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Abstract 

Barriers to dispersal shape the geographic distribution of biodiversity on earth. In the ocean, the 

interaction of physical barriers and dispersal has primarily been examined for organisms with juvenile 

larvae that disperse with the aid of ocean currents. This has led to the general view that there are 

fewer barriers to dispersal in the ocean than on land, and that marine organisms maintain high genetic 

connectivity and large population sizes. Elasmobranchs (sharks, rays and skates), however, produce a 

small number of offspring, lack a planktonic larval stage, and depend on self-propelled dispersal to 

maintain genetic connectivity. These fundamental differences in life history strategies are likely to 

generate distinct geographic patterns of genetic variation in relation to marine barriers. 

The aim of this thesis was therefore to examine how marine barriers and elasmobranch dispersal 

ecology shape genetic connectivity. First, I provided a global synthesis of barriers to dispersal that 

affect elasmobranchs. I synthesized the environmental drivers and spatio-temporal scales of different 

barrier types and examined the effect of species-specific life history traits on genetic connectivity. 

Ocean depth was found to constitute a strong barrier for species that live in shallow water and are 

associated with the sea floor. However, some shallow-water species have managed to colonize isolated 

volcanic islands and highly fragmented coral reefs. Such scenarios provide exceptional opportunities 

to study evolutionary processes and their consequences for genetic and biogeographic patterns in 

marine populations. 

I designed two case studies using shallow-water reef sharks and fragmented tropical seascapes as 

model systems to test a priori hypotheses about the effect of physical barriers. In the first case study, 

I used the Galapagos bullhead shark (Heterodontus quoyi) and single nucleotide polymorphisms (SNPs) 

to assess genetic and biogeographic patterns in the Galapagos archipelago. Sequential island 

formation gradually established different levels of ocean depths between individual islands that pose 

barriers to dispersal in H. quoyi. Using isolation by resistance analysis, I showed that ocean bathymetry 

and historical sea level fluctuations influence genetic connectivity in this species. This study was the 

first to expose that oscillating sea levels alter genetic connectivity in marine organisms by changing the 

seascape of oceanic archipelagos. This resulted in four geographically isolated genetic clusters that 

exhibit low genetic diversity and effective population sizes that scale with island size. 

Whitetip reef sharks (Triaenodon obesus), used in the second case study, are closely associated with 

shallow-water coral reefs. I combined the mitochondrial DNA control region and nuclear genomic 

markers (SNPs) with extensive sampling of whitetip reef sharks across Indo-Pacific coral reefs to assess 

barriers to dispersal and seascape connectivity. Large distances of open ocean and the recurring 
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closure of the Torres Strait were the primary barriers to historical and contemporary connectivity at 

large geographic scales. Fine-scale genetic structure was found among reefs in the Coral Sea with 

nuclear genomic but not mitochondrial markers. Spatial genetic patterns implied that shark site-fidelity 

causes isolation at small geographic scales, while occasional oceanic dispersal may create connectivity 

pathways between distant reefs and across deep ocean. These results indicated that dispersal may be 

context-dependent and balanced by the trade-offs for individual fitness and population persistence in 

sharks that are associated with fragmented and dynamic coral reef systems. 

Overall, my results revealed that barriers generate genetic and biogeographic signatures in 

elasmobranchs that may resemble patterns found in terrestrial animals and in other cases those of 

marine organisms that use ocean currents for dispersal. This research provides a marine perspective 

on the evolutionary processes that shape natural populations and highlights the importance of 

considering species with different life histories and dispersal modes to study barriers to dispersal. 
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Chapter 1 - General Introduction 

Barriers to dispersal shape the geographic and temporal distribution of individuals and their genetic 

variation. The distribution of individuals is often patchy because the conditions that provide suitable 

habitats for survival are fragmented (Kimura & Weiss, 1964; Slatkin, 1987). Dispersal sustains the 

exchange of individuals and genetic information among disjunct habitats (Clobert et al., 2012; Fahrig 

& Merriam, 1994; Slatkin, 1987). But the dispersal of individuals is commonly restricted by the 

presence of physical barriers, which limit the distribution of species and the genetic connectivity 

among populations (Avise, 2000; Kimura & Weiss, 1964; Manel et al., 2003). The study of barriers to 

dispersal is therefore central to understand the evolutionary processes that create genetic and 

biogeographic patterns in natural populations (Avise, 2000; Moritz, 2002). 

Dispersal generates demographic and genetic connectivity among spatially discrete units of the same 

species (Fahrig & Merriam, 1994; Levin et al., 1984; Lowe & Allendorf, 2010). Demographic 

connectivity measures the relative contribution of dispersing, compared to resident individuals, to 

local population growth and therefore requires knowledge on local demographic rates (i.e., 

immigration and emigration, births and deaths) and is dependent on local population sizes (Lowe & 

Allendorf, 2010; Ovenden, 2013; Waples & Gaggiotti, 2006). Given their survival and successful 

reproduction, dispersing individuals contribute their DNA to the gene pool of the local population at 

their destination (Bradbury et al., 2008; Ovenden, 2013). In this case, dispersal becomes effective and 

translates into genetic connectivity (Lowe & Allendorf, 2010; Selkoe et al., 2016). Genetic connectivity, 

is therefore related to the number of dispersing individuals that reproduce successfully at their 

destination and modify the allele frequencies of future generations. Measures of genetic connectivity 

rely on population genetic models and are subject to differences in mutation rates of molecular 

markers (Epps & Keyghobadi, 2015; Storfer et al., 2018). Therefore, the two measures, demographic 

and genetic connectivity, cannot be simply interpreted in terms of each other (Lowe & Allendorf, 2010; 

Waples & Gaggiotti, 2006). This thesis is concerned with barriers to effective dispersal that impact 

genetic connectivity, which can be measured in terms of the geographic distribution of allele 

frequencies. 

Barriers to dispersal can lead to the accumulation of genetic differences across space, generating intra-

specific genetic divergence that may ultimately results in speciation, and therefore delineate species’ 

range limits (Avise, 2004, 2000; Kirkpatrick & Barton, 1997). Physical barriers are comprised of 

landscape features or discontinuities in the abiotic environment that are established through a 

combination of geologic and climatic processes (Avise, 2000; Slatkin, 1987). However, individual 
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behaviour and ecological interactions can also limit dispersal in the absence of, or in combination with 

physical barriers (Pearce, 2007; Pyron & Burbrink, 2010). 

Physical barriers are established and modified by geological processes and variations in global climate 

(Briggs & Bowen, 2013; Cowman & Bellwood, 2013; Emerson & Hewitt, 2005; Hewitt, 2004). They 

generate genetic divergence through vicariance, the division of previously connected populations, or 

trans-barrier dispersal (Pyron & Burbrink, 2010). For instance, the movement of tectonic plates, a slow 

geologic process, drove the speciation of terrestrial organisms through the physical separation of 

continents and the uplift of mountain ranges (McIntyre et al., 2017; O’Connell et al., 2017; Upchurch, 

2008). But vicariance also occurs over shorter time scales. For example, abrupt geologic processes such 

as volcanic eruptions can separate populations by breaking up suitable habitat (Beheregaray et al., 

2003; Macías-Hernández et al., 2013). The geographical separation of populations can also be 

established through the colonization of new habitat across established barriers. For example, dispersal 

across the Andes mountains drove the divergence among genetic lineages of terrestrial organisms 

(Turchetto-Zolet et al., 2013). 

Some physical barriers such as rivers have clearly defined geographical breaks (Soltis et al., 2006). 

Rivers in the Amazon basin, for example, constitute barriers to dispersal that drove genetic divergence 

in terrestrial taxa (Ayres & Clutton-Brock, 1992; Turchetto-Zolet et al., 2013). Other barriers are formed 

by gradients in environmental conditions that create diffuse transitions, often over larger distances. 

Hard barriers, such as land bridges, impede connectivity between disjunct populations entirely 

(Cowman & Bellwood, 2013; Knowlton et al., 1993; Pyron & Burbrink, 2010). In contrast, soft barriers 

are permeable and reduce genetic connectivity at varying levels for different species, according to their 

dispersal capacity (Cowman & Bellwood, 2013; Pyron & Burbrink, 2010). The permeability of barriers 

can change over time (Hewitt, 2004). For example, variations in global climate cause shifts in the 

elevation of terrestrial vegetation expanding and contracting dispersal corridors across mountain 

ranges (Hazzi et al., 2018). In its extreme form, climatic variations lead to transitions from soft to hard 

barriers. During colder climates, receding sea levels expose the shallow sea floor of the Torres Strait, 

separating the Indian from the Pacific Ocean, but the seaway reopens when global temperatures rise 

again (Voris, 2000). 

Since geologic processes and climatic variations determine the beginning, duration, and permeability 

of barriers, they leave traces in the genetic structure of natural populations that can be detected using 

molecular tools (Dudgeon et al., 2012; Emerson & Hewitt, 2005). Different types of molecular markers 

can be used to examine the effect of physical barriers on genetic connectivity at varying spatial 

resolution and at historical and contemporary time scales (Thomson et al., 2010; Wang, 2010). Further, 
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genomic sequencing techniques have significantly improved the statistical power to detect barriers to 

dispersal at finer temporal and spatial scales (Avise, 2010; Luikart et al., 2003; Morin et al., 2009, 2004). 

However, these methods have primarily been applied to study the effect of barriers to dispersal on 

spatial genetic patterns in terrestrial populations but to a lesser extent in marine organisms (Gagnaire 

et al., 2015; Kelley et al., 2016). 

In the ocean, genetic divergence and species’ distributions are also regulated by physical barriers that 

are subject to geological processes and climatic variations (Cowman & Bellwood, 2013; Ovenden, 

2013). But the life history strategies and mechanisms used for dispersal in the ocean are distinct 

because organisms have adapted to living and moving in an aquatic medium (Capdevila et al., 2020). 

Marine barriers may therefore generate genetic and biogeographic patterns that contrast or resemble 

those of terrestrial systems. 

In the past it was assumed that marine systems generally have fewer physical barriers than terrestrial 

systems, because many marine organisms can exploit the movement of the water masses during a 

juvenile larvae phase (Cowen & Sponaugle, 2009; Hellberg, 2009; Palumbi, 2003). However, the field 

has seen a shift towards recognizing the complexity and diversity of marine dispersal (Levin, 2006). 

Active movements in marine larvae that utilize ocean currents as dispersal agents can have significant 

influence on dispersal trajectories and distances (Leis, 2006; Levin, 2006). Other marine organisms 

switch between different dispersal modes (e.g., self-propelled swimming versus passively drifting) at 

different life stages or during dispersal events (Hays, 2017). Some marine organisms disperse as 

juveniles and have sessile or highly site-attached adults (Liggins et al., 2013). Others, have both 

dispersive juvenile larvae and dispersive adults (Roff, 1988). Marine mammals, marine reptiles, 

cartilaginous fish (Chondrichthyes), and some teleost fish (e.g., viviparous or brooding species) lack 

juvenile larvae (Kelly & Palumbi, 2010). The capacity to overcome potential physical barriers and 

maintain genetic connectivity in the ocean is therefore subject to species-specific life history traits, 

behaviour, and the mechanisms used for dispersal (Baguette et al., 2013; Massol & Débarre, 2015; 

Selkoe et al., 2016). 

Despite the great diversity in life histories and dispersal strategies in the ocean, there is a bias in marine 

research towards organisms with dispersive juvenile larvae (Bradbury et al., 2008). Genetic 

connectivity in relation to dispersal barriers has been studied to a much lesser extent in species that 

lack juvenile larvae, but has the potential to improve our understanding of the evolutionary processes 

that shape genetic and biogeographic patterns in the ocean (Bowen & Karl, 2007; Dudgeon et al., 

2012). 
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Elasmobranchs (sharks rays and skates) form a taxonomic group comprising over 1150 species that live 

in diverse marine and freshwater habitats from tropical to polar regions (Ebert et al., 2013; Last et al., 

2016; Lucifora et al., 2015). They lack a planktonic larval stage and mostly disperse as adults while 

juveniles are more site attached (Grubbs 2010; Ebert et al. 2013). Compared to the majority of teleost 

fishes and marine invertebrates, elasmobranchs generally have longer life spans, mature at a later age, 

and produce fewer offspring (Ebert et al., 2013). Individual species range in body size from merely 20 

cm to 20 m and occur at the surface down to the deep sea (Ebert et al., 2013; Last et al., 2016). 

Elasmobranchs inhabit fresh and brackish water, continental shelves, and the open ocean (Last et al., 

2016; Musick et al., 2000). Pelagic species swim suspended in the water column while demersal species 

live on or closely associated to the sea floor. The diverse life histories of elasmobranchs are likely to 

result in species-specific genetic and biogeographic patterns that may contrast or resemble those of 

larval dispersers and terrestrial organisms. However, the combined effect of species-specific life 

history and marine barriers on population connectivity in elasmobranchs is not well understood. 

Shallow-water marine habitats cover a smaller area than the open ocean and are fragmented by 

deeper water. Individual fragments may serve as spatial units to study barriers to dispersal in marine 

organisms that are strongly associated to shallow-water habitat (Edmunds et al., 2018; Hawkes, 2009). 

Elasmobranchs that live in shallow-water and are closely associated to the sea floor are thought to 

have lower dispersal capacity compared to pelagic species (Iosilevskii & Papastamatiou, 2016) and 

often show lower genetic connectivity between fragmented shallow-water habitats (Chevolot et al., 

2006b; Gubili et al., 2014; Plank et al., 2010; Ramírez-Amaro et al., 2018). However, few studies have 

been designed to explicitly test the effect of ocean depth as a barrier. Demersal elasmobranchs that 

inhabit fragmented shallow-water habitats may therefore offer a suitable system to study the effect 

of barriers to dispersal on genetic and biogeographic patterns.  
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Thesis aims 

The overarching aim of this research was to examine how barriers to dispersal shape genetic 

connectivity and biogeographic patterns in elasmobranchs.  

In Chapter 2, I synthesized the underlying mechanisms and the spatio-temporal extent of barriers to 

dispersal in the ocean. I examined how species-specific dispersal ecology regulates connectivity across 

barriers in elasmobranchs. In this chapter I also reviewed methodological sources that can bias the 

detection of barriers and provided concise recommendations for studies that aim to test hypotheses 

about the effect of marine barriers.  

Based on the findings of Chapter 2, I designed two case studies to examine barriers to dispersal. Two 

shallow-water reef sharks that are strongly associated to the sea floor and inhabit fragmented tropical 

seascapes presented suitable model systems. 

In Chapter 3, I used the Galapagos bullhead shark (Heterodontus quoyi) and the Galapagos archipelago 

as a model system to study evolutionary processes and their consequences on genetic connectivity 

and island biogeography. I showed how island formation and sea level fluctuations establish and 

modify depth barriers, resulting in distinct genetic and biogeographic patterns. 

Whitetip reef sharks (Triaenodon obesus) and Indo-Pacific coral reefs were used as a model system in 

Chapter 4 to assess genetic connectivity in fragmented coral reef seascapes. Sharks were sampled 

across various magnitudes of fragmentation, including contiguous reefs along continental shelves, 

semi-isolated offshore reefs, and reefs on isolated oceanic islands and seamounts. I found contrasting 

genetic patterns with local isolation and large-scale connectivity pathways that were likely created by 

the sharks’ high site fidelity and context-dependent oceanic dispersal. 

This research revealed general trends in the effects of barriers on genetic connectivity in 

elasmobranchs, but also identified species-specific and context-dependent differences. Chapter 3 was 

the first to show that genetic and biogeographic signatures in coastal marine species may resemble 

those found terrestrial island biota. Chapter 4 constitutes the most comprehensive sampling of a reef 

shark in the Coral Sea region to date. This chapter illustrated that ecological and evolutionary trade-

offs balance high site-fidelity and rare oceanic dispersal events in reef-associated sharks. The results 

of this thesis contribute to our understanding of how barriers in the ocean affect marine connectivity 

and biogeography and showcase possible avenues for future research. 

 

The diagram in Figure 1 on the following page provides a visual overview of the thesis chapters. 
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Figure 1. Thesis chapter overview. This overview will be repeated in the title page of each chapter to 
guide the reader through the thesis structure.  
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Chapter 2 – Barriers in a sea of elasmobranchs: From fishing for populations 

to testing hypotheses in population genetics 

 

This chapter has been accepted with minor revisions for publication in Global Ecology and 

Biogeography. The submitted manuscript has been modified to fit the style of the thesis and avoid 

redundancies. 

Hirschfeld, M., Dudgeon, C., Sheaves, M., Barnett, A. Barriers in a sea of elasmobranchs: From fishing 

for populations to testing hypotheses in population genetics. Global Ecology and Biogeography. 

Contributions: M. Hirschfeld designed the study, collected, curated, analysed, and interpreted the 

data, and wrote the manuscript. A. Barnett, C. Dudgeon., M. Sheaves participated in study conception, 

interpreted the data, and contributed to the structure and content of the manuscript. 
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Introduction 

The dispersal of animals across the landscape is one of the major evolutionary forces responsible for 

biodiversity and its distribution on earth. Animal dispersal is the geographical displacement of 

individuals that has the potential to generate gene flow (Ronce, 2007). Evolution has generated a 

remarkable number of dispersal mechanisms. Some species of spiders, for example, produce threads 

that lift them into the air where they passively drift with the wind and electric fields (Morley & Robert, 

2018; Weyman, 1993). Marine mammals, in contrast, actively propel their large bodies on migrations 

between polar feeding areas and tropical birthing areas (Dawbin, 1966). Dispersal and subsequent 

reproduction sustain the exchange of genetic information among habitats that provide suitable 

conditions for a species’ survival (Slatkin, 1987). Unrestricted dispersal and gene flow theoretically 

results in panmixia; the lack of genetic population structure throughout a species’ geographical range 

(Kimura & Weiss, 1964; Slatkin, 1987). But the dispersal of individuals is commonly restricted by the 

presence of geographic features or unfavourable environmental conditions that create physical 

barriers between patches of suitable habitat, generating genetic divergence among populations (Avise, 

2000; Guillot et al., 2009; Hellberg et al., 2002). For instance, in the ocean, large distances across deep 

ocean or strong gradients in temperature and salinity, pose barriers to dispersal (Riginos & Liggins, 

2013; Rocha et al., 2007). Animal behaviour, such as the preference for a specific habitat for 

reproduction, can also reduce genetic connectivity in the absence of, or in combination with, physical 

barriers (Avise et al., 1992; Pearce, 2007; Shields, 1983). 

The permeability of physical barriers defines how effective they are in limiting dispersal and gene flow. 

Permeability of marine barriers is dependent on the hydrologic and geographic factors that form 

barriers and can vary over time due to a combination of geologic and climatic processes (Cowman & 

Bellwood, 2013; Ovenden, 2013). Hard barriers are formed by landmasses that prevent gene flow 

altogether. The most prominent example is the rise of the Isthmus of Panama, which has driven the 

divergence of many marine taxa between the Atlantic and Pacific Oceans (Knowlton et al., 1993; O’Dea 

et al., 2016). In contrast, soft barriers are permeable. They are formed by geographic features or 

environmental discontinuities that can restrict genetic connectivity between regions that are physically 

connected by water masses (Bowen et al., 2016; Teske et al., 2011). Hard barriers can reopen with 

rising sea levels during interglacial cycles and the permeability of soft barriers, for example the strong 

temperature gradients around the Benguela upwelling system, fluctuate with the earth’s climate 

(Henriques et al., 2014; Krammer et al., 2006; Marlow et al., 2000). Understanding the temporal 

variability of marine barriers is therefore central to the interpretation of the spatial genetic structure 

in marine populations. 
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Life history and physiology determine an organism’s potential to disperse between suitable habitats 

and its capacity to overcome physical barriers. Many marine organisms, including teleost fishes and 

marine invertebrates, have juvenile larvae the use ocean currents as dispersal agents (Cowen & 

Sponaugle, 2009; Hellberg, 2009). But marine animals that lack dispersive larvae, such as 

elasmobranchs (Ebert et al., 2013; Grubbs, 2010), are likely to produce distinct geographic patterns of 

genetic variation. 

Several reviews have focused on the effect of marine barriers on genetic population structure in 

marine invertebrates and teleost fish at global (Bowen et al., 2016; Rocha et al., 2007) or regional 

scales (Avise, 1992; Burton, 1998; Colgan, 2016; Patarnello et al., 2007; Teske et al., 2011). These 

processes have been examined in some marine animals that depend on self-propelled dispersal, 

including sharks and rays, cetaceans, and to a lesser extent in teleosts that lack larval dispersal 

(Bernardi, 2000; Fontaine et al., 2007; Ovenden, 2013; Puckridge et al., 2013). Dudgeon et al. (2012) 

highlighted the importance of several recognized marine barriers in shaping the genetic structure of 

elasmobranchs. Here we take a closer look at this taxonomic group to gain a deeper understanding of 

the physical and ecological drivers that determine the effect of barriers on population connectivity in 

marine animals that depend on active dispersal. First, we present a global geographic overview of 

barriers that affect elasmobranchs and synthesize how physical factors, spatial and temporal scales 

determine barrier permeability. We assess the effect of elasmobranch dispersal potential on genetic 

connectivity in relation to different types of barriers, and debate the influence of environmental 

tolerance and behaviour on connectivity in elasmobranchs and other marine animals with active 

dispersal. Finally, we consider the limitations of our results by showcasing methodological sources that 

affect the measurement of genetic connectivity across marine barriers, and highlight potential 

solutions for future research. 

 

Methods 

Peer-reviewed publications that reported intra-specific genetic or genomic differentiation in one or 

more elasmobranch species were obtained via the online search engines Google Scholar and Web of 

Science by entering combinations of the key words, ‘shark’, ‘ray’, ‘genetic*’, ‘genomic*’, 

‘phylogeograph*’, ‘population structure’, ‘connectivity’ (until 16 January 2020) and were screened to 

discover additional publications. Obligate fresh-water species were excluded. Additional information 

was compiled on the taxonomy and biology (maximum depth of occurrence, maximum body size, and 

habitat) for each elasmobranch species from secondary literature and fishbase.org (Ebert et al., 2013; 

Froese & Pauly., 2018; Last et al., 2016; Weigmann, 2016). Elasmobranch habitat was described as one 
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of three broad categories: 1. Benthopelagic habitat on the continental shelves and upper slopes, 2. 

neritic habitat of the water column above the continental shelves and upper slopes, 3. oceanic habitat 

including the pelagic and deep sea. Finally, we extracted information on the type and number of 

genetic markers used to study elasmobranch population genetic structure from the primary literature. 

Genetic comparisons across barriers were then extracted from the publications. A genetic comparison 

was recorded as a single data point if sampling design was adequate to formally test for intra-specific 

genetic differentiation across a single barrier. Sampling was considered adequate if there was at least 

one sampling location with a minimum of five samples on either side of a barrier and there were no 

other barriers that could simultaneously act on the genetic differentiation between the same locations. 

Genetic differentiation between the locations must have been statistically assessed using pairwise 

fixation or differentiation indices between individual locations or analysis of molecular variance 

(AMOVA) between groups of sampling locations (Excoffier et al., 1992; Meirmans & Hedrick, 2011; 

Weir & Cockerham, 1984). Pairs of locations that lack any physical barriers between them and are 

separated by the same or smaller geographic distances than locations on either side of a barrier of 

interest can be used as controls because genetic differences are likely caused by geographic distance 

alone, not a barrier. Therefore, data points of significant genetic differences across barriers were not 

included if authors also reported significant differences between control locations. Data points were 

also excluded if behaviour, specifically reproductive philopatry, was identified as the main driver of 

genetic differentiation between locations on either side of a physical barrier in question. They were 

excluded to avoid bias in our synthesis because it is not possible to distinguish between the effect of a 

physical barrier or behaviour on genetic differentiation if not explicitly tested for separately. We then 

synthesized information on the barriers extracted from the literature to characterize different barrier 

types based on similarity of the geographic and hydrologic factors that form each barrier, their 

geographic scale, time scale and temporal variability. Detailed information on each barrier and source 

references are reported in Appendix A Table 7. 

To quantify the relative contribution of barrier type and dispersal potential on genetic differentiation 

we applied generalised linear models (GLMs) on a subset of three barrier types that had a minimum of 

30 observations and a minimum of five observations in each habitat category. We used barrier type 

and three proxies for dispersal potential, maximum depth of occurrence, maximum body size and 

habitat as independent factors. Directly comparing measures of genetic differentiation between 

studies is complicated by the range of genetic indexes that are applied to different types and numbers 

of molecular markers. Genetic differentiation, the dependent variable, was therefore recorded as a 

binomial response, either being significant or not significant. Whenever a study used more than one 

type of genetic marker to measure genetic differentiation based on the same set of samples, we only 
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included results based on nuclear not mitochondrial markers to address non-independence. The model 

included interactions between barrier type and maximum depth of occurrence as well as barrier type 

and habitat. Multi-collinearity among all predictors included in the models was assessed by calculating 

the generalized variance inflation factors (GVIFs) to account for predictors with several levels (Fox & 

Monette, 1992; Zuur et al., 2010). GLMs with decreasing complexity were fitted by removing the term 

with the least effect at each step. Models were first fitted with a binomial error distribution and then 

with a quasi-binomial error distribution to assess over- or under dispersion of the data (Pekar & Brabec, 

2016). We assessed the presence of influential observations using Cook’s distance and applied a lack-

of-fit test to detect significant correlations between the residuals and the fitted values and the 

predictors (Cook, 1977; Zhang, 2016; Zuur & Ieno, 2016). Finally, we calculated the Pseudo McFadden 

R2 and Akaike’s information criterion corrected for small sample sizes (AICc) to identify the model that 

best explained the amount of variance in the data while accounting for model complexity (McFadden, 

1974; Menard, 2000). 

  



 

 12 

Results 

Intraspecific genetic differentiation was reported for 102 elasmobranch species across 173 

publications (Figure 2). The number of publications was highly skewed towards sharks (superorders 

Galeomorphii and Squalomorphii) with 137 studies covering 70 species, compared to skates and rays 

(superorder Batoidea) with 37 publications covering 32 species. Only one study included population 

structure of both shark and ray species (Ferrari et al., 2018). A total of 21 shark families belonging to 

six orders were covered by the literature with most studies focusing on the family Carcharhinidae. 

Three orders of batoids containing eight families were studied with the number of publications biased 

towards the families Rajidae and Pristidae. 

 

Barriers in a sea of elasmobranchs 

A total of 65 studies (37.6%) were not included in our barrier synthesis (Appendix A Table 8) either 

because there were no physical barriers present in the geographic area sampled (n=32, 18.5%) or 

because they did not meet our sampling design criteria (n=33, 19.1%). We excluded 44 genetic 

comparisons (24 studies) across potential barriers due to inadequate spatial sampling and 21 

comparisons (12 studies) with small sample sizes. Six comparisons (5 studies) were excluded because 

significant genetic differences were also shown for control locations that lack physical barriers, and for 

16 comparisons (12 studies) no statistical results for pairwise comparisons or AMOVAs were reported. 

Finally, 18 observations (14 studies) were excluded because philopatric behaviour was reported to 

likely generate the observed genetic differences. 
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Figure 2. Taxonomic overview of elasmobranch species in the population genetics or phylogeography literature. 

The number of studies in taxonomic units are presented above the nodes for each order and next to the species 

name if there was more than one study on a single species.  
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Across all publications, I extracted a total of 226 data points on genetic comparisons for 45 unique 

physical barriers in the world’s oceans (Figure 3). For the purpose of this synthesis, I grouped individual 

barriers that are formed by similar geographic or hydrologic factors and operate on comparable spatial 

scales into nine types of barriers (Figure 4 and Appendix A Table 7). Spatial scales ranged from barriers 

affecting connectivity at global to intermediate and local scales. Barriers were concentrated in five 

regional areas: the north-eastern Pacific, western Atlantic, north-eastern Atlantic and Mediterranean, 

southern Africa and the western Indo-Pacific and New Zealand. Four barrier types are formed by 

geographic factors. At large scale, the physical separation of major ocean basins was formed through 

the collision of continents moving on tectonic plates (O’Dea et al., 2016; Seton et al., 2012). Mid ocean 

barriers separate marine shelf habitats over vast distances of deep ocean. Straits are shallow and 

narrow stretches that separate larger water bodies on either side, and ocean depth below the edge of 

continental shelves creates barriers at intermediate down to small spatial scales of less than 100km 

(Patarnello et al., 2007). Another four barrier types are formed by hydrologic factors. Warm surface 

water at the equator creates a large-scale thermal barrier that divides cold and temperate habitats of 

the northern and southern hemisphere (Bowen et al., 2016). The strong temperature gradients at 

current fronts form small-scale thermal barriers (Henriques et al., 2014; Stephens et al., 2016). We use 

the term haline barriers for barriers caused by drastic gradients in salinity, for example through 

freshwater outflows of major river deltas (Rocha, 2003). Haline barriers and ocean currents (Santos et 

al., 2006) form barriers to dispersal and gene flow at intermediate and small spatial scales. As a unique 

case, the Florida Peninsula constitutes a barrier that is formed by a combination of hydrologic and 

geographic factors. The large land mass of the Peninsula forms a barrier between the Gulf of Mexico 

and the Atlantic by extending from temperate into subtropical waters and is reinforced by a narrow 

continental shelf on the Atlantic coast and strong currents pushing through the Florida Straits into the 

Atlantic (Avise, 1992; Gold & Richardson, 1998). Geologic processes and global climate act in concert 

to determine the onset, duration and permeability of marine barriers over geologic time scales. The 

Pleistocene epoch, in particular, marks the beginning and end or a period of dramatic fluctuations in 

barrier permeability (Figure 4) coupled to modern glacial cycles that amplified global climate 

oscillations (Hansen et al., 2013). 
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Figure 3. Barriers to elasmobranch dispersal and genetic connectivity in the global ocean. (a) Map of the world 

with barriers that act on a global scale. Regional areas: (b) north-eastern Pacific, (c) western Atlantic, (d) southern 

Africa, (e) western Indo-Pacific and New Zealand, (f) north-eastern Atlantic and Mediterranean. Abbreviations 

correspond to the barriers described in Appendix A Table 5) and numbers in parenthesis indicate the cumulative 

count of individual barriers.  
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Figure 4. Geographic and temporal scales, and temporal variability of selected examples of each barrier type. 

Coloured bars correspond to barrier types numbered from 1-9 that are formed by geographic (G, grey vertical 

bars) or hydrologic factors (H, white vertical bars). The time in million years ago (MYA) is depicted on a 

logarithmic scale and the grey shaded area represents the Pleistocene epoch (2.58 to 0.0117 MYA). Graduated 

horizontal black bars at the bottom depict the time window at which different molecular markers are commonly 

used to detect genetic differentiation, adapted from (Dudgeon et al., 2012). The bottom inset depicts fluctuations 

in global average sea levels and deep ocean temperature over the last one million years on a normal scale, 

adapted from (Hansen et al., 2013). Details and references are reported in Appendix A Table 7. 

 

Drivers of elasmobranch population connectivity  

Our analysis suggests that genetic structure across physical barriers in elasmobranchs is a function of 

species-specific dispersal potential and its interaction with the type of barrier (Table 1 and Figure 5). 

Validation of the full model including several barrier types indicated no violations of model 

assumptions, outliers or multicollinearity (all GVIF below 1.5) of the predictors. All proxies for 

elasmobranch dispersal potential used as predictors (maximum depth of occurrence, maximum body 

size and habitat) explained whether a given species was likely to show significant genetic 

differentiation across physical barriers, but the relative contribution of each predictor and the 

direction of its effect differed between the three types of barriers examined (Figure 5). The full model 

best explained genetic differentiation across three barrier types. Compared to all other models, it 

captured the largest amount of the variance in the data, indicated by an R2 value of 0.3 and the lowest 

AICc value (McFadden, 1978). The probability of significant genetic differentiation consistently 

decreased with larger maximum body size independently of the barrier type. In contrast, species that 
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had a larger maximum depth of occurrence were less likely to show genetic differences across depth 

and mid ocean barriers but the effect was reversed for straits. Benthopelagic species, elasmobranchs 

that are associated with the seafloor above the continental shelves and slopes, were more likely to 

demonstrate genetic differentiation across depth and mid ocean barriers compared to species that 

occupy neritic and oceanic habitats. Across narrow and shallow straits, however, oceanic species were 

more likely to exhibit genetic differentiation compared to neritic and benthopelagic species. 

 

Figure 5. Probability of genetic differentiation across depth barriers (light green), mid ocean barriers (blue), and 

straits (dark green), in relation to proxies for elasmobranch dispersal potential maximum depth of occurrence a), 

maximum body size b) and habitat c). Regression lines (panels a and b) represent the mean of the fitted values 

of the full model (Table 1) and boxplots (panel c) represent the mean and interquartile range of the fitted values, 

coloured by barrier type. 

Table 1. Summary of generalized linear models assessing the contribution of three proxies for elasmobranch 

dispersal potential and barrier type on the probability of genetic differentiation. K indicates the number of 

parameters in the model and LL is the log likelihood score. AICc is the Akaike information criterion corrected for 

small sample sizes, ∆AICc is the change in AICc compared to the model with the lowest value, and R2 is the 

variance explained by each model estimated using McFadden’s Pseudo-R2. 

Model structure K LL AICc ∆AICc 
AICc 

Weight 
R2 

1) ~ barrier type x habitat  + barrier type x 
maximum depth of occurrence + maximum 
body size 

13 -66.03 161.05        0.00 0.9 0.296 

2) ~ barrier type x habitat + maximum depth 
of occurrence + maximum body size  

11 -70.76 165.65 4.60 0.09 0.245 

3) ~ barrier type + habitat + maximum depth 
of occurrence + maximum body size 

7 -77.89 170.65        9.59 0.01 0.169 

4) ~ habitat + maximum depth of occurrence 
+ maximum body size 

5 -83.59 177.65        16.60 0.00 0.108 

5) ~ maximum depth of occurrence + 
maximum body size 

3 -85.96 178.11        17.05 0.00 0.083 

6) ~ maximum depth of occurrence 2 -88.86 181.81 20.76 0.00 0.052 
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Discussion 

Our global synthesis identified nine main types of physical barriers that influence population connectivity in 

elasmobranchs. Their impact on genetic connectivity depends on the species-specific dispersal ecology and the 

spatio-temporal characteristics that define each barrier type. The most common barriers affecting this group are 

related to ocean bathymetry at large through to remarkably small spatial scales. 

 

From global to local scales 

Some oceanic elasmobranchs undertake large migrations across and between major ocean basins 

(Queiroz et al., 2019). But great dispersal potential does not inevitably result in global connectivity and 

a world without barriers. The Old World Barrier, Isthmus of Panama Barrier, and Sunda Shelf Barrier 

pose the most potent barriers and define the planet’s subdivision into major ocean basins. Tropical 

sharks that are capable of large-scale migrations show genetic structure between major ocean basins 

because cold water limits their dispersal around the northern and southern extremes of continental 

landmasses (Clarke et al., 2015; Daly-Engel et al., 2012; Vignaud et al., 2014a). However, pelagic 

oceanic sharks and migratory teleost fish that occupy a broader range of temperatures are able to 

maintain genetic connectivity between the Atlantic and south-west Indian Ocean, likely because the 

tip of South-Africa is located in  lower latitudes (Díaz-Jaimes et al., 2010; Da Silva Ferrette et al., 2015; 

Theisen et al., 2008; Veríssimo et al., 2017). In tropical marine organisms with limited dispersal this 

ocean subdivision has led to the evolution of new species (Bowen et al., 2016; Cowman & Bellwood, 

2013), including sharks and rays (Sales et al., 2019; Schultz et al., 2008), and prevented the colonization 

of the Atlantic Ocean by species with active dispersal that have an Indo-West Pacific centre of origin 

(Lillywhite et al., 2018; Whitney et al., 2012b). The establishment of these land bridges has been dated 

providing approximate time stamps to calibrate molecular clocks and estimate divergence times of 

genetic lineages (Dudgeon et al., 2012; O’Dea et al., 2016; Seton et al., 2012). But the permeability of 

marine barriers can fluctuate over geological time scales due to oscillations in the earth’s climate. For 

example, the cyclical exposure of the Sunda Shelf during low sea levels caused the recurring isolation 

and reconnection of the Indian and Pacific oceans, and has fuelled the speciation of tropical marine 

taxa including coastal ray species (Carpenter et al., 2011; Puckridge et al., 2013). Compared to tropical 

species, connectivity between oceans is preserved in some temperate and cold-water elasmobranchs, 

but limited between hemispheres by warm-water masses along the equator (Chabot, 2015; Veríssimo 

et al., 2010). Some large sharks may largely avoid the warm surface water on trans-equatorial 

migrations by swimming through deeper water for extended periods (Gore et al., 2008; Skomal et al., 

2009). Global connectivity may only be possible in species with large-scale horizontal dispersal if they 
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also tolerate a broad range of environmental conditions and/or are capable of extensive vertical 

movement. 

Marine barriers limit genetic connectivity at sub-global scales in most elasmobranchs and ocean depth 

is the most common barrier generating genetic structure at intermediate down to surprisingly small 

geographical scales. The depths of Mediterranean sub-basins (Fig. 2f) form barriers at distances of less 

than 500 kms in benthopelagic sharks and skates with intermediate depth distribution (maximum 

depth of occurrence of 800m and 630m, respectively) that maintain connectivity along continuous shelf 

habitat (Frodella et al., 2016; Gubili et al., 2014; Kousteni et al., 2015). In shallow-water benthopelagic 

species that depend on active dispersal, depth can create genetic structure at extremely small spatial 

scales. The steep bathymetry of the Southern California Bight (Fig. 2b) generates genetic differences 

between shallow-water habitat separated by 100km in Pacific angel sharks (Squatina californica) and 

only 42 km in round stingrays, Urobatis halleri (Gaida, 1997; Plank et al., 2010). Water depth separating 

shallow-water habitat of the bight was also found to be a strong barrier to dispersal in the black 

surfperch (Embiotoca jacksoni), a shallow-water teleost fish that lacks a planktonic larval stage 

(Bernardi, 2000). In contrast, depth does not constitute a barrier in organisms with pelagic larval 

dispersal because they primarily depend on ocean currents and larval duration to connect shallow-

water habitat (Chust et al., 2016; Galarza et al., 2009; Pelc et al., 2009). In turn, strong ocean currents 

may restrict connectivity in species with active dispersal. The Indonesian through-flow current was 

related to genetic differences in benthopelagic zebra sharks (Stegostoma fasciatum) and blue-spotted 

maskrays (Neotrygon kuhlii) at a small geographic scale (Borsa et al., 2012; Dudgeon et al., 2009; 

Puckridge et al., 2013). Some pelagic species are unaffected by the Indonesian through-flow current 

(Giles et al., 2014) but the South Equatorial Current was suggested to generate genetic differences in 

coastal and even oceanic pelagic sharks at large geographic scale (Carmo et al., 2019; Domingues et 

al., 2018a, 2018c). 

 

Dispersal ecology  

The dispersal ecology of elasmobranchs, and any marine animal that can control or direct its 

movements to some extent, can be condensed into three main factors: dispersal potential, 

environmental tolerance and dispersal behaviour (Hawkes, 2009). The relative contribution of each 

factor to dispersal and population connectivity is, however, highly dependent on the species-specific 

life history, the modes of dispersal used, the environmental context, and individual phenotype (Bowler 

& Benton, 2005; Cote et al., 2017; Levin, 2006).  
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The potential to disperse in three-dimensional space is limited by an organism’s tolerance to conditions 

of the aquatic environment and therefore determines their capacity to overcome potential physical 

barriers. An allometric relationship between dispersal potential and body size has been described for 

a range of taxa (Jenkins et al., 2007; Stevens et al., 2014). In elasmobranchs, larger species are more 

likely to maintain genetic connectivity across barriers related to ocean bathymetry. However, body 

size may not always be a good predictor for genetic connectivity in elasmobranchs. For example, 

habitat and maximum depth of occurrence provide a better explanation for trans-Atlantic connectivity 

in smaller (<150cm) oceanic and the deep-sea sharks (Da Silva Ferrette et al., 2015; Veríssimo et al., 

2011; Weigmann, 2016). Further, spiny dogfish (Squalus acanthias) are relatively small sharks (max. 

160 cm) but are capable of transoceanic movements (Mcfarlane & King, 1979). Neither their body size 

nor preference for shelf and slope habitat would indicate they maintain population connectivity across 

and between major ocean basins (Veríssimo et al., 2010). Unsurprisingly, elasmobranchs with a larger 

depth distribution and that inhabit oceanic habitats are less likely to show genetic differentiation 

across depth and mid ocean barriers compared to species that are associated to the sea floor of 

continental shelves. But this trend may be reversed for shallow straits. The Strait of Gibraltar connects 

the Mediterranean to the eastern Atlantic by a mere 14km wide stretch. While permeable to most 

species, the shallow connection drives genetic differentiation in deep-sea oceanic and benthopelagic 

sharks that have a large depth distribution (Catarino et al., 2015; Gubili et al., 2016; Ramírez-Amaro et 

al., 2018). Further, pelagic oceanic species that make large vertical movements, for example blue 

sharks (Prionace glauca), may also lack gene flow because they avoid movement across shallow straits 

(Leone et al., 2017; Queiroz et al., 2012; Vandeperre et al., 2014). Our models show that all three 

proxies for dispersal potential were important to explain genetic differences across barriers. However, 

the examples discussed illustrate that there are other biological drivers likely affecting genetic 

connectivity that were not captured by the models, due to the lack of knowledge on the biology of 

many elasmobranchs. 

Physiological tolerance to environmental conditions determines the capacity of elasmobranchs to 

disperse across potential barriers. For instance, dispersal across barriers that are formed by hydrologic 

factors, can be explained in terms of a species’ thermal tolerance and its potential to circumnavigate 

unfavourable conditions. Strong temperature gradients at the tip of the Baja California Peninsula (Fig. 

2b) impede dispersal between the Gulf of California and the Pacific coast in some benthic shark and 

ray species (Castillo-Páez et al., 2014; Sandoval-Castillo et al., 2004; Smith et al., 2009). However, round 

stingrays (Urobatis halleri) maintain genetic connectivity despite their limited short-term dispersal, 

likely because they tolerate warm surface waters (Plank et al., 2010; Vaudo & Lowe, 2006). Some 

neritic species that prefer cooler temperatures may lack dispersal across this barrier if restricted to the 
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upper water column, while others circumnavigate the warmer surface waters by swimming at depth 

(Félix-López et al., 2019; Sandoval-Castillo & Rocha-Olivares, 2011). Similarly, physiological tolerance 

to strong gradients in salinity is critical to maintain connectivity across haline barriers. For example, 

the Mississippi River plume, has been suggested to restrict dispersal in coastal sharks (Portnoy et al., 

2014, 2016). In contrast, other shark species maintain connectivity across the vast freshwater plume 

of the Amazon and Orinoco rivers, likely by descending below the margins of the continental shelves 

(Bernard et al., 2016; Domingues et al., 2018c). Similarly, salt water between river drainages can pose 

barriers to dispersal in sharks and batoids that are associated with fresh and brackish water (Feutry et 

al., 2014, 2015; Phillips et al., 2016). Environmental tolerance can be a limiting factor for the 

connectivity across marine barriers even in elasmobranchs with high dispersal potential. 

Behaviour can regulate genetic connectivity in the absence of, or in combination with physical barriers 

(Hawkes, 2009). In marine animals with active dispersal, including elasmobranchs, marine mammals, 

marine reptiles, and teleost fish, dispersal linked to reproductive behaviour can restrict genetic 

connectivity even in species high dispersal potential and broad environmental tolerance. Reproductive 

philopatry is the residency or the return migration to a specific geographic area for reproduction 

(Pearce, 2007; Shields, 1983). This behaviour is common in elasmobranchs (Chapman et al., 2015; 

Flowers et al., 2016) and has mostly been associated with females repeatedly returning to the same 

areas for parturition and the use of nurseries by juveniles (Heupel et al., 2018; Martins et al., 2018). 

This results in congruent genetic patterns between elasmobranchs and other marine animals with 

active dispersal and similar dispersal ecology. For example, white sharks (Carcharodon carcharias) and 

some marine mammals, including humpback (Megaptera novaeangliae) and sperm whales (Physeter 

macrocephalus) have exceptional dispersal potential and environmental tolerance but their distinct 

reproductive behaviour limits gene flow in the absence of obvious physical barriers to dispersal (Bonfil 

et al., 2005; Engelhaupt et al., 2009; Jorgensen et al., 2010; Rosenbaum et al., 2009; Weng et al., 2007). 

Tiger sharks (Galeocerdo cuvier) and green sea turtles (Chelonia mydas) are capable of oceanic 

migrations, but cold water in high latitudes limits connectivity between major ocean basins and 

philopatric behaviour likely drives genetic structure within the Atlantic Ocean (Bernard et al., 2016; 

Jensen et al., 2019; Lea et al., 2015). Bull sharks (Carcharhinus leucas) and Atlantic Salmon (Salmo 

salar) have large dispersal potential and are euryhaline, tolerating a wide range of salinities, but 

genetic differences were found among reproductive areas in estuarine and freshwater habitat at small 

spatial scales (Garant et al., 2000; Tillett et al., 2012b). Reproductive behaviour can have a strong 

influence on genetic patterns in marine animals with active dispersal, but exposing its relative impact 

on connectivity compared to dispersal potential and environmental tolerance, particularly in relation 

to physical barriers, remains a major challenge for researchers. 
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From fishing for populations to testing hypotheses 

Two main factors limit the inferences that can be made about the effect of elasmobranch dispersal 

ecology and physical barriers on genetic connectivity. First, studies commonly lack appropriate study 

designs based on a priori hypotheses to test for the effect of physical and behavioural barriers. 

Researchers often rely on the opportunistic collection of samples, for example through fisheries or 

museum collections, then attempt to “fish” for genetically distinct populations and use physical 

features and animal behaviour afterwards to interpret genetic patterns. Consequently, studies may 

lack compelling evidence to elucidate evolutionary processes, over or underestimate genetic 

population structure, and are biased towards economically interesting or charismatic species. 

Secondly, the ability to detect genetic structure varies vastly among studies due to the diverse range 

of molecular and analytical methods used. Although the differences in sampling design, molecular 

markers and analytical methods used in the elasmobranch literature introduce biases that limit the 

predictive power of our models, they are valuable to reveal general trends and highlight exceptions to 

the rule. Here we outline methodological sources that can affect measures of genetic differentiation 

across physical barriers in the literature to illustrate the limitations of our models and showcase 

important considerations for researchers assessing barriers to gene flow in natural populations (Table 

2). 
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Table 2. Methodological sources of potential bias in measuring genetic differences across physical barriers and 
potential solutions. 

Source Effect/bias Solution 
Sampling design  
Spatial:  
Geographic 
distance 

Genetic differences may due to 
genetic isolation by geographic 
distance and/or presence of other 
physical barriers. 

• Space sampling locations closely around 
barrier of interest Sample control locations at 
similar geographic distance in the absence of 
barriers 

Spatio-
temporal: 
Philopatry 

Genetic differences result from 
philopatric behaviour not physical 
barriers, or both. 

• Test physical barriers and behaviour separately  
• Sample control locations in the absence of 

physical barriers or behaviour and in the 
absence of both 

Spatio-
temporal: 
Kinship bias 

Observed genetic structure is an 
artefact of closely related individuals 
sampled at the same location. 

• Sample at multiple time points to reduce the 
number of related individuals in the sample  

• Include locations with unrelated individuals to 
examine the effects of kinship bias 

• Examine effect of related individuals and 
exclude from analyses only if justified (Waples 
& Anderson, 2017) 

Sample size Low or highly variable sample sizes 
bias genetic variation captured and 
estimates of genetic differences 
between locations. 

• Use sufficient sample sizes and balanced 
sampling (equal number of samples per 
location, sex and size/age) 

Molecular and analytical methods 
Type of 
molecular 
marker 

Molecular evolutionary rate and 
marker polymorphism affect the 
time scale and resolution at which 
genetic structure is detected. 

• Select genetic markers based on a priori 
hypotheses about physical barrier of interest 
and their spatio-temporal scale 

• Conduct trials to identify the most suitable 
markers 

Number of 
molecular 
markers 

Larger numbers of markers generally 
increase the resolution at which 
population structure is detected, but 
can also increase the number of 
markers that may result from 
genotyping errors or do not conform 
with population genetics 
assumptions. 

• Identify and exclude markers that are 
physically linked or deviate from Hardy-
Weinberg equilibrium or result from 
genotyping errors (Bonin et al., 2004; O’Leary 
et al., 2018; Waples & Allendorf, 2015) 

Markers under 
selection 
(adaptive 
genetic 
variation) 

Genetic differences may be 
generated by selection rather than 
barriers to dispersal. 

• Account for selection when testing the effect 
of barriers: Identify molecular markers 
putatively under selection and examine their 
effect in relation to physical barriers and 
behaviour 

Statistical 
analyses 
 

Measuring genetic structure and its 
statistical significance is influenced 
by:  
(i) the spatial and temporal sampling 
design, (ii) number of samples, (iii) 
type and number of markers, (iv) the 
statistical analyses used. 

• Construct strong priori hypotheses and apply 
appropriate sampling design 

• Carefully select molecular markers and 
analytical methods 

• Confirm results are biologically meaningful 
using multiple analytical methods 
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Spatial and temporal sampling affects the ability to capture accurate levels of genetic differentiation 

in relation to physical barriers. For example, if sampling locations are too far spaced, genetic 

differences may arise due to genetic isolation by geographic distance and obscure the impact of the 

barrier of interest (Guillot et al., 2009). To discern the effect of a barrier from unknown variables, 

additional sampling locations can be used as controls if they are located at a similar geographic 

distance and have no barriers to dispersal between them. For philopatric species, sampling adults at 

locations that are used for mating and/or parturition or sampling juveniles from nursery habitats can 

capture genetic signals caused by reproductive behaviour rather than limited dispersal capacity. For 

instance, genetic differences in juvenile blacktip sharks (Carcharhinus limbatus) sampled from coastal 

nurseries in the Atlantic and Gulf of Mexico could be entirely caused by philopatric behaviour or in 

combination with the Florida Peninsula barrier (Keeney et al., 2005). The effects of physical barriers 

and behaviour may be distinguished by testing them separately or by using control locations (see Table 

2). However, none of the reviewed studies presented a sampling design that would allow to effectively 

test for philopatry while accounting for physical barriers or vice versa. Although other behaviours such 

as the preference for feeding areas could generate genetic structure if they are linked to reproduction, 

this has not been tested. Large numbers of related individuals can also inflate genetic population 

structure. For example, sampling at a single time point at a geographic location where individuals of a 

particular life stage aggregate increases the probability of capturing related individuals which elevates 

the genetic difference to other locations even if individuals of other life stages mix and reproduce 

(Devloo-Delva et al., 2019). 

Detecting genetic differences also depends on the molecular and analytical methods used.  The type 

and number of molecular markers has substantial impact on the spatial and temporal resolution at 

which genetic structure is measured due to differences in polymorphism (variability in the DNA 

sequences of the same molecular marker) caused by distinct molecular evolutionary rates (Liu et al., 

2005; Rosenberg et al., 2003; Wang, 2010). Because mitochondrial DNA markers evolve at slower rates 

than nuclear markers, they may capture historical events or processes at large spatial scales but may 

not reflect recent or ongoing processes (Anderson et al., 2010; Wang, 2010). Highly polymorphic 

microsatellites and large numbers of genomic markers are suitable to examine more recent processes 

at smaller geographic scales (Riginos & Liggins, 2013; Wang, 2010) but may override older signatures 

(Anderson et al., 2010). Genomic markers that are randomly sampled across the genome, for example 

single nucleotide polymorphisms (SNPs), are difficult to compare between species and even between 

studies on the same species when a different set of markers is generated for every sample collection. 

Strong population structure was detected in Galapagos sharks (Carcharhinus galapagensis) using SNPs 

generated for samples from the Galapagos archipelago (Pazmiño et al., 2017a) but the signal vanished 
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when incorporating the data into a larger sample collection spanning the Pacific Ocean (Pazmiño et al., 

2018a). Including locations at larger geographic distance outside the main area of interest may 

therefore provide a reference to assess the magnitude of genetic differentiation, in particular when 

working with samples from a small fraction of a species’ geographic distribution. However, strong 

genetic differentiation at large geographic scales can mask structure at finer geographic scales. 

Processes at larger and smaller geographic and temporal scales can be examined using a combination 

of nuclear and mitochondrial markers and by generating global and local data sets (Vähä et al., 2007; 

Wang, 2010). Further, markers that are under selection by the environment should be accounted for 

because they can create genetic structure even if dispersal is relatively high and therefore conceal the 

effect of neutral processes, such as the lack of dispersal across barriers (Riginos & Liggins, 2013; Storfer 

et al., 2018). Finally, the analytical tools used to infer genetic population structure and statistical 

significance are susceptible to the number and type of molecular markers and the sampling design 

used (Pearse & Crandall, 2004; Sham & Purcell, 2014). However, statistical significance is not always 

biologically meaningful. We recommend that researchers first establish clear a priori hypotheses about 

potential barriers to dispersal in the target population, identify suitable molecular methods and 

sampling designs, and then apply multiple analytical approaches to obtain results that are meaningful 

in an evolutionary and management context. 

 

Conclusions 

Our synthesis provides new insight into how the physical characteristics of different marine barriers 

and animal dispersal ecology act together to rearrange genetic variation across the seascape. 

Methodological challenges in the field have undermined the ability to account for the complexity of 

dispersal and limit our understanding of genetic connectivity in the ocean. Over- or underestimating 

population connectivity poses a major impediment to the advancement of the field and to fisheries 

and conservation management (Domingues et al., 2018b; Funk et al., 2012; Ouborg et al., 2010). The 

genomic revolution and new collaborative tools (e.g., the online sample sharing platforms Otlet, 

https://otlet.io/) may provide opportunities to overcome some of the issues discussed but do not 

lessen the importance of adequate sampling design and hypothesis testing (Helyar et al., 2011; Luikart 

et al., 2003; Morin et al., 2009). The considerations for study designs discussed here are applicable 

across different taxa and may encourage future research to embrace the complexity of marine 

dispersal ecology when assessing the effect of physical barriers on genetic connectivity.  
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Chapter 3 – What Darwin couldn’t see: Island formation and historical sea 

levels shape genetic isolation by depth and island biogeography in a coastal 

marine species 
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Introduction 

Oceanic archipelagos are ideal model systems to study evolutionary processes and their consequences 

on genetic variation in the light of island formation (Emerson, 2002; Parent et al., 2008; Warren et al., 

2015). Individual islands of archipelagos constitute independent experimental units to examine how 

barriers to dispersal influence the arrangement of spatial genetic variation in natural populations 

(Emerson, 2002; Parent et al., 2008). Two principal mechanisms of genetic divergence can be observed 

in oceanic archipelagos. The first is rapid adaptation, which leads to genetic divergence through 

selection and the exploitation of diverse ecological niches after colonization of new island 

environments, often in the absence of obvious physical barriers (Schluter 2000; Schluter & Conte 2009; 

Langerhans & Riesch 2013). In the second instance, divergence is generated through genetic drift 

among populations that are separated by physical barriers to dispersal (Avise, 2000; Slatkin, 1987). 

Barriers can be established through vicariance events dividing previously connected populations or 

through the colonization of new habitat by dispersing across existing barriers (Cowie & Holland, 2006; 

Sanmartín, 2003). Vicariance events often occur over longer time scales, for example through tectonic 

plate movement separation of landmasses (Vences et al., 2009; Yoder & Nowak, 2006), thus gradually 

reducing gene flow (McIntyre et al., 2017). Colonization events across established barriers occur at 

distinct time points and result in genetic drift because founding populations pass through genetic 

bottle necks (Emerson, 2002; Illera et al., 2007). The geographic isolation through barriers results in 

distinct genetic signatures that are exacerbated in island populations (Frankham, 1998). The low 

standing genetic variation of few founding individuals and limited dispersal between small fragmented 

patches of habitat that provide limited resources result in low genetic diversity and small population 

sizes (Brüniche-Olsen et al., 2019; Frankham, 1996, 1997). 

In volcanic archipelagos individual islands are formed sequentially through recurring volcanic activity 

as tectonic plates move across hotspots. The progression rule describes the sequential colonization 

and subsequent genetic divergence from older towards younger volcanic islands in terrestrial 

organisms (Fleischer et al., 1998; Shaw & Gillespie, 2016). However, a progressive divergence may be 

absent in island species that have high levels of inter-island dispersal, arrived recently or through 

multiple colonization events, or underwent strong divergent selection (Juan et al., 2000; Parent et al., 

2008; Shaw & Gillespie, 2016). Strong sea level fluctuations of the late Quaternary period altered island 

configuration at faster rates and shorter geological time scales than plate movement, but the impact 

of this process on divergence and island biogeography remains largely unclear (Fernández-Palacios et 

al., 2016; Weigelt et al., 2016). Island biogeography of marine organisms differs from their terrestrial 

counterparts because higher dispersal in the marine environment increases inter-island connectivity 

and rates of immigration to oceanic archipelagos (Pinheiro et al., 2017). As a result, the ecological 
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niches of marine island ecosystems are occupied faster and thus provide fewer opportunities for 

adaptive radiation and in-situ divergence compared to terrestrial ecosystems (Pinheiro et al., 2017). 

In the ocean, just as on land, dispersal regulates population connectivity and is therefore a 

fundamental driver of biogeographic and genetic patterns in oceanic islands (Cowie & Holland, 2006). 

But what constitutes a physical barrier to dispersal in the ocean is largely dependent on the mode of 

dispersal (Hachich et al., 2015). A diverse array of marine barriers, including mid ocean barriers (Lessios 

& Robertson, 2006; Rocha et al., 2007), current fronts (Burton, 1998; Teske et al., 2011), and strong 

salinity or temperature gradients (Johannesson & André, 2006; Wright et al., 2015), have been shown 

to restrict gene flow in marine organisms with planktonic larvae (Bohonak, 1999; Chust et al., 2016). 

In contrast, marine taxa that lack planktonic larvae, including mammals, reptiles and elasmobranchs 

(sharks, skates and rays), depend on the active dispersal of individuals to maintain genetic connectivity. 

Many pelagic sharks undertake large-scale transoceanic and inter-oceanic migrations (Block et al., 

2011; Queiroz et al., 2019) and oceanic and deep-sea species can maintain genetic connectivity 

between continental coasts and oceanic islands (Domingues et al., 2018c; Gubili et al., 2016), and 

across major ocean basins (Catarino et al., 2015; Veríssimo et al., 2017). Ocean depth between shallow 

coastal habitat, however, is a strong barrier to dispersal in some shallow-water benthic sharks and 

rays, generating genetic differences between individual islands at extremely small spatial scales (Gaida, 

1997; Plank et al., 2010). Shallow-water marine organisms that lack dispersive larvae are therefore 

likely to produce unique genetic and biogeographic patterns in oceanic archipelagos compared to 

terrestrial organisms and marine species with planktonic dispersal, but have rarely been studied 

(Cowie & Holland, 2006; Dawson, 2016; Vieira et al., 2019; Weigelt et al., 2016). 

The Galapagos archipelago and the Galapagos bullhead shark (Heterodontus quoyi) provide a unique 

model system for the study of evolutionary processes in oceanic islands. The volcanic islands are 

separated from the Pacific South American coast by approximately 1000 kms of up to 2000 m deep 

ocean (Figure 6a). The eastward movement of the NASCA plate across the Galapagos hotspot resulted 

in the sequential formation of volcanic islands and the complex bathymetry of the Galapagos plateau 

(Brewington et al., 2014; Snell et al., 1996). The convergence of three major ocean currents creates 

contrasting oceanographic conditions and diverse marine biogeography on a small spatial scale (Edgar 

et al., 2004; Houvenaghel, 1978). In the Galapagos, terrestrial organisms with limited inter-island 

dispersal generally follow a progressive genetic divergence that reflects the sequential formation of 

clusters of islands with similar age (Parent et al., 2008). Recent paleogeographic reconstructions of the 

Galapagos account for the periodical fusion and fission of landmasses through historical sea-level 

fluctuations, which has left its footprint on the biogeography of terrestrial organisms (Ali & Aitchison, 

2014; Karnauskas et al., 2017). Here we use a shallow-water shark to test if paleogeographic dynamics 
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also influence genetic divergence in coastal marine organisms with limited dispersal. The Galapagos 

bullhead shark, Heterodontus quoyi (Figure 6b), has a small geographic range comprising the 

southcentral and western Galapagos archipelago and the continental shelf of northern Perú and 

possibly southern Ecuador (Acuña-Marrero et al., 2018; Bearez, 1996; Compagno, 1984). The small 

bodied shark (<100 cm) has a strictly benthic lifestyle, spending the majority of time on or close to the 

ocean floor, and is thought to inhabit rocky reefs at less than 40 m depth (Ebert et al., 2013; Weigmann, 

2016). Here we test the hypothesis that ocean depth is a barrier to dispersal and gene flow in 

Galapagos bullhead sharks and assess the role of island formation and historical sea level changes in 

shaping genomic signatures of geographic isolation. 

 

Figure 6. a) Location of the Galapagos Islands in the Eastern Tropical Pacific and in relation to ocean bathymetry 

and the Panama Current, the Humboldt Current, and the Cromwell Current; b) Adult male Galapagos bullhead 

shark (Heterodontus quoyi); c) Sampling design: Sampling locations (green circles) with island name or name of 

location (where more than one location was sampled on the same island), and number of samples in brackets. 

Sequential island emergence is given in bold roman letters next to island names: Española (I), San Cristóbal (II), 

Floreana (III), Santiago (IV), Isabela (V), and Fernandina (VI). Dashed lines and grey letters indicate the separation 

between the Western, Central-Southeastern and northern bioregions. Abbreviations for sampling location 

names: PVR (Punta Vicente Roca) and PNG (Parque Nacional Galapagos), PE (Punta Espinoza), PM (Punta 

Mangle), and CD (Cabo Douglas). 
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Materials and methods 

Study area and sampling design 

To examine the effect of ocean bathymetry on spatial genetic structure, Galapagos bullhead sharks 

were sampled from six islands in the Galapagos archipelago that are separated by varying levels of 

depth (Figure 6c). We assessed the role of island formation and historical sea level fluctuations on 

genetic patterns by sampling islands that emerged at different geological times, in an approximate East 

to West sequence (Geist et al., 2014; Karnauskas et al., 2017). We also sampled multiple locations on 

the same island (on Fernandina and Isabela Island) that are connected by continuous shallow-water 

habitat to evaluate potential genetic isolation by distance (IBD) due to limited dispersal capacity in the 

absence of depth barriers. Sampling locations on Española and Floreana Islands, located within five 

kilometres of each other, were combined (Appendix B Figure 15). The Galapagos also present 

contrasting oceanographic conditions and diverse subtidal communities on a small spatial scale that 

are created by the convergence of several major ocean currents (Edgar et al., 2004; Houvenaghel, 

1978). Our sampling locations were located in the western bioregion, which is influenced by the 

upwelling of the nutrient-rich Cromwell Current, and in the central-southeastern bioregion, which is 

governed by the cold Humboldt current (Edgar et al., 2004; Palacios, 2004). Galapagos bullhead sharks 

are thought to be absent from the northern and far-northern bioregions that are separated from the 

main Galapagos platform by water over 1000 m deep and are characterized by warmer water of the 

Panama Current. This sampling design allowed us to explore the effect of contrasting marine 

environments on spatial genetic variation in genomic regions that are putatively under selection by 

the environment. Sharks were captured and released by hand during SCUBA to collect tissue samples 

from fin clips. Underwater sampling was designed to minimize handling time and stress responses in 

the sharks (approval for animal ethics, field work, access to and export of biological samples are 

detailed in the Research and Ethics Approval section). A total of 33 locations on seven islands were 

visited between 2015 and 2018 (Appendix B Figure 15) to search for the presence of H. quoyi. Nine 

locations on six islands that revealed higher abundances of sharks were visited repeatedly to increase 

the number of samples per location and achieve a balanced sampling design. 

 

SNP genotyping and quality control 

DNA extraction, sequencing and SNP genotyping was conducted by Diversity Array Technologies (DArT, 

Canberra, Australia; see Appendix B Table 11). The samples were processed using the proprietary DArT 

Pty Ltd analytical pipelines, which includes technical replicates from a subset of samples to assess 

genotyping reproducibility (Georges et al., 2018; Kilian et al., 2012; Sansaloni et al., 2011). The 
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following quality control steps were applied in addition to the DArT pipeline to avert potential 

downstream effects of SNP selection on the inference of population structure in non-model organisms 

(Linck & Battey, 2019; O’Leary et al., 2018; Waples & Allendorf, 2015). We randomized tissue samples 

from all sampling locations across sequencing plates and replicated tissue samples from two 

individuals within and across sequencing plates to independently assure genotyping consistency and 

generate baseline values to quickly assess relatedness and potential sample contamination during data 

filtering (Meirmans, 2015; O’Leary et al., 2018). To assure high quality of our SNP data set for reliably 

and adequately assessing population structure in relation to our hypotheses we filtered the raw data 

set using the R package radiator (Gosselin, 2019). First, SNPs below 98% reproducibility and markers 

that were not present in all sampling locations were removed. We excluded markers with a low minor 

allele count (MAC<4) to reduce genotyping error while  retaining a higher probability of discovering 

outlier loci putatively under selection compared to applying a commonly used 5 % minor allele 

frequency (MAF) threshold (Ahrens et al., 2018). Further, SNPs with a coverage (read depth) below 10 

and above 50, and a call rate of less than 95% were removed. We reduced the likelihood of physical 

linkage by keeping only one SNP per sequence. Departures from Hardy-Weinberg-Equilibrium (HWE) 

were tested using the HardyWeinberg R package (Graffelman, 2015, 2019; Graffelman & Morales-

Camarena, 2008). Markers were removed that were out of HWE in at least three sampling locations 

based on a mid p-value threshold of 0.05. Moreover, we identified and removed putatively sex-linked 

SNP markers with the sexy_markers function in the radiator R package (Gosselin, 2019). 

 

SNPs putatively under selection 

Markers that are putatively under selection (outlier SNPs) were identified using two approaches that 

are well suited for spatially structured populations. We first applied the individual based method of 

the PCadapt R package (Luu et al., 2017). A minor allele frequency threshold of 5% was used to derive 

p-values. Outliers were selected that fell below a 5% percent false discovery rate (FDR) based on q-

values, which are transformed from p-values, using the R package qvalue (Storey et al., 2019). We 

further used OutFLANK, which constructs a null distribution of loci that generate population structure 

through neutral processes and then iteratively trims loci that are putatively under selection, resulting 

in fewer false positives compared to FST based methods (Whitlock & Lotterhos, 2015). We ran 

OutFLANK using the gl.outflank wrapper function in the R package DartR (Gruber & Georges, 2019). To 

avoid bias we excluded samples from locations with small sample size (Cabo Douglas and Santiago) 

prior to the analysis. We trimmed the upper and lower 5% of loci and excluded loci with less than 10% 

expected heterozygosity to generate the null distribution and applied a 5% FDR threshold (Whitlock & 

Lotterhos, 2015). Loci that were identified as putative outliers with both methods were then removed 
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to create a neutral SNP data set to assess genetic patterns generated through neutral processes. Two 

outlier SNP data sets were used to explore the role of selection. One set contained outlier SNPs 

identified by both outlier methods, which is less likely to contain false positives, but may be too 

conservative to retain sufficient markers to detect genetic structure caused by divergent selection. To 

assure results were not biased by the conservative outlier detection approach, we created another, 

less conservative data set, which contained outlier SNPs detected by PCadapt only. 

 

Population structure 

Population structure was assessed using Bayesian clustering and pairwise fixation and differentiation 

indices. First, neutral SNPs were analyzed to infer proportions of genetic admixture for all individuals 

from K hypothetical ancestral populations using the R package tess3r (Caye et al., 2016). This method 

uses spatially explicit Bayesian models and is free from assumptions about MAF, HWE and linkage 

disequilibrium. Individual admixture proportions were estimated for K ancestral populations between 

one and eight, with ten replicate runs for each value of K, 10000 iterations, a tolerance value of 10-6 

and a spatial parameter of alpha equals 0.01. As the spatial parameter approximates zero the algorithm 

produces results approximating those of the program STRUCTURE (Caye et al., 2016). The most likely 

number for K ancestral populations was estimated based on the lowest value of the cross-entropy 

criterion (Alexander & Lange, 2011; Frichot et al., 2014), generated using the cross-validation method 

and masking 10% of the data in training data sets (Caye et al., 2016; Liu et al., 2013). Because unequal 

sample sizes in our data set may bias admixture results, we also ran the analysis, with the same 

parameters, on a subsample of 56 individuals. For locations with more than 8 samples a subset of 

individuals was randomly chosen and all samples were kept for all locations with less than 8 samples. 

The data set contained ten individuals from Española, Floreana, and Punta Vicente Roca (PVR), five 

from Punta Espinoza (PE), Punta Mangle (PM) and Parque Nacional Galapagos (PNG), eight from San 

Cristóbal, two from Cabo Douglas (CD) and one from Santiago Island (SAN). To examine potential 

differences in genetic divergence through neutral and selective processes, we also applied the tess3r 

Bayesian clustering methods to the filtered data set containing all sharks and a more balanced 

subsample of 56 sharks (subsampled as described for neutral SNPs) for each outlier SNP data sets. We 

calculated pairwise fixation, FST (Weir & Cockerham, 1984), and pairwise differentiation, DST (Jost, 

2008), indices between all locations with at least eight samples for the neutral SNPs using the R 

package strataG (Archer et al., 2017). Significance of pairwise comparisons and their corresponding p-

values were calculated based on 1000 bootstraps and corrected for false positives using the FDR 

correction (Benjamini & Hochberg, 1995) implemented in the p.adjust R base function (R Core Team, 

2019). We tested for directional gene flow among sampling locations with at least eight samples using 
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relative migration rates (based on Nei’s GST and 1000 bootstraps) calculated for neutral SNPs with the 

divMigrate function of the diveRsity R package (Keenan et al., 2013; Sundqvist et al., 2016). Finally, we 

examined the relationship between spatial genetic patterns and progressive island formation using the 

most recent information on the approximate age of emergence (Geist et al., 2014) and 

paleogeographic reconstructions of the Galapagos (Ali & Aitchison, 2014; Karnauskas et al., 2017). 

 

Isolation by depth 

To test for the effect of contemporary bathymetry and historical sea level fluctuations on genetic 

connectivity we adapted isolation by resistance (IBR) analysis (McRae, 2006) using depth profiles of 

the Galapagos to represent landscape resistance to animal dispersal. Two isolation by resistance 

models were built, one based on contemporary bathymetry and another based on paleogeographic 

bathymetry that accounts for historical sea level fluctuations. We compared the resistance models to 

a null model based on isolation by distance analyses that only uses geographic distance and does not 

account for potential depth barriers (Guillot et al., 2009; Slatkin, 1993; Wright, 1943). Geographic 

distance was measured as straightest over-water distance between sampling locations using simple 

least cost analysis in the R package marmap (Pante & Simon-Bouhet, 2013). Next, we used a high 

resolution (15 arc-seconds) digital elevation model (DEM) of the Galapagos archipelago obtained from 

GEBCO (General Bathymetric Chart of the Oceans) to create the contemporary and paleogeographic 

isolation by resistance models (GEBCO Bathymetric Compilation Group, 2019). The DEM was 

reclassified using the raster R package (Hijmans, 2019) to generate resistance surfaces that represent 

positive values of increasing resistance between 1 to 100 (see Appendix B Table 10). For the 

contemporary IBR model, shallow coastal water less than 40 m deep, commonly occupied by bullhead 

sharks, were assigned the lowest resistance of 1. Areas between 40 to 900 m deep, corresponding to 

the extent of the Galapagos platform, were assigned increasingly higher resistances between 50-90 to 

represent barriers to dispersal. The highest resistance, 100, was assigned to land areas. 

Paleogeographic models of the Galapagos archipelago spanning the last 700 thousand years estimated 

extreme sea level low stands were repeatedly between 145 and 210 m deeper during glacial maxima 

(Ali & Aitchison, 2014). To test if low sea levels during glacial periods may have facilitated historical 

dispersal, the paleogeographic IBR analysis included low resistance for areas that were between 0-40 

m deep when sea levels receded. Areas were assigned resistance values between 2 and 6, according 

to the number of times they were less than 40 m deep in the past. For example, areas that are currently 

145-185 m deep were six times less than 40 m deep in the past and received a low resistance value of 

2. Areas between 185-194 m deep were five times, and areas between 229-250 m only one time less 

than 40 m deep, and were assigned resistance values of 3 and 6, respectively (see Appendix B Table 
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10). Resistance distances (Shah & McRae, 2008) were calculated for the contemporary and 

paleogeographic resistance surfaces using the commuteDistance function in the R package gdistance 

and divided by a constant of 10.000 (van Etten, 2017). The linear relationship between linearized 

genetic distances (FST/(1 FST) and straightest over-water distances and between linearized genetic 

distances and contemporary and paleogeographic resistance distances was plotted and quantified 

using Pearson’s correlation coefficient (r2) and Mantel tests with 1000 permutations with the R 

package DartR (Gruber & Georges, 2019). The performance of each model was compared using a 

causal modeling approach (Cushman et al., 2006; McRae & Beier, 2007). 

 

Signatures of isolation 

To assess signatures of isolation we calculated several genetic diversity indices for each sampling 

location with a sample size larger than five for the neutral SNP data set using the diveRsity R package 

(Keenan et al., 2013). Indices included allelic richness (AR), observed heterozygosity (HO), expected 

heterozygosity (HE), and inbreeding coefficients (FIS). We estimated local contemporary genetic 

effective population size (Ne) for each genetically distinct unit identified by clustering  analyses using 

the bias-corrected linkage disequilibrium (LD) method implemented in NeEstimator v.2.01 (Do et al., 

2014; Waples & Do, 2008). The method assumes closed populations, no mutation or selection and can 

provide robust estimates of local Ne if migration rates between demes are low (Waples & Do, 2008, 

2010). The likelihood that SNP loci are physically linked, potentially biasing Ne estimates based on LD, 

is low in our data set because we only kept one SNP locus per sequence and because of the large 

genome size in heterodont sharks (Akey et al., 2001; Waples et al., 2016; Waples, 2006). Sharks in each 

cluster also covered a large range of size classes spanning several generations, which reduces 

downward bias in single sample Ne estimates based on LD in organisms with overlapping generations 

(Waples et al., 2014). We determined the best minor allele frequency threshold (Pcrit) for each 

individual genetic cluster using the formula 1/(2S) < Pcrit <= 1/S (S=number of samples) as suggested 

by (Waples & Do, 2010). Because no life history parameters are known for H. quoyi no correction based 

on life span and maturity could be applied. Finally, we corrected Ne estimates for the number of haploid 

chromosomes found in the congeneric H. japonicus and H. francisci (n=51) using the formula Necor = 

Ne/(0.098+0.219 x lnChr), where Chr is the number of chromosomes (Stingo & Rocco, 2001; Waples et 

al., 2016). 

 

Results  

Sampling and genotyping 



 

 36 

At total of 182 sharks were sampled from nine locations on six islands. Between 25 and 30 individuals 

were collected at each of four locations in the western bioregion (Fernandina and Isabela Islands) and 

on each of two islands in the central-southeastern bioregion (Española and Floreana Islands). Despite 

exploring eight locations on 20 dives between 2015-2018 only eight individuals were sampled on San 

Cristóbal Island. Only a single individual was captured after diving at six locations around Santiago 

Island, which was not revisited after. The DArT pipeline generated 33606 SNPs and after quality 

filtering we retained a total of 9223 neutral SNPs and 180 individuals (Appendix B Table 11). Briefly, 

none of the samples had large amounts of missing data and none showed signs of cross contamination 

or sample degradation based on excessively low or high heterozygosity. Two sharks, one on Fernandina 

and another on Isabela Island, were recaptured at the same location after a period of approximately 

one year. The individuals were identified as duplicate samples during the filtering process and their 

identity was also confirmed by comparing the shark’s unique spot pattern on photographs taken in the 

field. For each pair of resampled sharks, we kept the sample with less missing data (higher call rate). 

We removed five putatively female-linked SNPs that had higher heterozygosity in females. These SNPs 

were present in around 50% of males compared to females indicating male heterogamety in Galapagos 

Bullhead sharks. Eleven loci putatively under selection were recovered by both outlier methods (75 

SNPs in PCadapt, 14 SNPs in OutFLANK). We used two data sets with 9223 neutral SNPs in downstream 

analyses. One with 180 sharks (all individuals) and another with a subset of 56 sharks (balanced 

subset). We further explored signatures of adaptation using two data sets with 11 overlapping outlier 

SNPs and 180 (all individuals) and 56 (balanced subset) sharks, and another two with 75 outliers 

detected with the PCadapt method and 180 (all individuals) and 56 (balanced subset) sharks. 
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Population structure 

Pairwise comparisons using neutral SNPs showed increasing genetic divergence with greater depth 

among sampling locations and older island emergence time (Figure 7 and Appendix B Table 12). 

Española Island, the oldest and most isolated island, consistently exhibited the highest genetic 

differentiation from all other locations. San Cristóbal and Floreana Islands showed the second highest 

differentiation. San Cristóbal Island revealed similar levels of differentiation (FST: 0.0133-0.0169) with 

the western locations compared to Floreana Island (FST: 0.0139-0.0161) based on FST values, but higher 

differentiation using DST (0.00038-0.00047 vs. 0.0003-0.00034). All pairwise comparisons within the 

western region were low for FST (0.0003-0.0028) and DST (0.000094-0.00014). With the exception of 

Punta Vicente Roca (PVR), the northernmost location on Isabela Island, all pairwise comparisons in the 

western region were not significant before and after false discovery rate (FDR) correction. We found 

no significant directional gene flow among any pair of sampling locations based on relative migration 

rates of the divMigrate method. 

 

Figure 7 Pairwise comparisons between sampling locations based on genetic fixation index (FST) and 9223 neutral 

SNPs. a) Visualization of the level of genetic differentiation between locations. Comparisons between the 

western locations and all other inter-island comparisons are indicated by blue lines with colour intensity 

increasing with FST values. Low levels of genetic differentiation among the western locations are indicated by a 

light blue circle. b) Levels of FST and ocean depth between locations (ES = Española, SCY = San Cristóbal, FL = 

Floreana, PVR = Punta Vicente Roca, PNG = Parque National Galapagos, PM = Punta Mangle, PE = Punta Espinoza). 

The vertical bar shows the minimum ocean depth between pairs of locations. 
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Admixture analyses of 9223 neutral SNPs for all 180 sharks identified the most likely number of 

ancestral populations (K) as three (Appendix B Figure 16a). Sharks from Española and Floreana Islands 

formed two distinct ancestral populations, and individuals from all locations in the western archipelago 

(Isabela and Fernandina Islands) together with Santiago Island formed a third ancestral population. 

Individuals from San Cristóbal showed approximately one third genetic admixture from each of the 

three ancestral populations. Using the more balanced subset of 56 sharks, however, the admixture 

analyses distinguished Española, San Cristobal, Floreana Islands, and the western archipelago with 

Santiago Island each as distinct ancestral populations (Figure 8a and Appendix B Figure 17). The 

ancestral populations corresponded to individual islands that sequentially separated from a central 

island cluster over the last two million years (Figure 8b,c). Española Island was differentiated first, at K 

= 2 ancestral populations. Although Floreana Island is differentiated next, at K = 3, San Cristóbal Island 

carries larger amount of admixture from the most ancestral population, Española. Individuals from San 

Cristóbal Island had similar levels of admixture from Floreana Island, the western archipelago and 

Española Island at K = 3, using the full and balanced data sets, and were assigned a distinct ancestral 

population at K = 4 using the more balanced data set (Figure 8a). Admixture analyses based on 11 

(overlapping Outflank and PCadapt outliers) and 75 outlier SNPs (PCadapt only) for all 180 sharks and 

for subsets of 56 sharks showed weaker genetic structure compared to neutral SNPs. Outlier SNPs only 

differentiated individuals from Española Island, primarily reflected genetic variation among individual 

sharks, and showed no pattern in relation to biogeographic regions (data not shown). 
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Figure 8. a) Individual admixture proportions for 56 individuals, 9223 neutral SNPs and K = 4 ancestral 

populations ordered from left to right following sequential island separation. b) Paleogeographic formation of 

the Galapagos archipelago with sequential separation of Española Island (purple) at 2-1.5 million years ago (Mya), 

San Crsitóbal Island (green) at 1.5-1 Mya, and Floreana Island (yellow) at 1-0.5 Mya, and the emergence of 

individual islands that formed Isabela and Fernandina Islands since 0.5 Mya, adapted from (Karnauskas et al., 

2017). c) Present day Galapagos with 210m isobath indicating the land area that was exposed at the lowest sea 

level during the last 700 thousand years. 

 

Isolation by depth 

Model comparison showed that although all three models presented a significant relationship with 

genetic distance, the model fit improved when considering contemporary bathymetry, and accounting 

for historical sea level fluctuations provided the best model fit (Figure 9). Isolation by distance (IBD) 

based on shortest over-water distances between sampling locations resulted in significant correlation 

with genetic distance (mantel rest: r2= 0.57, p=0.01). However, the scatter plot (Figure 9b) revealed a 

large gap between western and southeastern locations, indicating the presence of barriers between 

those locations and pairwise genetic distances among southeastern locations (Española, Floreana and 

San Cristóbal Islands) were high despite their geographical proximity. Contemporary IBR, which 

accounted for ocean depth between sampling locations, resulted in a higher correlation with genetic 

distance (Mantel test: r2: 0.721, p=0.003; Figure 9c). The scatter plot with heatmap visualization 

displays that the model partially accounts for depth barriers, providing a better fit for the data (Figure 

9d). Finally, the paleogeographic IBR model revealed the strongest correlation with genetic distances 

(Mantel test: r2: 0.88, p=0.003) by taking into account ocean depth and historical sea level oscillations 

(Figure 9e,f). 
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Figure 9. Comparison between IBD (isolation by distance), contemporary IBR (isolation by resistance), and 

paleogeographic IBR (isolation by resistance) models. a) Least-cost paths for shortest over-water distance 

between pairs of locations. b) scatter plot with heatmap visualization of the correlation between geographic 

distance and genetic distance (IBD model). c) resistance surface based on contemporary bathymetry of the 

Galapagos archipelago. d) correlation between contemporary resistance distance and genetic distance 

(contemporary IBR model). e) resistance surface based on paleogeographic bathymetry of the Galapagos 

archipelago. f) correlation between paleogeographic resistance distance and genetic distance (paleogeographic 

IBR model). Darker colours in resistance surfaces represent higher resistance for the hypothetical movement of 

sharks among locations. Bright yellow shading in resistance surfaces corresponds to coastal areas that were 

exposed or had less than 40 m depth during glacial maxima.  
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Genomic signatures of isolation 

Genomic diversity was similarly low for all sampling locations. Allelic richness (AR) ranged from 1.31 to 

1.39 and observed heterozygosity (HO) from 0.091 to 0.098 (Table 3). Similar levels of expected and 

observed heterozygosity and inbreeding coefficients (FIS) close to zero indicate the absence of recent 

bottlenecks. 

Table 3. Genetic diversity of Galapagos bullhead sharks (Heterodontus quoyi) based on 9223 neutral SNPs. 

Sampling locations: Española (ES), San Cristobal (SCY), Floreana (FL), Punta Espinoza (PE), Punta Mangle (PM), 

Parque Nacional Galapagos (PNG), Punta Vicente Roca (PVR). n=sample size, AR = allelic richness, HO =observed 

heterozygosity, HE =expected heterozygosity, FIS = inbreeding coefficient. 

Location n AR HO HE FIS 
ES 30 1.37 0.098 0.098 0.004 

SCY 8 1.31 0.089 0.089 -0.007 
FL 29 1.36 0.091 0.093 0.013 
PE 25 1.39 0.097 0.097 0 
PM 24 1.38 0.096 0.095 -0.002 
PNG 30 1.39 0.096 0.096 0 
PVR 26 1.39 0.098 0.098 0.003 

 

Genetic effective population size (Ne) was corrected for a 4% downward bias (Necor = Ne/0.959) to 

account for the number of chromosomes based on the congeneric H. japonicus and H. francisci. This 

resulted in the lowest Necor for Española, the most isolated and smallest island, followed by Floreana 

islands, which is geographically less isolated and about three times the size (Table 4). The largest 

effective population size was estimated for combined locations on Isabela and Fernandina islands 

(West) that formed a single population based on clustering analyses. 

Table 4. Genetic effective population sizes (Ne) with confidence intervals (CI) and corrected effective population 

sizes (Necor) for the three main genetic clusters. Pcrit indicates the optimal minor allele frequency threshold based 

on sample size used to estimate Ne. 

Location (sample size) Ne (CI) Necor 
Española (30) 
Pcrit=0.03 

342.9 
(334.4 -  351.9) 358 

Floreana (30) 
Pcrit=0.03 

1641 
(1464.1-1866.2) 1711 

West (107) 
Pcrit=0.005 

7415.3  
(6853.5-8077.1) 7732 
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Discussion 

The Galapagos archipelago and the Galapagos bullhead shark were used as a model system to provide 

novel insight into the evolutionary processes that shape genetic structure and biogeographic patterns 

of shallow-water marine organisms in oceanic islands. Sequential island formation gradually 

established contemporary depth barriers between islands that varied in strength due to historical sea 

level fluctuations. This resulted in four distinct genetic clusters that exhibit low genetic diversity and 

effective population sizes that decrease from larger to smaller islands and with stronger isolation 

through historical and contemporary seascape configuration. 

 

Isolation by depth 

The application of isolation by resistance (IBR) analysis to a marine model system showcases the 

impact of contemporary and historical ocean bathymetry on genetic connectivity in coastal marine 

species with limited dispersal. Galapagos bullhead sharks showed contemporary genetic connectivity 

along short distances (20 kms) of continuous coastlines and across less than 10kms of 100m deep 

water, but larger ocean depths between islands pose effective barriers at distances of only 50kms. 

Similarly, other benthic sharks (Squatina californica) and rays (Urobatis halleri) with low dispersal 

capacity and shallow depth distributions can maintain connectivity along continuous coastlines but 

show genetic differences across deep water at less than 50kms distance (Ebert et al., 2013; Gaida, 

1997; Last et al., 2016; Plank et al., 2010; Standora & Nelson, 1977; Vaudo & Lowe, 2006). Benthic Port 

Jackson sharks (Heterodontus portusjacksoni) migrate up to 1000kms along the Australian coast and 

manage to cross the Bass Strait to Tasmania, likely because the strait is relatively shallow (on average 

60m) and has several islands that can be used as stepping stones (Bass et al., 2016). Our study supports 

previous findings that ocean depth may limit dispersal in shallow-water elasmobranchs at short 

geographic distances, while oceanic and deep-sea species have been found to maintain connectivity 

across depth barriers (Domingues et al., 2018c; Gubili et al., 2016). Ocean depth plays a minor role in 

shaping connectivity of coastal marine organisms with juvenile larvae that use ocean currents to 

sustain dispersal between shallow-water habitat across various levels of bathymetry (Galarza et al., 

2009). In contrast, for species that lack juvenile larvae, such as coastal sharks and rays, bathymetry can 

play a similar role in marine connectivity than topography does in some terrestrial systems. For 

instance, terrestrial sky islands are high-altitude habitats that are separated by lower elevation. 

Genetic isolation among sky islands is common in a range of taxa, including insects (Masta, 2000; Smith 

& Farrell, 2005) reptiles (Holycross & Douglas, 2007) and amphibians (Osborne et al., 2019) and can be 

attributed to a limited tolerance to environmental conditions in lower elevations and low dispersal 
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capacity (Polato et al., 2018). In sky islands, climatic fluctuations have altered connectivity through 

elevational shifts in environmental conditions, similar to the effect of sea level oscillations in oceanic 

islands (Mastretta-Yanes et al., 2015; Rijsdijk et al., 2014). In oceanic islands, shallow-water marine 

species with limited dispersal are likely to produce genetic patterns that are more similar to some 

terrestrial organisms compared to marine organisms with juvenile larvae that disperse with ocean 

currents. 

 

Flickering connectivity in oceanic archipelagos 

The periodical fusion and fission of landmasses through historical sea-level fluctuations may have 

played a major role in shaping coastal marine populations in oceanic islands. In the Galapagos, low sea 

levels during the Pleistocene (2,588,000 to 11,700 years ago) repeatedly connected landmasses of the 

central and western archipelago and exposed seamounts between the central and southeastern 

islands (Geist et al., 2014; Parent et al., 2008). The paleogeographic IBR analysis showed that historical 

sea level fluctuations likely created dispersal corridors between the western and central islands and 

sea mounts provided stepping stones for the dispersal of Galapagos bullhead sharks between the 

central and southeastern islands. Similar admixture proportions among individual sharks within each 

genetic cluster imply that dispersal occurred before the establishment of a currently impermeable 

barrier and sufficient time has passed to homogenize genetic material received from other regions. In 

comparison, recent dispersal would result in distinctive admixture patterns. For example, recent 

dispersal events between islands resulted in two genetic clusters on the same island in Galapagos giant 

tortoises and marine iguanas, and hybridization among subspecies in the latter (Macleod et al., 2015; 

Poulakakis et al., 2012; Steinfartz et al., 2009). Dispersal and connectivity are subject to climatic 

variations in both marine and terrestrial systems. In terrestrial systems, climatic fluctuations caused 

the repeated fusion and fission of high-altitude environments that shift to lower elevations during 

glacial cycles (Hazzi et al., 2018). This mechanism generated recurring population connectivity in 

mountain salamanders in the sky islands of New Mexico (Osborne et al., 2019) and rodents in East 

African mountain ranges (Bryja et al., 2014). It also created the flickering connectivity system of the 

Andean alpine biome called Páramo and is largely responsible for its extraordinary diversity (Flantua 

et al., 2019). Historical fluctuations in global climate also altered island configuration with the rise and 

fall of sea levels and left its imprint on genetic divergence and biogeography of Galapagos’ terrestrial 

fauna (Ali & Aitchison, 2014). This process may also drive patterns in marine organisms that inhabit 

oceanic islands around the globe, but there was no clear empirical evidence prior to this study (Vieira 

et al., 2019; Weigelt et al., 2016). The case of Galapagos bullhead sharks exemplifies that flickering 
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connectivity systems of oceanic archipelagos not only shape the evolution of terrestrial species but 

also coastal marine organisms with limited dispersal. 

 

Island formation and genetic drift 

Genetic population structure in Galapagos bullhead sharks likely reflects the gradual separation of 

individual islands and sequential vicariance events rather than progressive dispersal and colonization 

of newly formed islands. Paleogeographic reconstructions of the Galapagos archipelago that account 

for historical climate propose the sequential separation of individual islands from a central island 

cluster (Karnauskas et al., 2017). Galapagos bullhead sharks may have colonized the central island 

cluster prior to the separation of the oldest island, Española, between 2-1.5 million years ago. 

Subsequently, individual islands separated sequentially, gradually forming bathymetric barriers that 

slowly reduced migration rates and increased genetic drift, resulting in four distinct genetic clusters. 

Historical reconnections during lower sea levels, and potentially the lower sample size for San Cristóbal 

Island, marginally altered the general pattern. Bayesian admixture analyses first differentiated 

Española, then Floreana, and then San Cristóbal Island from the western archipelago. However, in 

contrast to Floreana Island and the western archipelago San Cristobal Island consistently showed 

greater admixture with the oldest Island, Española. But it also showed genetic admixture with Floreana 

Island and the western archipelago. Admixture results and a stronger differentiation based on genetic 

differentiation index (DST) between San Cristóbal, compared to Floreana Island, and the western 

archipelago, indicate that San Cristóbal Island may have separated second in sequence but partially 

reconnected during lower sea levels. To reinforce the sequential vicariance viewpoint we consider four 

alternative scenarios that have shaped genetic divergence in Galapagos fauna: (1) High levels of inter-

island dispersal, (2) recent arrival, (3) multiple colonization events, and (4) strong divergent selection 

(Juan et al., 2000; Parent et al., 2008).  

In the first scenario, high dispersal rates found in mobile marine species, for example Galapagos 

Penguins (Akst et al., 2002) and Galapagos sea lions (Wolf et al., 2008), lead to high genetic connectivity 

between islands that are separated by deep ocean. In contrast, species with limited capacity to swim 

over open ocean, may show a sequential divergence from older to younger islands (Parent et al., 2008; 

Poulakakis et al., 2020). This general pattern can be interrupted by occasional inter-island migrations, 

which was apparent in Galapagos marine iguanas but not Galapagos bullhead sharks (Macleod et al., 

2015; Steinfartz et al., 2009).  

Recent colonization and subsequent expansion throughout the archipelago, the second alternative, 

resulted in inter-island differentiation over the last 125.000 years in Galapagos hawks, a bird with 
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limited over-water dispersal (Bollmer et al., 2005). Although this scenario could generate the isolation 

by depth pattern in Galapagos bullhead sharks, it would also result in strong population bottlenecks 

and directional gene flow towards islands that are colonized after the arrival of a small founder 

population (Chaves et al., 2012; Clegg et al., 2002).  

The third alternative are multiple colonization events from continental ranges to oceanic islands, which 

commonly result in the genetic divergence among paraphyletic groups that do reflect a sequential 

island formation pattern (Emerson, 2002; Schluter, 2009; Schluter & Conte, 2009). Paraphyletic groups 

have been found in Galapagos lava lizards and leaf-toed geckos (Benavides et al., 2009; Torres-Carvajal 

et al., 2014). However, samples from the continental coast of South America will be required to rule 

out multiple colonization events in Galapagos bullhead sharks in the future (Emerson, 2002). 

Genetic diversification through natural selection and adaptation to the environment, the fourth 

alternative, is common in terrestrial, but less common in marine organisms that colonize oceanic 

archipelagos (Hedrick, 2019; Pinheiro et al., 2017). Outlier SNPs may represent genetic variants that 

are putatively selected for by the environment (Allendorf et al., 2010; Nielsen et al., 2009) and showed 

stronger spatial genetic structure compared to neutral SNPs at the scale of ocean basins in pelagic 

teleosts and sharks (Anderson et al., 2019; Pazmiño et al., 2018a; Pecoraro et al., 2018). At the scale 

of the Galapagos, low genetic structure found with outlier SNPs in H. quoyi may be explained by a lack 

of available niches due to overall high dispersal rates in marine organisms and a low selective pressure 

between the two Galapagos cold-water bioregions sampled (Pinheiro et al., 2017). However, 

Galapagos bullhead sharks may also be short of potentially adaptive standing genetic variation, 

characteristic of populations with small effective population size and low genetic diversity (Kelley et 

al., 2016),  and the discovery of genomic regions putatively under selection in non-model organisms is 

limited by the sequencing and statistical methods applied here (Ahrens et al., 2018; Lowry et al., 2017; 

Tiffin & Ross-Ibarra, 2014).  

In conclusion, the lack of recent bottlenecks and directional gene flow, and the absence of paraphyletic 

groups and selective divergence underpin that single colonization of a central island cluster and 

gradual genetic drift among sequentially separating islands is the most likely scenario for genetic 

divergence in Galapagos bullhead sharks.  
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Genomic signatures of isolation 

Genomic signatures of isolation in Galapagos bullhead sharks are consistent with the gradual 

formation of barriers to dispersal and resemble those typical of terrestrial island biogeography. In 

oceanic islands, species with low dispersal commonly have lower genetic diversity and smaller 

population sizes compared to mainland populations owing to the reduced genetic variation of few 

founding individuals and because limited resources in small and fragmented habitats sustain smaller 

populations (Frankham, 1996, 1997). Galapagos bullhead sharks show lower diversity, based on similar 

sequencing techniques and numbers of markers, compared to shark species with higher dispersal or 

that were sampled along continental ranges (Appendix B Table 13). However, comparing levels of 

genomic diversity based on SNP markers among studies remains a challenge (Cariou et al., 2016). 

Future island-mainland comparisons in our study species may confirm lower genomic diversity in 

marine island populations. In some cases, relatively high genetic diversity in island populations is also 

possible. For example, large numbers of founding individuals in island-colonizing song birds, or high 

dispersal rates and a large population size that offset the founder effect in Christmas Island red crabs 

(Gecarcoidea natalis), led to relatively high genetic diversity (Aleixandre et al., 2013; Weeks et al., 

2014). Galapagos bullhead sharks have low dispersal capacity and small populations sizes. Therefore, 

low genomic diversity may be traced back to a founder effect caused by few colonizing individuals, a 

common feature in terrestrial island populations (Frankham, 1997). Another parallel between 

Galapagos bullhead sharks and terrestrial species are small effective populations sizes (Ne) that scale 

with habitat availability in oceanic archipelagos (Brüniche-Olsen et al., 2019; Frankham, 1997). In some 

sharks, Ne approximates the census size (Nc) because of their low fecundity, consistent reproductive 

success, long life spans and late age at maturity (Dudgeon & Ovenden, 2015; Portnoy et al., 2009; 

Waples et al., 2013), a life history also characteristic of Heterodont sharks (Powter & Gladstone, 2008). 

This contrasts with many marine species because they have high dispersal rates, large-scale genetic 

connectivity, high fecundity, and large population sizes (Palumbi, 1994). Large populations of marine 

species have genetic effective population sizes (Ne) that are orders of magnitude smaller than the true 

number of adults in the population (Nc) owing to the high fecundity and variability in reproductive 

success (Palstra & Ruzzante, 2008; Waples et al., 2016). The life history of Galapagos bullhead sharks 

and lack of dispersal and genetic connectivity therefore suggest that Ne estimates for individual islands 

approximate true population sizes. Low genetic diversity and small population sizes that scale to the 

amount of available resources are common in terrestrial island biogeography but, to our knowledge, 

unprecedented in marine organisms (Dawson, 2016). 
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Conclusion 

This study shows that in oceanic archipelagos shallow-water marine organisms without dispersive 

larvae produce unique genetic and biogeographic signatures when compared to terrestrial organisms 

and marine taxa with larval dispersal. The resulting geographically isolated marine populations with 

small effective population sizes and low genetic diversity are at high risk of extinction because they 

have reduced adaptive potential and lack replenishment from adjacent locations (Frankham et al., 

2014; Ryman et al., 2019). This highlights the importance of preserving coastal marine habitat to 

bolster the resilience of marine island populations (Vieira et al., 2019). Future research on marine 

species with similar characteristics to our study species may broaden our understanding of island 

evolution and biogeography and enhance efforts to preserve the biodiversity of oceanic archipelagos. 
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Chapter 4 – Seascape connectivity of whitetip reef sharks (Triaenodon obesus) 

in Indo-Pacific coral reefs 

 

This chapter has been prepared to be submitted to Heredity. The manuscript has been modified to fit 

the style of the thesis and avoid redundancies. 

Contributions: M. Hirschfeld designed the study, collected, curated, analysed, and interpreted the 

data, and wrote the manuscript. A. Barnett, C. Dudgeon, and M. Sheaves, participated in study 

conception, interpreted the data, and contributed to the structure and content of the manuscript. H. 

Harrison, S. Payet, and W. Robbins contributed to the study conception, data collection and 

interpreted the data, and C. Dudgeon contributed to the data analysis.  
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Introduction 

Connectivity is central to the persistence of natural populations and the resilience of fragmented 

marine systems to disturbance (Frankham, 2010; Gunderson, 2000). Dispersal generates demographic 

and genetic connectivity among disjunct habitats through the exchange of individuals and genetic 

information (Hellberg, 2009; Lowe & Allendorf, 2010). In the ocean, dispersal strategies are more 

diverse and the geographic scale of dispersal often more restricted than previously thought (Cowen et 

al., 2006; Levin, 2006; Winston, 2012). Marine population and seascape genetics and genomics can 

identify emerging spatial patterns of connectivity, delineate genetic subunits, and evaluate their 

resilience to disturbance (Allendorf et al., 2010; Von Der Heyden et al., 2014; Selkoe et al., 2016). 

In coral reefs, patches of shallow-water habitat are fragmented at various spatial scales. Contiguous 

barrier reefs can stretch over thousands of kilometres along continental shelves, individual coral reefs 

within oceanic atolls and archipelagos present a higher level of fragmentation, and reefs on remote 

oceanic islands and seamounts are geographically isolated. The spatial arrangement of coral reefs 

shifts with global climate over long time scales, and extreme climatic (e.g., El Niño) and stochastic 

events (e.g., storms) cause variability in coral habitat quality and distribution at shorter time scales 

(Edmunds et al., 2018; Webster et al., 2018). The natural fragmentation and dynamic nature of coral 

reefs facilitate the study of spatial and temporal patterns of dispersal and gene flow in marine 

populations (Edmunds et al., 2018). 

Coral reefs only cover less than one percent of the world’s oceans but are hotspots for biodiversity 

(Van Oppen & Gates, 2006). At the same time, they are threatened from overfishing, habitat 

destruction, pollution and global warming (Bellwood et al., 2004; De’Ath et al., 2012; Hughes et al., 

2017; Pandolfi et al., 2003). Understanding coral reef connectivity is therefore key to gauge the 

resilience of coral reefs to disturbance and their potential for recovery, and can be used as an effective 

tool to assure long-term persistence of reef communities (Hock et al., 2017; Krueck et al., 2017; Van 

Oppen & Gates, 2006). However, knowledge on connectivity in coral reefs is generally scarce and has 

primarily been evaluated for coral reef organisms with bipartite life histories, i.e., animals with site-

attached or sessile adult life stages that produce large numbers of dispersive juvenile larvae (Cowen & 

Sponaugle, 2009; Riginos et al., 2019). Organisms that lack juvenile larvae, such as sharks, have 

received less attention but could provide a distinct perspective on the ecological and evolutionary 

drivers of dispersal and connectivity in coral reefs. 

Reef sharks live in close proximity to shallow-water coral reefs and are often highly site-attached to 

individual reefs or reef clusters at the scale of tens of kilometres (Barnett et al., 2012; Dwyer et al., 

2020; Espinoza et al., 2015a). While larger distances across open ocean may pose barriers to dispersal 



 

 50 

in reef sharks, spatial patterns of genetic connectivity vary among species and depend on the 

molecular methods used (Boissin et al., 2019; Momigliano et al., 2017; Vignaud et al., 2013). Recent 

advances in molecular and statistical methods have increased the spatial and temporal resolution at 

which seascape connectivity can be measured (Kelley et al., 2016; Riginos et al., 2016; Selkoe et al., 

2016). The use of multiple molecular marker types can further provide insight into evolutionary 

processes that shape reef shark dispersal and genetic connectivity at various spatio-temporal scales 

(Dudgeon et al., 2012; Green et al., 2018). Studying connectivity in reef-associated sharks using a 

mixed-marker approach may therefore enhance our understanding of coral reef connectivity and 

improve the spatial management of these fragmented systems. 

In this study we use a combination of molecular markers to assess patterns of dispersal and 

connectivity in a highly resident reef shark. Whitetip reef sharks (Triaenodon obesus) are medium-sized 

(max. 200cm) benthopelagic sharks that are strongly associated with reef structure, where they are 

commonly found resting on the sea floor, in caves and in crevices, for long periods (Espinoza et al., 

2014; Randall, 1977; Whitney et al., 2008). They exhibit high levels of residency and long-term site 

fidelity at individual reefs (Barnett et al., 2012; Whitney et al., 2012a) and primarily inhabit shallow 

water from just below the surface to 100 m deep (Asher et al., 2017; Randall, 1977), with the deepest 

occurrence recorded at 301 m in the oceanic Cocos Islands, Costa Rica (Cortés et al., 2012). Whitetip 

reef sharks are among the five most abundant coral reef-associated shark species, of which they are 

the most site-attached (Dwyer et al., 2020). The strong association to the substrate of shallow-water 

reefs would suggest that this species has a low dispersal capacity and that larger distances of deep 

ocean between shallow reef habitat may pose barriers to dispersal and genetic connectivity. 

Paradoxically, whitetip reef sharks have a vast geographic distribution, encompassing tropical and 

subtropical reefs across the Pacific and Indian Ocean, and have colonized some of the most remote 

oceanic locations, including the Hawaiian Archipelago, the Galapagos and Cocos Islands (Compagno, 

1984; Ebert et al., 2013). Whitney et al. (2012) found genetic differences within contiguous coastal reef 

systems, but genetic connectivity across large oceanic distances in the Pacific Ocean, based on a single 

mitochondrial DNA marker, and proposed that T. obesus is a site-attached reef shark with oceanic 

dispersal. Here we combine mitochondrial DNA with thousands of genomic markers to assess genetic 

population structure and connectivity of whitetip reef sharks across the Indo-Pacific seascape. We use 

extensive sampling of reefs in the Coral Sea to test the oceanic dispersal hypothesis and explore 

potential ecological and evolutionary drivers of dispersal over various spatial and temporal scales. 
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Methods 

Sampling and study design 

Whitetip reef sharks were sampled from Indo-Pacific coral reefs across different geographic scales. At 

the large geographic scale, we sampled sharks from reefs on either side of the Torres Strait barrier and 

from oceanic islands that are separated from continental shelf habitat by large distances of open ocean 

and deep waters (Figure 10a). At a regional scale, we extensively sampled sharks from reefs in the 

Coral Sea that represent various levels of fragmentation (Figure 10b). The Great Barrier Reef (GBR) is 

formed by contiguous coral reefs spanning more than 3000 kms. Only the Capricorn Group, the 

southern extent of the GBR, is separated from the main GBR by the up to 200 m deep Capricorn 

Channel. Coral reefs on the Queensland and Marion Plateaus are more fragmented, with tens to 

hundreds of kilometres and often over 500 m deep water between them. The Queensland Plateau is 

separated from the GBR by the 1000-2000 m deep Coral Sea Trough. Osprey, Kenn and Wreck Reefs 

are small, highly isolated reefs at the tip of oceanic seamounts that are surrounded by 2000-4000 m 

deep water. Shark tissue samples (muscle biopsies and fin clips) were collected during SCUBA diving 

between 2017 and 2019 and additional samples were sourced from various research groups in 

Australia (Table 5).  
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Figure 10. Whitetip reef shark sampling locations. a) Coral reefs sampled (yellow dots) across the Indo-Pacific. 

PNG = Papua New Guinea. The black box indicates the area of extensive sampling in the Coral Sea. b) Sampling 

locations in the Australian Great Barrier Reef (GBR; green dots) and offshore Coral Sea (yellow dots). Bathymetry, 

key geographic features, and the names of key sampling locations referred to in the text are indicated. (1) Raine 

Island, (2) Northern GBR, (3) Central GBR, (4) Capricorn Group, (5) Osprey, (6) Bougainville, (7) Moore, (8) Bianca, 

(9) Willis, (10) Magdelaine, (11) Chilcott, (12) Herald, (13) Holmes, (14) Flinders, (15) Lihou, (16) Marion, (17) 

Kenn, (18) Wreck.  
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DNA extraction, sequencing, genotyping and data filtering 

Genomic DNA was extracted from fin clips and muscle tissues using a modified salting out protocol 

detailed in Appendix C (Sunnucks & Hales, 1996). 

Mitochondrial DNA control region (mtDNA CR) 

We amplified 819 bp of the mtDNA CR using the light strand primer Pro-L and the heavy strand primer 

282-H following Whitney et al. (2012) with slight modification to the PCR cycling conditions. 

Sequencing of clean PCR products was performed by the Australian Equine Genetics Research Centre 

(AEGRC) at the University of Queensland, Australia, using BigDye™ terminators with the Pro-L primer 

and the internal light strand primer Rf45 (Whitney et al., 2012b). We complimented our mtDNA CR 

data set (n=90) with 68 sequences generated by (Whitney et al., 2012b) that overlapped with our study 

locations. All 158 sequences were assessed and aligned using Geneious Prime® 2019.2.3 

(https://www.geneious.com). Detailed PCR protocols can be found in Appendix C. 

Single nucleotide polymorphisms (SNPs) 

Sequencing and genotyping of SNPs from extracted DNA was conducted by Diversity Array 

Technologies (DArT, Canberra, Australia) and processed using the proprietary DArT Pty Ltd analytical 

pipelines (Georges et al., 2018; Kilian et al., 2012; Sansaloni et al., 2011). The resulting SNPs data set 

was filtered using the R package radiator to assure high quality of the samples, reduce genotyping 

error and account for potential biases in downstream analyses (Gosselin, 2019; Linck & Battey, 2019; 

O’Leary et al., 2018; Waples & Allendorf, 2015). Loci putatively under selection (outlier loci) were 

identified using spatially explicit methods implemented in PCadapt (Luu et al., 2017) and OutFLANK 

(Whitlock & Lotterhos, 2015) and were excluded from the data set to assess neutral processes shaping 

genetic population structure. A summary of the data filtering protocol and outlier detection analyses 

are reported in Appendix C Table 14). 

 

Genetic diversity, population structure and seascape connectivity 

mtDNA CR 

We calculated population-wide haplotype diversity (h) and nucleotide diversity (π) using DnaSP 

v.5.10.1 (Librado & Rozas, 2009). To assess mtDNA population structure we visualized haplotype 

distributions among sampling sites by constructing a median-joining network in popart v.1.7 (Leigh & 

Bryant, 2015). We used Arlequin version 3.5 to calculate pairwise genetic differentiation (ΦST) for 

populations with more than five samples, assessed significance based on 10000 bootstraps and 

corrected p-values for multiple comparisons using the false-discovery rate correction (Benjamini & 

Hochberg, 1995) implemented in the p.adjust R base function (Excoffier & Lischer, 2010; R Core Team, 

2019). 
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SNPs 

Genomic diversity of whitetip reef sharks was assessed by calculating allelic richness (AR), observed 

(HO) and expected heterozygosity (HE), as well as inbreeding coefficients (FIS) for each sampling location 

with a sample size larger than five using the diveRsity R package (Keenan et al., 2013). The pairwise 

fixation index FST (Weir & Cockerham, 1984) was estimated for all locations with more than 5 samples 

using the R package strataG (Archer et al., 2017) and their significance and corresponding p-values 

were calculated based on 10000 bootstraps. P-values were corrected for multiple comparisons using 

the p.adjust R base function and false-discovery rate correction (Benjamini & Hochberg, 1995; R Core 

Team, 2019). 

The spatial design in this study is of a hierarchical nature, with five geographically distant (>2000 kms) 

sampling locations at the level of the Indo-Pacific and 18 locations at the regional level of the Coral Sea 

that are separated by smaller geographic distances (<1000 kms). We therefore, applied a hierarchical 

assessment of genetic population structure to be able to detect lower-level structure that can be 

masked by higher level differentiation (Rosenberg et al., 2002; Vähä et al., 2007). To assess the number 

of genetic clusters and their spatial distribution we inferred proportions of genetic admixture using the 

R package tess3r (Caye et al., 2016). To account for the hierarchical structure of our sampling design 

we first estimated admixture proportions for the entire data set and then for a subset of samples that 

were assigned to a single genetic cluster, which contained all GBR and Coral Sea locations, but not the 

Capricorn Group. For both levels, we estimated admixture proportions for K ancestral populations 

between one and eight, with ten replicate runs for each value of K, 1000 iterations, a tolerance value 

of 10-6 and a spatial parameter of alpha equals 0.01. As the spatial parameter approximates zero the 

algorithm produces results comparable to the programs STRUCTURE or Admixture (Caye et al., 2016). 

The most likely number for K ancestral populations was then chosen based on the lowest value of the 

cross-entropy criterion (Alexander & Lange, 2011; Frichot et al., 2014), which was generated using the 

cross-validation method and masking 10% of the data in training data sets (Caye et al., 2016; Liu et al., 

2013). Finally, we generated geographic maps by interpolating admixture proportions using the tess3r 

maps function to visualize genetic gradients across the Australian GBR and Coral Sea seascape. 

The influence of seascape features on population genomic patterns was assessed using isolation by 

distance (IBD) and isolation by resistance (IBR) analyses and by superimposing genetic gradients with 

major ocean currents in the Coral Sea (McRae, 2006; Slatkin, 1993). First, we measured the shortest 

over-water distance between reef locations using least cost paths analysis in the R package marmap 

(Pante & Simon-Bouhet, 2013) to assess the effect of  geographic distance on genetic differentiation 

(Wright, 1943). Secondly, we used bathymetry data from the Coral Sea and IBR analysis to test if 

increasing ocean depth acts as barrier to gene flow in whitetip reef sharks (McRae, 2006). The 
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bathymetry raster (ETOPO1 1 Arc-Minute Global Relief Model) was reclassified using the raster R 

package to generate a resistance surface representing positive values of increasing resistance between 

1 to 100 (Amante & Eakins, 2009; Hijmans, 2019). To reflect the preference of T. obesus for reef habitat 

less than 100 m deep and account for extreme observations at larger depth, we assigned the lowest 

resistance (1) to depths between 1 and 100 m, a resistance of 2 for depths between 101-200m, and a 

resistance of 3 for depths between 201-300 m (Asher et al., 2017; Cortés et al., 2012; Randall, 1977). 

Since this species has not been reported below 301m we incremented resistance values by 3 for each 

step of 100m (e.g., 301-400m depth equals a resistance value of 6) to the lowest water depth between 

sampling locations (2801-2900m depths equals a resistance value of 90) and assigned the highest 

resistance value of 100 to land surfaces. Pairwise resistance distances between sampling locations 

were then calculated from the resistance surface using the commuteDistance function in the R package 

gdistance (van Etten, 2017; Shah & McRae, 2008). We tested for isolation by distance by assessing 

association between genetic distances (FST) and shortest over-water distances (least cost paths) and 

for isolation by resistance by assessing the association between FST values and resistance distances 

using Pearson’s correlation coefficient (r2) and Mantel tests based on 1000 permutations implemented 

in the DartR package (Gruber & Georges, 2019). Finally, we visually assessed the potential relationship 

between genetic patterns and ocean circulation by overlaying major ocean currents in the Coral Sea 

with genetic gradient maps (Schiller et al., 2015). 
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Results 

Genetic diversity 

Tissue samples from 183 individual whitetip reef sharks from 23 coral reef locations were analysed 

(Table 5). Mitochondrial DNA sequencing of 90 samples discovered six unique control region 

haplotypes of 819bp (base pairs) lengths and seven variable sites. Five haplotypes had been previously 

described by Whitney et al. (2012), except a single haplotype (Hap 3) that was unique to North Minerva 

Island. Analysis of 158 mtDNA CR sequences from 19 coral reef locations resulted in a population wide 

haplotype diversity (h) of 0.639 and nucleotide diversity (π) of 0.00284. 

Initial genotyping generated 33466 SNPs for 209 individuals and we retained a total of 8559 neutral 

SNPs and 183 individuals after quality filtering and removing putative outlier loci (Appendix C Table 

14). No samples were missing large amounts of data. Three samples had excessively low 

heterozygosity, indicating sample degradation, and one sample had excessively high heterozygosity, 

potentially due to cross contamination. All four samples were removed during data filtering. The 

inclusion of duplicate samples allowed us to detect a pair of samples that were collected from the 

same individual shark and at the same location on Heron Island in the Capricorn Group, after a period 

of seven years. We only kept one sample with lower amount of missing data for each pair of duplicate 

samples, resulting in the removal of 22 samples. A total of 36 putative outlier loci that were identified 

by both outlier methods were excluded from the data set to assess neutral genetic population 

structure in downstream analyses. 

Genomic diversity was similar for all reef locations but Cocos Keeling Islands (Table 5). Observed 

heterozygosity (HO) ranged from 0.13 - 0.151 and allelic richness (AR) ranged from 1.348 to 1.289 but 

were lower, 0.122 and 1.25, respectively, for Cocos Keeling. The inbreeding co-efficient (FIS) was close 

to zero for all sampling locations. 
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Table 5. Sample sizes (n) for mtDNA and SNPs data sets and genomic diversity. n= number of samples, nH 

number of mtDNA haplotypes present at location. AR = allelic richness, HO = observed heterozygosity, HE = 

expected heterozygosity, FIS = inbreeding coefficient. NGBR= northern GBR, CGBR=central GBR, PNG=Papua New 

Guinea. 

   mtDNA  SNPs 
Region Location  n nH  n AR HO HE FIS 
Indian Ocean Cocos Keeling  22 4  5 1.25 0.122 0.118 -0.051 
 Scott  

  
 13 1.325 0.141 0.146 0.02 

Great Barrier Reef Raine Island  
  

 1     
 NGBR  20 4  15 1.348 0.149 0.15 -0.004 
 CGBR  19 3  20 1.345 0.143 0.151 0.034 
 Capricorn Group  20 2  26 1.323 0.138 0.142 0.014 
Offshore Coral Sea Osprey  18 2  22 1.341 0.143 0.151 0.038 
 Bougainville  6 2  6 1.288 0.131 0.131 -0.017 
 Moore  9 2  16 1.341 0.147 0.15 0.011 
 Bianca  1 1  1     
 Willis  1 1  1     
 Magdelaine  10 2  12 1.335 0.145 0.146 -0.006 
 Chilcott  1 1  2     
 Herald  

  
 1     

 Holmes  4 1  4 1.296 0.146 0.133 -0.11 
 Flinders  3 2  3 1.289 0.149 0.13 -0.16 
 Lihou  7 1  8 1.324 0.145 0.142 -0.03 
 Marion  1 1  6 1.297 0.134 0.134 -0.023 
 Kenn  2 1  4 1.29 0.142 0.13 -0.1 
 Wreck  5 2  5 1.293 0.138 0.131 -0.066 
Western Pacific PNG  

  
 3 1.293 0.153 0.131 -0.178 

 Fiji  7 2  7 1.328 0.15 0.146 -0.037 
 Minerva  2 1  2     
 

 
 158 6  183     
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Large scale population structure 

mtDNA CR 

The vast majority of samples corresponded to one of two control region haplotypes, Hap1 (n=67) and 

Hap2 (n=64), of which at least one was present at any sampling location (Figure 11). Cocos Keeling in 

the Indian Ocean revealed two unique haplotypes (Hap5 and Hap6) and a third haplotype (Hap4) that 

was only shared with the northern GBR (NGBR). Pairwise genetic comparisons (ΦST) also reflected the 

isolation of the Indian Ocean and to some extent the Capricorn Group from all other coral reefs, which 

showed no significant genetic differences among each other (Table 6). 

 

 

Figure 11. Median-joining network based on 819bp mitochondrial DNA control region sequences and 158 

individuals. The size of the circles is proportional to the number of samples with the same haplotype (Hap1-6) 

and the different colour-pattern combinations represent sampling locations. The number of mutations between 

haplotypes is represented by the number of strokes on the connecting branches. 
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SNPs 

Admixture analyses at the highest level suggested three as the most likely number of ancestral 

populations and distinguished whitetip reef sharks from the Indian Ocean and the Capricorn Group 

from all other locations (Figure 12 and Appendix C Figure 18). Sharks from the main section of the GBR 

and  offshore Coral sea locations were primarily composed of the third ancestral group with varying 

admixture proportions suggesting regional substructure. Fiji, Minerva and PNG were also assigned to 

the third ancestral group but also showed some admixture with the Indian Ocean. All pairwise 

comparisons (FST) based on neutral SNPs were significant after correcting for multiple comparisons 

(Table 6). The strongest genetic differentiation was found between locations on either side of the 

Torres Strait, between Cocos Keeling (FST =0.24-0.2) or Scott Reef (FST = 0.13-0.09) and all Pacific Ocean 

locations. Further, Cocos Keeling also showed high genetic differentiation with Scott reef (FST =0.17) 

on the Western Australian continental shelf. In the Pacific, the Capricorn Group (FST =0.4-0.9) and Fiji 

(FST =0.5-0.9) showed the strongest differentiation with the rest of coral reefs in the western Pacific, 

followed by more subtle differentiation of Osprey (FST =0.3-0.5), Bougainville (FST =0.5-0.7) and Moore 

(FST =0.3-0.5) with other Coral Sea reefs. 

 

Figure 12. Individual admixture proportions for 183 sharks (vertical bars) based on 8559 neutral SNPs 

for K = 3 ancestral populations. 
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Table 6. Pairwise genetic differences for sampling locations with more than 5 samples. ΦST based on 819bp of the mtDNA control region (top matrix), and FST based on 

8559 neutral SNPs (bottom matrix). Bold letters indicate significant values after false discovery rate correction at p = 0.05 (mtDNA) and p = 0.01 (SNPs). 

 Cocos Scott NGBR CGBR Osprey Bougainville Moore Magdelaine Lihou Marion Wreck Capricorn Fiji 

Cocos  0.17 - 0.51 0.24 0.45 0.34 0.24 0.59  0.16 0.24 0.27 

Scott 0.19  - - - - - - - - - - - 

NGBR 0.20 0.09  0.28 -0.04 0.20 0.05 -0.05 0.42 - -0.13 0.10 -0.04 

CGBR 0.20 0.09 0.01  0.24 -0.12 0.00 0.18 0.01 - 0.28 0.61 0.08 

Osprey 0.20 0.10 0.02 0.03  0.17 0.01 -0.08 0.41 - -0.14 0.15 -0.07 

Bougainville 0.24 0.13 0.05 0.05 0.05  -0.08 0.09 0.03 - 0.19 0.61 -0.01 

Moore 0.21 0.11 0.04 0.04 0.05 0.05  -0.06 0.21 - -0.02 0.42 -0.12 

Magdelaine 0.21 0.10 0.03 0.02 0.04 0.05 0.03  0.39 - -0.15 0.21 -0.13 

Lihou 0.21 0.10 0.02 0.02 0.03 0.05 0.04 0.02  - 0.57 0.78 0.33 

Marion 0.22 0.11 0.03 0.03 0.05 0.07 0.05 0.04 0.03  - - - 

Wreck 0.22 0.10 0.04 0.03 0.05 0.07 0.05 0.04 0.04 0.05  0.06 -0.14 

Capricorn 0.23 0.12 0.05 0.04 0.06 0.08 0.07 0.06 0.05 0.06 0.06  0.30 

Fiji 0.20 0.09 0.06 0.05 0.06 0.09 0.07 0.06 0.06 0.07 0.07 0.09  
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Regional scale population structure 

Admixture analyses of the regional data set (main GBR and offshore Coral Sea reefs) revealed a slight 

increase in the cross-entropy criterion between one and two, with a plateau at three, suggesting that 

the most likely number of ancestral populations lies between K = 1 to 3 (Appendix C Figure 19). 

Admixture proportions for three ancestral populations clearly distinguish Osprey and Moore reef from 

the rest of the reef locations, which showed a subtle genetic gradient among them (Figure 13a). Spatial 

interpolation of genetic admixture proportions visualized the strongest genetic breaks between 

Osprey Reef and all other locations and between Moore Reef and adjacent reefs of the Queensland 

plateau at less than 100 km distance (Figure 13b). The analysis further suggested connectivity between 

isolated oceanic reefs in the southern Coral Sea (Kenn and Wreck) with the Queensland Plateau and 

the Central and Northern GBR over a distance of 1300 kms and across deep offshore water and the 

deep Coral Sea Trough. 
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Figure 13. Regional scale population structure. a) Individual admixture proportions for 127 sharks (vertical bars) 

for K = 3 ancestral populations and b) geographic distribution of admixture proportions in the Coral Sea. Areas 

are coloured according to the ancestral population that contributes the highest admixture proportion to sharks 

sampled from that area. Gradients of the same colour indicate the admixture proportion in intervals of 0.1. White 

dots represent sampling locations used for the spatial interpolation and white lines represent 200 m and 1000 

m depth contours to visualize the continental shelf, the Queensland and Marion Plateaus, and the isolation of 

oceanic reefs. Broad white lines with arrow heads indicate the main ocean currents and their flow direction in 

the Coral Sea, adapted from (Schiller et al., 2015). NVJ=North Vanuatu Jet, NCJ= New Caledonia Jet.  
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Seascape connectivity 

Isolation by distance analysis revealed that levels of genetic differentiation in whitetip reef sharks were 

not significantly correlated with geographic distance among coral reefs (mantel test: r2= 0.3164, p= 

0.085). Further, isolation by resistance analysis showed that ocean depth, as potential barrier to 

dispersal, was also not significantly correlated with genetic differences between coral reefs (mantel 

test: r2= 0.3332, p= 0.176). Visualization of major ocean currents in the Coral Sea revealed a loose 

alignment of water circulation patterns with genetic gradients (Figure 13b). 

 

Discussion 

Complementary molecular markers revealed contrasting patterns of local isolation and large-scale 

connectivity in whitetip reef sharks across Indo-Pacific coral reefs. The most comprehensive sampling 

of sharks from reefs in the Coral Sea to date and genomic markers affirm oceanic dispersal despite high 

site-fidelity in whitetip reef sharks. Oceanic dispersal may result in genetic pathways that align with 

ocean currents in reef-associated sharks that have limited capacity to account for the displacement 

caused by water flow (i.e., drift). The ecological and evolutionary costs and benefits of dispersal vary 

with the characteristics of individual coral reefs and may therefore result in reef-specific genetic 

connectivity and population resilience. 

 

Large-scale population structure 

The Torres Strait forms the primary barrier to historical and contemporary dispersal between Indian 

and Pacific Ocean whitetip reef shark populations. The barrier is formed by a shallow strait between 

Australia and Papua New Guinea which intermittently exposed a land bridge when sea levels dropped 

repeatedly during the Pleistocene epoch (Mirams et al., 2011; Voris, 2000). The Torres Strait has 

generated intra-specific genetic divergence in many reef fish (Gaither et al., 2010, 2011; Van 

Herwerden et al., 2009; Liggins et al., 2016), with some exceptions (Bay et al., 2004; Horne et al., 2008), 

and in marine species that lack planktonic larvae, including sea snakes (Lukoschek et al., 2007), 

dugongs (Blair et al., 2014) and sea turtles (Dethmers et al., 2006). The historical closure of the strait 

also caused genetic divergence in the mitochondrial DNA of some sharks but connectivity measured in 

nuclear markers indicated a contemporary permeability of the barrier (Daly-Engel et al., 2012; Duncan 

et al., 2006; Green et al., 2018). The Torres Strait may however form an effective barrier to historical 

and contemporary gene flow in reef-associated sharks. Grey reef sharks (Carcharhinus 

amblyrhynchos), and whitetip reef sharks (this study) show genetic divergence at mitochondrial and 

nuclear markers across the strait, likely due to high levels of site-attachment and strong association 
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with shallow-water coral reefs (Espinoza et al., 2015a; Momigliano et al., 2017; Whitney et al., 2012b). 

The presence of an Indian Ocean haplotype in whitetip reef sharks from the northern Great Barrier 

Reef (GBR) may further reflect historical dispersal events when the Torres Strait was flooded, after an 

initial colonization of the Pacific Ocean (Whitney et al., 2012b). 

Large distances of open ocean also form barriers to contemporary gene flow in reef-associated sharks. 

The resulting genetic isolation may cause reduced genetic diversity in oceanic islands compared to 

continental shelves (Frankham, 1997). In whitetip reef sharks, strong differentiation at nuclear 

genomic markers resulted in lower genetic diversity at Cocos Keeling Islands compared with Scott Reef 

on the Australian continental shelf. Lower genetic diversity in oceanic compared to shelf populations 

has been found in other coastal sharks and rays (Ashe et al., 2015; Chevolot et al., 2006b; Hull et al., 

2019; Momigliano et al., 2017), but pelagic oceanic and deep-sea sharks maintain sufficient gene flow 

to override signatures of genetic isolation and show comparable genetic diversity (Catarino et al., 2015; 

Cunha et al., 2012; Gubili et al., 2016; Veríssimo et al., 2017). The less pronounced genetic 

differentiation in whitetip reefs sharks between the Pacific Islands (Fiji and Minerva), PNG and the 

Coral Sea, compared to Cocos Keeling, is likely a result of dispersal along stepping-stones island chains 

and resulted in similar levels of genetic diversity in this species and grey reef sharks (Duncan et al., 

2006; Momigliano et al., 2017; Schultz et al., 2008). 

 

Regional scale population structure 

Comprehensive sampling of whitetip reef sharks in the Coral Sea revealed contrasting genetic patterns 

of local isolation and large-scale connectivity. Genetic patterns also differed between molecular 

markers. The lack of mtDNA CR differences among T. obesus from most Coral Sea reefs may reflect a 

recent colonization of the Coral Sea and the slow evolutionary rate of the mitochondrial control region 

in sharks (Martin et al., 1992; Whitney et al., 2012b). However, small sample sizes for most of the 

individual reefs may have also influenced the genetic differentiation (Meirmans, 2015). 

The historical (mtDNA) and contemporary genetic differentiation (SNPs), of sharks from the Capricorn 

Group likely reflect its consistent separation from the main section of the GBR. The deeper waters 

(100-200 m) of the Capricorn Channel lack any subaerial structures that could serve as stepping stones 

for dispersal and large paleo-rivers that flowed into the channel when sea levels were lower may have 

acted as additional barriers in the past (Ryan et al., 2007; Yokoyama et al., 2006). A genetic break across 

the Capricorn Channel has also been suggested in two coral species (Lukoschek et al., 2016). However, 

one of the species also showed directional gene flow between the main GBR southward across the 

channel (Riginos et al., 2019). Few studies are available that measure genetic connectivity of marine 
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species along the entire stretch of the GBR and future research may clarify if the Capricorn Channel 

functions as a barrier for other marine species (Van Oppen et al., 2011). 

Ocean depths between shallow-water reefs together with high site-fidelity may have limited 

contemporary connectivity in whitetip reef sharks. Genomic markers have greater resolving power to 

detect population structure when sample sizes are small and detected genetic differences among all 

Coral Sea locations (Allendorf et al., 2010; Coates et al., 2009). Subtle differences were found between 

many reefs that are not separated by larger distances of deeper water, including reefs in the 

contiguous GBR and the semi-fragmented reefs of the Queensland plateau. This indicates that whitetip 

reef sharks generally remain and reproduce within the same reefs or reef clusters, because few 

individuals per generation that migrate between reefs and reproduce successfully would be sufficient 

to homogenize these differences (Waples, 1998; Waples & Gaggiotti, 2006). In contrast, whitetip reef 

sharks at Osprey Reef, the top of an oceanic seamount in the Coral Sea, were genetically isolated from 

all other reefs. This exemplifies that limited capacity to traverse deep ocean combined with high levels 

of site-fidelity may amplify genetic differentiation in some isolated reefs. 

Varying levels of genetic connectivity in other Indo-Pacific reef sharks likely also result from differences 

in species-specific dispersal capacity and site-fidelity. For example, silvertip sharks (Carcharhinus 

albimarginatus) are resident at coral reefs, but also occur in deeper water down to 800 m and move 

offshore with occasional large-scale oceanic movements (Bond et al., 2015; Curnick et al., 2020; 

Espinoza et al., 2015b). Accordingly, silvertip sharks show contemporary connectivity across large 

distances of deep ocean in the Coral Sea (Green et al., 2018). Grey reef sharks (Carcharhinus 

amblyrhynchos) show strong residency to individual reefs in some cases but also move between 

adjacent reefs in the GBR and between the GBR and Coral Sea reefs (Espinoza et al., 2015a; Heupel et 

al., 2010). As a result, this species shows strong genetic differentiation across large distances of open 

ocean, but not at short distances between individual reefs (Boissin et al., 2019; Momigliano et al., 2017, 

2015). In contrast, black-tip reef sharks (Carcharhinus melanopterus) have the highest fidelity to 

specific reefs which can create genetic differences between individual islands at small-scales of less 

than 100 km (Mourier & Planes, 2013; Vignaud et al., 2013, 2014b). Long-term site-fidelity in whitetip 

reef sharks, as suggested by previous tagging and tracking studies, was further corroborated in this 

study by the genetic recapture of an individual shark at the same reef location after seven years 

(Barnett et al., 2012; Whitney et al., 2012a). High site-fidelity is likely an important driver of genetic 

differentiation in T. obesus that can be exacerbated by depth barriers in some cases. At the same time, 

connectivity found across large distances of deep water in some Coral Sea reefs underpins that 

whitetip reef sharks are also capable of oceanic dispersal. 
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Oceanic dispersal 

Mitochondrial and nuclear genomic DNA provide evidence of oceanic dispersal in whitetip reef sharks. 

Oceanic dispersal events drove the historical colonization of Pacific islands and archipelagos and form 

contemporary connectivity pathways among fragmented Coral Sea reefs. Most of the Pacific islands 

are of volcanic origin and have never been connected to continental landmasses. Colonization by 

whitetip reef sharks likely occurred from an Indo-West Pacific centre of origin and is therefore a 

consequence of oceanic dispersal at various spatial scales (Cowie & Holland, 2006; Whitney et al., 

2012b). Oceanic dispersal may have occurred at shorter distances along island chains in the western 

Pacific, but whitetip reef sharks must have crossed vast oceanic expanses to reach the eastern pacific 

archipelagos, including the Galapagos and Cocos Islands. Recently, a large-scale oceanic dispersal 

event was observed in this species. A  single female whitetip reef sharks was recorded in the Easter 

Islands, one of the most isolated oceanic locations on the planet (Morales et al., 2019). However, it is 

unknown where this individual came from and how it traveled across open ocean (Morales et al., 

2019). 

Our spatial analysis of genetic gradients confirms oceanic dispersal in whitetip reef sharks at the extent 

of the Coral Sea and conveys a possible link between genetic patterns and ocean currents. The lack of 

correlation between genetic differences and geographic distances or ocean bathymetry indicates that 

an underlying process promotes gene flow irrespectively of distance and depth  (McRae, 2006; Wang 

& Bradburd, 2014). The impact of ocean currents on dispersal trajectories and gene flow depends on 

an animals’ capacity to detect and either exploit or compensate for drift (Chapman et al., 2011b). In 

whitetip reef sharks oceanic dispersal trajectories may be influenced by currents because 

morphological adaptations of reef-associated sharks limit their capacity to compensate for drift 

(Iosilevskii & Papastamatiou, 2016). To be reflected in measures of genetic connectivity, dispersal 

trajectories have to occur along similar routes and over evolutionary time scales (Lowe & Allendorf, 

2010). Although genetic connectivity has been related to currents in some marine organisms with 

juvenile larvae, their short generation times and high variability in reproductive success, and the 

variability of current patterns, often result in chaotic patterns (Hedgecock & Pudovkin, 2011; Selkoe et 

al., 2010). Several long-lived marine animals without juvenile larvae, including sea turtles (Cardona & 

Hays, 2018) and sea snakes (Brischoux et al., 2016), also showed genetic patterns that were influenced 

by ocean currents. These examples suggest that oceanic dispersal may produce traceable pathways 

shaped by ocean currents in marine animals with long generation times and consistent reproductive 

success that either exploit currents or have limited capacity to compensate for drift. 
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Ecological and evolutionary drivers of dispersal 

Although dispersal across large distances of open ocean stands in contrast with the high site-fidelity of 

reef-associated sharks, it may have evolved because it has advantages for individual organisms and 

populations. Oceanic dispersal in whitetip reef sharks is likely a rare and context-dependent event due 

to the ecological and evolutionary trade-offs for population persistence. Whitney et al. (2012b) 

suggested dispersal events could be motivated by ecological factors such as density-dependence. 

Higher population density may trigger dispersal because the avoidance of conspecific competition 

through emigration can improve individual fitness (Bowler & Benton, 2005; Clobert et al., 2012). 

However, oceanic dispersal comes with a drawback, because the high energetic costs of dispersal and 

the risk of settling in an unfavourable habitat lower survival rates (McPeek & Holt, 1992). From an 

evolutionary perspective, heterosis, the increased fitness of offspring that have parents from 

genetically distant populations, can offset the negative effects of inbreeding and hence promote 

dispersal in spatially structured metapopulations (Bowler & Benton, 2005; Ronce, 2007). But long 

distance dispersal and outbreeding, the reproduction among individuals from genetically distinct 

populations that are adapted to contrasting environments, can also result in lower fitness of offspring 

(Brown, 1991; Lynch, 1991; Oakley et al., 2015). These ecological and evolutionary drivers may favour 

dispersal in small and isolated compared to larger and contiguous patches of habitat, due to limited 

resources, lower carrying capacity, and higher genetic relatedness (Bowler & Benton, 2005). The high 

dispersal propensity could explain the lack of genetic breaks over thousands of kilometres between 

some of the smallest and most isolated reefs in the southern Coral Sea and reefs in the GBR and the 

Queensland Plateau. However, dispersal trade-offs may shift with environmental contexts. For 

example, whitetip reef sharks lack contemporary connectivity between the isolated seamount Osprey 

Reef and all other Coral Sea reefs, but there is also a strong genetic break between Moore Reef and 

adjacent locations on the Queensland Plateau. Individual reefs have unique and dynamic 

environmental contexts that lead to temporal variations in local population densities. Reef 

environments are influenced by tropical cyclones, extreme climatic events (i.e., El Niño and La Niña), 

and oscillating sea levels that modify coral reef habitat quality and resource availability and thus alter 

density-dependent dispersal rates (Edmunds et al., 2018; Olivieri et al., 1995). In whitetip reef sharks, 

differences in environmental variability, habitat size, and the magnitude of habitat fragmentation may 

create reef-specific dispersal rates and genetic connectivity (Cote et al., 2017; Dieckmann et al., 1999). 

 

Implications for whitetip reef shark populations 

Genetic signatures resulting from a combination of geographic isolation and oceanic dispersal 

determine the resilience of Indo-Pacific whitetip reef shark populations. The most geographically 
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isolated location, Cocos Keeling, had lower genetic diversity compared to all other coral reefs, which 

is characteristic of small, highly isolated populations that experience strong genetic drift (Frankham, 

1997). Consequently, the local population may have a low resilience to disturbances because it has a 

reduced adaptive potential and lacks replenishment from other reefs (Frankham et al., 2014; Ryman 

et al., 2019). In the Coral Sea, three genetic clusters that correspond to the Capricorn Group, Osprey 

Reef, and Moore Reef (including Bianca and Bougainville Reefs), may be considered demographically 

and genetically independent (Lowe & Allendorf, 2010). Although gene flow may be sufficient to 

maintain genetic diversity over evolutionary time scales, it cannot bolster local populations against 

stochastic events or fisheries exploitation that act on shorter time scales (Ovenden, 2013; Ovenden et 

al., 2015; Reiss et al., 2009). In contrast, the genetic cluster covering large parts of the offshore Coral 

Sea and main GBR may be a case of crinkled connectivity (Ovenden, 2013). Subtle genetic differences 

suggest that less than few individuals per generation disperse among sampled reefs, which results in 

genetic inter-dependence at evolutionary time scales but is insufficient to completely homogenize the 

genetic structure (Lowe & Allendorf, 2010; Ovenden, 2013; Wright, 1949). However, an important 

consideration for management is that low levels of genetic differences do not imply demographic 

connectivity (Lowe & Allendorf, 2010; Ovenden, 2013; Waples & Gaggiotti, 2006). Although SNPs have 

a high power to detect subtle genetic differences and thus may have a stronger correlation with 

demographic connectivity, more empirical data is needed to quantify this relationship (Waples & 

Gaggiotti, 2006). Finally, to estimate connectivity and potential for replenishment between contiguous 

reefs of the entire GBR, additional data from currently unsampled locations is required (Meirmans, 

2015).  
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Conclusions 

This study used a mixed-marker approach and extensive sampling of a reef-associated shark to assess 

historical and contemporary connectivity pathways across the Indo-Pacific coral reef seascape. High 

site fidelity and rare oceanic dispersal events generate contrasting genetic patterns of local isolation 

and large-scale connectivity in whitetip reef sharks. Connectivity in reef-associated sharks is likely 

balanced by the costs and benefits of density-dependent dispersal for individual fitness and population 

persistence that vary with reef-specific dynamics (Johnson & Gaines, 2016; Ronce, 2007). Location 

specific connectivity implies that locally adapted management may be more appropriate than large-

scale umbrella strategies for some reef-associated sharks. In local populations with crinkled 

connectivity, it would be beneficial to compliment genetic data with methods that measure 

demographic connectivity (Dudgeon et al., 2012; Ovenden, 2013). Future research that integrates 

measures of connectivity at different evolutionary and ecological time scales and reef-associated 

species with contrasting life histories may improve our understanding of connectivity in fragmented 

coral reefs and maximize the implementation of protected area networks. 
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Chapter 5 - General Discussion 

Synthesis of main results 

The research presented in the previous chapters illustrated that the same key components determine 

the impact of barriers to dispersal on the geographic distribution of individuals and genetic variation 

in the sea and on land (Bowen, 2016). Discontinuities in the environment form barriers that vary in 

space and time due to geologic activity and climatic fluctuations on earth (Avise, 2000; Dudgeon et al., 

2012; Rocha et al., 2007). The ability of organisms for trans-barrier dispersal is defined by species-

specific life history traits and the mode of dispersal (Baguette et al., 2013; Bowler & Benton, 2005; 

Clobert et al., 2012). The propensity of individuals to disperse is balanced by the costs and benefits for 

individual survival and population persistence (Parvinen et al., 2020; Ronce, 2007). Marine and 

terrestrial populations are influenced by the same evolutionary forces, dispersal, genetic drift, 

selection, and mutation (Avise, 2004). The sum of these factors therefore regulates genetic links in 

natural populations. However, marine and terrestrial organisms have evolved life history strategies 

and dispersal mechanisms in fundamentally different environments and are therefore expected to 

have distinct genetic and biogeographic patterns (Bowen, 2016; Bowen et al., 2016). 

Overall, this research showed that different types of marine barriers may generate general trends in 

genetic connectivity in relation to elasmobranch life history traits (Chapter 2). However, the two 

shallow-water reef sharks and fragmented seascapes also illustrated that species-specific dispersal 

capacity and geologic, geographic, and climatic contexts affect connectivity. This resulted in 

differences and commonalities in genetic and biogeographic patterns between elasmobranch species 

and between elasmobranchs and marine organisms with larval dispersal as well as terrestrial species. 

Basic elasmobranch life history traits (body size, depth occurrence, and habitat) may be useful 

indicators for trans-barrier dispersal (Chapter 2). However, the two case studies (Chapter 3 and 4) 

revealed strong differences among two species with broadly comparable life histories. Limited 

dispersal across depth barriers found in Galapagos bullhead sharks (Heterodontus quoyi), Chapter 3, 

reconfirmed the results from Chapter 2 and empirical studies, which proposed that ocean depth can 

create genetic differences at small geographic scales in small-bodied elasmobranchs that live in 

shallow water and are associated to the sea floor (Chevolot et al., 2006b; Gubili et al., 2014; Plank et 

al., 2010; Ramírez-Amaro et al., 2018). While ocean depth also restricted dispersal in whitetip reef 

sharks (Triaenodon obesus) in some locations (Chapter 4), the genetic connectivity found across large 

distances of open ocean contrast the general assumption that reef-associated sharks have limited 

dispersal capacity. The contrasting patterns of local isolation and large-scale connectivity in T. obesus 
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and the differences between the two study species illustrate the context dependence of dispersal in 

elasmobranchs.  

Animal dispersal is context-dependent because the propensity to disperse is controlled by internal 

(phenotype and genotype) and external (environmental conditions and variability) factors (Bowler & 

Benton, 2005; Cote et al., 2017; Levin, 2006). In addition, dispersal propensity is heritable. If higher 

dispersal rates results in higher individual or population level fitness, the genes encoding for traits that 

facilitate such behaviour are more likely to be passed on to future generations (Ronce, 2007). The lack 

of inter-island connectivity in Galapagos bullhead sharks therefore indicates that the risks of dispersal 

for individual survival outweigh the potential evolutionary benefits (Bonte et al., 2012). The 

exacerbated risks of dispersal in highly isolated locations, due to the low probability of finding suitable 

habitat, has resulted in a reduction of dispersal ability in many other taxa that colonized oceanic islands 

(Waters et al., 2020). Oceanic dispersal in whitetip reef sharks likely implies high costs to individual 

fitness. But intermediate levels of genetic connectivity over larger distances and between isolated 

coral reefs, in some cases, show that under specific circumstances the benefits for population 

persistence may overcome high risks of dispersal (Bowler & Benton, 2005; McPeek & Holt, 1992). This 

may have caused the evolution of rare long-distance dispersal behaviour in this species, making 

whitetip reef sharks a species with high site-fidelity that is also an exceptional colonizer (Gillespie et 

al., 2012; Ronce, 2007). 

 

Marine versus terrestrial systems 

Barriers to dispersal may create both contrasting and analogous patterns of genetic divergence in 

marine and terrestrial systems (Bowen et al., 2016). One similarity is the allometry of dispersal in 

marine and terrestrial species that depend on self-propelled dispersal, as opposed to those 

transported by dispersal agents (Jenkins et al., 2007; Stevens et al., 2014). This research further 

revealed that in elasmobranchs body size is also positively correlated with the capacity to overcome 

potential physical barriers (Chapter 2). 

The case of Galapagos Bullhead sharks (Chapter 3) was the first study to show that marine species with 

limited dispersal that colonized in oceanic islands may produce genetic and biogeographic patterns 

comparable to terrestrial species. Progressive island formation found in H. quoyi (Chapter 3), has been 

shown for terrestrial species in the Hawaiian and Galapagos archipelagos (Fleischer et al., 1998; Shaw 

& Gillespie, 2016), but contrasts the general assumption that higher dispersal in marine organisms 

limits in situ divergence in oceanic islands (Bowen, 2016; Pinheiro et al., 2017). 
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Prior to this research, the effect of historical sea level fluctuations on genetic connectivity had been 

shown in terrestrial but not marine island populations (Ali & Aitchison, 2014; Vieira et al., 2019). 

Recently, isolation by resistance analyses were used to study the impact of historical in sea level 

fluctuations on genetic divergence in island-colonizing ant communities (Darwell et al., 2020). Here I 

presented the first application of isolation by resistance analysis to quantify the effect of sea level 

fluctuations on inter-island connectivity in a marine organism. 

Galapagos bullhead sharks also showed that genetic effective population size (NE) scaled with islands 

area. Such patterns have been found in terrestrial organisms. For example, NE scaled with breeding 

pond size in salamanders (Wang et al., 2011). However, this research constitutes the first account of 

this relationship for marine species with limited inter-island dispersal (Dawson, 2016). 

In terrestrial species that depend on self-propelled dispersal, genetic connectivity often correlates with 

geographic distances and topography, or habitat continuity that provides dispersal corridors (Manel & 

Holderegger, 2013; McRae & Beier, 2007). In contrast, genetic connectivity in whitetip reef sharks was 

unrelated to geographic distances or ocean bathymetry. Such patterns are common in marine 

organisms with extended juvenile larval stages, which supports the idea that morphological 

adaptations and the high density of the aquatic medium generate higher dispersal in the ocean than 

on land (White et al., 2010). However, terrestrial species also exploit dispersal agents, such as wind, 

for long distance dispersal. For example, some birds may utilize wind currents to support large distance 

dispersal (Senner et al., 2018) and ballooning spiders, carried by winds, have colonized isolated oceanic 

locations (Lee et al., 2015). These examples and results from whitetip reef sharks highlight the 

complexity of animal dispersal and that both marine and terrestrial organisms may have evolved 

mechanisms to exploit dispersal agents due to the ecological and evolutionary benefits of long-

distance dispersal (Gillespie et al., 2012). 

 

Designing studies to test the effect of barriers to dispersal 

The recommendations for designing studies based on a priori hypotheses, illustrated in Chapter 2, 

were applied to test the effect of barriers to dispersal on genetic connectivity in two shallow-water 

reef sharks (Chapters 3 and 4). In each study I adopted a different sampling approach according to 

expectations about the sharks’ dispersal capacity and the geographic setting. 

Oceanic archipelagos have a long history of being used for in situ experiments to study evolutionary 

processes in terrestrial species (Warren et al., 2015). In this research, I took advantage of the reduced 

complexity of the Galapagos archipelago to implement a discrete sampling approach, which allowed 

to examine genetic divergence and island biogeography in a shallow-water marine organism. I sampled 



 

 73 

at least 20 Galapagos bullhead sharks from individual islands that represented discrete experimental 

units (Emerson, 2002; Parent et al., 2008). This sampling design allowed me to generate robust 

estimates of genetic differentiation, genetic diversity, genetic effective population size (NE) for each a 

priori defined experimental unit (Dudgeon & Ovenden, 2015; Meirmans & Hedrick, 2011). Individual 

genetic units found in Galapagos bullhead sharks corresponded to the local populations of individual 

islands, or island clusters with a recently shared geologic history. These well-defined genetic units, in 

addition to the life history characteristics of sharks, provided robust estimates of NE because they 

approximate idealized populations (Waples & Do, 2008, 2010). In contrast, delineating units and 

estimating effective population size is particularly challenging in marine organisms with bipartite life-

history strategies because they commonly have large open populations, high fecundity and variable 

reproductive success (Hare et al., 2011; Palstra & Ruzzante, 2008; Waples et al., 2016). 

There were also several limitations to this approach. For example, sampling sharks from individual 

islands was logistically challenging due to the general lack of knowledge on the biology of Galapagos 

bullhead sharks (Acuña-Marrero et al., 2018). This resulted in a lack of samples from the central islands 

(see Figure 6 in Chapter 3). Since the central islands were more recently connected to the western 

archipelago compared to the islands sampled in Chapter 3, sampling this region could have further 

improved the examination of sequential island formation (Geist et al., 2014; Karnauskas et al., 2017). 

Moreover, fewer sharks were sampled from San Cristóbal island (see Figure 6 in Chapter 3), despite 

substantial efforts. This may have introduced some bias in the genetic differentiation of this island 

despite the high statistical power of the genomic markers used (Morin et al., 2009). However, the 

consistent patterns found across different genetic analyses suggest that they reflect a true biological 

signal. Further, samples from the continental range of H. quoyi could be used as geographical outgroup 

to put inter-island comparisons into context (see section on future directions). One of the outcomes 

of this thesis is the establishment of a network of collaborators that have already provided samples of 

H. quoyi from the coast of Perú, South America, for future comparisons. 

A different sampling approach was used to study whitetip reef sharks in fragmented coral reefs. Coral 

reefs have higher spatial and temporal complexity compared to oceanic islands. Coral reef habitat is 

scattered over larger geographic areas, fragmented at different magnitudes from tens to thousands of 

kilometres, and many reefs have a younger and unvalidated geologic history (Davies, 2011). In Chapter 

4, I therefore used extensive and relatively continuous sampling of sharks from reef habitats that 

represented different magnitudes of fragmentation. In combination with high resolution genomic 

markers, this sampling provided a suitable approach to locate genetic breaks and delineate 

connectivity pathways across large areas and complex seascapes (Manel et al., 2003; Riginos & Liggins, 

2013). 
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A downside of this approach was that each reef was represented by fewer samples. Low sample sizes 

can bias estimates of genetic diversity and inter-reef comparisons, and precluded the calculation of 

directional gene flow and effective population sizes, NE (Marandel et al., 2019; Meirmans, 2014, 2015). 

Estimating NE is particularly challenging in populations with crinkled connectivity that have 

intermediate levels of gene flow, such as found in whitetip reef sharks (Ryman et al., 2019). 

Intermediate levels of gene flow bias the NE estimates of individual local populations and the 

respective metapopulation (Ryman et al., 2019; Wang & Whitlock, 2003; Waples & Do, 2010). Low 

sample sizes also introduce bias in NE estimates, because they are a poor representation of local 

genetic drift, age structure and sex ratios (Hare et al., 2011; Waples et al., 2014). 

 

The influence of global climate on barrier permeability and range dynamics 

Variations in global climate alter the permeability of barriers to dispersal in land- and seascapes 

(Hewitt, 2004; Ludt & Rocha, 2015). Climate-driven changes in sea levels have also left distinct genetic 

signatures in the reef-associated sharks studied in this thesis. Lower sea levels during glacial cycles 

have reduced historical connectivity in whitetip reef sharks across the Torres Strait (Chapter 4). The 

cyclical closure of straits temporarily discontinues gene flow, which has created phylogeographic and 

biogeographic breaks in marine organisms with diverse life histories and dispersal modes, and has 

catalysed the evolution of marine biodiversity (Bowen et al., 2016; Cowman, 2014; Cowman & 

Bellwood, 2013; Liggins et al., 2016). In combination with geologic processes changes in sea levels form 

isthmuses, narrow stretches of land that connect two larger landmasses separated by water bodies 

(Coates et al., 2004). Isthmuses pose barriers for marine taxa but have the opposite effect in terrestrial 

biota. For example, the formation of the isthmus of Panamá lead to the Great American Biotic 

Interchange by joining the continental landmasses of North and South America, which allowed for the 

dispersal of previously isolated terrestrial biota (Marshall et al., 1982; O’Dea et al., 2016).  

Climatic oscillations create shifts in the vertical stratification of marine and terrestrial environments 

and therefore influence genetic connectivity both on land and in the sea. In oceanic archipelagos, sea 

level fluctuations alter island configurations, which has been shown to impact the genetic divergence 

and biogeography of terrestrial organisms (Ali & Aitchison, 2014; Norder et al., 2019). Recently, 

receding sea levels have also been suggested to increase connectivity in marine organisms that live in 

coastal habitat of oceanic islands, but without explicit genetic evidence prior to this research (Rijsdijk 

et al., 2014; Vieira et al., 2019). 

Parallels have been drawn between connectivity of terrestrial populations in high altitude sky islands 

and oceanic archipelagos (Flantua et al., 2020). The research presented here further suggests that 
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climatic fluctuations cause corresponding patterns of connectivity in coastal marine species with 

limited dispersal and in terrestrial biota of oceanic archipelagos and sky islands. However, there is a 

great difference in the magnitude of vertical shift in marine compared to terrestrial habitats. Global 

sea levels fluctuate on average over 100 m (Hansen et al., 2013), while high altitude ecosystems 

fluctuate in elevation over thousands of meters (Hazzi et al., 2018). In montane ecosystems of 

continental mountain ranges, and in mountains on oceanic islands, shifts to lower elevations often 

increase habitat area and genetic connectivity (Flantua et al., 2020; Hewitt, 2000; Salces-Castellano et 

al., 2020). In contrast to oceanic islands, glaciation in continental mountain ranges can also reduce 

alpine habitat, reduce connectivity, and drive isolation and extinction in terrestrial species 

(Schönswetter et al., 2005; Svenning et al., 2015). Due to difference in magnitude of vertical shift and 

overall higher dispersal in the aquatic medium, changes in connectivity in relation to climatic 

fluctuations may be less common or more subtle in the ocean. However, results from Galapagos 

bullhead sharks illustrate that marine species with narrow depth ranges and limited capacity to cross 

deeper water are likely to reveal parallels between oceanic archipelagos and terrestrial sky islands. 

Variations in global climate also influence range dynamics in marine and terrestrial organisms (Kokko 

& López-Sepulcre, 2006; Pinsky et al., 2020). One of the most described processes is the poleward shift 

of terrestrial species’ distributions due to increasing global temperatures (Parmesan & Yohe, 2003; 

Root et al., 2003). Poleward range shifts have also been described in marine species (Booth et al., 2011; 

Sorte et al., 2010). Inversely, climate-driven range contractions also occur in marine and terrestrial 

organisms, but have been described to a lesser extent (Hampe & Petit, 2005; Pinsky et al., 2020).  

Range dynamics are influenced by the capacity of species to disperse across potential barriers and their 

ability to colonize new habitat (Jønsson et al., 2016). For instance, increasing temperatures may cause 

range contractions in species with limited dispersal ability that are confined to geographically isolated 

locations, as is the case for Galapagos bullhead sharks (Pinsky et al., 2020; Smale & Wernberg, 2013). 

Global warming can cause habitat reductions in high altitude systems that result in range contractions 

in terrestrial species with limited dispersal (Hampe & Petit, 2005). In contrast, tropical species with 

higher dispersal capacity or propensity, including whitetip reef sharks, may experience range 

expansions under increasing temperatures (Kubisch et al., 2014). For example, dispersal around the 

tip of South Africa during warmer climates has been identified as the primary route of colonization 

between Atlantic and Indian Ocean tropical marine fauna (Bowen et al., 2016). Further, dispersal 

propensity may be higher in isolated or highly fragmented  populations, which are common at the edge 

of a species’ range (Holt, 2003; Kubisch et al., 2014). High dispersal propensity at range edges in 

whitetip reef sharks and increasing ocean temperatures could be responsible for the arrival of this 
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species in the Easter Islands, the Kermadec Islands, and the Atlantic coast of Brazil (Bornatowski et al., 

2018; Duffy et al., 2017; Morales et al., 2019). 

 

Future directions 

The global synthesis presented in this study (Chapter 2) indicated that research on population genetics 

and phylogeography in elasmobranchs was biased towards specific taxonomic groups and geographic 

areas. More than double the number of shark species were studied, representing two thirds of the 

publications examined, compared to batoids. However, batoids (rays and skates) are more speciose 

(over 600 species) than sharks (over 500 species) and make up a slightly larger number of the global 

chondrichthyan fisheries catch (Dulvy et al., 2014; Ebert et al., 2013; Last et al., 2016). Moreover, 

species that are of particular interest to the media and the general public due to human-wildlife 

conflicts, conservation concerns, and their value for tourism, including white sharks (Carcharodon 

Carcharias) and scalloped hammerheads (Sphyrna lewini), have received considerably more attention 

(Albert et al., 2018; Friedrich et al., 2014; McClenachan et al., 2012). A higher number of publications 

was also found for species such as blue sharks (Prionace glauca), spiny dogfish (Squalus acanthias), 

school sharks (Galeorhinus galeus), and thorny skates (Raja clavata) because they are of economic 

importance to fisheries (Barker & Schluessel, 2005; Fowler et al., 2005; Musick et al., 2000; 

Simpfendorfer & Dulvy, 2017). Further, research on barriers in elasmobranch populations has, to some 

extent, concentrated on geographic areas that are of particular interest due to their geological and 

oceanographic complexity (Chapter 2). However, areas that have received less attention (i.e., the 

north-western Pacific, the northern Indian Ocean, the coastal waters of tropical Africa, and the coasts 

of South America) often correspond to the Exclusive Economic Zones of developing countries, some of 

which harbour higher elasmobranch diversity (i.e., South America and India), but have less resources 

available for research (Halpern et al., 2006; Lucifora et al., 2011; Waldron et al., 2017). 

The two case studies produced as part of this thesis address some of the taxonomic and geographic 

gaps and may set precedents for future research that use marine organisms without dispersive larvae 

to study the impact of geologic and climatic processes on marine connectivity and biogeography 

(Bernardi, 2000; Vieira et al., 2019). For example, island-mainland comparisons in shallow-water 

organisms with limited dispersal, including H. quoyi and T. obesus, could provide new insight into the 

genomic signatures of geographic isolation in oceanic locations caused by colonization and island 

formation (Cowie & Holland, 2006; Patiño et al., 2017). To test hypotheses about the timing of arrival 

and multiple versus single colonization events, phylogeographic and phylogenetic analyses could be 
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applied to samples of H. quoyi from the Galapagos Islands and the continental coast of South America, 

and closely related species (Emerson, 2002; Juan et al., 2000). 

Lower genetic diversity has been found in oceanic locations compared to the continental ranges of 

some elasmobranchs. For example, lower genetic diversity in oceanic compared to continental 

populations were found in the common smooth-hound (Mustelus mustelus) in Cape Verde (Hull et al., 

2019), grey reef sharks (Carcharhinus amblyrhynchos) and whitetip reef sharks (T. obesus; Chapter 4) 

in Cocos Keeling Islands (Momigliano et al., 2017), lemon sharks (Negaprion brevirostris) in Atol das 

Rocas (Ashe et al., 2015), and the thornback ray (Raja clavata) in the Azores (Chevolot et al., 2006b). 

Lower genetic diversity was also found in two teleost reef fish with small populations that are endemic 

to Clipperton Atoll, Eastern Pacific, when compared to reef fish with broader geographic ranges and 

larger population sizes (Crane et al., 2018). Future island-comparisons of population sizes and genetic 

diversity in species with limited dispersal may reveal similarities with terrestrial populations that 

challenge our current understanding of marine island biogeography (Dawson, 2016; Pinheiro et al., 

2017).  

There are several elasmobranchs that could be used in future island-mainland comparisons to study 

evolution and island biogeography because they have life histories and geographic distributions similar 

to Galapagos bullhead sharks (Figure 14). The Pacific guitarfish (Pseudobatos planiceps), the Velez ray 

(Raja velezi) and the Peruvian torpedo (Torpedo peruana), are shallow-water demersal species that 

are found in the Galapagos and the continental coast of South America (Hearn et al., 2014; Last et al., 

2016). Demersal species that could be studied in other oceanic archipelagos, include the California 

horn shark (Heterodontus francisci) in the Channel Islands and the angel shark (Squatina squatina) in 

the Canary Islands (Ebert et al., 2013; Lawson et al., 2020). 
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Figure 14. Demersal elasmobranchs, a) Velez ray (Raja velezi) and b) Peruvian torpedo (Torpedo peruana), that 

inhabit coastal waters of the Galapagos archipelago and the continental coasts of South America. Photographs 

by Maximilian Hirschfeld. 

 

Reef-associated species with vast geographic ranges, such as whitetip reef sharks, are suitable 

candidates to examine the eco-evolutionary drivers and genetic consequences of rare long-distance 

dispersal in the ocean (Gillespie et al., 2012). Rare long-distance dispersal may have evolved in reef-

associated species to outweigh the negative effects of genetic isolation. Large-scale sampling across 

different magnitudes of habitat fragmentation and the use of genomic markers in other reef-

associated sharks and species that lack dispersive larvae, may reveal dispersal pathways and their 

relation to ocean currents (Gillespie et al., 2012; Riginos et al., 2016). Traditional (external and 

photographic tagging) and genetic mark-recapture methods could be employed to trace dispersal 

events (Selkoe et al., 2016). For example, large networks of acoustic monitoring systems could be 

combined with genetic sampling of reef sharks across the Coral Sea to link site-fidelity and dispersal 

behaviour to genetic patterns (Brodie et al., 2018; Ovenden, 2013). However, long-distance dispersal 

events are often rare. Population and seascape genetics approaches therefore have an advantage 

because they capture genetic signatures that results from dispersal events that occurred over longer 

(evolutionary) times scales. Moreover, genetic sampling of sharks that appear to have only recently 

arrived at isolated locations could provide insight into their origin and identify possible dispersal 

routes.  
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Appendix A 

Table 7. Description of nine main barrier types with spatio-temporal information and source references used to construct Figure 4 in Chapter 2. 

Category Barrier type and 
description 

Spatial 
scale 
(kms) 

Factors that 
form the barrier 

Barriers in category 
(abbreviations used in Figure 3) Temporal scale Temporal variability References 

1 Separation of major 
oceans basins: 
Geologic processes 
form land bridges 

10000s-
1000s 

Geographic Old World Barrier (OWB) 
 

55-35 Mya – present Stable (But: Artificial 
opening of the Suez 
Channel) 

(Ricou, 1987; 
Seton et al., 
2012) 

Isthmus of Panama Barrier (IPB) 
 

3.5 Mya – present 
 

Stable (Coates et al., 
2004; O’Dea et 
al., 2016)  

Sunda Shelf Barrier (SSB) 2.58 (Pleistocene) -
0.012 Mya 

Fluctuates with sea 
level 

(Voris, 2000) 

2 Large scale thermal 
barrier separating 
hemispheres 

10000s-
1000s 

Hydrologic 
(thermal) 
 

Equatorial warm water barrier 
(EWB) 

NA Fluctuates with 
global climate 

(Bowen et al., 
2016) 

3 Mid ocean barriers: 
Large distances across 
major ocean basins 

10000s-
1000s 

Geographic East Pacific Barrier (EPB) 
Mid Atlantic Barrier (MAB) 
Indian Ocean Barrier (IOB) 

Gradual formation of 
major ocean basins: 
ca. 55-3.5 Mya – 
present 

Stable (Dudgeon et al., 
2012; Rocha et 
al., 2007) 

4 Straits 1000s-
100s 

Geographic Strait of Gibraltar (SG) 
Strait of Sicily (SS) 

SG: Closed 5.6 Mya 
and reopened 5.3 
Mya 
SS: NA 

Fluctuates with sea 
level 

(Patarnello et 
al., 2007). 
 

Torres Strait (TS) 
 

2.58 (Pleistocene) -
0.012 Mya 

Fluctuates with sea 
level 

(Mirams et al., 
2011) 

Taiwan strait (TWS) 2.58 (Pleistocene) -
0.012 Mya 

Fluctuates with sea 
level 

(Voris, 2000) 

5 Depth: 
Ocean depth below 
the edge of the 
continental shelf at 

1000s-
100s 

Geographic Depth of oceanic sub-basins: e.g. 
Mediterranean sub-basins, 
Tasman Sea, Coral Sea 
Depth between the continental 
shelf and oceanic islands: e.g. 

Varies individually. 
E.g. Time of 
formation of volcanic 
oceanic islands 

Stable (may fluctuate 
with sea level in 
some cases) 

See Table S1 for 
individual 
references 
TT:(Saqab et al., 
2017) 
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intermediate to small 
scales 

Channel Islands, Brazilian off-shore 
islands. 
Ocean trenches: e.g. Timor Trench 
(TT) 

TT: Since 6-3 Mya 
(Saqab et al., 2017)  

6 Small scale thermal 
barriers 

1000s-
100s 

Hydrologic 
(thermal) 
 

Agulhas-Benguela current front 
(AGB) and Angola-Benguela 
current front (AB) 

Since 2 Mya Fluctuates with 
global climate (ocean 
temperatures and 
circulation) 

(Henriques et 
al., 2014; 
Hutchings et al., 
2009; Krammer 
et al., 2006; 
Marlow et al., 
2000) 

Baja California Peninsula (BCP) Seaway between 
Pacific coast and Gulf 
of California closed 
about 3 Mya and 
warm temperatures 
established around 
the tip of the 
peninsula from 
0.0117 Mya 

May fluctuate with 
global climate (ocean 
temperatures and 
circulation) 

(Holt et al., 
2000; Jacobs et 
al., 2004; 
Stepien et al., 
2001) 

Point Conception (PC) NA Fluctuates with 
global climate (ocean 
temperatures and 
circulation) 

(Burton 1998; 
Sivasundar & 
Palumbi 2010; 
Stephens et al. 
2016) 

7 Haline barriers 1000s-
100s 

Hydrologic – 
(haline) 

North Sea – Baltic Sea salinity 
gradient 
 

Since 8500 Kya Fluctuates with 
global climate 
(Precipitation) 

(Johannesson & 
André, 2006) 
 

Freshwater plume of river deltas: 
Amazon Barrier (AD) 
Mississippi delta (MD) 

Since formation of 
the amazon river ca. 
10.4 Mya 
 

Fluctuates with 
global climate 
(Precipitation) 

Amazon: 
(Rocha, 2003) 
Mississippi: 
(Portnoy et al., 
2014, 2016) 

Saltwater: Marine environment 
between river systems (in brackish 
and freshwater species) 

Geologic history of 
individual rivers/river 
systems 

Fluctuates with 
global climate 
(Precipitation) 

(Feutry et al., 
2014, 2015; 
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Phillips et al., 
2016) 

8  Currents 1000s-
100s 

Hydrologic 
(current) 

Indonesian throughflow current 
(ITC) 
 

Since 5 Mya Fluctuates with 
global climate (ocean 
circulation) 

(Cane & 
Molnar, 2001) 

    South Equatorial current (SEC) NA  Fluctuates with 
global climate (ocean 
circulation) 

(Santos et al., 
2006) 

9 Florida Peninsula: 
Separation of the Gulf 
of Mexico and 
Western Atlantic 

1000-
100s 

Hydrologic 
(currents) and 
Geographic 
(geomorphology 
of the peninsula) 

Florida Peninsula (FB) Debated Fluctuates with 
global climate (ocean 
temperatures, 
circulation and sea 
level) 

(Avise, 1992; 
Gold & 
Richardson, 
1998) 
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Table 8. Summary of elasmobranch population genetic studies excluded from the synthesis and reasons for their exclusion. Abbreviations for mitochondrial DNA markers: 

mtDNA: Mitochondrial DNA markers, CR: control region, cytb: cytochrome b, COI: cytochrome C oxidase subunit I, ND2/ND4/ND5: NADH dehydrogenase 2/4/5, rDNA: 

ribosomal DNA, rRNA: ribosomal RNA, tRNA: transfer RNA, RFLP: Restriction fragment length polymorphism. Abbreviations for nuclear markers: msat: microsatellites (with 

number of markers in parenthesis), ITS2: nuclear ribosomal internal transcribed spacer 2, ISSRs: inter simple sequence repeats, RAG1: Recombination activating gene 1, AFLP: 

Amplified fragment length polymorphism, SNPs: Single nucleotide polymorphisms. 

Reference Species 
Max. 
body 
size 

Max. 
depth of 
occurrence 

Habitat Barrier type 
Barriers present and reasons for 
exclusion (abbreviations used in 
Figure 3) 

Marker type 

Sharks        
(Almojil et al., 
2018) Carcharhinus limbatus 286 100 neritic NA No barrier present msat (11) 

  Carcharhinus sorrah 166 140 neritic NA No barrier present msat (15) 

Barbieri 2014 Scyliorhinus canicula 100 800 benthopelagic Strait 

Sample size and spatial sampling: 
The Strait of Sicily (SSC) could not be 
assessed as barrier because of low 
sample sizes (i.e. Ionian Sea: n=4) and 
samples were obtained from waters 
within the strait. 

mtDNA (COI) 

(Bernard et al., 
2018) Carcharodon carcharias 595 1200 oceanic Oceanic distance 

Reproductive philopatry and the East 
Pacific Barrier (EPB) may act 
simultaneously on genetic 
differentiation.  

msat (30) 

(Blower et al., 
2012) Carcharodon carcharias 595 1200 oceanic Strait 

Reproductive philopatry was 
identified by the authors as the main 
driver of genetic differentiation 
between regions on either side of the 
Bass Strait (BS). 

mtDNA (CR), msat 
(6) 

(Corrigan et al., 
2015) Orectolobus halei 256 195 benthopelagic NA No barrier present 

mtDNA (CR, ATPase 
6 and ATPase 8), 
AFLP 

  Orectolobus maculatus 320 248 benthopelagic NA No barrier present 
mtDNA (CR, ATPase 
6 and ATPase 8), 
AFLP 
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  Orectolobus ornatus 110 100 benthopelagic NA No barrier present 
mtDNA (CR, ATPase 
6 and ATPase 8), 
AFLP 

(Day et al., 2019) Heterodontus 
portusjacksoni 165 275 benthopelagic NA No barrier present mtDNA (CR), msat 

(10) 

(Dimens et al., 
2019) Carcharhinus acronotus 164 100 neritic Florida Peninsula 

Reproductive philopatry was 
identified by the authors as the main 
driver of genetic differentiation 
between regions on either side of the 
Florida Peninsula (FP). 

SNPs 

(Feutry et al., 
2014) Glyphis glyphis 260 10 benthopelagic Haline 

Reproductive philopatry was 
identified by the authors as driver of 
genetic differentiation between river 
drainages in Northern Australia (AR). 

mitogenome 

(Feutry et al., 
2017) Glyphis glyphis 260 10 benthopelagic Haline 

Reproductive philopatry was 
identified by the authors as driver of 
genetic differentiation between river 
drainages in Northern Australia (AR). 

mitogenome,  SNPs 

(Galván-Tirado et 
al., 2013) Carcharhinus falciformis 350 500 oceanic Oceanic distance 

Spatial sampling: Samples not taken 
from either side of the East Pacific 
Barrier (EPB) but spread across the 
Eastern Pacific. 

mtDNA (CR) 

(Garcia et al., 
2014) Squatina guggenheim 129 360 benthopelagic NA No barrier present 

mtDNA (cytb), 
internal transcribed 
spacer 2 

(Gardner & Ward, 
1998) Mustelus antarcticus 185 350 benthopelagic Strait 

Study design would allow to test for 
the effect of the Bass Strait (BS) as 
barrier, but no statistical comparisons 
were reported. 

mtDNA (restriction 
enzymes), allozyme 

(Gonzalez et al., 
2019) Sphyrna tiburo 150 90 neritic NA No barrier present mtDNA (COI) 

(Gubili et al., 2011) Carcharodon carcharias 595 1200 oceanic NA No barrier present/studied mtDNA (CR) 
(Gubili et al., 2015) Carcharodon carcharias 595 1200 oceanic NA No barrier present/studied mtDNA (CR) 

(Heist et al., 1996a) Isurus oxyrinchus 445 750 oceanic Oceanic distance 

(Schrey & Heist, 2003) use the same 
samples and microsatellite markers 
and were used instead to assess the 
effect of the East Pacific Barrier (EPB). 

mtDNA (RFLP) 
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(Heist et al., 
1996b) 

Rhizoprionodon 
terraenovae 113 280 benthopelagic Florida Peninsula 

No pairwise statistical comparison 
was reported across the Florida 
Peninsula (FP). 

mtDNA (RFLP) 

(Hoelzel et al., 
2006) Cetorhinus maximus 1097 1264 oceanic Oceanic distance 

Spatial sampling: Low sample sizes are 
pooled across larger geographic areas 
across the Mid Atlantic Barrier (MAB).  

mtDNA (CR) 

(Jorgensen et al., 
2010) Carcharodon carcharias 595 1200 oceanic Oceanic distance 

Reproductive philopatry was 
identified by the authors as the main 
driver of genetic differentiation 
between regions on either side of the 
East Pacific Barrier (EPB). 

mtDNA (CR) 

(Keeney et al., 
2003) Carcharhinus limbatus 268 100 neritic Florida Peninsula 

Reproductive philopatry was 
identified by the authors as driver of 
genetic differentiation between 
neonate and juvenile sharks sampled 
in nursery areas on either side of the 
Florida Peninsula (FP). 

mtDNA (CR) 

(Keeney et al., 
2005) Carcharhinus limbatus 268 100 neritic Florida Peninsula, 

Haline 

Reproductive philopatry was 
identified by the authors as driver of 
genetic differentiation between 
neonate and juvenile sharks sampled 
in nursery areas on either side of the 
Florida Peninsula (FP) and the 
Mississippi Delta (MD). 

mtDNA (CR), msat 
(8) 

(Klein et al., 2019) Carcharias taurus 384 232 neritic NA No barrier present/studied mtDNA (ND4, ND5), 
msat (12) 

(Kuguru et al., 
2019) Sphyrna zygaena 500 200 neritic NA No barrier present/studied mtDNA (ND2), msat 

(7) 
(Larson et al., 
2015) Notorynchus cepedianus 296 570 benthopelagic NA No barrier present/studied msat (7) 

(Lavery & Shaklee, 
1989) Carcharhinus tilstoni 200 150 neritic NA No barrier present/studied Enzyme loci (47) 

  Carcharhinus sorrah 166 140 neritic NA No barrier present/studied Enzyme loci (47) 

(Lewallen et al., 
2007) Triakis semifasciata 214 156 benthopelagic Small-scale thermal 

barrier 

No pairwise statistical comparison 
was reported across Point Conception 
(PC). 

mtDNA (CR), ISSRs 

(Li et al., 2017) Prionace glauca 384 1116 oceanic NA No barrier present/studied mtDNA (cytb) 



 

 120 

(Liu et al., 2018) Megachasma pelagios 709 600 oceanic Oceanic distance 

Sample size: Only a single location 
(Taiwan) has more than 5 samples 
precluding the assessment of the East 
Pacific Barrier (EPB) and the Isthmus 
of Panama (IPB). 

mtDNA (cox1), msat 
(1) 

(Maisano Delser et 
al., 2016) 

Carcharhinus 
melanopterus 180 100 neritic NA No barrier studied (not main 

objective) 
Autosomal target 
genes 

(Manuzzi et al., 
2019) Scyliorhinus canicula 384 800 benthopelagic NA No barrier present/studied SNPs 

(Mendonça et al., 
2009) Rhizoprionodon lalandii 102 70 benthopelagic NA No barrier present/studied mtDNA (CR) 

(Mendonça et al., 
2013) Rhizoprionodon lalandii 102 70 benthopelagic Haline,  Current 

Spatial sampling: Sampling locations 
are too far spaced to assess the 
Amazon Barrier (AB) and South 
Equatorial Current (SEC). Both 
potential barriers are present 
between sampling locations. 

mtDNA (CR) 

(Mourier & Planes, 
2013) 

Carcharhinus 
melanopterus 180 100 neritic NA No barrier present/studied msat (17) 

(Nance et al., 
2011) Sphyrna lewini 430 1043 oceanic NA No barrier present/studied mtDNA (CR), msat 

(15) 

(O’Leary et al., 
2015) Carcharodon carcharias 595 1200 oceanic Large-scale thermal 

barrier 

Spatial sampling: Two barriers, the 
Equatorial warm water barrier (EWB) 
and the Mid Atlantic Barrier (MAB) 
are present between sampling 
locations in the Northwest Atlantic 
and South Africa. 

mtDNA (CR), msat 
(14) 

(Oñate-González et 
al., 2015) Carcharodon carcharias 595 1200 oceanic Small-scale thermal 

barrier 

Reproductive philopatry may act 
simultaneously on genetic 
differentiation between locations on 
either side of the Baja California 
Peninsula (BCP) and Point Conception 
(PC). 

mtDNA (CR) 

(Ovenden et al., 
2011) Rhizoprionodon acutus 178 200 benthopelagic Depth, Strait, 

Current 

Spatial Sampling: Three potential 
barriers,  Timor Trench (TT), Torres 
Strait (TST), and  Indonesian 
throughflow current (ITC) are present 

mtDNA (ND4), msat 
(6) 
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between sampling locations in 
Northern Australia and Indonesia. 

 Sphyrna lewini 430 1043 oceanic Depth, Strait, 
Current 

Spatial Sampling: Three potential 
barriers,  Timor Trench (TT), Torres 
Strait (TST), and  Indonesian 
throughflow current (ITC) are present 
between sampling locations in 
Northern Australia and Indonesia. 

mtDNA (ND4), msat 
(8) 

(Pardini et al., 
2001) Carcharodon carcharias 595 1200 oceanic Oceanic distance 

Reproductive philopatry was 
identified by the authors as the main 
driver of genetic differentiation 
between regions (South Africa vs. 
New Zealand and Australia) on either 
side of the Indian Ocean Barrier IOB. 

mtDNA (CR), msat 
(5) 

(Pazmiño et al., 
2017b) 

Carcharhinus 
galapagensis 370 286 neritic NA No barrier present/studied mtDNA (CR), SNPs 

(Pereyra et al., 
2010) Mustelus schmitti 95 195 benthopelagic NA No barrier present/studied mtDNA (cytb) 

(Portnoy et al., 
2015) Sphyrna tiburo 150 90 neritic Florida Peninsula 

Reproductive philopatry was 
identified by the authors as driver of 
genetic differentiation between 
coastal locations on either side of the 
Florida Peninsula (FP). 

mtDNA (CR), SNPs 

(Portnoy et al., 
2016) Carcharhinus isodon 200 20 benthopelagic Florida Peninsula 

Reproductive philopatry was 
identified by the authors as possible 
driver of genetic differentiation 
between coastal locations on either 
side of the Florida Peninsula (FP) and 
the Mississippi Delta (MD). 

mtDNA (CR), msat 
(16) 

(Sodré et al., 2012) Carcharhinus limbatus 286 100 neritic Florida Peninsula, 
Haline 

This study used the data from (Keeney 
et al., 2003) and (Keeney et al., 2005) 
which were also excluded (see above). 

mtDNA (CR) 

(Spaet et al., 2015) Carcharhinus limbatus 286 100 neritic NA No barrier present mtDNA (CR), msat 
(12) 

  Carcharhinus sorrah 166 140 neritic NA No barrier present mtDNA (CR), msat 
(9) 
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  Rhizoprionodon acutus 178 200 benthopelagic NA No barrier present mtDNA (CR), msat 
(9) 

 Sphyrna lewini 430 1043 oceanic NA No barrier present mtDNA (CR), msat 
(12) 

(Suárez-Moo et al., 
2013) 

Rhizoprionodon 
terraenovae 113 280 benthopelagic NA No barrier present AFLP 

(Taguchi et al., 
2015) Prionace glauca 384 1116 oceanic 

Oceanic distance,  
Large-scale thermal 
barrier 

Samples from locations on both sides 
of the East Pacific Barrier (EPB) and 
the Equatorial warm water barrier 
(EWB) were pooled and no pairwise 
comparisons reported. 

mtDNA (cytb) 

(Tillett et al., 
2012b) Carcharhinus leucas 366 164 neritic NA No barrier present mtDNA (CR, ND4), 

msat (3) 

(Vella & Vella, 
2017) Hexancheus griseus 550 2490 oceanic Strait 

Spatial sampling: The Strait of Sicily 
(SSC) could not be assessed as barrier 
because samples were also obtained 
from waters within the strait. 

mtDNA (CR, cytb, 
16S rRNA, 12S rRNA, 
3 tRNA genes) 

     
Oceanic distance, 
Large-scale thermal 
barrier, Strait 

Sample sizes were too low (n < 5) to 
test genetic differences across the  
East Pacific Barrier (EPB), the 
Equatorial warm water barrier (EWB), 
the Strait of Gibraltar (SG), and the 
Strait of Dardanelles. 

 

(Walter et al., 
2017) 

Somniosus 
microcephalus 730 2647 oceanic NA No barrier present NA 

Batoids        
(Chapman et al., 
2011a) Pristis pectinata 553 122 benthopelagic NA No barrier present msat (8) 

(Chevolot et al., 
2008) Raja clavata 139 1020 benthopelagic NA No barrier present msat (5) 

(Griffiths et al., 
2010) Dipturus batis 143 600 benthopelagic NA No barrier present mtDNA (CR), msat 

(6) 

(Griffiths et al., 
2011) Dipturus oxyrinchus 150 1230 benthopelagic Strait 

Spatial sampling: Sampling locations 
on either side of the Strait of Gibraltar 
are too far spaced. Other potential  
barriers are present. 

(CR, ATPase6, 
ATPase8) 
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(Le Port & Lavery, 
2012) 

Bathytoshia 
brevicaudata 430 480 benthopelagic Oceanic distance, 

Depth 

(Roycroft et al., 2019) use the same 
samples and microsatellite markers 
and were used instead to assess the 
effect of Indian Ocean Barrier IOB and 
depth between Australia and New 
Zealand,  and  Tasman Sea (TAS). 

mtDNA (CR) 

(Li et al., 2013) Dasyatis akajei 138 50 benthopelagic Depth 

The effect of the ocean depths of the  
Ryukyu Trench and Okinawa Trough 
as potential barriers could not be 
determined because significant 
genetic differences were also shown 
for control locations that lack physical 
barriers. 

AFLP 

(Li et al., 2015) Dasyatis akajei 138 50 benthopelagic Depth 

The effect of the ocean depths of the  
Ryukyu Trench and Okinawa Trough 
as potential barriers could not be 
determined because significant 
genetic differences were also shown 
for control locations that lack physical 
barriers. 

mtDNA (CR) 

(O’Connell et al., 
2019) Leucoraja ocellata 113 723 benthopelagic NA No barrier present/studied SNPs 

  Leucoraja erinacea 62 914 benthopelagic NA No barrier present/studied SNPs 
(Phillips et al., 
2011) Pristis clavata 318 20 benthopelagic NA No barrier present/studied mtDNA (CR) 

  Pristis pristis 700 60 benthopelagic NA No barrier present/studied mtDNA (CR) 
  Pristis zijsron 730 100 benthopelagic NA No barrier present/studied mtDNA (CR) 
(Phillips et al., 
2016) Pristis clavata 318 20 benthopelagic NA No barrier present/studied msat (8) 

  Pristis pristis 700 60 benthopelagic NA No barrier present/studied msat (7) 
  Pristis zijsron 730 100 benthopelagic NA No barrier present/studied msat (8) 

(Puckridge et al., 
2013) Neotrygon kuhlii 70 170 benthopelagic Depth, Strait,  

Current 

No pairwise statistical comparison 
was reported across Timor Trench 
(TT), Torres Strait (TST), and  
Indonesian throughflow current (ITC).  

mtDNA (COI, 16S), 
RAG1 

(Richards et al., 
2009) Aeobatus narinari 330 80 neritic NA No barrier studied, focus on 

phylogeny 
mtDNA (cytb, COI), 
ITS2 
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(Schluessel et al., 
2010) Aeobatus narinari 330 80 neritic Small-scale thermal 

barrier, Land bridge 

Spatial sampling: Sampling locations 
on the Western Atlantic and East-
coast of South Africa too far spaced to 
test for the effect of the Agulhas-
Benguela Front (AGB). The effect of 
the Sunda Shelf Barrier (SSB) could 
not be tested because samples were 
pooled from locations across this 
barrier. 

mtDNA (cytb, ND4) 

     Mid ocean barrier, 
Land bridge 

Sample sizes were too low (n < 5) to 
test genetic differences across the 
East Pacific Barrier (EPB), Indian 
Ocean Barrier IOB,  Isthmus of 
Panama (IPB). 

 

(Valsecchi et al., 
2005) Raja asterias 70 343 benthopelagic Strait 

Sample size to low at sampling 
locations on either side of the barrier 
to test the effect of the Strait of Sicily 
(SSC) 

mtDNA (CR) 

 Raja clavata 139 1020 benthopelagic Strait 

Sample size to low at sampling 
locations on either side of the barrier 
to test the effect of the Strait of Sicily 
(SSC) 

mtDNA (CR) 

 Raja miraletus 71 462 benthopelagic Strait 

Sample size to low at sampling 
locations on either side of the barrier 
to test the effect of the Strait of Sicily 
(SSC) 

mtDNA (CR) 

(Vargas-Caro et al., 
2017) Dipturus trachyderma 264 480 benthopelagic NA No barrier present/studied mtDNA (CR), msat 

(10) 

 Zearaja chilensis 168 600 benthopelagic NA No barrier present/studied mtDNA (CR), msat 
(10) 

(Weltz et al., 2018) Zearaja maugeana 84 10 benthopelagic NA No barrier present/studied 
mtDNA (CR, ND2, 
ND4, cytb), msat 
(10) 
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Table 9. Summary of physical barriers examined in elasmobranch population genetic studies. Abbreviations for mitochondrial DNA markers: mtDNA: Mitochondrial DNA 

markers, CR: control region, cytb: cytochrome b, COI: cytochrome C oxidase subunit I, ND2 and ND4: NADH dehydrogenase 2/4, rDNA: ribosomal DNA, tRNA: transfer RNA. 

Abbreviations for nuclear markers: msat: microsatellites (with number of markers in parenthesis), ITS2: nuclear ribosomal internal transcribed spacer 2, EPICs: Exon-primed, 

intron crossing DNA markers, LDH: lactate dehydrogenase, AFLP: Amplified fragment length polymorphism, SNPs: Single nucleotide polymorphisms. 

Reference Species 
Max. 
body 
size 

Max. 
depth of 
occurrence 

Habitat Barrier type Barrier description 
(abbreviations used in Figure 3) 

Marker type (significant 
genetic differentiation 
across barrier marked in 
bold) 

Sharks        
(Ahonen et al., 
2009) Carcharias taurus 325 232 neritic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) mtDNA (CR), msat (6) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR), msat (6) 
(Andreotti et al., 
2016) Carcharodon carcharias 595 1200 oceanic Current front Agulhas-Benguela Front (AGB) mtDNA (CR), msat (14) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR) 
(Ashe et al., 2015) Negaprion brevirostris 368 120 benthopelagic Florida Peninsula Florida Peninsula (FP) mtDNA (CR, ND2), msat (9) 
       Depth Florida Straits (FS) mtDNA (CR, ND2), msat (9) 
(Bailleul et al., 
2018) Prionace glauca 384 1116 oceanic Depth Depth between North-East 

Atlantic coast and Azores (AZ) mtDNA (cytb), msat (9) 

       Strait Strait of Gibraltar (SG) mtDNA (cytb), msat (9) 

       Depth 
Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

mtDNA (cytb), msat (9) 

(Barker et al., 
2015) Triakis semifasciata 214 156 benthopelagic Current front Point Conception (PC) msat (5) 

       Depth Southern California Bight (SCB) msat (5) 
(Benavides et al., 
2011a) Carcharhinus brachyurus 325 360 neritic Current front Agulhas-Benguela Front (AGB) mtDNA (CR) 

       Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 
       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR) 

       Depth 
Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

mtDNA (CR) 
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(Benavides et al., 
2011b) Carcharhinus obscurus 420 500 neritic Florida Peninsula Florida Peninsula (FP) mtDNA (CR) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR) 
(Bernard et al., 
2016) Galeocerdo cuvier 550 1112 neritic Florida Peninsula Florida Peninsula (FP) mtDNA (CR, COI), msat (10) 

       Depth Florida Straits (FS) mtDNA (CR, COI), msat (10) 
       Mid ocean barrier Indian Ocean Barrier (IOB) msat (10) 
(Bernard et al., 
2017) Carcharhinus perezi 295 378 neritic Depth Depth between Cayman Islands 

and Belize (CI) 
mtDNA (CR, ND4), msat (7), 
LDH 

(Bester-van der 
Merwe et al., 
2017) 

Galeorhinus galeus 195 1100 benthopelagic Current front Agulhas-Benguela Front (AGB) mtDNA (ND2), msat (19) 

       Mid ocean barrier East Pacific Barrier (EPB) msat (19) 
       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (ND2), msat (19) 
       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (ND2), msat (19) 

       Depth 
Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

mtDNA (ND2), msat (19) 

(Bitalo et al., 2015) Galeorhinus galeus 195 1100 benthopelagic Current front Agulhas-Benguela Front (AGB) msat (12) 
  Mustelus mustelus 175 800 benthopelagic Current front Agulhas-Benguela Front (AGB) msat (12) 

(Boissin et al., 
2019) 

Carcharhinus 
amblyrhynchos 265 275 neritic Depth 

Coral Sea (CS): Depth between 
coast and island (East Australia 
vs. Chesterfield)  

msat (13) 

       Depth 
West Pacific islands (WP): 
Depth between coast and island 
(Palmyra vs. Tuamotu) 

msat (13) 

       Depth 
West Pacific islands (WP):  
Depth between coast and island 
(Society vs. Phoenix Is.) 

msat (13) 

     Depth 
Coral Sea (CS): Depth between 
islands (Chesterfield vs. New 
Caledonia) 

msat (13) 

     Depth 
West Pacific islands (WP): 
Depth between islands 
(Palmyra vs. Phoenix) 

msat (13) 
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       Depth 
West Pacific islands(WP): Depth 
between islands (Society Is. vs. 
Tuamotu) 

msat (13) 

(Bolaño-Martínez 
et al., 2019) Sphyrna zygaena 500 200 neritic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) mtDNA (CR) 

(Camargo et al., 
2016) Carcharhinus longimanus 395 1082 oceanic Current front Agulhas-Benguela Front (AGB) mtDNA (CR) 

       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (CR) 
(Cardeñosa et al., 
2014) Alopias pelagicus 428 300 oceanic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (COI), msat (7) 

(Carmo et al., 
2019) Galeocerdo cuvier 550 1112 neritic Land bridge Isthmus of Panama (IPB) mtDNA (CR) 

       Depth 
Depth: South American 
continent and Brazilian offshore 
islands (BR) 

mtDNA (CR) 

       Current South Equatorial Current (SEC) mtDNA (CR) 
(Castillo-Olguín et 
al., 2012) Sphyrna lewini 430 1043 oceanic Land bridge Isthmus of Panama (IPB) mtDNA (CR), msat (5) 

(Castro et al., 
2007) Rhincodon typus 1700 1928 oceanic Current front Agulhas-Benguela Front (AGB) mtDNA (CR) 

       Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 
       Land bridge Isthmus of Panama (IPB) mtDNA (CR) 
(Catarino et al., 
2015) 

Centroscymnus 
coelolepis 130 3675 oceanic Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR) 

       Depth Depth between North-East 
Atlantic coast and Azores (AZ) mtDNA (CR), msat (11) 

       Strait Strait of Gibraltar (SG) mtDNA (CR), msat (11) 
(Chabot & Allen, 
2009)  

Galeorhinus galeus 195 1100 benthopelagic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 

       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (CR) 
(Chabot, 2015)  Galeorhinus galeus 195 1100 benthopelagic Mid ocean barrier East Pacific Barrier (EPB) msat (11) 

       Large-scale thermal 
barrier 

Equatorial warm water barrier 
(EWB) msat (11) 

       Mid ocean barrier Indian Ocean Barrier (IOB) msat (11) 
(Chabot et al., 
2015) Mustelus henlei 100 281 benthopelagic Current front Baja California Peninsula (BCP) mtDNA (CR), msat (6) 
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       Depth Southern California Bight (SCB) mtDNA (CR), msat (6) 

       Current front Point Conception (PC) mtDNA (CR), msat (6) 
(Chen et al., 2017) Scoliodon macrorhynchos 71 NA benthopelagic Land bridge Taiwan Strait (TS) mtDNA (CR) 
(Clarke et al., 2015) Carcharhinus falciformis 350 500 oceanic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 
       Land bridge Isthmus of Panama (IPB) mtDNA (CR) 
       Land bridge Sunda Shelf Barrier (SSB) mtDNA (CR) 
(Corrigan et al., 
2018) Isurus oxyrinchus 445 750 oceanic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) 

mtDNA (CR, flanking 
tRNAs), msat (10) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR, flanking 
tRNAs), msat (10) 

       Depth 
Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

mtDNA (CR, flanking 
tRNAs), msat (10) 

(Cunha et al., 
2012) 

Centroselachus 
crepidater 105 2080 oceanic Depth Depth between North-East 

Atlantic coast and Azores (AZ) mtDNA (CR), msat (7) 

(Da Silva Ferrette 
et al., 2015) 

Pseudocarcharias 
kamoharai 122 590 oceanic Current front Agulhas-Benguela Front (AGB) mtDNA (CR) 

       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (CR) 
(Daly-Engel et al., 
2012) Sphyrna lewini 430 1043 oceanic Current front Agulhas-Benguela Front (AGB) msat (13) 

       Mid ocean barrier East Pacific Barrier (EPB) msat (13) 
       Florida Peninsula Florida Peninsula (FP) msat (13) 
       Mid ocean barrier Indian Ocean Barrier (IOB) msat (13) 
       Land bridge Isthmus of Panama (IPB) msat (13) 
       Mid ocean barrier Mid Atlantic Barrier (MAB) msat (13) 
       Land bridge Sunda Shelf Barrier (SSB) msat (13) 
       Strait Torres Strait (TST) msat (13) 

(Deng et al., 2019)  Carcharhinus leucas 366 164 neritic Depth South China Sea: Depth 
between two islands mtDNA (CR) 

(Devloo-Delva et 
al., 2019) Galeorhinus galeus 195 1100 benthopelagic Depth 

Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

SNPs 

(Domingues et al., 
2018c) Carcharhinus falciformis 350 500 oceanic Depth 

Depth between Brazilian coast 
and oceanic archipelago St. 
Peter  and St. Paul (BR) 

mtDNA (CR) 
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       Florida Peninsula Florida Peninsula (FP) mtDNA (CR) 
       Current South Equatorial Current (SEC) mtDNA (CR) 
(Domingues et al., 
2018a) Carcharhinus signatus 280 600 oceanic Haline Amazon Barrier (AB) mtDNA (CR) 

       Florida Peninsula Florida Peninsula (FP) mtDNA (CR), msat (9)  
       Current South Equatorial Current (SEC) mtDNA (CR), msat (9) 
(Dudgeon et al., 
2009) Stegostoma fasciatum 250 90 benthopelagic Strait Torres Strait (TST) mtDNA (ND4), msat (13) 

(Duncan et al., 
2006) Sphyrna lewini 430 1043 oceanic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR) 
       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (CR) 
       Strait Torres Strait (TST) mtDNA (CR) 

(Escatel-Luna et al., 
2015) Sphyrna tiburo 150 90 neritic Depth 

Depth of the Gulf of Mexico 
between Florida shelf and 
Yucatan (GM) 

mtDNA (CR) 

       Florida Peninsula Florida Peninsula (FP) mtDNA (CR) 
(Feldheim et al., 
2001) Negaprion brevirostris 368 120 benthopelagic Depth Florida Straits (FS) msat (4) 

(Félix-López et al., 
2019) Sphyrna zygaena 500 200 neritic Current front Baja California Peninsula (BCP) mtDNA (CR) 

(Ferrari et al., 
2018) Galeus melastomus 90 2000 benthopelagic Strait Strait of Sicily (SSC) mtDNA (CR, COI, ND2) 
 Scyliorhinus canicula 100 800 benthopelagic Strait Strait of Sicily (SSC) mtDNA (CR, COI, ND2) 
(Fields et al., 2016) Sphyrna tiburo 150 90 neritic Depth Florida Straits (FS) mtDNA (CR) 

(Gaida, 1997) Squatina californica 175 205 benthopelagic Depth 
Southern California Bight (SCB): 
Depth between islands of the 
Channel Islands 

allozyme 

(Geraghty et al., 
2013) Carcharhinus brevipinna 304 200 neritic Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (ND4) 

       Strait Torres Strait (TST) mtDNA (ND4) 
(Geraghty et al., 
2014) Carcharhinus obscurus 420 500 neritic Depth Timor Trench (TT) mtDNA (ND4) 

       Strait Torres Strait (TT) mtDNA (ND4) 
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(Giles et al., 2014) Carcharhinus sorrah 166 140 neritic Depth 
Coral Sea: Depth between 
Eastern Australia and New 
Caledonia (CS) 

mtDNA (CR) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR) 

       Current Indonesian throughflow current 
(ITC) mtDNA (CR) 

       Land bridge Sunda Shelf Barrier mtDNA (CR) 
       Depth Timor Trench (TT) mtDNA (CR) 
       Strait Torres Strait (TST) mtDNA (CR) 
(Gledhill et al., 
2015) Carcharhinus limbatus 286 100 neritic Depth Florida Straits (FS) mtDNA (CR) 

(Green et al., 2019) Carcharhinus 
albimarginatus 300 800 neritic Depth 

Coral Sea (CS): Depth between 
Eastern Australia and Papua 
New Guinea  

mtDNA (CR), msat (12), 
SNPs 

(Gubili et al., 2014) Scyliorhinus canicula 100 800 benthopelagic Depth Depth: Balearic abyssal plain 
(BAP) mtDNA (CR), msat (12) 

       Strait Strait of Gibraltar (SG) mtDNA (CR), msat (12) 
       Strait Strait of Sicily (SSC) mtDNA (CR), msat (12) 

(Gubili et al., 2016) Etmopterus spinax 55 2490 oceanic Depth Depth between North-East 
Atlantic coast and Azores (AZ) mtDNA (CR), ITS2 

       Strait Strait of Gibraltar (SG) mtDNA (CR), ITS2 
       Strait Strait of Sicily (SSC) mtDNA (CR), ITS2 
(Heist et al., 1995) Carcharhinus plumbeus 243 500 neritic Florida Peninsula Florida Peninsula (FP) mtDNA (RFLP), allozymes 
(Heist & Gold, 
1999) Carcharhinus plumbeus 243 500 neritic Florida Peninsula Florida Peninsula (FP) msat (3) 

(Hernández et al., 
2015) Galeorhinus galeus 195 1100 benthopelagic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) msat (8) 

       Depth 
Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

mtDNA (CR) msat (8) 

(Holmes et al., 
2017) Galeocerdo cuvier 550 1112 neritic Depth 

Coral Sea (CS): Depth between 
Coral Sea reefs and New 
Caledonia 

msat (9) 

       Strait Torres Strait (TST) msat (9) 

(Hull et al., 2019) Mustelus mustelus 175 800 benthopelagic Depth Depth: African coast (Giunea-
Bissau) and Cape Verde (CV) mtDNA (CR), msat (9) 
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       Strait Strait of Gibraltar (SG) mtDNA (CR), msat (9) 
(Junge et al., 2019) Carcharhinus brachyurus 325 360 neritic Strait Bass Strait (BS) SNPs 

       Depth 
Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

SNPs 

  Carcharhinus obscurus 420 500 neritic Strait Bass Strait (BS) SNPs 
       Depth Timor Trench (TT) SNPs 
(Karl et al., 2011) Carcharhinus leucas 366 164 neritic Florida Peninsula Florida Peninsula (FP) mtDNA (CR), msat (5) 
(Karl et al., 2012) Ginglymostoma cirratum 308 130 benthopelagic Depth Florida Straits (FS) mtDNA (CR), msat (8) 

       Depth 
Depth: South American 
continent and Brazilian offshore 
islands (BR) 

mtDNA (CR), msat (8) 

(Keeney & Heist, 
2006) Carcharhinus limbatus 286 100 neritic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 

(King et al., 2015) 
King 2015 Prionace glauca 384 1116 oceanic Mid ocean barrier East Pacific Barrier (EPB) msat (14) 

(Kousteni et al., 
2015) Scyliorhinus canicula 384 800 benthopelagic Depth Depth: Algerian Sub-basin (ASB) mtDNA (COI), msat (12) 

       Strait Strait of Gibraltar (SG) mtDNA (COI) 
       Strait Strait of Sicily (SSC) mtDNA (COI), msat (12) 
(Kousteni et al., 
2016) Squalus blainville 92 1500 benthopelagic Depth Depth: Balearic abyssal plain 

(BAP) mtDNA (COI) 

(Leone et al., 2017) Prionace glauca 384 1116 oceanic Strait Strait of Gibraltar (SG) mtDNA (CR, cytb) 
(Maduna et al., 
2016) Mustelus mustelus 175 800 benthopelagic Current front Agulhas-Benguela Front (AGB) mtDNA (ND4), msat (8) 

       Current front Angola-Benguela Front (AB) mtDNA (ND4), msat (8) 
(Maduna et al., 
2017) Galeorhinus galeus 195 1100 benthopelagic Current front Agulhas-Benguela Front (AGB) msat (11) 

  Mustelus mustelus 175 800 benthopelagic Current front Agulhas-Benguela Front (AGB) msat (11) 
  Mustelus palumbes 113 443 benthopelagic Current front Agulhas-Benguela Front (AGB) msat (11) 
  Triakis megalopterus 207 50 benthopelagic Current front Agulhas-Benguela Front (AGB) msat (11) 
(Mendonça et al., 
2011) Rhizoprionodon porosus 110 500 neritic Current South Equatorial Current (SEC) mtDNA (CR) 

(Momigliano et al., 
2015) 

Carcharhinus 
amblyrhynchos 265 275 neritic Depth Coral Sea (CS): Depth of the 

Coral Sea Through mtDNA (ND4), msat (16) 
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(Momigliano et al., 
2017) 

Carcharhinus 
amblyrhynchos 265 275 neritic Depth Coral Sea (CS): Depth of the 

Coral Sea Through SNPs, mtDNA (ND4) 

       Mid ocean barrier Indian Ocean Barrier (IOB) SNPs, mtDNA (ND4) 
       Depth Timor Trench (TT) SNPs, mtDNA (ND4) 
       Strait Torres Strait (TST) SNPs, mtDNA (ND4) 
(Morales et al., 
2018) Alopias superciliosus  484 723 oceanic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) mtDNA (CR) 

       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (CR) 
(Ovenden et al., 
2009) Carcharhinus sorrah 166 140 neritic Strait Torres Strait (TST) mtDNA (CR), msat (5) 

(Pazmiño et al., 
2018a) 

Carcharhinus 
galapagensis 370 286 neritic Mid ocean barrier East Pacific Barrier (EPB) SNPs, mtDNA (CR) 

       Depth 
Depth between Mexican 
offshore Island (Revillagigedo) 
and Galapagos islands (GA) 

SNPs, mtDNA (CR) 

       Depth 
Tasman Sea: Depth between 
Australian offshore islands and 
New Zealand (TAS) 

SNPs, mtDNA (CR) 

(Pirog et al., 2019) Galeocerdo cuvier 550 1112 neritic Depth 
Coral Sea (CS): Depth between 
Eastern Australia and New 
Caledonia 

msat (27) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR, COI, cytb), 
msat (27) 

       Strait Torres Strait (TST) msat (27) 
(Portnoy et al., 
2010) Carcharhinus plumbeus 243 500 neritic Florida Peninsula Florida Peninsula (FP) mtDNA (CR), msat (8) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR), msat (8) 

(Portnoy et al., 
2014) Carcharhinus acronotus 164 100 neritic Depth 

Depth of the Gulf of Mexico 
between Florida shelf and 
Yucatan (GM) 

mtDNA (CR), msat (23) 

       Florida Peninsula Florida Peninsula (FP) mtDNA (CR), msat (23) 
       Depth Florida Straits (FS) mtDNA (CR), msat (23) 
       Haline Mississippi Delta (MD) mtDNA (CR), msat (23) 
(Quintanilla et al., 
2015) Sphyrna lewini 430 1043 oceanic Depth Depth between Colombian 

coast and Malpeo Island (MA) mtDNA (CR), msat (15) 
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(Ramírez-Amaro et 
al., 2018) Galeus melastomus 90 2000 benthopelagic Depth 

Western Mediterranean: Depth 
of the Alboran and Balearic 
basins (BAP) 

mtDNA (CR, cytb, ND2) 

  Scyliorhinus canicula 384 800 benthopelagic Depth 
Western Mediterranean: Depth 
of the Alboran and Balearic 
basins (BAP) 

mtDNA (CR, cytb, ND2), 
msat (12) 

(Ramírez-Amaro et 
al., 2017) Squatina californica 175 205 benthopelagic Current front Baja California Peninsula (BCP) mtDNA 

(Sandoval 
Laurrabaquio-A et 
al., 2019) 

Carcharhinus leucas 366 164 neritic Florida Peninsula Florida Peninsula (FP) mtDNA (CR),  msat (8) 

(Sandoval-Castillo 
& Beheregaray, 
2015) 

Mustelus henlei 100 281 benthopelagic Current front Baja California Peninsula (BCP) mtDNA (CR), msat (12) 

(Schmidt et al., 
2009) Rhincodon typus 1700 1928 oceanic Land bridge Isthmus of Panama (IPB) msat (8) 

(Schrey & Heist, 
2003) Isurus oxyrinchus 445 750 oceanic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) msat (4) 

(Schultz et al., 
2008) Negaprion brevirostris 368 120 benthopelagic Land bridge Isthmus of Panama (IPB) mtDNA (CR) 

       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (CR), msat (9) 
(Tillett et al., 
2012a) 

Carcharhinus 
amboinensis 280 100 neritic Strait Torres Strait (TST) mtDNA (CR, ND4) 

(Veríssimo et al., 
2010) Squalus acanthias 160 1978 benthopelagic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (ND2), msat (8) 

       Large-scale thermal 
barrier 

Equatorial warm water barrier 
(EWB) mtDNA (ND2), msat (8) 

       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (ND2), msat (8) 
(Veríssimo et al., 
2011) 

Centroscymnus 
coelolepis 130 3675 oceanic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) mtDNA (CR), msat (8) 

       Depth Depth between North-East 
Atlantic coast and Azores (AZ) mtDNA (ND2), msat (8) 

(Veríssimo et al., 
2012) Centrophorus squamosus 166 3366 oceanic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) mtDNA (ND2), msat (6) 

       Depth Depth between North-East 
Atlantic coast and Azores (AZ) mtDNA (ND2), msat (8) 
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(Veríssimo et al., 
2017) Prionace glauca 384 1116 oceanic Large-scale thermal 

barrier 
Equatorial warm water barrier 
(EWB) mtDNA (CR), msat (12) 

       Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (CR), msat (12) 

       Depth Depth between North-East 
Atlantic coast and Azores (AZ) mtDNA (CR), msat (12) 

(Vignaud et al., 
2013) 

Carcharhinus 
melanopterus 180 100 neritic Depth 

West Pacific islands (WP): 
Depth between islands 
(Tetiaroa and Rangiroa) 

msat (11) 

(Vignaud et al., 
2014b) 

Carcharhinus 
melanopterus 180 100 neritic Depth 

Coral Sea (CS): Depth between 
Eastern Australia and New 
Caledonia 

msat (14) 

       Strait Torres Strait (TST) msat (14) 
 
(Vignaud et al., 
2014a) 

Rhincodon typus 1700 1928 oceanic Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 

       Mid ocean barrier Indian Ocean Barrier (IOB) mtDNA (CR), msat (14) 
       Land bridge Isthmus of Panama (IPB) mtDNA (CR), msat (14) 
       Land bridge Sunda Shelf Barrier (SSB) mtDNA (CR) 
(Whitney et al., 
2012b) Triaenodon obesus 213 330 benthopelagic Depth Coral Sea (CS): Depth of the 

Coral Sea Through mtDNA (CR) 

       Mid ocean barrier East Pacific Barrier (EPB) mtDNA (CR) 
       Land bridge Sunda Shelf Barrier (SSB) mtDNA (CR) 
Batoids        
(Arlyza et al., 2013) Neotrygon kuhlii 70 170 benthopelagic Land bridge Sunda Shelf Barrier (SSB) mtDNA (COI) 

(Borsa et al., 2012) Neotrygon kuhlii 70 170 benthopelagic Current Indonesian throughflow current 
(ITC) EPICs (7) 

(Carney et al., 
2017) Rhinoptera bonasus 107 60 benthopelagic Florida Peninsula Florida Peninsula (FP) mtDNA (COI, cytb) 

(Castillo-Páez et 
al., 2014) Zapteryx exasperata 97 200 benthopelagic Current front Baja California Peninsula (BCP) mtDNA (CR, ND2) 

(Chevolot et al., 
2006a) Raja clavata 139 1020 benthopelagic Strait Strait of Dover (SD) msat (5) 

(Chevolot et al., 
2006b) Raja clavata 139 1020 benthopelagic Depth Depth between North-East 

Atlantic coast and Azores (AZ) mtDNA (cytb), msat (5) 

       Strait Strait of Gibraltar (SG) mtDNA (cytb), msat (5) 
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(Chevolot et al., 
2007) Amblyraja radiata 111 1400 benthopelagic Mid ocean barrier Mid Atlantic Barrier (MAB) mtDNA (cytb) 

       Haline 
Salinity and temperature 
gradient between the North Sea 
and the Baltic Sea (NB) 

mtDNA (cytb) 

(Ferrari et al., 
2018) Raja clavata 139 1020 benthopelagic Strait Strait of Sicily (SSC) mtDNA (CR, COI, ND2) 
 Raja miraletus 71 462 benthopelagic Strait Strait of Sicily (SSC) mtDNA (CR, COI, ND2) 

(Feutry et al., 
2015) Pristis pristis 700 60 benthopelagic Haline 

Salt water between river 
drainages in Northern Australia 
(AR) 

mitogenome 

(Frodella et al., 
2016)  

Raja polystigma 71 633 benthopelagic Depth Depth: Algerian Sub-basin (ASB) msat (7) 

       Strait Strait of Sicily (SSC) mtDNA (CR, COI, 16S), msat 
(7) 

(Giles et al., 2016) Rhynchobatus australiae 300 60 benthopelagic Land bridge Sunda Shelf Barrier (SBB) mtDNA (CR) 
       Depth Timor Trench (TT) mtDNA (CR) 
(Green et al., 2018) Pristis cuspidata 350 128 benthopelagic Strait Torres Strait (TST) mtDNA (CR, ND4), msat (5) 
(Newby et al., 
2014)  

Aeobatus narinari 330 80 neritic Florida Peninsula Florida Peninsula (FP) msat (8) 

(Pasolini et al., 
2011) Raja clavata 139 1020 benthopelagic Strait Strait of Gibraltar (SG) mtDNA (CR), AFLP 

       Strait Strait of Sicily (SSC) mtDNA (CR), AFLP 
  Raja straeleni 91 690 benthopelagic Current front Agulhas-Benguela Front (AGB) mtDNA (CR) 
(Plank et al., 2010) Urobatis halleri 58 91 benthopelagic Current front Baja California Peninsula (BCP) msat (7) 

       Depth 
Southern California Bight (SCB): 
Depth between California Coast 
and Santa Catalina Island 

msat (7) 

(Richards et al., 
2019) Hypanus americanus 200 53 benthopelagic Depth Depth between Cayman Islands 

and Belize (CI) mtDNA (CR) 

       Florida Peninsula Florida Peninsula (FP) mtDNA (CR) 
       Depth Florida Straits (FS) mtDNA (CR) 
(Roycroft et al., 
2019) 

Bathytoshia 
brevicaudata 430 476 benthopelagic Mid ocean barrier Indian Ocean Barrier (IOB) msat (11) 
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       Depth 
Tasman Sea: Depth between 
Australia and New Zealand 
(TAS) 

msat (11) 

(Sandoval-Castillo 
et al., 2004) Pseudobatos productus 170 92 benthopelagic Current front Baja California Peninsula (BCP) mtDNA (cytb, 12S rDNA) 

(Sandoval-Castillo 
& Rocha-Olivares, 
2011) 

Rhinoptera steindachneri 107 77 neritic Current front Baja California Peninsula (BCP) mtDNA (ND2) 

(Sellas et al., 2015) Aeobatus narinari 330 80 neritic Depth 
Depth of the Gulf of Mexico 
between Florida and Yucatan 
(GM) 

mtDNA (cytb), msat (10) 

(Smith et al., 2009) Gymnura marmorata 125 95 benthopelagic Current front Baja California Peninsula (BCP) mtDNA (cytb) 
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Appendix B 

 

Figure 15. All 33 dive locations surveyed for Galapagos bullhead sharks between 2015 and 2018. 
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Table 10. Details of resistance surfaces used in isolation by resistance (IBR) analyses. 

a) Resistance values used to generate the resistance surface for the contemporary IBR model based 
on GEBCO bathymetry data (GEBCO Bathymetric Compilation Group, 2019). 

GEBCO bathymetry depth (m) Resistance 
0-40 1 
40-100 50 
100-200 55 
200-300 60 
300-400 65 
400-500 70 
500-600 75 
600-700 80 
700-800 85 
800-900 90 
<0 100 

 

b) Resistance values used to generate the resistance surface for the paleogeographic IBR model using 
historical sea levels over the last 700 thousand years ago (kyr) based on (Ali & Aitchison, 2014). 

GEBCO bathymetry 
(m) 

Time (kyr) Historical sea 
level  

Number of times 
less than 40 m 
deep 

Resistance 

0-40 - - - 1 
40-185 20 145 6 2 
185-194 138 154 5 3 
194-200 342 160 4 4 
200-229 432 189 2 5 
229-250 630 210 1 6 
250-300 - - - 60 
300-400 - - - 65 
400-500 - - - 70 
500-600 - - - 75 
600-700 - - - 80 
700-800 - - - 85 
>800 - - - 90 
<0 - - - 100 
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Table 11. SNP filtering steps for Galapagos bullhead sharks (SNP sequencing and genotyping by 

Diversity Arrays Technologies is described below), corresponding thresholds and resulting number of 

SNPs and individuals kept in the data set. Tow data sets, outlier SNPs detected by both outlier 

methods and neutral SNPs excluding the outliers were retained for analyses. 

Filter Values/thresholds SNPs (samples) retained 
Raw data  33606 (188) 
DArT reproducibility 98% 31196 (188) 
Common markers  29522 (188) 
Minor allele count 4 12423 (188) 
Coverage Min 10 max 50 10396 (188) 
Genotyping (call rate) 0.05 9742 (188) 
SNPs thinning (short linkage) keep one SNP with lowest MAC 9280 (188) 
Heterozygosity None removed 9280 (188) 
Detect duplicate genomes Duplicate samples (n=6) 

Recaptures (n=2)  
9280 (180) 

Hardy-Weinberg equilibrium In 3 populations/0.05 mid p-value 9239 (180) 
Sex-linked markers 5  9234 (180) 
Total number of SNPs and individuals 
retained 

  

Outlier data set  11 (180) 
Neutral data set  9223 (180) 

 

SNP sequencing and genotyping 

Genomic DNA was extracted from 15-20 mg of tissue samples (preserved in 96% ethanol and stored 

at -20˚C until processing) and then sequenced for single nucleotide polymorphism (SNP) genotyping 

by Diversity Arrays Technologies (DArT Pty Ltd, Canberra, Australia). The DArTseqTM protocol (DArT Pty 

Ltd), a next generation sequencing and complexity reduction method using a combination of PstI and 

SphI restriction enzymes (Kilian et al., 2012), is similar to ddRAD (double-digest restriction-associated 

DNA) sequencing (Peterson et al., 2012), but works with lower quantities of DNA and has lower allelic 

dropout rates (Sansaloni et al., 2011). SNP genotyping was done using the standard procedure of the 

proprietary DArT Pty Ltd analytical pipeline (Georges et al., 2018; Grewe et al., 2015). Briefly, the 

analytical pipeline generated short fixed-length sequence fragments (69bp for this study) that are 

aggregated into clusters using the DArT Pty Ltd proprietary clustering algorithm (Georges et al., 2018). 

The fixed fragment length sequences were then analysed using the proprietary DArT software 

(DArTsoft14), which identifies candidate SNP markers within each cluster by assessing the call rate, 

average and variance of sequencing depth, and the average counts for each SNP allele (Georges et al., 

2018). Further, one third of samples were used as technical replicates and were processed twice from 

DNA to assess SNP genotyping consistency, called reproducibility (Kilian et al., 2012). 
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Table 12. Pairwise genetic comparisons in Galapagos bullhead sharks. Pairwise genetic fixation index 

(FST) index below, and corresponding p-values, above diagonal (top table). Pairwise genetic 

differentiation index (DST) below, and corresponding p-values, above diagonal (bottom table). Bold 

numbers indicate significant values after Benjamin-Hochberg false discovery correction. ES = Española, 

FL = Floreana, PE = Punta Espinoza, PM = Punta Mangle, PNG = Parque National Galapagos, PVR = Punta 

Vicente Roca, SCY = San Cristóbal. 

FST  
ES FL PE PM PNG PVR SCY 

ES 
 

0.001 0.001 0.001 0.001 0.001 0.001 

FL 0.0368  0.001 0.001 0.001 0.001 0.001 
PE 0.0304 0.0149  0.27 0.84 0.001 0.001 
PM 0.0303 0.0150 0.0004  0.29 0.001 0.001 
PNG 0.0297 0.0139 -0.0004 0.0003  0.001 0.001 
PVR 0.0315 0.0161 0.0027 0.0028 0.0023  0.001 
SCY 0.0289 0.0207 0.0140 0.0149 0.0133 0.0169  

 
DST  

ES FL PE PM PNG PVR SCY 

ES 
 

0.001 0.001 0.001 0.001 0.001 0.001 

FL 0.00079 
 

0.001 0.001 0.001 0.001 0.001 

PE 0.00061 0.00032 
 

0.78 0.27 0.001 0.001 

PM 0.00062 0.00032 0.00009 
 

0.24 0.001 0.001 

PNG 0.00064 0.00030 0.0001 0.0001 
 

0.001 0.001 

PVR 0.00063 0.00034 0.00014 0.00014 0.00012 
 

0.001 

SCY 0.00064 0.00057 0.00042 0.0004 0.00038 0.00047 
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a) 

 

b) 

 

Figure 16. Admixture analysis for Galapagos bullhead sharks. a) The most likely number of K ancestral 

populations indicated by the lowest cross-entropy criterion generated for 180 sharks and 9223 neutral SNPs 

using the R package tess3R. b) Admixture proportions of K 2-4 ancestral populations for 180 sharks (shown as 

individual bars) and 9223 neutral SNPs.  
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a) 

 

b) 

 

Figure 17. Admixture analysis for a subset of Galapagos bullhead sharks. a) The most likely number of K ancestral 

populations indicated by the lowest cross-entropy criterion generated for the subset of 56 sharks and 9223 

neutral SNPs. b) Admixture proportions of K 2-5 ancestral populations the subset of 56 sharks (shown as 

individual bars) and 9223 neutral SNPs.  
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Table 13. Genomic diversity of shark species studied using similar genotyping approaches. 

Species Genotyping approach SNPs/individuals Ho (Range) Reference 

Galeorhinus galeus DArTseq* 6587/76 0.264- 0.265 (Devloo-Delva et al., 2019) 

Glyphis glyphis DArTseq  
 

1330/356 0.2597-0.2623 (Feutry et al., 2017) 

Carcharhinus albimarginatus ddRAD (Peterson et al., 
2012) 

6461/ 92 0.126 - 0.13  
 

(Green et al., 2018) 

Carcharhinus brachyurus  
 

DArTseq 3766/106 0.208 - 0.261 (Junge et al., 2019) 

Carcharhinus obscurus  
 

DArTseq 8886/207  0.159 - 0.200 (Junge et al., 2019) 

Carcharhinus amblyrhynchos DArTseq 4798/170 
 

0.288 - 0.312 
(0.139 in Chagos 
Archipelago) 

(Momigliano et al., 2017) 

Carcharhinus galapagensis  DArTseq 8103/85 0.188 - 0.193 (Pazmiño et al., 2017a) 

Carcharhinus galapagensis DArTseq 7784/206 0.202- 0.237 (Pazmiño et al., 2018b) 

Scyliorhinus canicula  2b-RAD (Wang et al., 
2012) 

2674/71 0.53 - 0.73 (Manuzzi et al., 2019) 

Heterodontus quoyi DArTseq 9223/180 0.089-0.098 This study 

* DartSeq methods and references can be found in the main manuscript.
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Appendix C 

DNA extraction and sequencing 

Salting out protocol 

Genomic DNA was extracted from fin clips and muscle tissues using a modified salting out protocol 

(Sunnucks & Hales, 1996). Approximately 30 mg of tissue was cut into small pieces, added to 2ml tubes 

with 600µl lysis buffer (5-mM tris-HCl pH 8.0, 20mM EDTA pH 8.0, 2% SDS) and 5 µl of 20mg/ml 

Proteinase K and digested overnight at 55˚ C on a heat block. Proteins were then precipitated by adding 

200µl NaCl (5M), shaking for 20 seconds and centrifuging at the tubes at 14000rpm for 2 min. DNA was 

then pelleted by decanting the supernatant into new tubes, adding 1ml cold Isopropyl (100%), 

inverting the tubes 50x and then centrifuging them at 14000rpm for 5 min. After pouring off the 

supernatant isopropyl, the DNA pellets were washed in 75% ethanol for 15 min twice. The pellets were 

then air-dried overnight and resuspended in 30-70µl deionized water. The quality of extracted DNA 

was assessed using electrophoresis  in a 1% agarose gel in 1× TBE buffer and DNA concentration was 

quantified using Invitrogen Qubit 4 Fluorometer (Thermo Fisher Scientific). 

 

Mitochondrial DNA control region sequencing  

We amplified 819 bp of the mitochondrial control region using the light strand primer Pro-L and the 

heavy strand primer 282-H following Whitney et al. (2012). PCR was performed on a 20µL master mix 

containing 10µL MyTagTM Mix (Bioline, Meridian Bioscience) 2µL of each primer, 2µL template DNA 

and 4 µL purified water (Milli-Q®, Merck). Cycling conditions differed slightly from Whitney et al. (2012) 

and included an initial 5 min denaturation at 95°C, followed by 30 cycles of 30 s denaturation at 95°C, 

30 s annealing at 51 °C, and an extension of 1 min at 72 °C, and ended with a final 10 min extension at 

72°C. Subsequently 7 µL aliquots of PCR product were purified with 3 µL of ExoSAP-IT™ PCR Product 

Cleanup Reagent (Thermo Fisher Scientific Inc.) at 37 degrees for 15 min and reagent was inactivated 

80 °C degrees for 15 min. Sequencing of clean PCR products was performed by the Australian Equine 

Genetics Research Centre (AEGRC) at the University of Queensland, Australia, using BigDye™ 

terminators with the Pro-L primer and a the internal light strand primer Rf45 (Whitney et al., 2012b). 

Sequences were assessed and aligned using Geneious Prime® 2019.2.3 (https://www.geneious.com). 
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Table 14. SNP filtering steps for whitetip reef sharks (SNP sequencing and genotyping by Diversity 

Arrays Technologies is described below), corresponding thresholds, and resulting number of SNPs 

and individuals kept in the data set. 

Filter Values/thresholds SNPs (samples) retained 
Raw data  33466 (209) 
DArT reproducibility 98% 24700 (209) 
Common markers  23399 (209) 
Minor allele count 4 14235 (209) 
Coverage Min 10 max 50 11244 (209) 
Genotyping (call rate) 0.05 9216 (209) 
Maximum number of SNPs per locus 2 9138 (209) 
SNPs thinning (short linkage) keep one SNP with lowest MAC 8649 (209) 
Heterozygosity 0.1> x < 0.2 9280 (205) 
Detect duplicate genomes Duplicate samples (n=21) 

Recaptures (n=1)  
9280 (183) 

Hardy-Weinberg equilibrium In 3 populations/0.05 mid p-value 8595 (183) 
Sex-linked markers   8595 (183) 

Outliers 
36 overlapping SNPs (PCadapt: 193, 
OutFlank: 38) 

8559 (183) 

Total number of neutral SNPs and 
individuals retained 

 8559 (183) 

 

SNP sequencing and genotyping 

Extraction, and sequencing of DNA and the genotyping of SNPs was done using the same steps as 

described in Chapter 2 (Appendix B description below Table 11). 
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a) 

 

 

 

 

 

 

b) 

 

Figure 18. Admixture analyses of the Indo-Pacific data set for whitetip reef sharks. Admixture proportions of 

neutral SNPs including all sampling location in the Indo-Pacific: a) Cross entropy values for K=1-8 ancestral 

populations; The most likely number of K corresponds to the smallest cross-entropy value. b) Bar plot of 

individual admixture proportions (each bar represents one individual) for K=2–5 ancestral populations.  
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a)  

 

 

 

 

b) 

 
Figure 19. Admixture analysis of the regional data set for whitetip reef sharks. Admixture proportions 

of neutral SNPs including sampling locations in the Coral Sea (Capricorn Group excluded). a) Cross 

entropy values for K=1-8 ancestral populations; The most likely number of K corresponds to the 

smallest cross-entropy value. b) Bar plot of individual admixture proportions (each bar represents one 

individual) for K=2–5 ancestral populations. 
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