 
genomic selection when the number of phenotypic records is limiting. Genet. Sel. Evol. 44, 26–26. https:// doi. org/ 10. 1186/ 1297- 
9686- 44- 26 (2012).

 75. Bulmer, M. The effect of selection on genetic variability. Am. Nat. 105, 201–211 (1971).
 76. Muir, W. M. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under 

alternative trait and genomic parameters. J. Anim. Breed. Genet. 124, 342–355. https:// doi. org/ 10. 1111/j. 1439- 0388. 2007. 00700.x 
(2007).

 77. Zhou, L. et al. Factors affecting GEBV accuracy with single-step Bayesian models. Heredity 120, 100–109. https:// doi. org/ 10. 1038/ 
s41437- 017- 0010-9 (2018).

 78. Kang, H., Zhou, L., Mrode, R., Zhang, Q. & Liu, J. F. Incorporating the single-step strategy into a random regression model to 
enhance genomic prediction of longitudinal traits. Heredity 119, 459. https:// doi. org/ 10. 1038/ hdy. 2016. 91 (2016).

 79. Habier, D., Fernando, R. L. & Garrick, D. J. Genomic BLUP decoded: A look into the black box of genomic prediction. Genetics 
194, 597–607. https:// doi. org/ 10. 1534/ genet ics. 113. 152207 (2013).

 80. Ødegård, J. et al. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front. Genet. 5, 402. https:// doi. 
org/ 10. 3389/ fgene. 2014. 00402 (2014).

 81. Cheung, C. Y. K., Thompson, E. A. & Wijsman, E. M. Detection of Mendelian consistent genotyping errors in pedigrees. Genet. 
Epidemiol. 38, 291–299. https:// doi. org/ 10. 1002/ gepi. 21806 (2014).

 82. Khan, S. A. et al. Rules for resolving Mendelian inconsistencies in nuclear pedigrees typed for two-allele markers. PLoS One 12, 
e0172807. https:// doi. org/ 10. 1371/ journ al. pone. 01728 07 (2017).

 83. Torkamaneh, D., Laroche, J. & Belzile, F. Genome-wide SNP calling from genotyping by sequencing (GBS) data: A comparison of 
seven pipelines and two sequencing technologies. PLoS One 11, e0161333. https:// doi. org/ 10. 1371/ journ al. pone. 01613 33 (2016).

 84. Malmberg, M. M. et al. Evaluation and recommendations for routine genotyping using skim whole genome re-sequencing in 
canola. Front Plant Sci. 9, 1809–1809. https:// doi. org/ 10. 3389/ fpls. 2018. 01809 (2018).

Author contributions
N.K. conducted simulation and data analysis with support from P.C.T. and M.S.K. N.K. wrote the manuscript 
with the input from P.C.T., M.S.K. and H.W.R. All authors made substantial contributions to the interpretation 
of results and preparation of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 97873-5.

Correspondence and requests for materials should be addressed to N.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021, corrected publication 2021

https://doi.org/10.1186/s12864-017-3487-y
https://doi.org/10.1534/g3.118.200053
https://doi.org/10.1534/g3.118.200053
https://doi.org/10.1186/s12711-017-0291-8
https://doi.org/10.1186/s12711-016-0226-9
https://doi.org/10.1534/g3.117.040717
https://doi.org/10.1186/s12711-017-0293-6
https://doi.org/10.1186/s12711-017-0293-6
https://doi.org/10.1534/g3.117.300499
https://doi.org/10.1016/j.ygeno.2018.01.008
https://doi.org/10.1016/j.ygeno.2018.01.008
https://doi.org/10.1007/s00122-019-03327-y
https://doi.org/10.1186/1297-9686-44-26
https://doi.org/10.1186/1297-9686-44-26
https://doi.org/10.1111/j.1439-0388.2007.00700.x
https://doi.org/10.1038/s41437-017-0010-9
https://doi.org/10.1038/s41437-017-0010-9
https://doi.org/10.1038/hdy.2016.91
https://doi.org/10.1534/genetics.113.152207
https://doi.org/10.3389/fgene.2014.00402
https://doi.org/10.3389/fgene.2014.00402
https://doi.org/10.1002/gepi.21806
https://doi.org/10.1371/journal.pone.0172807
https://doi.org/10.1371/journal.pone.0161333
https://doi.org/10.3389/fpls.2018.01809
https://doi.org/10.1038/s41598-021-97873-5
https://doi.org/10.1038/s41598-021-97873-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Impact of genotypic errors with equal and unequal family contribution on accuracy of genomic prediction in aquaculture using simulation
	Methods
	Simulation procedure. 
	Generating populations. 
	Genome structure. 
	Sub-setting SNPs and implementation of error rates. 

	Statistical analysis. 
	Estimating the accuracy of prediction. 
	Descriptive summary analysis of different factors. 
	Estimating the effect of genotypic error on the genomic relationship matrix. 


	Results
	Accuracy of pedigree and genomic-based estimated breeding values. 
	Accuracy of predictions across family types and generations. 
	Accuracy of predictions within family types and across heritabilities. 
	Accuracy of predictions within heritabilities and across generations. 
	Effect of genotypic error rates and family types on accuracy of predictions. 
	Effect of marker density and family type on accuracy of predictions. 
	Effect of genotypic errors and heritability on accuracy of predictions. 
	Effect of marker densities and heritability on accuracy of predictions. 
	Effect of marker densities and genotypic error on accuracy of predictions. 
	Effect of generation and genotypic error rates on accuracy of predictions. 
	Effect of genotypic error on the genomic relationship matrix. 

	Discussion
	Comparing the accuracy EBVs and GEBVs. 
	Effect of family type on accuracy of genomic prediction. 
	Effect of heritability on accuracy of genomic prediction. 
	Effect of generation on accuracy of genomic prediction. 
	Effect of SNP density on accuracy of genomic prediction. 
	Effect of genotypic error on accuracy of GEBV and GRM. 
	Implication for design of breeding programs. 

	References


