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Abstract

1. An increasing number of empirical studies aim to quantify individual variation in demographic 

parameters because these patterns are key for evolutionary and ecological processes. Advanced 

approaches to estimate individual heterogeneity are now using a multivariate normal distribution 

with correlated individual random effects to account for the latent correlations among different 

demographic parameters occurring within individuals. Despite the frequent use of multivariate 

mixed models, we lack an assessment of their reliability when applied to Bernoulli variables.

2. Using simulations, we estimated the reliability of multivariate mixed effect models for 

estimating correlated fixed individual heterogeneity in demographic parameters modelled with a 

Bernoulli distribution. We evaluated both bias and precision of the estimates across a range of 

scenarios that investigate the effects of life-history strategy, levels of individual heterogeneity, and A
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presence of temporal variation and state-dependence. We also compared estimates across different 

sampling designs to assess the importance of study duration, number of individuals monitored, and 

detection probability.

3. In many simulated scenarios, the estimates for the correlated random effects were biased and 

imprecise, which highlight the challenge in estimating correlated random effects for Bernoulli 

variables. The amount of fixed among-individual heterogeneity was frequently overestimated, and 

the absolute value of the correlation between random effects was almost always underestimated. 

Simulations also showed contrasting performances of mixed models depending on the scenario 

considered. Generally, estimation bias decreases and precision increases with slower pace of life, 

large fixed individual heterogeneity, and large sample size.

4. We provide guidelines for the empirical investigation of individual heterogeneity using 

correlated random effects according to the life-history strategy of the species, as well as, the 

volume and structure of the data available to the researcher. Caution is warranted when 

interpreting results regarding correlated individual random effects in demographic parameters 

modelled with a Bernoulli distribution. Because bias varies with sampling design and life history, 

comparisons of individual heterogeneity among species is challenging. The issue addressed here is 

not specific to demography, making this warning relevant for all research areas, including 

behavioral and evolutionary studies.

Key-words: accuracy, among-individual variation, capture-recapture, generalized linear mixed 

models, individual quality, joint mixed models, multivariate normal distribution, precision 
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Introduction

Populations are composed of individuals that differ in their attributes, both at the 

phenotypic and genetic level, which influences their fitness. This among-individual heterogeneity 

is ubiquitous across populations and is a fundamental topic in ecology and evolution (Bolnick et 

al., 2011; Hamel et al., 2018). Among-individual heterogeneity profoundly affects population 

responses as the average performance of all individuals in a population is typically different from 

the performance of a population of average individuals (van de Pol & Verhulst, 2006; Vaupel & 

Yashin, 1985). More generally, individual heterogeneity affects the estimation of critical 

parameters such as vital rates, population growth rate, and components of demographic variance 

(i.e., demographic stochasticity, environmental stochasticity, and density dependence), with 

profound implications for population dynamics, phenotypic selection, and the evolution of life 

history strategies (Lomnicki, 1978 for a pioneer study; Snyder & Ellner, 2018; Vindenes et al., 

2008; Vindenes & Langangen, 2015 for recent developments).

Various definitions of individual heterogeneity have been formulated (Cam et al., 2016; 

Gimenez et al., 2018; Wilson & Nussey, 2010). In evolutionary and behavioural studies, 

individual heterogeneity often refers to the among-individual variance observed in a phenotypic 

trait. In this context, individual heterogeneity is generally trait specific and may vary within 

individuals over time (e.g., Jolles et al., 2020). Here, we define individual heterogeneity more 

restrictively as the among-individual variance in demographic parameters. Some of the factors 

generating individual heterogeneity can be easily observed (e.g., sex, age, size), but some are 

typically not observed by biologists (e.g., those due to dominance, personality, or genetic make-

up). Here, individual heterogeneity refers to this unobserved heterogeneity in demographic 

parameters that persists after accounting for observed differences such as age, state and sex. Our 

demographic definition of individual heterogeneity is identical to what has been called fixed 

heterogeneity (Tuljapurkar et al., 2009; van Daalen & Caswell, 2020) or demographic A
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heterogeneity (Stover et al., 2012), and align with the concept of frailty, although the latter is 

specific to individual variation in survival (Vaupel & Yashin, 1985). 

Because quantifying all aspect of phenotypic variation that cause among-individual 

variation in demographic parameters is impossible, individual heterogeneity is frequently defined 

as an unmeasured latent variable (Cam et al., 2016). Many recent studies aimed to specifically 

quantify the amount of among-individual heterogeneity in demographic parameters to evaluate its 

biological importance and determine its drivers. Two main modelling approaches have been used 

to estimate individual heterogeneity as a latent variable: the finite mixture models characterizing 

the presence of unobserved groups (Hamel et al., 2017; Pledger et al., 2003) and the mixed effect 

models quantifying random individual effects (van de Pol & Verhulst, 2006; Gimenez & Choquet, 

2010; Hamel et al., 2018). Although both approaches have been employed to account for and 

quantify unobserved individual heterogeneity (Gimenez et al., 2018), mixed effect models are 

most widely used for two reasons. First, they are convenient because they allow for 

straightforward quantification, interpretation and comparison of heterogeneity across traits and 

populations. Second, they are easier to implement. Indeed, mixture models often suffer from 

convergence problems, especially when Bernoulli-distributed traits are included, and defining the 

appropriate number of groups is not an easy task (Cubaynes et al., 2012; Hamel et al., 2017). 

Although many studies have focused on measuring individual heterogeneity for a single 

demographic parameter, quantifying individual heterogeneity in multiple demographic parameters 

with their covariation is critical. Indeed, covariation in individual heterogeneity in multiple 

demographic parameters may reveal biological processes driving individual heterogeneity such as 

allocation trade-offs or among-individual variation in resource acquisition (van Noordwijk & de 

Jong, 1986). For instance, some studies found that individuals with a high survival probability also 

tend to have a high probability of breeding (Cam et al., 2002; McElligott et al., 2002; Pigeon et al., 

2017) supporting the hypothesis that the overall covariations shaping individual heterogeneity may 

correspond to a continuum of low to high quality individuals (Wilson & Nussey 2010). Excitingly, 

important advances have been made to expand statistical techniques to not only quantify the 

amount of unobserved heterogeneity in demographic rates, but also look at whether patterns exist 

in how different demographic rates covary within a population. Recent approaches have quantified 

individual heterogeneity in multiple demographic parameters based on mixed effect models using A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

a multivariate normal distribution (e.g., Browne et al., 2007; Cam et al., 2002; Knape et al., 2011; 

Paterson et al., 2018). In these models, normally distributed individual random effects and their 

covariation are jointly estimated in several demographic parameters accounting explicitly for the 

non-independence in among-individual heterogeneity occurring in demographic parameters. 

No studies, however, have assessed the statistical reliability of multivariate mixed effects 

models in estimating correlated individual random effects for traits modelled with a Bernoulli 

distribution (hereafter Bernoulli-distributed traits). Previous studies have investigated the 

performance of multivariate mixed effects models (also referred to as joint mixed effects models) 

for normally distributed traits (Martin et al., 2011; van de Pol, 2012). Based on simulations, they 

found that reliable estimates and statistical inferences could be reached with sample sizes of a few 

hundred individuals. However, the difficulty in estimating individual heterogeneity could vary 

with the type of trait. For Bernoulli-distributed traits, accurately estimating individual random 

effects could be more challenging (Hamel et al., 2012; Kain et al., 2015). Previous studies have 

shown that in situations where individual variation in continuous traits is accurately estimated, all 

else being equal, estimates of individual heterogeneity in Bernoulli-distributed traits can be biased 

(Bonnet & Postma, 2016). Bernoulli-distributed data contain less information than continuous 

response data (i.e., presence or absence vs. presence, absence and magnitude of the response). 

Furthermore, data available to estimate individual variability in demographic parameters are 

generally scarce (Browne et al., 2007). In longitudinal studies of wild populations, individuals are 

often observed only once or a few times (<5) throughout their lifetime due to imperfect detection 

and a short lifespan. Thus, the reliability of multivariate mixed effects models to estimate 

correlated individual random effects for Bernoulli-distributed demographic parameters remains an 

unresolved issue. 

To fill this knowledge gap, we performed simulations to evaluate the reliability of 

multivariate mixed effects models in estimating correlated among-individual heterogeneity in 

demographic parameters that follow a Bernoulli distribution. Previous studies suggested that the 

amount of among-individual heterogeneity and the number of observations for each individual are 

critical to estimate individual random effects (Kain et al., 2015). Because lifespan affects the 

number of occasions when an individual can be observed, and thus the amount of information 

potentially available to estimate demographic parameters, we may expect model performance to 

vary according to lifespan, and thereby with the life-history strategy of the species considered. We A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

first investigated the effects of life-history strategy and the amount of among-individual 

heterogeneity on the bias and precision of estimated correlated individual random effects in 

survival and reproduction. Furthermore, temporal variation and state-dependent variation (i.e., the 

probability that a given event for individual i at time t depends on the state of that individual at 

time t-1) which are both pervasive in the wild, can be mistakenly attributed to fixed individual 

heterogeneity if ignored (Authier et al., 2017; Cam et al., 2016). Positive state-dependence can be 

particularly problematic because the variation it generates in individual life-history trajectories can 

mimic that induced by fixed individual heterogeneity (Cam et al., 2016). For instance, if the 

probability of reproducing successfully is higher after a successful reproductive attempt, state-

dependence will generate state-persistence in life histories with some individuals accumulating 

successes and others accumulating failures, in the same way fixed individual heterogeneity in 

reproductive success acts. Thus, empirical studies investigating individual heterogeneity have to 

estimate both individual heterogeneity and state-dependence simultaneously; otherwise, the 

estimates might be biased because state-dependence and fixed individual heterogeneity could be 

confounded (Authier et al., 2017; Cam et al., 2016). Thus, in a second step, we assessed the 

reliability of mixed effects models to estimate correlated individual random effects including 

temporal variation and positive state-dependence in our simulations. Finally, because the sample 

size (i.e., the number of individuals monitored) and the design of long-term studies show large 

variation, we also considered the effect of the number of individuals and the sampling design (i.e., 

detection probability and duration of the monitoring) on the bias and precision of the correlated 

individual random effects. We compared results across scenarios to provide guidelines for 

quantifying individual heterogeneity according to the life-history strategy, the structure and the 

volume of data available to the researcher.

Material and Methods

1. Data simulation 

1.1 Baseline model

We simulated individual life-history trajectories considering two demographic parameters, 

annual survival probability and reproductive success probability (i.e., the probability of 

successfully raising at least one offspring to independence), that are each modelled with a A
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Bernoulli distribution. Each individual’s trajectory starts when the individual is recruited as a first-

time breeder in the population, and we did not simulate any age effect. The survival process was 

modelled as follows:

SURVIVALit ~ Bernoulli (logit-1(μΦ + αi,Φ))

Where SURVIVALit is the survival of individual i from year t-1 to year t and μΦ is the logit-

transform of Φ, which is the average survival probability. Conditional on its survival, individual i 

may breed successfully in year t following an additional Bernoulli process where: 

SUCCESSit | (SURVIVALit=1) ~ Bernoulli (logit-1(μψ + αi,ψ)),

where μψ is the logit-transform of ψ, which is the average reproductive success. αi,Φ and αi,ψ are 

individual random effects that determine the fate of each individual and follow a multivariate 

normal distribution:

 ~ MVN ,( αi,Φ
 αi,ψ

 ) ( 0,
0, [ σ2

Φ covΦψ
covΦψ σ2

ψ ] )
where  is the variance of trait x (x refers to either survival Φ or reproductive success ψ) and σ2

X

 is the covariance between the two demographic parameters. The correlation between the covΦψ

two demographic parameter is calculated as . corΦψ =  
covΦψ

σΦ × σψ

1.2 Full model

Individual variation in demographic parameters may originate from processes other than 

individual heterogeneity such as temporal variation due to changing environmental conditions and 

state-dependence, i.e., the probability that a given survival or reproductive event for individual i at 

time t depends on the state of that individual at time t-1. If not accounted for, positive state-

dependency would increase the estimated individual heterogeneity. Inversely, negative state-

dependency would lead to an underestimation of individual heterogeneity. To account for these 

two additional processes, we modified the baseline model by including temporal variation and 

state-dependence. The model then becomes:

SURVIVALit ~ Bernoulli (logit-1(μΦ + αi,Φ + γΦ × successi(t-1) + εt,Φ)),

andA
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SUCCESSit | (SURVIVALit=1) ~ Bernoulli (logit-1(μψ+ αi,ψ + γψ × SUCCESSi(t-1) + εt,ψ)),

where γΦ and γψ are the parameters quantifying the intensity of state-dependence in survival and 

reproductive success probabilities, respectively. εt,Φ and εt,ψ are the temporal random effects 

simulating the environmental effects following normal distributions of mean 0 and variance and σ2
εΦ

, respectively (Authier et al., 2017).σ2
εψ

1.3 Parameterization 

Based on the models described above, we simulated datasets with different parameter 

values corresponding to various scenarios (Table 1). For the means μΦ and μψ, we considered two 

sets of values corresponding to a fast and a slow life-history strategy. These values were chosen to 

reflect the pace of life of a small passerine (μΦ = 0.5 and μψ = 0.7, generation time of two years 

assuming recruitment at 1 year old) and a long-lived seabird (μΦ = 0.9 and μψ = 0.8, generation 

time of 19 years assuming recruitment at 10 years). We simulated small and large amounts of 

individual heterogeneity in survival and reproductive success probability. Because the variance of 

a Bernoulli process is maximized at a mean probability of 0.5 and is constrained towards 0 as the 

mean approaches 0 or 1, we slightly adjusted the value representing a small and large amount of 

individual heterogeneity according to the life-history strategies as traits’ means markedly differed 

between these strategies (Table 1, Fig. 1). The correlation between the random effects was set to 

be 0.6, based on previous studies reporting positive covariations between demographic parameters 

(Cam et al., 2002; Fay et al., 2018; McLean et al., 2019). We simulated the absence or the 

presence of both temporal variation in demographic parameters and state-dependence (Table 1). 

Specifically, we included positive state-dependence, i.e., higher survival and reproductive success 

following a successful reproductive event the previous year. Although negative state-dependence 

is predicted by life-history trade-offs (Bell, 1980), empirical studies on natural populations have 

frequently reported positive state-dependence (McElligott et al., 2002; Smith, 1981), which may 

persist even when individual heterogeneity is accounted for (Cam et al., 2013; Zhang et al., 2015). 

After a failure, we used values for which survival value was Φ-0.1 and reproductive success was 

ψ-0.1 regardless of the life-history strategy. These values reflect effect sizes reported in empirical 

studies (e.g., McElligott et al., 2002; Lescroël et al., 2009; Fay et al., 2018). For simplicity, 

individuals perform as if they were previously unsuccessful at the first occasion. Finally, we also 

simulated different sampling designs by using data sets consisting of 10, 20, or 40 years of A
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monitoring with 25 or 100 new individuals, recruited as first-time breeders, added each year, 

which produce six combinations of sample size, from 250 to 4000 individuals. These designs 

allowed us to disentangle the effect of the number of individuals from the number of years of 

monitoring. For instance, to investigate fixed individual heterogeneity, one may ask whether it is 

better to have a sample size of 1000 individuals that come from 20 years of monitoring with 100 

new individuals recruited as first breeders per year, or from 40 years of monitoring with 25 new 

individuals recruited as first breeders per year. Lastly, because animal monitoring in the wild is 

usually akin to imperfect detection, we simulated datasets with either perfect (p = 1) or imperfect 

detection (p = 0.5) (Table 1). Ultimately, our simulations captured two distinct life-history 

strategies, two levels of individual heterogeneity, the presence or absence of temporal variability 

and state-dependence, three levels of monitoring duration, two marking effort schemes and two 

levels of detection probability, thereby leading to 192 scenarios. The parameter space explored 

was a trade-off between the number of factors investigated and the number of resulting scenarios 

and computation time. Although the parameter space investigated remained relatively limited, 

contrasting two or three levels for each factor allowed describing the relevant patterns regarding 

model performance. 

1.4. Mixture of binomial and continuous traits

Reliably estimating individual random effects is particularly challenging for Bernoulli 

variables, but is easier for non-binary traits (Bonnet & Postma, 2016). One may thus suggest that 

the inclusion of additional demographic parameters following a Poisson or Normal distribution for 

instance, would improve the reliability of estimates of other individual random effects on survival 

and reproduction. Assuming that all random effects are correlated, accurately estimating one may 

improve the estimation of the others. To evaluate this possibility, we ran six additional scenarios 

to test how bias and precision of correlated random effects in Bernoulli-distributed traits change 

when we include a third Poisson-distributed demographic parameter correlated to the previous 

two. See Appendix S1 for details.

Table 1: Parameter values used to simulate the datasets. For convenience, parameter values are 

alternatively given on the probability scale (PS) or logit scale (LS).
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Biological process

Parameters Meaning Scenarios Values

Φ Mean survival (PS) fast – slow 0.5 or 0.9

ψ Mean reproductive success (PS) fast – slow 0.7 or 0.8
𝜎𝛷 Standard deviation of the individual 

heterogeneity in survival (LS)
low – high 0.2/0.3 or 0.6/0.8

𝜎𝜓 Standard deviation of the individual 

heterogeneity in reproductive success (LS)
low – high 0.2/0.3 or 0.6/0.8

𝑐𝑜𝑟𝛷𝜓 Correlation between individual random 

effects for survival and reproductive success 

(LS)

Quality 0.6

𝜎εΦ Standard deviation of the temporal variation 

in survival (LS)
absent - present 0 or 0.5

𝜎εΦ Standard deviation of the temporal variation 

in reproductive success (LS)
absent - present 0 or 0.5

γΦ State-dependence in survival (PS) absent - present 0 or 0.1 

γψ State-dependence in reproduction (PS) absent - present 0 or 0.1 

Sampling process

Parameters Meaning Scenarios Values

nyear Study duration low - medium - 

high

10 or 20 or 40

nind Number of individuals marked per year low – high 25 or 100

p Detection probability (PS) imperfect - 

perfect

0.5 or 1

2. Analyzing the simulated data

To assess the quality of the estimates provided by the multivariate mixed models, we 

simulated 100 datasets for each scenario, which led to n=19,800 simulated datasets in total. For 

each dataset, we ran a Bayesian multi-state capture-recapture model identical to the model used to A
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simulate the data. We computed the bias, both non-scaled and scaled, and the precision for all 

estimates for each scenario using the set of 100 simulated datasets/fitted models. The bias was the 

difference between the average estimate over the 100 fitted models and the simulated value. The 

scaled bias was the bias divided by the simulated value. The precision was the average coefficient 

of variation of the estimate. Ninety five percent credible interval (CRI) coverages were computed 

over 300 fitted models. To reduce computation time, we computed CRI for a subset of 44 

scenarios (over 192) including two distinct life-history strategies, two levels of individual 

heterogeneity, the simultaneous presence or absence of both temporal variability and state-

dependence, three levels of monitoring duration, two levels of detection probability and the low 

marking effort level (that is 25 new individuals, recruited as first-time breeders, added each year). 

When simulated datasets had perfect detection, we fixed the detection probability to 1 in the model 

analyzing the data rather than estimating its value. This corresponds to the choice made in practice 

when detection is equal or close to 1 in real datasets (e.g., Cam et al., 2002; Knape et al., 2011). 

This means that for scenarios with perfect detection, we were not using capture-mark-recapture 

(CMR) models but classical generalized linear mixed models (GLMMs) with correlated random 

effects. We simulated data using R 3.5.1 (R Core Team, 2018) and conducted all analyses in JAGS 

(Plummer, 2003) using the ‘jagsUI’ R package (Kellner, 2016). R and JAGS codes used are 

provided in Appendix S2. We used a modified Cholesky decomposition (Chen & Dunson, 2003) 

to specify the prior of the covariance matrix. In order to improve mixing of chains, we used 

parameter expansion as in (Dunson, 2008), a technique to improve computational efficiency by 

reducing dependence among MCMC draws (Browne, 2004). Details including the description of 

the prior used for the covariance matrix is given in Appendix S3. Given the large amount of 

computation required to fit Bayesian models with individual random effects, the analyses were run 

on two super computers located in Canada.

Results

Model performance across life histories and amount of individual heterogeneity

Simulations based on the baseline model showed that both life-history strategy and amount 

of individual heterogeneity have a critical effect on the ability of the model to accurately estimate 

correlated random effects (Fig. 2). When we simulated datasets corresponding to a fast life-history A
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strategy, individual heterogeneity in both survival and reproductive success tended to be 

overestimated (relative bias of the two demographic parameters ranging from -6 to +157% 

according to the level of heterogeneity, sample size and detection probability; Appendix S4, Fig. 

2a,b). Correlation and covariation among random effects were strongly underestimated (bias -4 to 

-96% and -3 to -94% respectively; Fig. 2a,b). Additional simulations with different correlation 

values showed that it was the absolute value of the correlation that was underestimated (Fig. S1). 

By contrast, the amount of individual heterogeneity was estimated with smaller bias (bias -11 to 

+124%) and higher precision for the slow strategy. The correlation and covariation between 

random effects were also underestimated for the slow strategy and bias was potentially large, but 

slightly smaller than for a fast life-history strategy (bias -0.5 to -94% and -1 to -89% respectively; 

Fig. 2a,b). Finally, the amount of simulated individual heterogeneity had a strong effect on the 

reliability of estimates. When simulated individual heterogeneity was high, bias decreased for 

individual heterogeneity estimates (bias -8 to +16% compared with -4 to +157% for low 

individual heterogeneity) and for estimates of correlations and covariation between random effects 

(bias -0.5 to -76% compared with -21 to -96% and -1 to -65% compared with -19 to -94% 

respectively), but estimates generally became less precise (Fig. 2a,b). Coverages of 95% CRI were 

generally high (>80%) showing that despite frequent bias, CRIs were large and included the true 

parameter value most of the time. 

The effect of temporal variation and state-dependence

The full model included two additional processes: temporal variation and positive state-

dependence. Generally, the inclusion of these processes made the estimation of the variance of 

individual random effects and correlation and covariation between random effects more 

challenging (Fig. 2c,d). The inclusion of these processes accentuated the bias and decreased the 

precision compared with the estimates obtained from the baseline model. These effects were 

independent of the simulated amount of individual heterogeneity, but it was more detrimental for 

fast life-history strategies. For this latter, relative bias in the estimated individual heterogeneity 

ranged from -6 to +157% for the baseline model compared with a range of -14 to +225% when 

including temporal variation and state-dependence (Appendix S4, Fig. 2). In contrast, for the slow 

life-history strategy, bias ranged from -11 to +124% for the baseline model and from -7 to +129% 

for the full model (Fig. 2). Although both temporal variation and state-dependence tended to 

decrease the quality of the estimates, they did not contribute equally to this deterioration. An A
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increased bias was mainly observed when state-dependence was included (Appendix S4). While 

we obtained unbiased estimation of temporal variation on average for most scenarios, state-

dependence estimates were frequently biased negatively. When state-dependence was 

underestimated, the individual random effects were strongly positively biased, which suggests that 

random effects captured part of the individual heterogeneity in demographic parameters generated 

by the positive state-dependence. 

Influence of sampling design 

As expected, sampling design had a strong effect on the performance of the estimates. All 

else being equal, increasing the study duration, the number of marked individuals, and the 

detection probability reduced bias and increased precision (Figs 3 & 4). However, increasing 

sample size may reduce 95% CRI coverage when estimates are biased (Appendix S4). For large 

sample sizes (≥1,000 recruited individuals), individual heterogeneity estimates were fairly 

accurate for most scenarios for the slow life-history strategy (relative bias -6 to +6%) (Figs 3e, f & 

4b-f). However, the clear underestimation of the correlation and covariation between random 

effects persisted when we simulated low individual heterogeneity (relative bias -30 to -60% and -

31% to -0.56% respectively; Figs 3e & 4a,c,e). For the fast life-history strategy, the bias persisted 

for a sample size of 1000 individuals, especially when the model included state-dependence 

(Appendix S4). With very large sample sizes (4,000 recruited individuals), a slight bias of the 

individual heterogeneity in reproductive success persisted (relative bias -11 to +12%) and the 

correlation and covariation between random effects were still strongly underestimated (relative 

bias -15 to -93% and -12 to -91% respectively; Fig. 4e,f). Doubling the study duration had more 

impact on improving the reliability of estimates than doubling the number of marked individuals 

per year for the slow life-history strategy (Figs 3c,d vs. 3e,f & 4a,b), but not for the fast life-

history strategy. Imperfect detection generally increased the bias and lowered the precision, but 

these effects were stronger for the estimated amount of individual heterogeneity. When detection 

probability decreased from 1 to 0.5, the bias in individual heterogeneity increased from 0 to 232%, 

whereas the bias in the correlation and covariation between the random effects increased from 0 to 

47% and from 7 to 832% respectively (Fig. S2).

Mixture of Bernoulli- and Poisson-distributed demographic parameters
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Additional simulations showed that including Poisson-distributed traits - such as the 

number of offspring produced per successful breeding attempt - had only a weak effect on the 

ability of the model to accurately estimate correlated random effects for the Bernoulli-distributed 

traits. Although estimated individual heterogeneity of the demographic parameter following a 

Poisson distribution was unbiased and precise under all simulated scenarios, bias in correlated 

individual random effects for Bernoulli-distributed traits were almost unchanged (Fig. S3). 

Individual heterogeneity estimates for Bernoulli variables were the same with and without the 

Poisson variable and the bias of the correlation between random effects was slightly decreased 

only for high individual heterogeneity. For high individual heterogeneity, relative bias in the 

estimated correlation ranged from -0.22 to -0.64% when modelling only Bernoulli traits compared 

with -0.12 to -0.60% when including a Poisson-distributed trait, whereas for low individual 

heterogeneity, the relative bias remained the same with or without the inclusion of a Poisson-

distributed trait, ranging from -0.93 to -0.96%. 

Discussion

Although ecologists have shown increasing interest in estimating individual heterogeneity 

by modelling correlated random effects in multivariate mixed models (Bonnet & Postma, 2016; 

Cam et al., 2013; Knape et al., 2011; Paterson et al., 2018), an assessment of how reliably these 

models quantify individual heterogeneity in demographic parameters was lacking. Our simulations 

fill this gap and reveal that estimating correlated random effects for Bernoulli variables is 

challenging because estimations of fixed individual heterogeneity in survival and reproductive 

success and their correlation could be strongly biased and imprecise for most of the scenarios 

investigated in our study. Simulations also indicated that bias in estimates strongly depends on the 

life-history strategy of the species, which we measured by the species pace of life (generation 

times spanning over an order of magnitude), as well as the amount of individual heterogeneity and 

the sample size, both covering the ranges commonly reported in empirical studies. Generally, 

estimates become less biased and more precise when a large sample size was obtained from a focal 

population that had a slow pace of life, and higher individual heterogeneity. Although our study 

raises concerns regarding the biological interpretation of previously published empirical estimates 

of correlated individual random effects for Bernoulli-distributed demographic parameters, it also 

provides useful guidelines for future empirical studies determining under which conditions reliable A
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estimates could be obtained depending on the type of life-history strategy of the study species 

considered. Most importantly, although we address this issue in a demographic framework, the 

problem treated here is not specific to demography and these results are relevant for all research 

areas using correlated random effects for Bernoulli-distributed traits.

Bias in the variance and correlation estimates

In many scenarios, estimates from the variance-covariance matrix were biased and 

imprecise. Although individual heterogeneity was frequently overestimated, the absolute value of 

the correlation between random effects was almost always underestimated. Bias tended to be 

stronger for estimates of the correlation between random effects than for estimates of the amount 

of individual heterogeneity. Here, we used the same model for generating and analysing the data, 

meaning that we describe model performances under the best-case scenario. These results confirm 

the concerns raised by Knape et al. (2011) regarding the large uncertainty associated with 

empirical estimates of correlated random effects. 

Correlation and standard deviation of the individual heterogeneity in survival and 

reproduction are directly related since . Therefore, for a given 𝑐𝑜𝑟𝛷𝜓 =  𝑐𝑜𝑣(𝛷,𝜓)/(𝜎𝛷 × 𝜎𝜓)

covariance level, an overestimation of individual heterogeneity also results in an underestimation 

of the correlation. The systematic underestimation of the correlation among random effects is in 

line with results from previous simulations investigating the reliability of temporal correlation 

estimates among demographic components (Riecke et al., 2019). Based on datasets including 

temporal random effects simulated with a multivariate normal distribution, these authors found 

that the temporal correlation could be underestimated whichever the sign of the true correlation. 

The systematic underestimation of covariation could be compared with the well-known problem of 

regression dilution in linear models. When fitting a linear model, the random measurement error in 

the explanatory variable systematically biases the estimate of the regression slope toward zero 

(Spearman, 1904). In our case, the estimation error in individual heterogeneity causes a systematic 

underestimation of the correlation between random effects. 

The priors we used for the covariance matrix may affect the observed bias and precision. 

To assess the sensitivity of the results to prior choice, we re-ran simulations with two different 

priors (Appendix S5). Results show that this choice of prior distributions has a small effect on the 

magnitude of the bias in the estimated amount of individual heterogeneity and correlation between A
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random effects (Fig. S4). Overestimation of the individual heterogeneity and strong 

underestimation of the correlation estimate were observed irrespective of the prior used. The prior 

used for our simulation study tends to shrink the correlation estimates toward 0. This effect was 

expected since we used a slightly informative prior favouring a null value for the correlation 

(Appendix S3). Ensuring a marginal uninformative prior is straightforward in the case of a 2-by-2 

covariance matrix but not for matrices of higher dimensions. The advantage of the prior used for 

this simulation study is that it can be used for more than two traits (e.g., Cam et al., 2013; 

Appendix S1). Finding priors with marginal uniform correlations for multivariate covariance 

matrices is an active area of research (Huang & Wand, 2013).

Effect of the pace of life and state-dependence on estimates 

We found contrasting model performance depending on the pace of life of the species. 

Although the two life-history strategies simulated may not be representative of the whole slow-fast 

continuum, they clearly suggest patterns according to the species’ pace of life and reveal key 

aspects affecting model performances. Estimates were substantially less biased and more precise 

for the slow life-history strategy, especially for individual heterogeneity in reproductive success. 

This contrasting performance according to the life-history is likely due to variation in the number 

of reproductive attempts per individual caused by differences in the average lifespan within 

contrasting life-history strategies. In our simulations, individuals bred once a year, meaning 

individuals with a fast strategy (mean survival = 0.5 leading to an adult life expectancy of 1 year) 

reproduced twice on average (i.e., at recruitment and the year after), whereas individuals with a 

slow strategy (mean survival = 0.9 leading to an adult life expectancy of 9 years) reproduced ten 

times on average. Thus, the information available to estimate individual-specific performance in 

reproduction was larger for individuals with a slow life-history strategy. In contrast, the 

information available to estimate individual heterogeneity in survival probability was less affected 

by the pace of life, likely because mortality occurs only once per individual regardless of the pace 

of life. 

Although temporal variation in demographic parameters has weak effects on model 

performance, the simulation results showed the detrimental effect of positive state-dependence on 

the estimation of the individual random effects. This reveals the difficulty in disentangling 

individual heterogeneity in life-history trajectory due to positive state-dependence, from that of 

inherent individual differences in survival and reproductive ability. In many scenarios, individual A
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heterogeneity generated by state-dependence was partly captured by the inflated variances of the 

individual random effects. Because both processes can replace each other in accounting for state-

persistence over time, they have to be estimated simultaneously when both are present to get 

unbiased estimates (Authier et al., 2017). In accordance with previous studies, our results show 

that simultaneously estimating state-dependence and fixed individual heterogeneity is challenging 

(Hamel et al., 2012; Nerlove, 2014). Still, our simulations show that disentangling these processes 

is possible when sample size is large enough. For the slow life-history strategy, relatively reliable 

estimates of state-dependence were obtained from sample sizes of 1,000 or more recruited 

individuals. For the fast life-history strategy, unbiased estimation of state-dependence seemed 

possible from 4,000 individuals.

Importance of the sampling design

The reliability of estimates of the variance-covariance matrix depended strongly on the 

study design. Most of the difficulties described above vanished with large sample sizes, that is 

>1,000 individuals monitored. This demonstrates that observed bias is not due to the 

unidentifiability of the parameters but rather related to a lack of information in the data. Clearly, 

reliable estimation of correlated random effects for Bernoulli variables requires very large sample 

sizes. According to the simulation results, the order of magnitude for an adequate sample size 

should be >1,000 individuals. Although this is larger than most sample sizes available from 

individual-based long-term studies in the wild, some datasets meet this requirement (e.g., Cam et 

al., 2013; Gillespie et al., 2013; Paterson et al., 2018). 

For the sampling designs we investigated, study duration seemed to be more influential 

than total number of individuals monitored for the slow life-history strategy, but not for the fast 

life-history strategy. This difference according to the pace of life is, again, likely due to the 

average lifespan associated with each life-history strategy. Since average lifespan of an individual 

with a slow life-history strategy is longer than that of an individual with a fast life-history strategy, 

increasing the study duration is more likely to increase the number of observations per individual 

for the former. As a general rule, it seems more efficient to increase the number of observations 

per individual than to increase the number of individuals (see Fig. S6 for an illustration of the 

effect of the number of observations per individuals).

Implications for future researchA
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Results from studies estimating correlated individual random effects among demographic 

parameters modelled with Bernoulli distribution should be interpreted cautiously because bias is 

likely to be pervasive and strong. We also found that it can vary according to demographic 

parameters, pace of life, and true amount of fixed individual heterogeneity. These difficulties 

make comparative studies very challenging to perform. Although multi-species comparisons play 

a key role in life-history research, differences in estimates of individual heterogeneity could be 

affected, or even driven, by biases that change according to the species’ pace of life, the amount of 

individual heterogeneity and sample size. Variable bias according to the true amount of individual 

heterogeneity is particularly problematic because we cannot know the true amount of fixed 

individual heterogeneity in any specific demographic parameter a priori. 

Although our results raise concerns about the biological interpretation of individual 

random effects for Bernoulli-distributed variables, investigating individual heterogeneity with 

multivariate mixed models is not a hopeless cause. Studies interested in estimating and 

interpreting individual heterogeneity from correlated individual random effects should favour the 

investigation of continuous traits. When Bernoulli-distributed traits are involved, estimating 

individual heterogeneity reliably is possible if studies are based on very large sample sizes (i.e., 

thousands of individuals or more for fast life-history species), and include individuals with near 

complete life histories. Although such datasets are not common, some monitoring on long-lived 

sea birds, marine mammals, small passerines or humans meet this requirement. Ideally, such 

studies should simulate data to assess precision of estimates prior to drawing inference on 

estimated correlated random effects from their data. We provided R code (see Appendix S2) that 

will help researchers perform customized simulations for their specific study system and sampling 

design. 
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Figure legends:

Figure 1: Distribution of the simulated individual heterogeneity ( ) in survival (Φ) and in 𝜎

reproductive success (ψ) probabilities according to the life-history strategy and the amount of 

individual heterogeneity simulated. The red lines display the means. In each case, individual 

heterogeneity included in the trajectories corresponds to a continuum of increasing individual 

performance along the x-axis that can be interpreted as frailty for survival probability and as a 

measure of reproductive ability for reproductive success probability. The correlation between 

these axes of performance is positive and thereby corresponds to a continuum of individual 

quality. 
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Figure 2: Bias and precision in the estimates of individual random effects and their correlation for 

Bernoulli variables. Parameters include the standard deviation of the individual heterogeneity in 

survival ( ) and reproductive success ( ) and their correlation (cor) and covariance (cov). Each 𝜎𝛷 𝜎𝜓

plot displays the estimates for a scenario with a specific amount of individual heterogeneity (i.e., 

low vs. high), and for scenarios that include or exclude temporal variation in demographic 

parameters and positive state-dependence (i.e., baseline vs. full model). The study duration was 20 

years and the number of new individuals recruiting as first-time breeders per year was 25, leading 

to a sample size of 500 individuals. Diamonds in darker color give the values used to simulate the 

datasets and points in lighter color give the average estimates over the 100 models fitted to the 100 

simulated datasets. Error bars give the range including 95% of the estimated values. 

Figure 3: Bias and precision in the estimates of individual random effects and their correlation for 

Bernoulli variables with the full model, i.e., including temporal variation in demographic 

parameters and state-dependence. Parameters include the standard deviation of individual 

heterogeneity in survival ( ) and reproductive success ( ) and their correlation (cor) and 𝜎𝛷 𝜎𝜓

covariance (cov). Each plot displays the estimates for a scenario with a specific amount of 

individual heterogeneity (i.e. low vs. high) and study duration (10, 20 or 40 years). The number of 

new individuals recruited as first-time breeders per year was 25, leading to the sample sizes of 

250, 500 and 1,000 individuals according to the study duration. Diamonds in darker color give the 

values used to simulate the datasets and points in lighter color give the average estimates over the 

100 models fitted to the 100 simulated datasets. Error bars give the range including 95% of the 

estimated values. 

Figure 4: Bias and precision in the estimates of individual random effects and their correlation for 

Bernoulli variables with the full model, i.e., including temporal variation in demographic 

parameters and state-dependence. Parameters include the standard deviation of the individual 

heterogeneity in survival ( ) and reproductive success ( ) and their correlation (cor) and 𝜎𝛷 𝜎𝜓

covariance (cov). Each plot displays the estimates for a scenario with a specific amount of 

individual heterogeneity (i.e., low vs. high) and study duration (10, 20 or 40 years). The number of 

new individuals recruited as first-time breeders per year was 100, leading to the sample sizes of A
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1,000, 2,000 and 4,000 individuals according to the study duration. Diamonds in darker color give 

the values used to simulate the datasets and points in lighter color give the average estimates over 

the 100 models fitted to the 100 simulated datasets. Error bars give the range including 95% of the 

estimated values. 
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