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Abstract: Sea cucumbers (Holothuroidea or holothurians) are a valuable fishery and are also crucial
nutrient recyclers, bioturbation agents, and hosts for many biotic associates. Their ecological impacts
could be substantial given their high abundance in some reef locations and thus monitoring their
populations and spatial distribution is of research interest. Traditional in situ surveys are laborious
and only cover small areas but drones offer an opportunity to scale observations more broadly,
especially if the holothurians can be automatically detected in drone imagery using deep learning
algorithms. We adapted the object detection algorithm YOLOv3 to detect holothurians from drone
imagery at Hideaway Bay, Queensland, Australia. We successfully detected 11,462 of 12,956 individ-
uals over 2.7 ha with an average density of 0.5 individual/m2 . We tested a range of hyperparameters
to determine the optimal detector performance and achieved 0.855 mAP, 0.82 precision, 0.83 recall,
and 0.82 F1 score. We found as few as ten labelled drone images was sufficient to train an acceptable
detection model (0.799 mAP). Our results illustrate the potential of using small, affordable drones
with direct implementation of open-source object detection models to survey holothurians and other
shallow water sessile species.

Keywords: holothurian; remote sensing; UAV; machine learning; object detection; YOLOv3; Great
Barrier Reef; marine ecology; ecological monitoring; FAIR data

1. Introduction

Sea cucumbers (Holothuroidea), or holothurians (also known as bêche de mer), are
a valuable fishery resource due to their high market demand [1–4]. They also play
an important role as recyclers of nutrients to other trophic levels, hosts for many bi-
otic associates, and crucial bioturbation agents to maintain and improve the sediment
quality [5,6]. Species such as Holothuria atra, H. mexicana, Isostichopus badionotus, and Sticho-
pus chloronotus are prolific bioturbators, capable of processing the upper 3 to 5 mm of all
marine sediments available in their habitat at least once per annum [6,7]. Since the volume
of sediments ingested and defecated by sea cucumber is remarkable (9–82 kg per individual
per year), their role in maintaining biodiversity, primary productivity, and sediment health
could be substantial over long timescales in areas where they are highly abundant [5].
For example, a recent study calculated that Holothuria atra were likely responsible for
the bioturbation of more than 64,000 metric tonnes per year at Heron Island Reef in the
southern Great Barrier Reef [8]. Therefore, investigating the population dynamics and
distribution patterns of common holothurian species are important steps to quantify their
fishery value and their ecological functions in the ecosystem.
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Past population and movement pattern surveys have established that holothurians
are unevenly distributed in reef systems [9,10] and able to travel a distance from 1 m
to 9 m daily [7,11,12]. These patterns are usually documented using conventional in
situ survey methods plotting the movement pattern of a small number of individuals
(ranging from 10 to 100) over 24 h [7,11,12]; or by counting holothurians along transect
lines or quadrats by walking [13], snorkelling [14], SCUBA diving [11] or during manta
tows [9,15]. Although these traditional direct visual census approaches enable estimation
of the density or quantification of the likely ecological functions of holothurians, they can
be labour intensive, expensive, prone to errors, non-replicable, and biased due to observer
expertise [16,17]. Additionally, the results are obtained through extrapolation from small
spatial footprints, short sampling times, and long temporal intervals [6,18], which may not
account for the broader spatial or longer temporal scale variations of holothurian studies.
Consequently, there is a need to develop more effective and efficient tools to monitor sea
cucumbers and similar marine invertebrates over broader scales.

Advances in electronic, optical, and computational technology, using remote sensing
(RS) techniques with machine learning (ML) algorithms offers a potential solution to moni-
tor holothurians and other sessile marine species over broad scales. RS offers a quick and
synoptic overview of ecological features as well as providing repeatable, standardised, and
verifiable information on long-term trends in ecosystem structure and processes [19,20].
Currently, RS is applied in various marine environments at different scales, including, but
not limited to, marine vertebrate surveys, shoreline monitoring, coral bleaching events tra-
jectory, coral reef bathymetry mapping, and marine habitat classification [21–28]. However,
RS techniques rely on tremendous amounts of data, which would exceed conventional
human power for direct visual inspection [29]. Human errors and fatigue can introduce
inconsistencies while researchers are trying to draw conclusions. This has driven the use of
ML models with computer vision to automatically recognise and identify specific targets
of interest. Furthermore, deep learning (DL), a subfield of ML, has become increasingly
popular since 2006 [30]. Convolutional neural networks (CNN) are considered to be the
most representative DL model and a more powerful tool for object detection compared
to traditional ML frameworks [30]. While RS techniques have become more affordable,
many new and robust CNN architectures have also been developed open source and made
readily available for researchers. These advances warrant further investigation of RS and
DL based object detection of marine invertebrates (like sea cucumbers) for broad scale
identification and density estimation.

Since the typical length of a mature holothurian individual is between 20 and 40 cm [31],
the required spatial resolution for successful identification is at most 2–4 cm. Hence, unoc-
cupied aerial vehicles (UAV, i.e., drones), rather than satellites, are a suitable platform to
capture data appropriate for sea cucumber detection. A consumer-level drone can easily
achieve a ground sampling distance (GSD) of 2 cm at 100 m altitude with a digital cam-
era [32]. In addition, many CNN object detection algorithms such as You Only Look Once
(YOLO) [33,34] are now easily accessible by researchers via open source deep learning
computing tools like TensorFlow [35], Pytorch [36], and Keras [37]. Yet so far, only one
study has used a CNN architecture (ResNet50) to detect holothurians from drone imagery
for the purpose of population estimation in natural habitat [16]. They compared three
methods: counting sea cucumbers using an ML algorithm from drone imagery, manual
counting from drone imagery, and in situ counting along transects by snorkellers [16]. The
study found that using an ML algorithm and performing manual counting by observers
were similar to the counts obtained from in water transects at a relatively low density,
but began to underestimate when the density surpassed 75 sea cucumbers per 40 m2

(i.e., 1.88 individuals/m2) [16]. They also pointed out that the time required to extract
manual counts from drone images was higher than in-water surveys [16]. The potential
of an efficient automatic holothurian detection process would reduce the time and labour
requirements significantly over broad spatial scale. However, improving the efficiency of a
detection model remains a knowledge gap worthy of further investigation.
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The efficiency of a detection model could be improved by using more advanced hard-
ware, faster DL algorithms, or better training procedures. More powerful hardware could
shorten the computing time for both training and detection, but such improvement is be-
yond the control of ecologists. Training regimes and DL algorithms, on the other hand, can
be implemented and optimised by any developer or researcher with programming ability,
such as by changing the input training dataset, tuning the hyperparameters of learning
algorithms, selecting different evaluation metrics, etc. The size of the training dataset
determines the time and labour required to prepare the data (i.e., labelling holothurians in
our case). Hyperparameters are the configurations of the learning algorithm itself before
the learning process starts (i.e., the selection of pre-trained weights and anchor boxes, see
Section 2.3.3) which impacts the performance of the resulting model [38]. In this study,
we selected the third version of YOLO (YOLOv3) due to its widespread use in the lit-
erature and industry and well established open source community of support. It also
offers faster processing with minimal reduction in performance when compared to other
object detection models, such as Single-Shot Detector, RetinaNet, and Regions with CNN
(R-CNN) [34].

Our work contributes an automatic holothurian detection model using the YOLOv3
architecture and was delivered through the following steps: (1) summarized common
evaluation metrics to select the most suitable for assessing holothurian detection models;
(2) investigated the minimum training and labelling dataset sizes required to achieve an
acceptable detection model; (3) tuned the YOLOv3 hyperparameters to select the optimal
detection model; and (4) applied the optimal training model to quantify the density of
holothurians at Hideaway Bay reef in North Queensland, Australia.

2. Methods
2.1. Study Site

Hideaway Bay (20.072 914° S 148.481 359° E) is a mainland attached fringing reef
located on Cape Gloucester in the Mackay Whitsunday Region of North Queensland,
Australia (Figure 1a). The reef extends up to 350 m offshore and over 3 km alongshore [39].
A recent survey showed that the environmental conditions at monitoring sites in this region
are generally characterised by relatively high turbidity and high rates of sedimentation [40]
with the reef flat largely dominated by terrigenous sediments [39]. Little information about
holothurian population is known in this area. Yet easy access and calm weather made it an
ideal site for drone imagery data collection.

2.2. Data Acquisition

Drone imagery was captured in July 2020 using a DJI Phantom 4 Pro—a multirotor
drone suitable for flying slowly at low altitudes and taking off and landing in small spaces.
We used the free Drone Deploy mission planning app to create a flight path over the area of
interest at 20 m altitude with 75% overlap and 75% sidelap between nadir images, suitable
for creating an orthomosaic in future studies. As the orthomosaic process can introduce
errors such as double mapping or ghosting when combining overlapping images [41], we
considered individual images better suited to our counting sea cucumber application. We
therefore selected 63 of the total images, representing only those with no or very little
overlap (every fourth photo along a run, and every fourth flightline). The resolution of
these images was 4864 × 3648 pixels (px) (FOV = 73.7◦, GSD = 0.57 cm) (Figure 1b). The
average area of one drone image was approximately 423 m2 (Figure 1b). Since the clarity
of marine based drone imagery is subject to turbidity, wave conditions, and light and
shade variation, all images were taken at low tide under calm conditions with a low level
of turbidity [42] to minimize the training dataset complexity. Generally speaking, taking
images in the early morning can minimize the sun glint and a wind speed less than 5 knots
will not create significant ripples or waves that reduce the image quality [42]. A total area
of 26,662 m2 (∼2.7 ha) was surveyed.
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Figure 1. (a) Survey location of selected drone images (total N = 63) on a satellite image, located in
Hideaway Bay, Queensland, Australia; (b) A high spatial resolution drone image example in which
the florescent blue box indicates the relative size of a cropped image; (c) A cropped image example
in which the red boxes are the labelled sea cucumbers; (d) The details of sea cucumbers that can
be observed in the drone image and cropped image. Service Layer Credits: Esri, Maxar, GeoEye,
Earthstar Geographics, CNES/Airbus DS, HERE, Garmin, ©OpenStreetMap contributors, USDA,
USGS, AeraGRID, IGN, and the GIS User Community.

2.3. Data Processing

Data were processed through five major steps (Figure 2): (a) pre-process drone images;
(b) use bounding boxes to label holothurians as required by YOLOv3 and prepare different
sized training datasets to investigate the influences of dataset size on training results;
(c) train and validate models using YOLOv3 deep learning object detection algorithm
by tuning zero, one or two hyperparameters (for details see Section 2.3.3); (d) evaluate
and determine an optimal holothurian detection model using common object evaluation
metrics; and (e) apply the optimal detection model to map the sea cucumber density in the
area of interest.

2.3.1. Image Pre-Processing

The 63 drone images were cropped to the default image input size of YOLOv3,
416 × 416 px (Figure 1c). As shown in Figure 3, each drone image is cropped into
108 smaller images (9 rows and 12 columns) giving a total 6804 cropped images was
obtained. The cropped images at the last row and column were resized (i.e., padded with
black pixels, see Figure 3) in order to meet the default settings of YOLOv3 input images.
This resizing approach allows images to preserve the aspect ratio and provide positive sea
cucumber information without affecting the classification accuracy [43].

2.3.2. Labelling and Dataset Preparation

Each cropped image was manually examined and each sea cucumber was identified
and labelled manually by three trained volunteers using Labelme [44]. In order to maximize
the available useful information, sea cucumbers under all conditions (fully exposed on
sandy bottom or on coral reefs, partially covered by sediments or rubbles, cutoff by the
edges of the images, etc.) were labelled with a tight rectangular box (Figure 1c,d). The pixel
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coordinates of the top left and bottom right corner of each box were saved with annotations
in a JSON file for each cropped image, which was used as ground truth for later analyses.
The cropped and labelled images were first randomly split into two subsets: training and
validation (88%) and testing (12%). The testing dataset comprised 804 images that were
reserved for ultimate model evaluation, which was never used during the training and
validation. The ML training and validation dataset comprised 6000 images. To study the
importance of training sample size and identify the optimal number of labelled images
required this subset was randomly sampled into six training sets composed of 1000, 2000,
3000, 4000, 5000, and 6000 images. Each of the six training datasets were further split into
80% training (800, 1600, 2400, 3200, 4000, and 4800 cropped images, respectively) and 20%
validation (200, 400, 600, 800, and 1200 cropped images, respectively) to facilitate the deep
learning training process.

Figure 2. Workflow using YOLOv3 deep learning object detection algorithm.



Drones 2021, 5, 28 6 of 19

Figure 3. Example of how one drone image is cropped (red lines) and padded (black stripes).

2.3.3. Model Training and Validation

YOLOv3 is an open-source deep learning object detection algorithm with CNN ar-
chitecture (Darknet50) [34] that is often trained with hyperparameter tuning tailored for
specific applications. For the purpose of this study we used a high performance computer
to implement YOLOv3 [45] with Python 3.6, Keras 2.2.4 [37], and TensorFlow 1.13 [35].
We tuned two hyperparameters before starting the learning process: pre-trained model
weights and anchor box size. By definition, pre-trained model weights are used during
transfer learning, which refers to the situation of learning in a new setting through the
transfer of knowledge from a related setting that has already been learned [46]. Meanwhile,
anchor boxes serve as the initial guesses of the bounding boxes for detected objects [47].
Faster progress or improved performance are often expected by adopting such variations.
The default settings for these two hyperparameters in YOLOv3 are using anchor boxes
and pre-trained model weights obtained from the COCO dataset [45]. In this study, four
modifications of hyperparameters were adopted as follows:

• Scenario A: zero hyperparameters tuned: default pre-trained model weights and
default anchor boxes.

• Scenario B: one hyperparameter tuned: default pre-trained model weights and modi-
fied anchor boxes.

• Scenario C: one hyperparameter tuned: modified pre-trained model weights and
default anchor boxes.

• Scenario D: two hyperparameters tuned: modified pre-trained model weights and
modified anchor boxes.

To modify the anchor boxes, we changed their size and shape using k-means clustering
of the labelled bounding boxes in sea cucumber dataset (scenarios B and D above) [34]. To
determine the influence of the pre-trained model weights, the COCO derived pre-trained
model weights were changed to random numbers (scenarios C and D above). Combining
the four hyperparameter tuning scenarios (A–D above) and the six different sized training
datasets (i.e., 1000–6000), there were 24 training variations.

2.3.4. Sea Cucumber Detection Evaluation

The detection models were applied to the ultimate unseen testing dataset (804 images)
that had not been used in any of the previous training scenarios. Here we used the evalua-
tion metrics adapted from commonly used evaluation metrics in Keras and TensorFlow
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libraries [48], the 2020 COCO Object Detection challenge [49,50] and the PASCAL VOC
Challenge [51]. These include intersection over union (IOU), mean average precision
(mAP), precision, recall, and F1 scores, which are calculated based on confusion matrices
and confidence scores. A confusion matrix is the combination of ground truth data and
detected results from an ML model, whereas the confidence score is a value measured by
a detection model showing the certainty of the results (from 0 to 1, i.e., from not confi-
dent to very confident) [48]. The object detection evaluation metrics were calculated and
interpreted as described in Table 1.

The evaluation metrics measure the effectiveness of the model, and are thus influential
in determining model selection according to the users’ requirements [48]. For instance,
choosing a model with maximum F1 or mAP score would be the best option if the goal is to
achieve a good balance between precision and recall. In other cases, high precision would
be preferred if the desired information is about the exact location of sea cucumbers, whereas
high recall would be preferred if more accurate population counting is needed. To achieve
either higher precision or higher recall, the model’s training and detection result can be
adjusted by modifying the IOU (intersection over union) and confidence score threshold. In
this study, the goal was to produce a density map of sea cucumbers, and both precision and
recall values were important. Thus, using the F1 score or mAP which combines precision
and recall scores was preferred. In this work, one object class was designated to group all
sea cucumber species. In future, multiclass object detection within image for other taxa
or specific sea cucumber species could be investigated by adding separate object classes
for each target of detection. Thus, the mAP was chosen as the primary criteria since it
allows for the addition of more object classes in the future. Since there has been no research
recommending an absolute mAP value to determine whether the performance of a model
is acceptable, we used the top result in COCO Detection Leaderboard (mAP = 0.770) as the
judging criteria [52].

2.3.5. Mapping Sea Cucumber Density

The output of the detection model was superimposed onto the input image detailing
the location and confidence score of the output prediction within the image (Figure 4). The
detected results of sea cucumber counts in each cropped image were added together to
calculate the number of sea cucumbers present in the complete drone image using the
optimal model obtained above. The images were georeferenced according to the geotagged
metadata of the drone images and visualised as a sea cucumber density (i.e., number of sea
cucumbers/area of the drone image) footprint map in ArcGIS Desktop 10.7 [53].

Figure 4. Detection result sample. Left: cropped image before detection. Right: detected results with bounding boxes and
detect confidence plotted on each sea cucumber.
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Table 1. Criteria commonly used to assess and evaluate the performance of machine learning models [48,51,54].

Evaluation Metrics Definitions Interpretation and Relevance

Intersection over
Union (IOU)

IOU =
|A ∩ B|
|A ∪ B| =

where A is the area of the detected bounding box and B is the area of the
mannually labelled bounding box.

By using an IOU threshold of 0.5 to define true positive detections we
required that at least 50% of the bounding box area identified by the ML
approach overlapped with the area identified by the human observer. A
higher IOU threshold would indicate a higher accuracy of the detection
location within an image, and thus result in less true positive detections.
In this study,a moderate IOU threshold (0.5) was chosen to compare with
other object detection challenges (used for both COCO and PASCAL
VOC object detection challenge) [49,51] and as the exact location of a sea
cucumber individual was not the priority.

Confusion/
Error matrix

Predicted by ML model

Positive Negative

Ground Truth Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

A bounding box is deemed a TP, TN, FN, or FP when the confidence
score (in this case it was set to 0 to evaluate the performance) and IOU
exceed the chosen threshold (in this case IOU ≥ 0.5). The numbers
of the TP, TN, FN, and FP detected results alone do not indicate the
performance quality of resulting model but are the basic values used to
calculate other evaluation metrics.

Precision
Precision =

TP
TP + FP

where TP is the number of true positives and FP is the number of false
positive detected results.

Precision values range from 0 for very low precision to 1 for perfect pre-
cision. Higher precision means higher correct detection in all detected
results, i.e., more detected sea cucumbers are actually sea cucumbers.
High Precision value was preferred if the detected sea cucumber cor-
rectly in this study.

Recall
Recall =

TP
TP + FN

where TP is the number of true positive and FN is the number of false
negative detected results.

Recall values range from 0 for poor recall to 1 for perfect recall. Higher
recall means less incorrect detections, i.e., less detection of objects that
are not sea cucumbers.

F1 score F1score = 2× Precision× Recall
Precision + Recall

This is the harmonic mean of precision and recall. The closer the F1 score
is to a value of 1 the better the performance of the model. Instead of
choosing either the model with the best precision or the best recall, the
highest F1 score balances the two values. It is useful when both high
precision and high recall are desired.
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Table 1. Cont.

Evaluation Metrics Definitions Interpretation and Relevance

mAP

mAP =
1
N

N

∑
i=1

(
n−1

∑
j
(ri − rj)pinterp(rj+1))

where N is the number object classes being detected (in our case, N =1
since we only detect se cucumbers), n is the number of recall levels (in
an ascending order) at which the precision is first interpolated, r is recall,
and p is precision [51,54].

This metric is similar to the F1 score, but with the benefit that it has the
potential to measure multiple categories if required..
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3. Results and Discussion

A total of 6804 cropped images were created and a total of 12,956 sea cucumbers were
manually labelled. Based on the evaluation, the performance of the detection models were
influenced by size of the training dataset and the hyperparameters used as described and
discussed below.

3.1. Model Performance Evaluation

Of the 24 variations tried the worst performance was training with modifying both
hyperparameters (Scenario D) and using the smallest training dataset (1000), which was
unable to detect any sea cucumbers resulting in an mAP value of 0 (Figure 5). The best
detection result (mAP = 0.855) was achieved using 6000 cropped training images with no
changes in default hyperparameters (Scenario A). The relevant optimal confidence score
threshold was found to be 0.27, which resulted in 0.82 precision, 0.83 recall, and 0.82 F1
score, respectively, (Table 2). This indicates that 82% of sea cucumbers detected were correct
and more than 83% of true sea cucumbers were detected. The details of mAP variation and
the associated precision and recall curves are provided in the Appendix A Table A1.

Table 2. Summary of mAP, maximum F1 score, optimal Precision and Recall, with IOU threshold 0.5 in different
resulting models.

Number mAP Confidence Score Threshold Precision Recall F1 Score Training Dataset Scenario *

1 0.799 0.29 0.80 0.76 0.78 1000 A
2 0.827 0.26 0.80 0.79 0.80 2000 A
3 0.836 0.21 0.80 0.83 0.82 3000 A
4 0.845 0.30 0.83 0.81 0.82 4000 A
5 0.851 0.26 0.82 0.84 0.83 5000 A
6 0.855 0.27 0.82 0.83 0.82 6000 A

7 0.760 0.22 0.75 0.76 0.76 1000 B
8 0.812 0.26 0.80 0.79 0.80 2000 B
9 0.827 0.27 0.83 0.81 0.82 3000 B

10 0.819 0.29 0.81 0.80 0.80 4000 B
11 0.823 0.26 0.81 0.80 0.80 5000 B
12 0.838 0.24 0.80 0.83 0.82 6000 B

13 0.002 1.00 0.00 0.00 0.03 1000 C
14 0.258 0.07 0.33 0.38 0.35 2000 C
15 0.653 0.14 0.65 0.64 0.65 3000 C
16 0.753 0.24 0.77 0.73 0.75 4000 C
17 0.821 0.25 0.80 0.79 0.80 5000 C
18 0.773 0.21 0.74 0.76 0.75 6000 C

19 0.000 0.00 0.00 0.00 0.00 1000 D
20 0.136 0.18 0.94 0.01 0.25 2000 D
21 0.127 0.40 1.00 0.00 0.25 3000 D
22 0.448 0.12 0.57 0.46 0.51 4000 D
23 0.606 0.17 0.67 0.63 0.65 5000 D
24 0.750 0.23 0.76 0.73 0.75 6000 D

* Refering back to Section 2.3.3 for hyperparameter tuning scenarios.
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Figure 5. The mAP results (Y-axis) computed on the ultimate unseen dataset under the different
training sample sizes (X-axis) and hyperparameters (scenarios A-D, please refer back to Section 2.3.3).

3.1.1. Influence of Training Dataset Size

Without considering the impacts of hyperparameter tuning, the increasing training
data sample sizes improved the model performance (Figure 5 and Table 2). In scenarios
A and B, the mAP value improved very marginally as the training dataset size increased
from 1000 images (Scenario A = 0.799, Scenario B = 0.760) to 6000 images (Scenario A =
0.855, Scenario B = 0.838) (i.e., from 10 to 56 uncropped drone images). Yet in scenarios
C and D, where the pre-trained model weights were removed, the mAP value increases
dramatically as the training dataset size increased (Scenario C from 0.002 to 0.773, Scenario
D 0.000 to 0.750). Moreover, the training dataset size was also the major factor determining
the training time needed. Each 1000 images contributed approximately one hour worth
of training time. If using the best mAP for COCO dataset as the judging criteria (i.e.,
mAP = 0.770) [52], the minimum dataset size required to train an acceptable sea cucumber
detection system would be 1000 cropped images (i.e., less than 10 drone images) under
Scenario A (mAP = 0.799 > 0.770). This number, however, may be subject to change due
to various conditions including more diverse sea cucumber species presented, higher
turbidity in the water column or worse weather condition.

3.1.2. Influence of Hyperparameter Tuning

Hyperparameter tuning had negative impacts on the detection models, which was
different from our original expectation. The average mAP, including all training dataset
sizes, with no tuning of the default hyperparameters (Scenario A) was 0.835 (Table 2). An
average mAP of 0.813 was achieved by changing the anchor box size (Scenario B) and an
average mAP of 0.545 was achieved by removing the COCO derived pre-trained model
weights (Scenario C). Changing both hyperparameters (Scenario D) resulted in the lowest
average mAP (0.345). Using the default pre-trained model weights means the model has
been optimized by exposure to more than 120,000 labelled images [34,49] before the specific
sea cucumber training, which made it better at recognizing patterns, colours, textures, etc.
Without it, the basic feature recognition was learnt from scratch only from the labelled
sea cucumber images. Therefore, providing more images during the training significantly
improved the output (Figure 4 scenarios C and D).
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Using default anchor boxes also performed better than using modified anchor boxes,
which agrees with the original YOLOv3 paper which stated that while changing anchor
boxes might improve the performance of the model, it could decrease the model stabil-
ity [34]. Hence, keeping the default hyperparameters of YOLOv3 was preferrable for our
dataset. However, it is still questionable whether using pre-trained model weights will
always improve the model performance. If the dataset being studied is sufficiently di-
verse and large, training from scratch could outperform training from pre-trained weights
derived from common object datasets.

3.1.3. Comparison to Previous Studies

It is also important to compare the performance between different DL algorithms
rather than just focus on YOLOv3 alone. The optimal detection values (IOU = 0.5, confi-
dence score threshold = 0.27, precision = 0.82, recall = 0.83, mAP = 0.855, F1 = 0.82) compare
favourably with past ecological studies that utilise machine learning. Kilfoil et al. [16] used
a ResNet 50 CNN model to detect sea cucumbers from drone imagery in French Polynesia.
They reported a similar evaluation metrics reporting various values (F1 score = 0.68, preci-
sion = 0.80, recall = 0.59) at a Minimum Validation Criteria (MVC) threshold of 0.25 [16]. In
their study, the MVC is defined as “the minimum acceptable probability that an object is a
sea cucumber for it to be counted as such” [16] (the equivalent concept to our confidence
score threshold, which achieved 0.27 for the optimal model). The precision and recall
in this study also exceeded the aforementioned citation [16], which was expected since
YOLOv3 utilises different object detectors (faster RCNN vs. YOLOv3) and CNN back-
bones (ResNet 50 vs. Darknet 53) that should result in better and faster detection results
[33,34]. However, such comparison across different studies are difficult since these studies
often used different evaluation metrics and assess their models with different confidence
thresholds. For instance, Beijbom et al. [55] uses Cohen’s kappa to evaluate the annotation
accuracy of algae and hard corals, which varies from 43% to 96%. Villon et al. [56] reported
fish species detection underwater have been shown to reach a bounding box overlap
precision above 55% by using IOU = 0.5, T = 98%, where T was defined as a probability
threshold. It is impossible to conclude that YOLOv3 is a better detector than faster RCNN
or other algorithms. The differences could be a consequence of changing IOU threshold
and using different training datasets with different image capture quality, water column
variation, weather condition. Other environmental characteristics such as the complexity
of the benthic habitat structure, the presence of holothurian-like organisms and coral reef
patterns may also hinder or improve the performance of the object detection model. Since
reproducibility is a major principle of scientific research, the failure to detail methodology
and evaluation metrics in some ecological studies that utilise modern DL approaches
becomes a shortcoming. The knowledge gap could be filled in the future by using the
same datasets to compare the different CNN models and methodologies. This type of
comparison requires researchers to make their datasets openly available to the community.
The dataset and source code underlying this paper is made publicly available on GitHub (
https://github.com/joanlyq/SeeCucumbers, accessed on 24th March 2021) and GeoNadir
(https://data.geonadir.com/project-details/172, accessed on 24th March 2021) for future
comparison.

3.2. Mapping Sea Cucumber Density

Within the area of each drone image, the maximum sea cucumber density ranged
from 0 to 1.43 individuals/m2 (Figure 6) with an average density of sea cucumbers across
the whole surveyed was area of 0.50 individuals/m2. Details of sea cucumber density can
be found in Table A2. A recent study at Heron Reef in the southern Great Barrier Reef used
manually digitised drone images to calculate sea cucumber densities of 0.2 m2 on the shore
adjacent sand dominated inner reef flat and 0.14 individuals/m2 at the coral dominated
outer reef [8]. While those densities are comparable with our study, it is interesting to note
that at Hideaway Bay higher densities of sea cucumbers tended to be found further from

https://github.com/joanlyq/SeeCucumbers
https://github.com/joanlyq/SeeCucumbers
https://data.geonadir.com/project-details/172
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shore in areas of higher coral cover (Figure 6). Heron Reef has no terrestrial sediment inputs
whereas Hideaway Bay has a mixed terrigenous and carbonate sediment environment [57].
However, further research and monitoring of sea cucumber populations at these two and
other sites, is required to understand these trends.

Figure 6. The density footprint map of detected results.

3.3. Potential Future Applications

This implementation has demonstrated the potential of using state-of-the-art object
detection algorithms with drone RS to quantify holothurian density in shallow reef environ-
ments. This method offers many benefits over current techniques by increasing efficiencies
in both data capture and information extraction. Traditional survey methods only cover
several hundred square meters in a day and track tens of individual sea cucumbers [6,7],
whereas the drone images in this study collected data over an area size of 2.7 ha in less
than 30 min. The total dataset collection, labelling and training process in this work took
approximately 48 h for the best model, and only eight hours for the minimum acceptable
model (using less than ten drone images to train with default YOLOv3 hyperparameters
that achieved a 0.799 mAP). Similar to previous studies, manually counting and labelling
holothurians from drone images was the most time consuming element in the working
process [8]. Using open source DL object detection models could provide a solution to
reduce the counting time required for repeat surveys under similar water and other en-
vironmental conditions as the labelling and training process only needs to be done once.
It detects and quantifies the counts of holothurians over broad spatial scale instead of
extrapolating from small scale transects. Even if the detection model may require update
as the dataset grows, it is usually a small proportion of the full dataset. The model can
improve over time with better and larger training datasets across different locations. It also
increases the reproducibility of studies and allows data to be reviewed and reanalysed by
different experts.
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Beyond these immediate improvements in workflows, automated sea cucumber de-
tection from drone images is the first step toward further fruitful outcomes. It will allow
researchers an entirely new stream of data regarding object level reef monitoring from
aerial images. The detection model can be further applied to other ecological studies
focusing on sessile marine invertebrates such as movement patterns, bioturbation contribu-
tion quantification, population dynamics, preferred habitats etc. Being able to detect the
coordinates for target objects in geo-tagged drone images would allow the development
of a faster and more automated locating process for distribution analysis. The density
footprint map can be further combined with benthic habitat or bathymetry maps to gain
more insights about the factors that impacting the distribution of sea cucumbers.

However, the current model is unable to detect holothurians to a species level. Thus,
in situ surveys conducted by divers or snorkellers are complimentary with RS surveys
and crucial to understand the ecological or biological function of specific species. Better
understanding of holothurian physical and physiological characteristics of different species
could help to overcome current shortcomings. Future improvements in the algorithm or
the image data platform may also eliminate the negative influence of noise due to water
column characteristics and accommodate environments that are more diverse. This means
that methods and findings contained herein can also be used beyond the realm of the
humble sea cucumber, and applied to many other benthic features. Finally, the faster and
easier acquisition of data will allow for long term monitoring on a larger scale, which will
improve the accuracy and efficiency of conservation management.

4. Conclusions

As people are becoming more aware of the ecological importance of sea cucumbers as
well as their economic value, researchers are trying to devise efficient holothurian monitor-
ing methods. There is also an increasing trend towards applying state-of-the-art machine
learning technology to ecological studies. Our study not only presented an automatic sea
cucumber detection model using drone imagery on coral reef flats, but also was the first
one to apply the DL model to quantify the holothurian population and density over a broad
spatial area. Under this workflow, we processed 63 high spatial resolution drone images
of Hideaway Bay, Australia, and used YOLOv3 to detect holothurians. Performance was
evaluated using common object detection metrics. All data and algorithms are open access
and readily available online. In total, 11,462 out of 12,956 individuals were successfully de-
tected, which were unevenly distributed across a 2.7 ha area. The object detector performed
well, achieving an mAP of 0.855, a precision of 0.82, a recall of 0.83 and an F1 score of 0.82.
We found that as few as ten labelled drone images were sufficient to train an acceptable
detection model (0.799 mAP). Collectively, these results illustrate the potential of using
affordable unoccupied aerial vehicles (UAV, or drones) to survey and monitor holothurians
and other shallow water sessile species with direct implementation of open source object
detection models to increase the efficiency, replicability, and area able to be covered.

Author Contributions: Conceptualization, J.Y.Q.L., S.D., K.E.J. and W.X.; methodology, J.Y.Q.L. and
W.X.; data collection: S.D.; formal analysis, J.Y.Q.L.; original draft preparation, J.Y.Q.L.; review
and editing, S.D., K.E.J. and W.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data
can be found here: https://github.com/joanlyq/SeeCucumbers, accessed on 24th March 2021, and
https://data.geonadir.com/project-details/172, accessed on 24th March 2021.

https://github.com/joanlyq/SeeCucumbers
https://data.geonadir.com/project-details/172
https://data.geonadir.com/project-details/172


Drones 2021, 5, 28 15 of 19

Acknowledgments: We would like to thank Todd McNeill for their help in collecting drone imagery;
Jane Williamson, Jordan Dennis, Edward Gladigau, Holly Muecke for their help in labelling the
dataset. We owe deep gratitude to Jonathan Kok, Alex Olsen, Nicolas Younes, Redbird Furgeson, Raf
Rashid for their valuable feedbacks of the manuscripts. We acknowledge useful assessments and
correction from four anonymous reviewers as well as the journal editors.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

COCO Common Object in Context dataset
CNN Convolutional Neural Networks
DL Deep Learning
FN False Negative
FOV Field of View
FP False Positive
GSD Ground Sampling Distance
IOU Intersection Over Union
mAP mean Average Precision
ML Machine Learning
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Appendix A

These are supplementary information for training and detection result.

Table A1. Precision and recall curves summary of all 24 variations. The blue shaded area is equal to mAP of each variation
and the red dot it the precision and recall level obtained from optimal confidence score threshold.

Training Dataset Size
Scenario

A B C D

1000

2000

3000
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Table A1. Cont.

Training Dataset Size
Scenario

A B C D

4000 5

5000

6000

Table A2. Drone image area size and the detected counts and density in each drone image as well as the ground truth and
TP result from labelling.

Number File Name Image Area Size (m2) Detected Density (ind/m2) Detected Counts Ground Truth TP

1 DJI_0001 441.9 0.72 319 319 285
2 DJI_0005 416.06 0.62 257 257 234
3 DJI_0009 410.56 0.67 276 288 245
4 DJI_0013 419.05 0.56 236 250 208
5 DJI_0017 409.59 0.53 217 230 197
6 DJI_0073 402.93 1.24 499 498 463
7 DJI_0077 402.98 0.96 385 399 347
8 DJI_0081 410.16 0.5 205 207 183
9 DJI_0085 401.98 1 403 403 379
10 DJI_0089 397.71 0.24 97 105 91
11 DJI_0093 410.25 0.37 151 157 133
12 DJI_0097 421.86 1.12 474 456 417
13 DJI_0154 374.8 1.04 391 367 332
14 DJI_0158 392.92 0.21 84 95 76
15 DJI_0162 398.96 0.29 116 124 105
16 DJI_0166 382.7 0.67 255 247 225
17 DJI_0170 374.12 0.48 181 164 157
18 DJI_0174 364.25 0.71 257 235 212
19 DJI_0178 366.27 1.17 427 415 386
20 DJI_0261 456.35 0 0 2 0
21 DJI_0265 453.21 0.01 3 3 3
22 DJI_0269 446.41 0.01 3 0 0
23 DJI_0273 444.26 0 1 0 0
24 DJI_0277 440.27 0.03 13 17 12
25 DJI_0281 421.4 0.01 3 4 2
26 DJI_0285 412.05 0 1 2 1
27 DJI_0339 435.39 0.07 30 28 24
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Table A2. Cont.

Number File Name Image Area Size (m2) Detected Density (ind/m2) Detected Counts Ground Truth TP

28 DJI_0343 413.88 0.02 9 10 7
29 DJI_0347 437.93 0.09 38 47 36
30 DJI_0351 426.29 0.11 45 56 44
31 DJI_0355 442.01 0.02 7 10 7
32 DJI_0359 446.24 0.18 79 83 72
33 DJI_0363 466.61 0.08 37 41 35
34 DJI_0416 432.52 0.43 185 183 166
35 DJI_0420 402.38 0.51 207 201 185
36 DJI_0424 398.08 0.3 119 122 110
37 DJI_0428 388.56 0.15 60 61 55
38 DJI_0432 394.32 0.1 38 38 31
39 DJI_0436 379.58 0.22 85 90 79
40 DJI_0440 371.23 0.04 13 23 10
41 DJI_0575 437.82 0.97 423 418 389
42 DJI_0579 442.82 0.34 152 151 133
43 DJI_0583 453.16 1.15 521 488 449
44 DJI_0587 448.56 0.66 295 285 248
45 DJI_0591 441.95 1.31 580 540 481
46 DJI_0595 446.16 1.43 636 647 565
47 DJI_0599 449.44 0.21 96 102 87
48 DJI_0654 449.4 0.2 91 80 64
49 DJI_0658 444.72 0.99 439 461 356
50 DJI_0662 522.65 0.64 336 355 249
51 DJI_0666 348.31 1.08 377 371 297
52 DJI_0670 522.65 0.78 407 396 358
53 DJI_0674 447.42 0.75 336 301 264
54 DJI_0678 420.08 0.31 131 115 105
55 DJI_0911 443.09 0.16 71 62 58
56 DJI_0915 430.35 0.18 76 73 67
57 DJI_0919 432.47 0.11 48 40 38
58 DJI_0923 434.66 0.11 49 48 43
59 DJI_0927 432.97 0.56 244 223 199
60 DJI_0931 429.91 0.8 342 309 283
61 DJI_0935 436.15 0.85 372 343 319
62 DJI_0992 416.33 1.34 556 509 480
63 DJI_0996 422.9 1.04 440 402 376

Total - 26,662.02 0.50 13,224 12,956 11,462
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