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Abstract

While Salmonella enterica is seen as an archetypal facultative intracellular bacterial patho-

gen where protection is mediated by CD4+ T cells, identifying circulating protective cells has

proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse

model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-atten-

uated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+

CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Sal-

monella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6,

accumulated over time in the liver and assumed phenotypic characteristics associated with

tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their

accumulation in the liver could be inhibited by blocking CXCL16. These data showed that

the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window

after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations

highlight the importance of triggering tissue-specific immunity against systemic infections.

Author summary

Helper T cells are essential for controlling infections by bacterial pathogens, such as Sal-
monella enterica var Typhimurium (S. Typhimurium). While it is well-established that

this role is related to their provision of IFN-γ, when and where helper T cells elicit their

protective function in vivo remains unresolved. We identified a protective helper T cell

population in the circulation of mice early after inoculation with growth-attenuated S.

Typhimurium strains; this population waned overtime. We observed that circulating
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helper T cell immunity can adoptively protect naïve recipient mice against lethal S. Typhi-

murium infection when harvested from a short time-window. In comparing helper T cell

responses between spleen and liver in Salmonella-infected mice, we have observed a previ-

ously uncharacterized trafficking of helper T cells to the liver followed by the residence of

S. Typhimurium-specific T cell memory in the organ. Taken together these findings iden-

tify that protective immunity to Salmonella infections is transient in the circulation and

the liver as a preferential site of helper T memory cells.

Introduction

The facultative intracellular pathogen Salmonella enterica causes infections that range from

self-limiting gastroenteritis to life-threatening conditions, such as typhoid fever. Typhoid fever

is characterized by rapid bacterial dissemination, resulting in septicemia and central nervous

system infections with potentially fatal outcomes [1,2]. Treatments for Salmonella infection

remain limited and the rise of antibiotic resistance is likely to further reduce viable therapy

options. Thus, enhancing the immunological status via immunization may assist in the control

of Salmonella infections in endemic regions. Murine infections with Salmonella enterica sero-

var Typhimurium (S. Typhimurium) have served as a key instrument for studying the immune

response to Salmonella. The wild type strain SL1344 is highly virulent in susceptible mouse

strains, where it rapidly disseminates and causes systemic disease to which C57BL/6 mice, for

example, succumb within 5–7 days [3]. Growth-attenuated S. Typhimurium strains, in con-

trast, can be controlled by the immune system, providing the host with protective immunity

against re-infection with SL1344 [4,5]. Multiple arms of the immune system contribute to

immunity against Salmonella infections [6–8]. Innate sensors and their respective signaling

pathways provide inflammatory cues that facilitate the priming of adaptive responses, amongst

which CD4+ T cells and IFN-γ play vital roles [4,9]. Resistance to re-infection also depends

heavily on CD4+ T cells, IFN-γ and/or IL-12 [4,10], highlighting the overall importance of T

helper 1 (Th1) immunity in controlling this intracellular pathogen during primary and sec-

ondary infections.

Attempts at characterizing the protective Salmonella-specific CD4+ T cell response have

yielded some seemingly puzzling observations. The CD4+ T cells that respond early to Salmo-
nella infection include T cells specific for epitopes derived from the FliC subunit of flagellin

[11]. Although flagellated bacteria are present in the spleen, and dendritic cells isolated from

the infected spleen can present FliC-derived antigen in the context of MHC class II molecules,

activated flagellin-specific CD4+ T cells are remarkably low in frequency, if not in the spleen

[11]. Moreover, adoptive transfer of memory CD4+ T cells isolated from spleen or lymph

nodes of mice previously infected with a growth-attenuated strain failed to confer protection

to recipients [10]. In human volunteer studies, immunization with live-attenuated vaccines

against serovar Typhi identified Salmonella-reactive Th1 cells in the bloodstream 1–3 weeks

after vaccination [12], followed by minor reactivity in the circulating memory pool [13]. Thus,

although Salmonella-specific CD4+ T cells clearly play a vital role in immunity against Salmo-
nella [4,9,10], those that confer protection likely distribute to tissues beyond the circulation

and secondary lymphoid organs, such as spleen and lymph nodes. CD4+ T responses to sys-

temic Salmonella Typhimurium demonstrate a level of organ specificity and assume distinctive

trafficking behaviors to fulfill complex adaptive responses [5,14,15]. While circulating memory

T cells maintain stable expression of secondary lymphoid organs homing receptors, such as

CD62L, effector T cells lack such receptors but express peripheral tissue homing molecules
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[16,17]. Tissue-associated pools can be further distinguished by stable expression of CD69,

where the lack of KLRG1 is characteristic of non-circulating subsets [18,19].

We have recently identified a population of CD4+ T cells in the livers of immune mice [5].

Considering that the priming of CD4+ T cells by dendritic cells takes place in secondary lym-

phoid organs, a likely explanation for the seeming absence of Salmonella-specific CD4 T cells

from the spleen and the blood is that they only circulate for a limited period before moving to

the liver. To test this, the current study used adoptive transfer protocols combined with anti-

body-mediated depletion/neutralization assays in lymphocyte deficient (Rag2-/- Il2rg-/-) B6

mice [20] to identify protective, circulating immunity after systemic Salmonella infection.

Moreover, a transcriptional IFN-γ reporter system [21] was exploited to study the develop-

ment of protective Th1 immunity in S. Typhimurium immune mice. The results revealed that

adoptive transfer of CD4+ T cells present in splenocyte pools could confer protection, but only

transiently. Circulating effector Th1 cells expressed high levels of the liver-homing chemokine

receptor CXCR6, suggesting that a subpopulation of protective T cells egress to peripheral tis-

sues as immune memory develops. Ex vivo re-stimulation of liver memory T cells with a pool

of Salmonella peptides, after inhibition of P2rx7/ARTC2 pathway, showed a stronger cognate

response, suggesting that cell functionality was linked with tissue association, contrasting with

lower reactivity of the circulating memory pool.

Results and discussion

Circulating immunity to Salmonella is seen early after vaccination but

wanes with memory formation

Previous studies have shown that C57BL/6 (B6) mice vaccinated with a live, aroA growth-

attenuated mutant strain of S. Typhimurium SL1344 called BRD509 clear the infection in 6–8

weeks and develop protection against a challenge infection with wild type SL1344, 10–14

weeks later [4,22]. These studies are recapitulated in S1A and S1B Fig. Antibody-mediated

depletion experiments have shown that this acquired immunity is primarily T cell-mediated

[4,5,23] inferring that memory should be conferred using adoptive transfer of splenocytes

from immune animals. Despite an early observation in BALB/c mice to the contrary [10],

adoptive transfer of memory splenocytes (10–12 weeks) in B6 mice does not confer protection

to a level that is greater than that observed in mice adoptively transferred with naïve spleno-

cytes (S1C Fig), even if the recipients are provided immune serum. To explore this phenome-

non further, the splenocytes of B6 mice immunized with BRD509 for various periods were

adoptively transferred to naïve recipients. We observed a degree of immunity by transfer of

splenocytes 2 weeks post-vaccination (S1C and S1D Fig). Our recapitulation of previous stud-

ies on BRD509-immunized B6 mice thus demonstrated that a pool of effector cells is generated

by immunization, but this pool was absent from the spleen after an early period of likely

recirculation.

To explore this phenomenon further, we undertook a systematic analysis of immunity in S.

Typhimurium-vaccinated animals, using a more effective vaccine designated TAS2010. This

vaccine strain carries mutations in both the Entner-Doudoroff (Δedd) and Embden-Meyer-

hof-Parnas metabolic pathways (ΔpfkA ΔpfkB) and elicits heightened protection from subse-

quent infection with the wild type strain SL1344 [4]. While protection can be transferred into

wild type mice (Fig 1A), we reasoned that the effects were more pronounced and thus more

conducive to dissection upon transfer of the cells into Rag2-/- Il2rg-/- recipients (which lack

endogenous T cells, B cells and NK cells [20]). This was indeed the case as demonstrated by

transfer of 5×107 splenocytes into Rag2-/- Il2rg-/- or wild type B6 recipients resulting in

enhanced protection compared to wild type mice (Fig 1A) and increased numbers of
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responding CD4+ T cells in the liver revealed by use of transferred splenocytes from IFN-γ
reporter mouse (Fig 1B) [5,21]. This enhanced protection of Rag2-/- Il2rg-/- recipients is likely

related to improved survival of the transferred cells in the lymphopenic environment within

the first 24hr post-transfer (Fig 1B), with further accentuation by homeostatic proliferation.

Though similar findings were obtained from experiments with splenocytes from BRD509-im-

munized mice (S1E Fig); the overall survival rates in recipient mice reflected the respective

immunogenicity of the vaccine strains where TAS2010 induces enhanced protection [4].

Moreover, while adoptively transferrable protection was seen early after TAS2010 vaccination,

neither splenocytes from 12-week TAS2010-immunized mice nor from naïve mice conferred

protection to Rag2-/- Il2rg-/- mice (Fig 1C). The evidence of circulating cellular correlates of

immunity before the memory stage was supported by an analysis of the bacterial counts which

revealed low SL1344 counts in both the spleen and liver of mice that received the splenocytes

of mice vaccinated for 2 weeks with TAS2010 (Fig 1D). In two different sets of control experi-

ments (detailed in the S2 Fig), we demonstrated that week 2 splenocyte-mediated protection

is: (I) directly proportional to the number of cells transferred (S2A Fig) and (II) not driven by

any carry-over of the vaccine strain that was transferred along with immune cells (S2B Fig). Of

note, no TAS2010 were recovered from the organs of recipient mice challenged with SL1344.

These studies suggested that live-attenuated Salmonella strains can induce highly protective

cellular immunity in the spleen that gradually wanes in its ‘transferability’ as the vaccine is

cleared, and T cell memory is formed.

Effector T helper 1 immunity is essential for adoptively transferred

protection against lethal Salmonella infection

To identify the cells conferring such protection in the splenic pool, adoptive splenocyte trans-

fers into Rag2-/- Il2rg-/- recipients were combined with in vivo antibody-mediated cell deple-

tion/neutralization of donor lymphoid subsets and cytokine [5]. Depletion of Thy1.2+

splenocytes or neutralization of IFN-γ in Rag2-/- Il2rg-/- recipients led to rapid development of

disease symptoms as reflected by weight loss in SL1344-challenged mice (Fig 2A). Depletion of

cells expressing CD4, but neither CD8 nor NK1.1, significantly reduced adoptively transferred

protection in Rag2-/- Il2rg-/- recipients, as measured by weight loss (Fig 2A) and survival post-

challenge (Fig 2B). SL1344-challenged recipients treated with anti-IFN-γ, anti-Thy1.2 or anti-

CD4 mAbs became moribund within 10 days post-challenge (Fig 2B). A similar reduction in

protection was observed upon transfer of 5 × 107 spleen cells from vaccinated CD4+ T cell-

deficient (MHC-II-/-) donors. Depletion following antibody-treatment did not alter the already

poor survival of mice receiving naïve splenocytes (Fig 2B). After two weeks of infection with

TAS2010, eYFP expression, a proxy for IFN-γ production, was observed exclusively in Thy1.2+

subsets (Fig 2C); and 70% of IFN-γ+ cells were CD4+ T cells (Fig 2D). Th1 cells displayed the

highest expression of the IFN-γ reporter activity among the detectable groups, as measured by

median fluorescence intensity (MFI) (Fig 2E). Upon ex vivo re-stimulation with

Fig 1. Immunity is present in the spleen at effector but not at memory phase. B6 mice (6–8 weeks old) that were either naïve or infected with 200CFU TAS2010 i.v.

were culled at indicated time point p.i. as the ‘donor’ mice; where 5×107 splenocytes were injected i.v. into naïve B6 or Rag2-/- Il2rg-/- recipient mice, which were

challenged with 200CFU SL1344 i.v. 24 h later. (A) Survival of B6 or Rag2-/- Il2rg-/- recipient mice (n = 6–11) after receiving 5×107 splenocytes from naïve or week 2 p.i.

B6 donor mice, then challenged with wild type SL1344. (B) Accumulation of eYFP+ CD4+ T cells in tissues of B6 or Rag2-/- Il2rg-/- recipient mice (n = 3–6) 24 h after

receiving 5×107 splenocytes from naïve or week 2 p.i. B6 donors. (C) Survival of Rag2-/- Il2rg-/- recipient mice (n = 10–12) after receiving 5×107 splenocytes from naïve

or week 1, 2, 7 and 12 (memory) p.i. B6 donor mice, then challenged with wild type SL1344. (D) Rag2-/- Il2rg-/- recipient mice (n = 5–6) received 5×107 splenocytes from

naïve, week 2 or 12 (memory) p.i. B6 donors, then challenged with SL1344 24 h later. Shown are the bacterial loads for SL1344 in tissues of recipient mice 5 days post-

challenge. For each panel, data is pooled from 2–4 independent experiments. For survival data (A, C), symbols represent percentage of surviving mice over time, and

Mantel-Cox log-rank test was used for statistical analysis. For cell (B) and bacterial (D) counts, symbols represent individual mouse and lines represent geometric mean

of the group, and two-way ANOVA with Bonferroni post-tests was used for statistical analysis, �, p<0.05; ���, p<0.001; ����, p<0.0001.

https://doi.org/10.1371/journal.ppat.1010004.g001
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Fig 2. Adoptive protection from week 2 splenocytes is IFN-γ and CD4+ T cell-dependent. B6 or IFN-γ-eYFPin/in mice were either naïve or infected with 200CFU

TAS2010 i.v. for 2 weeks. (A) Weight loss (expressed as a percentage of initial weight, group mean shown) and (B) percentage survival of Rag2-/- Il2rg-/- recipient mice after

receiving 5×107 splenocytes from naïve or week 2 p.i. B6 donor mice, i.p. injected with either isotype control, anti-Thy1.2, anti-CD4, anti-CD8 or anti-NK1.1 i.p. at the

time of cell transfer, then challenged with 200CFU wild type SL1344 24 h after transfer (n = 9–10). Data are pooled from 2–4 independent experiments. Within week 2 p.i.

donor splenocytes, (C) representative FACS plots and (D) percentage of the expression of IFN-γ-eYFP in different Thy1.2+ sub-populations and E) level of IFN-γ
expression (expressed as MFI) identify CD4+ T cells are the main producer of IFN-γ. Each symbol represents a pool of donor cells from an independent experiment, data

from 4–7 experiments are shown here with horizontal bar representing the mean for each sub-population, and one- or two-way ANOVA with Bonferroni post-tests was
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TAS2010-lysate, 82% of eYFP+ CD4+ T cells secreted IFN-γ, whereas Th1 cells from naïve

mice did not respond to the same stimuli (Fig 2F). This experiment confirmed that week 2

CD4+ T cells in the spleen recognized Salmonella antigens. Intriguingly, a series of tests

attempting to protect Rag2-/- Il2rg-/- or wild type B6 recipients with transfer of purified Th1

cells from week 2 splenocytes failed, indicating that circulating Th1 cells were essential but not

sufficient for adoptively-transferred protection. This observation suggests that CD4+ T cells

participate in, or coordinate the function of, a cellular network that collectively provides pro-

tection against secondary infection.

Anti-Salmonella CD4+ T cells express CXCR6 chemokine receptor and

accumulate in the liver as the vaccine strain is cleared

While there is no licensed vaccine against human invasive non-typhoidal salmonellosis (iNTS)

infection, there has been some analysis of T cell responses after vaccination with S. enterica var

Typhi, a related pathogen in humans. Human volunteer studies using immunization with live

CVD909 or Ty21a vaccines identified Salmonella-specific T cells in the blood of vaccinated

groups that were predominantly CD62L- and expressed markers of tropism for peripheral tis-

sues [13,24]. This phenotype was identified 7–21 days post-vaccination [12] and was followed

by a reduction in Salmonella-specific T cells in the circulation [13]. In our murine model,

week 2 splenic IFN-γ+ CD4+ T cells lacked CD62L expression (Fig 3A), and CD44hi IFN-γhi

cells upregulated the chemokine receptor CXCR6 (Fig 3B), a receptor which is associated with

T cell homing to the liver [25]. Similar expression profiles were observed in IFN-γhi CD4+ T

cells in the blood, and a sharp decrease in cell numbers in the blood was evident from week 5

post-vaccination (Fig 3C), recapitulating observations infected with a vaccine strain [13]. To

test whether CXCR6+ Th1 splenocytes after S. Typhimurium infection relocated to the periph-

ery, week 2 spleen cells were labelled with CellTrace Violet (CTV) and transferred to unin-

fected Rag2-/- Il2rg-/- recipients (Fig 3D). At 24h post-transfer, the spleen, liver, mesenteric

lymph nodes (mLN) and bone marrow (BM) were harvested and analyzed for cell prolifera-

tion. In the spleen, 30% of total CD4+ T cells from infected mice were transcriptionally active

for IFN-γ as determined by eYFP expression, in contrast with naïve animals, where the Th1

cells represented only 3.3% of CD4+ T cells (Fig 3D). One day after transfer, effector Th1 sple-

nocytes redistributed to the liver of the recipients, where 60% of the transferred CD4+ T cells

were eYFP+ (Fig 3D). CXCL16 is the only known ligand for CXCR6 [26] and its activity can be

blocked using neutralizing antibodies (S3 Fig). We injected these antibodies against CXCL16

24 h before adoptive transfer of week 2 splenocytes and observed a significant reduction in the

accumulation of CD4+ T cells in the recipient liver 24 h later (Fig 3E). A similar magnitude of

decrease in eYFP+ CD4+ T cell counts was observed in mice where CXCL16 was neutralized,

however the fold-change observed between the control IgG- and anti-CXCL16-treated groups

was not statistically significant in 3 pooled experiments (Fig 3F). In considering previous

reports where CXCR3 and CCR5 [25,27] compensated for some effects of CXCR6 deficiency

in Th1 cells, and that the impact of CXCR6 on liver homing by CD8+ T cells can change over

time [28–30], we conclude that the role of CXCR6 in liver immunity to Salmonella infection is

complex and as such requires further investigation to fully explain the role of the chemokine

and its ligand in cell accumulation in this organ.

used for statistical analysis. F) Representative FACS histogram and graph show the majority of eYFP+ CD4+ T cells in week 2 p.i. mice secreted IFN-γ upon ex vivo
restimulation with heat-killed TAS2010. Symbols in the graph represent data from individual animals (n = 8 per each group) with the group mean shown as horizontal

bars. For survival data (B), The Mantel-Cox log-rank test was used for statistical analysis. For all other panels, one- two-way ANOVA with Bonferroni post-tests was used

for statistical analysis, �, p<0.05; ���, p<0.001; ����, p<0.0001.

https://doi.org/10.1371/journal.ppat.1010004.g002
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CD4+ T cells can produce IFN-γ in response to TCR stimulation, but antigen-experienced

CD4+ T cells with irrelevant specificities can also secrete IFN-γ in a non-cognate manner [31].

To determine if at least some of the CD4+ T cells accumulating in the liver were specific for the

infection, we re-examined our data on antigen-experienced (CD44hi) CD4+ T cells, a popula-

tion that should include those cells responding to the Salmonella antigens in the spleen and

liver. Fig 4A shows that CD4+ T cells in both organs rapidly gained the ability to produce IFN-

γ. Interestingly, the proportion of IFN-γ+ cells amongst CD44hi CD4+ T cells declined in the

spleen over time (Fig 4A), while IFN-γ-expressing cells dominated the CD4+ T cell population

in the liver. Even at the point where memory was well established, evidenced by protection

against virulent challenge (i.e. at week 12, ref [4]), more than 80% of CD44hi CD4+ T cells

remained eYFP+ in the liver (Fig 4A). To determine the clonality of this population in the liver

of Salmonella-infected mice, we analyzed the variable region of the TCR β chain (Vβ) of IFN-

γ-eYFP+ memory CD4+ T cells, and compared Vβ usage to that of non-activated (i.e. naïve T

cells) from the same animals to exclude animal to animal repertoire bias. A gating strategy was

designed to estimate the usage of Vβ chains by CD44hi CD4+ T cells, as a window into TCR

selection by the infection. CD44, CD62L and CXCR6 expression were used to analyze CD4+ T

subsets in the liver where CD62L+CD44lo, and CXCR6+CD44hi subsets, were defined as naïve

CD4+ T cells and memory Th1 cells, respectively (S4A Fig). On average, naïve cells comprised

14% of the total CD4+ T cells found in the liver of mice that had cleared infection; whereas

64% of the recovered CD4+ T cells assumed a memory phenotype (Fig 4B). The frequencies by

which naïve and memory cells used specific Vβ chains in the same individual were analyzed

Fig 3. Circulating Th1 cells home to the liver as primary Salmonella infection is resolved. IFN-γ-eYFPin/in mice were infected

with 200 CFU TAS2010 i.v. and 2 weeks later splenocytes were harvested. (A) Representative FACS plot, and graph showing IFN-

γ-eYFP is predominately expressed within the CD62L- subpopulation of CD4+ T cells in the spleen (n = 7–8). (B) Representative

FACS plot, and graph showing that within the CD44+CD62L- sub-population of CD4+ T cells, IFN-γ-eYFP is co-expressed with

CXCR6 (n = 7–8). (C) Absolute numbers of IFN-γ-eYFP+ CD4+ T cells in 100 μL blood over time after infection with 200CFU

TAS2010 i.v. (n = 4–12). (D) Donor splenocytes from naïve or week 2 p.i. IFN-γ-eYFPin/in mice were labelled with CellTrace

Violet (CTV) and adoptively transferred into Rag2-/- Il2rg-/- recipient at 5×107 cells/mouse. Representative FACS plots show IFN-

γ-eYFP and CTV level within CD4+ T cells accumulated in different tissues, 24 h post-transfer. Liver uptake of transferred (E)

total CD4+ T cells and (F) eYFP+ CD4+ T cells was measured 24 h post-transfer in Rag2-/- Il2rg-/- recipient mice (n = 12–17) that

were pre-treated with αCXCL16 neutralizing antibodies, control IgG or PBS 24hr prior to cell transfer. Data is expressed as fold-

change against the PBS group mean. For each panel, data is pooled from 2–4 independent experiments. For statistical analyses,

student t-test, one- or two-way ANOVA with Bonferroni post-tests were used, �, p<0.05; ���, p<0.001; ����, p<0.0001.

https://doi.org/10.1371/journal.ppat.1010004.g003
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Fig 4. Liver migratory CD4+ T cells show preferential usage of selected Vβ chains compared to naïve cells. IFN-γ-eYFPin/in or B6 mice were i.v. infected with

200CFU TAS2010. At week different time points p.i. mice were euthanased; the liver was then perfused with PBS to remove circulating cells. (A) Percentage of IFN-γ-

eYFP+ cells among CD44+ CD4+ T cells in the spleen and liver (n = 4–12). (B) The majority of liver CD4+ memory (week 12) T cells displayed a CXCR6+CD44hi

phenotype, whereas CD62L+CD44lo naïve cells were present in lower numbers. (C) The frequency of 15 individual Vβ chains within total or indicated subset of liver

CD4+ memory T cells were assessed for individual. Together these chains accounted for 78% (range: 74.4–85.5%) of total CD4+ T cells. For each individual Vβ chain,

its frequency in the CXCR6+CD44hi CD4+ T cells was compared to that in the naïve subset in the same animal; for better visualisation, a dotted line is drawn between
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(Fig 4C). Overall, the distributions of specific TCR Vβ chains vary among mice vaccinated

with S. Typhimurium supporting previous studies showing limited clonality of CD4+ T cell

responses to pathogens [32,33]. Vβ8.1/8.2, Vβ8.3 and Vβ7 chains showed enrichment, whereas

Vβ14, Vβ4, Vβ6, Vβ2, Vβ5.1/5.2, Vβ12 and Vβ13 decreased in relative abundance in Th1

memory cells compared with naïve cells (Fig 4C). These observations indicate that there is a

level of selection bias, i.e. specificity, that occurs in T cells present in the liver during and after

clearance of the live vaccine strain. While non-cognate contributions towards IFN-γ provision

are still possible, these finding suggest that the majority of antigen-experienced cells, tracked

via their enhanced IFN-γ-eYFP expression, include cells that were primed against Salmonella
antigens.

P2rx7 pathway blockade is needed to identify Salmonella-specific memory

CD4+ T cells that have relocated to the immune liver

With clearance of the growth-attenuated Salmonella strain, both the memory spleen and liver

harbor larger numbers of IFN-γ-eYFP+ CD4+ T cells than age-matched uninfected mice (Fig

5A). Livers from infected mice had a 10.2-fold increase in Th1 cell numbers than the respective

naïve compartments (Fig 5B). Together with the preceding data, this finding suggests that

IFN-γ+ CD4+ T cells relocate from the blood into the liver. Isolation of T cells associated with

tissues, such as liver, is made difficult by a curious phenomenon whereby the isolation proce-

dure activates ARTC2 [5]. ARTC2 subsequently ribosylates P2xr7 and the resulting potassium

influx results in the death of many isolated cells during processing for ex vivo analysis [34,35].

This isolation-associated phenomenon can be prevented by specific blockade of ARTC2 with s

+16a nanobody [5]. To assess whether blockade of ARTC2 could indeed reveal memory Th1

cells that immigrated into the liver from the blood, 12 week-infected B6 mice were injected

with 50μg s+16a or PBS in the tail vein 15 min before euthanasia [5,36]. Liver leucocytes and

splenocytes were stimulated ex vivo with 5×107 CFU heat-killed S. Typhimurium (HKSTm),

or a pool of five Salmonella-peptides that were identified in previous studies as CD4+ T cell

antigens (FliC429-443, GroEL40-53, LpdA338-351, SseI268-280 and SseJ329-341, 5 pepts) [32,33,37,38].

While we could only recover small fractions of Salmonella-responsive CD4+ T cells from con-

trol mice, CD4+ T cells from mice treated with s+16a or PBS had significantly increased IFN-γ
production upon ex vivo re-stimulation with either 5 pepts or HKSTm (Fig 5C and 5D). Inter-

estingly, this enhanced recovery of IFN-γ+ CD4+ T cells only occurred when the mice were

treated with the s+16a in vivo, but not by exposing CD4+ T cells from immune mice to s+16a

in vitro after isolation (S5A and S5B Fig). Combined with observations that there was no dif-

ference in the ex vivo MFI of eYFP in CD69+ and CD69- sub-populations of eYFP+ CD4+ T

cells (S5C Fig), these findings argue against the nanobody enhancing IFN-γ production [35]

and instead support the conclusion that ARTC2/P2rx7 inhibition assisted in identifying true

memory Th1 cells in the context of the liver, by aiding their survival.

In conclusion, our studies argue that, upon immunization by effective live attenuated Sal-
monella vaccines, antigen-specific CD4+ T cells differentiate into Th1 cells with protective

potential that circulate for a short period of time before eventually locating to the liver, in a

manner that is at least in parts dependent on the CXCL16/CXCR6 axis. These findings resolve

some of the puzzling observations regarding transferable immunity from Salmonella infection

or vaccination and provide new insights into the spatiotemporal characteristics that underpin

matching data points from the same individual (n = 8). (A) Scares represent mean and bars represent SEM. (B and C) Triangles represent CXCR6+CD44hi cells, and

circles represent CD62L+CD44lo cells. Paired t-test was used to determine whether the frequency was significantly altered between the two subsets: �, p<0.05; ��,

p<0.01; ���, p<0.001; ����, p<0.0001; ns, not significant.

https://doi.org/10.1371/journal.ppat.1010004.g004
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localized protection in the liver as we have previously demonstrated [5]. The study reported

here reveals that the spleen of an immunized mouse harbors immunity only transiently, clears

the local infection, with little apparent memory preserved in situ. The role of the pathogen in

the relocation of immunity to the periphery, perhaps via inducing chemokine upregulation in

infected cells, warrants further investigation.

Materials and methods

Ethics statement

Animal experiments were approved by the University of Melbourne Animal Ethics Committee

(AEC) and conducted according to National Health and Medical Research Council (NHMRC)

Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (2013).

Bacteria. S. Typhimurium

Antibiotic resistant S. Typhimurium strains were inoculated into LB broth supplemented with

50 μg/ml streptomycin and grown shaking at 180 rpm, at 37˚C overnight. For use in experi-

ments, 100 μl of the overnight culture was subcultured into fresh LB broth supplemented with

50 μg/ml streptomycin at 37˚C for 3-4h for SL1344 and Δedd ΔpfkA ΔpfkB mutant (TAS2010)

and 5h for ΔaroA mutant (BRD509), until an OD600 between 0.6–0.8 reading was reached.

Glycerol (80% v/v) was added to the broth at a 1:10 ratio, and subsequently 500 μl aliquots

were stored at -80˚C until required. Aliquots were safe for estimation of purity, via metabolic

and PCR tests [4], and bacterial counts.

Mice and infection models

Age- and sex-matched C57BL/6 (B6), Ptprcb (CD45.1+/+—Ly5.1) B6, Rag2-/- Il2rg-/- B6 [20],

IFN-γ-eYFPin/in B6 [21] and IAE-/- B6 [39] mice were bred under specific pathogen free (SPF)

conditions at the Biological Research Facility (BRF), at the Peter Doherty Institute for Infec-

tion and Immunity. IFN-γ-eYFPin/in B6 mouse was generously provided by Prof. R. Locksley,

University of California, San Francisco, USA [21]. Mice received 200 CFU of S. Typhimurium

in 200 μl PBS via intravenous (i.v.) injection.

Estimation of survival

Euthanasia was performed whenever mice challenged with SL1344 dropped to less than 85%

from the initial body weight and presented signs of distress, as approved by the AEC.

Bacterial counts

Spleen and liver single-cell suspensions were prepared by pushing these organs through 70 μm

Nylon Cell Strainers (BD Falcon) using syringe plunges and sterile PBS. To enumerate the

Fig 5. Specific blockade of ARTC2 preserve functional activity in Salmonella-specific CD4+ T cells in the liver. IFN-γ-eYFPin/in or B6 mice

were either naïve or i.v. infected with 200CFU TAS2010. At week 12 p.i., 50μg of s+16a nanobody was injected 15-20min immediately prior to

euthanasia; the liver was then perfused with PBS to remove circulating cells. (A) The number of IFN-γ-eYFP-expressing CD4+ T cells is shown

for the spleen and liver from naïve or memory mice (n = 7–11). (B) The number of IFN-γ-eYFP-expressing CD4+ T cells is expressed as fold-

change memory/naïve in organs (n = 7–11). (C and D) To analyze CD4+ T cells with or without s+16a nanobody, naïve or memory B6 animals

were injected i.v. with either 50μg of s+16a nanobody or PBS 15min prior to organ harvest. Total splenocytes and liver leucocytes were re-

stimulated ex vivo with of either a pool of 5 Salmonella peptides (5 pepts, 1μg each/well) or heat-killed SL1344 (HKSTm, 5×107cfu/well), or

DMSO (negative control). After 14h post-exposure to cognate stimuli, 10 μg/ml brefeldin A was added for a further 4 h to stop cytokine

secretion. Cells were then prepared for surface and intracellular staining. Shown are (C) representative FACS plots and (D) percentages of IFN-

γ+ among CD4+ T cells (n = 3–5). Data is representative of 3 independent experiments. Student t-student tests (or with adjustment for multiple

testing) were used to statistical analyses, ��, p<0.01; ���, p<0.001; ����, p<0.0001.

https://doi.org/10.1371/journal.ppat.1010004.g005
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bacteria, dilutions of 100 μl of the single cell suspension of the organs were plated on solid LB

or XLD media supplemented with 50 μg/ml of streptomycin at 37˚C overnight. Blood was col-

lected from euthanized mice by cardiac puncture with a 25G needle and immediately trans-

ferred to a heparinized blood collection tube (BD Vacutainer). Dilutions of 100 μl of blood

were cultured on LB agar plates supplemented with 50 μg/ml of streptomycin at 37˚C over-

night to enumerate the bacteria.

Lymphocyte isolation and enrichment

The spleen or mLN was gently pushed through a 70 μm nylon cell strainer (BD Falcon) to

make a single-cell suspension. After centrifugation (525 ×g, 5 min, 4˚C), splenocytes were

resuspended and incubated in red blood cell lysis TAC buffer (17 mM Tris and 140 mM

ammonium chloride, pH 7.2) for 10 min, rotating at RT, to lyse the red blood cells. Liver was

perfused via hepatic portal vein immediately after euthanasia and then gently pushed through

a 70μm Nylon Cell Strainer (BD Falcon). After centrifugation (525 ×g, 5 min, 4˚C), liver cells

were resuspended and incubated in TAC buffer for 10 min, rotating at RT. After centrifuga-

tion, liver leucocytes were enriched using 35% isotonic Percoll and centrifuged at 930 ×g for 12

min, without deceleration, at RT. The two top layers were carefully removed using disposable

pipettes. Blood was collected via cardiac puncture into heparinized blood collection tube (BD

Vacutainer) and resuspended in TAC buffer for 10 min at RT. Left femur was collected and

with the help of 25G needle the bone marrow (BM) was plunged with an ice-cold RPMI-1640

+ 2% (v/v) FCS solution. After centrifugation, BM was resuspended and incubated in red

blood cell lysis TAC buffer, followed by wash step. Single-cell suspensions were resuspended

in ice-cold RPMI-1640 + 2% (v/v) FCS + 1mM EDTA until use.

Staining and flow cytometry

Surface staining. One million cells from the spleen, liver, mLN, BM, or blood were

blocked with α-mouse CD16/CD32 Fc block (2.4G2, BD Biosciences) in 50 μl FACS buffer

(0.1% (w/v) BSA, 5mM EDTA in sterile PBS) for 15 min on ice. Surface markers were stained

in 50 μl of FACS buffer using antibodies and tetramers listed in S1 Table, for 30 min on ice

and in the dark. Stained cells were washed three times with FACS buffer and strained with

either propidium iodide (PI) at 1 μg/106 cells and approximately 2 × 104 blank calibration

beads (SPHERO, 6.0–6.4 μm, BD Biosciences) for dead cell exclusion and estimation of abso-

lute cell number, respectively. Intracellular staining (ICS). Single-cell suspensions stained for

surface markers and Fixable Viability Dye eFluor 780 (eBioscience) were fixed and permeabi-

lized using the eBioscience FoxP3 Fixation/Permeabilization kit, according to manufacturer’s

instructions. Intracellular antigens were stained in 50 μl permeabilization buffer for 30 min at

4˚C. Analysis. BD LSR II and BD LSRFortessa Cell Analysers were used for collection of flow

cytometric data, which was analyzed post-recording using the FlowJo software v10.

Labelling with proliferation dyes

Single splenocyte suspensions were prepared as mentioned above and stained following manu-

facturer’s recommendation. Briefly, cells were pelleted and resuspended in 1 ml pre-warmed

(37˚C) FACS buffer (PBS + 0.1% BSA) per 1 × 107 cells. 1 μl of CellTrace Violet dyes (Thermo-

Fisher) was added per 1 × 106 cells and immediately vortexed for homogeneous staining. Cells

were incubated in a 37˚C water bath for 10 min and the reaction was stopped with two wash

steps in ice-cold RPMI-1640 + 10% FCS.
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Adoptive transfer of lymphocytes

Single splenocyte suspensions were prepared as described above, pooled from different donor

mice and incubated in RPMI-1640 supplemented with 5% (v/v) FCS and 100 μg/mL gentamy-

cin for 20 min at 37˚C. Splenocytes were washed twice in ice-cold PBS and then counted. Cell

numbers were estimated using a hemocytometer, where 0.4% trypan blue was used for dead

cell staining. Viable splenocytes were washed twice in ice-cold PBS, diluted to 5 × 107 spleno-

cytes per 200 μl in PBS, and injected into recipients via the tail vein.

Ex vivo stimulation of CD4+ T cells

Previously reported Salmonella MHC-II peptides (FliC429-443, GroEL40-53, LpdA338-351, SseI268-

280 and SseJ329-341) were synthesized to>90% purity (GL Biochem). For preparation of heat-

killed Salmonella (HKSTm), S. Typhimurium SL1344 was grown statically in Luria broth with

50 μg/ml streptomycin at 37˚C overnight. The overnight culture was washed twice in sterile

PBS, resuspended in PBS and heat-killed at 60˚C for 60 min, then stored at -20˚C until use.

For ex vivo re-stimulation, cells were seeded in round-bottom 96-well plates at 2×106 cells per

well in RPMI10 (10% FCS, 2mM L-glutamax, 100μg/ml streptomycin, 100 U/ml penicillin),

and to each well 1μg peptide and 5×107cfu HKSTm was added to a total of 200μl/well. Cells

were incubated for 18–20 hours at 37˚C with 5% CO2, with GolgiPlug (BD Bioscience) added

in the final 4 hours of incubation.

In vivo antibody-mediated depletion of lymphocytes or neutralisation of

IFN-γ and CXCL16

In vivo antibody depletion/neutralization was performed by i.p. injections of monoclonal anti-

bodies (mAb), using doses and frequencies as listed in S2 Table, and as previously indicated

[4].

Nanobody-mediated blockade of P2rx7/ARTC2 pathway

Mice were injected i.v. with 50 μg of s+16a nanobody (BioLegend), diluted in 200 μl PBS, 15

min prior to euthanasia and organ harvest, as protocoled elsewhere [40].

Supporting information

S1 Fig. Adoptive transfer of BRD509-immune splenocytes fails to protect cell recipients

from lethal challenge. B6 mice (6–8 weeks old) were infected i.v. with 200CFU BRD509

strain. (A) Bacteria counts on solid LB media from homogenate spleen of infected mice over

the course of the primary infection. (B) Survival of mice immunised with BRD509 i.v., or unin-

fected, and 14 weeks later challenged with 200CFU SL1344 i.v.. (C) Survival of groups of mice

that adoptively received 5×107 total donor splenocytes harvested at weeks 1, 2, 3, 4, 6, 14 post-

single BRD509 infection and 24h post-transfer were challenged with 200CFU SL1344 iv. (D)

SL1344 counts on differential, solid XLD media from spleen and liver of B6 mice recipients of

week 2 or naïve donor splenocytes on day 4 post-challenge. (E) Survival of either complete

(B6) of lymphocyte-deficient (Rag2-/- Il2rg-/-) mice that adoptively received 5×107 total naïve

or week 2 BRD509 donor splenocytes and 24h post-transfer were challenged with 200CFU

SL1344 i.v.. Data is representative of (A,B,E) 2–4 and (C,D) 2 pooled independent experiments

with (A) 4–8, (B) 10, (C) 5–7, (D) 5–10 and (E) 6–11 samples per group. (A) Symbols and bars

represent mean and SEM, (B,C,E) symbols represent percentage of survivors, and (D) lines

and symbols represent mean and individual measurements. respectively. Statistical analysis,
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log-rank (Mantel-Cox), multiple t-student test. ���p<0.005, ����p<0.001.

(TIF)

S2 Fig. Carryover vaccine strain does not confer protection to cell recipients against lethal

challenge. (A) Weight loss (left) and survival (right) of Rag2-/- Il2rg-/- mice that received differ-

ent numbers of splenocytes from week 2-TAS2010 infected mice, and the recipients were chal-

lenged with 200CFU SL1344 24h after adoptive transfer. (B) Weight loss (left) or survival

(right) of Rag2-/- Il2rg-/- mice that received i.v. 5×107 splenocytes from either week 2-TAS2010

infected B6, or uninfected B6, or did not receive cells; control that were adoptively transferred

~200 CFU TAS2010 along with splenocytes (�) or injected with 200CFU TAS2010 i.v. at the

time of transfer. 24h post-transfer recipients were challenged with SL1344 or left unchallenged.

Data is representative of (A,B) 2 pooled independent experiments, with (A) 10 (B) 7–10 ani-

mals per group. Statistical analysis, log-rank (Mantel-Cox). ��p<0.01, ���p<0.005.

(TIF)

S3 Fig. Neutralization of CXCL16 in vitro. (A) Neutralization of CXCL16 was measured by

the inhibition of migration of murine CXCR6-expressing B300.19 cells towards soluble

CXCL16 in vitro [26]. Symbols represent mean and bars represent SEM. Data is representative

of pooled independent experiments, with 3–4 samples per group.

(TIF)

S4 Fig. Gating strategy for the analysis of Vβ chain in memory and naïve CD4+ T cells in

the liver. (A) B6 mice were immunised with 200CFU TAS2010 i.v. 12 weeks later, the mice

were killed, the livers perfused with PBS and the cells collected. Representative FACS plots

are also provided for gating on CXCR6+CD44hi and CD62L+CD44lo subsets for liver CD4+ T

cells.

(TIF)

S5 Fig. s+16a nanobody does not directly alter IFN-γ production ex vivo. Wild type B6 mice

were either naïve or infected with 200CFU TAS2010 i.v. At week 5 p.i., splenocytes were har-

vested and re-stimulated ex vivo in the presence of indicated concentration of s+16a nanobody

at 2×106 cells per well in 200μl (n = 4). The nanobody was present during the entirety of the

re-stimulation protocol, either with (A) PMA and ionomycin for 4h with brefeldin A, or (B) a

pool of Salmonella peptides (5pept, as per Fig 5) for 18 h with brefeldin A added in the final 4

h. At the end of the incubation period, re-stimulated cells were intracellularly stained for IFN-

γ. No statistically significant difference (one-way ANOVA with Bonferroni post-tests) was

observed between re-stimulated cells treated with different concentration of s+16a nanobody.

(C) IFN-γ-eYFPin/in mice were infected with 200CFU TAS2010 i.v. for 12 weeks. Shown is the

geometric mean fluorescence intensity (gMFI) of IFN-γ-eYFP in both CD69+ and CD69-

CD4+ T cells in mice that were pre-injected with either 50μg of s+16a nanobody or equal vol-

ume of PBS 15-20min immediately prior to euthanasia and tissue collection (n = 6–8). The

liver was then perfused with PBS to remove circulating cells. No statistically significant differ-

ence (Student t-test) was observed between s+16a or PBS pre-injected mice. Symbols represent

data from individual mice, mean±SEM shown.

(TIF)

S1 Table. List of antibodies and tetramer for flow cytometry analysis.

(TIF)

S2 Table. Purified antibodies for cell and cytokine depletion.

(TIF)
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