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Summary

1. Ecologists and many evolutionary biologists relate the variation in physiological, behavioural, life-history,

demographic, population and community traits to the variation in weather, a key environmental driver. How-

ever, identifying which weather variables (e.g. rain, temperature, El Ni~no index), over which time period (e.g.

recent weather, spring or year-roundweather) and in what ways (e.g. mean, threshold of temperature) they affect

biological responses is by no means trivial, particularly when traits are expressed at different times among

individuals.

2. A literature review shows that a systematic approach for identifying weather signals is lacking and that the

majority of studies select weather variables from a small number of competing hypotheses that are founded on

unverified a priori assumptions. This is worrying because studies that investigate the nature of weather signals in

detail suggest that signals can be complex. Using suboptimal or wrongly identified weather signals may lead to

unreliable projections andmanagement decisions.

3. We propose a four-step approach that allows for more rigorous identification and quantification of weather

signals (or any other predictor variable for which data are available at high temporal resolution), easily imple-

mentable with our new R package ‘climwin’. We compare our approach with conventional approaches and pro-

vide worked examples.

4. Although our more exploratory approach also has some drawbacks, such as the risk of overfitting and bias

that our simulations show can occur at low sample and effect sizes, these issues can be addressed with the right

knowledge and tools.

5. By developing both the methods to fit critical weather windows to a wide range of biological responses and

the tools to validate them and determine sample size requirements, our approach facilitates the exploration and

quantification of the biological effects of weather in a rigorous, replicable and comparable way, while also pro-

viding a benchmark performance to compare other approaches to.

Key-words: bias, climate change, climate sensitivity, cross-validation, false positive, precision,

R package climwin, sample size, sliding window, weather

Introduction

Ecology and parts of evolutionary biology concern the study

of how organisms interact with their environment. Conse-

quently, a core task is to relate the variation in physiological,

behavioural, life-history, demographic, population, species

and community responses (henceforth referred to as traits) to

the variation in environmental variables, such as food abun-

dance, competitor density andweather conditions. Particularly

for studies on climate change and variability, the best choice of

environmental predictor is not always obvious, even in

well-studied systems. Which weather variables (e.g. rain,

temperature) affect the expression of traits, and over which

time period (e.g. recent weather, spring or year-round weather)

and in what ways (e.g. mean or maximum of temperature)? In

some cases, these factors can be experimentally manipulated,

but in many cases experiments are impossible or misrepresent

responses to climate change in the wild (Wolkovich et al.

2012), and weather drivers will need to be identified using

observational data.

Using observational data to capture how organisms are

responding to a history of multidimensional weather variation

is by nomeans trivial (Stenseth &Mysterud 2005) and requires

a systematic approach; yet no such approach is currently avail-

able. Studies that investigate the nature of weather signals in

detail suggest that signals can be complex (e.g. Gienapp,

Hemerik & Visser 2005; Biro, Beckmann & Stamps 2010;*Correspondence author. E-mail: martijn.vandepol@anu.edu.au
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Kruuk, Osmond&Cockburn 2015). However, inmost studies,

the choice of which weather variables to consider, over which

period of the year and which metric to use seems to have no

strong justification and is largely based on a priori assumptions

that are rarely validated. Furthermore, they tend to focus on a

narrow range of competing hypotheses. This is concerning

because one generally has limited a priori knowledge, while

there are potentially large numbers of plausible competing

weather signal hypotheses.

Using overly simplistic, suboptimal or wrongly identified

weather signals that ignore these biological realities can lead to

unreliable projections and consequently to inappropriate con-

servation decisions. For example, if a trait displays no response

to weather, it is difficult to determine whether this is evidence

of climatic insensitivity or a flawed choice of time period. Even

whenwe find a relationship betweenweather and the biological

response, we cannot be sure that we have selected the period

where the response is most sensitive. These problems not only

hamper projections for single species, but also cloud whether

reported interspecific variation in weather sensitivities reflects

biological or methodological differences (van de Pol et al.

2013). Therefore, a systematic and rigorous method to identify

and quantify the weather signals affecting biological processes

is urgently needed.

In this paper, we first perform a literature review to describe

conventional weather signal selection approaches – and their

associated limitations – focusing on the three defining charac-

teristics of weather signals: (i) the identity of the weather vari-

ables, (ii) the critical time windows affecting the trait

expression and (iii) the aggregate statistics (e.g. mean, max)

that best describe the influence of the weather variables over

the critical period. Subsequently, we propose a stepwise

approach using our new and easy-to-use R package climwin

(Bailey & van de Pol 2015) to investigate these characteristics

in a systematic way and provide worked examples using empir-

ical data set. Finally, we perform simulations to show how our

approach can be used to quantify unbiased and preciseweather

signals, and the sample size required to do so, while avoiding

spurious results.

Conventional approaches and their limitations

IDENTITY OF WEATHER SIGNALS

Weather typically affects ecological processes through a mix-

ture of variables (Remmert 1980); consequently when consid-

ering candidate weather variables for a signal, the number of

possibilities is substantial. In ecology, this problem is tackled

using either a confirmatory or exploratory approach. A confir-

matory approach uses pre-existing biological knowledge to

limit the number of potential variables to a few testable

hypotheses (e.g. Frederiksen et al. 2014). Although sufficient

biological knowledge may be likely for environmental drivers

such as food or predator abundance (one can observe what an

organism eats or is eaten by and use this to decide what prey or

predator species’ abundance to include as environmental dri-

ver), this is more difficult for weather variables. In some model

systems, the ecophysiology or behaviour of an organism may

provide clues to identify candidate variables; for example,

snow cover is known to affect the feeding behaviour of herbi-

vores (Stenseth & Mysterud 2005). However, we often have

limited a priori knowledge about weather influences because

direct weather effects are typically hard to observe, may exhibit

time-lags and weather may affect organisms indirectly (e.g. via

food). In such situations, a more exploratory approach, in

which a wider range of weather signal hypotheses is being

tested, may be preferable.

A systematic review of the literature (see Appendix S1 for

methods;N = 50 studies, unless stated otherwise) showed that

often the choice of weather variables is confirmatory (66%),

typically based on a previous study on a different population

or species. However, making choices from previous studies can

be fraught as weather sensitivity might vary between environ-

ments (Phillimore et al. 2010), differ between closely related

species (van de Pol et al. 2013), and the choice of weather vari-

able in the reference studymay also lack justification. Only 6%

of studies specifically stated that they used an exploratory

approach, while 28% of studies gave no justification for the

choice of weather variables.

Furthermore, most studies only considered a single weather

variable (Fig. 1a; variables considered: 59% temperature,

20% precipitation, 8% large-scale oceanic climatic indices,

13% other). The studies that did consider multiple variables

generally lacked methods to deal with collinearity (91% of

studies; 20 out of 22), despite the fact that strong correlations

are often expected (e.g. sunny warm weather generally means

low rainfall).

CRIT ICAL TIME WINDOWS

More often than not the period over which weather is deemed

to be important for a trait (critical time window) appeared to

be chosen a priori and little justification is provided, with most

studies (62%) not refining the time window beyond an annual

or seasonal mean. Moreover, few studies considered compet-

ing time windows (Fig. 1b). For example, in birds, the varia-

tion in the timing of egg laying is typically related to spring

temperatures (e.g. Crick & Sparks 1999) and annual survival

rate to winter temperatures (e.g. Grosbois et al. 2008), yet tem-

peratures during other periods and shorter resolution timewin-

dows are rarely considered (e.g. McLean et al. 2016).

Considering a variety of time windows is not only important to

identify the ‘best’ possible window, but it also helps to distin-

guish the potentially co-occurring effects of short-lag (more

recent) and long-lag (more distant) weather signals that could

be acting at different stages of an organism’s life cycle (Fig. 2;

van de Pol &Cockburn 2011). For example, high temperatures

during winter may have positive effects on summer reproduc-

tive performance, while a recent sequence of hot summer days

can have negative effects when tolerance thresholds are

exceeded (Kruuk, Osmond&Cockburn 2015).

In addition to considering competing time windows that

vary in duration and lag time, the choice of the type of time

window – absolute or relative (Fig. 2; Box 1) – becomes
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particularly crucial when traits are expressed at different times

among individuals (Gienapp, Hemerik & Visser 2005; van de

Pol & Cockburn 2011). However, relative windows were rarely

considered (6%of studies).

CHOICE OF AGGREGATE STATISTICS

In our review, the most common choice of aggregate statistic

was the mean of a weather variable over a given period (55%

of studies). However, developmental studies have focused on

cumulative measures such as (growing) degree or chill days

(19%of studies) and studies where physiological tolerance lim-

its of an organism can be exceeded have used maximum or

minimum weather values (15% of studies; see extreme events

literature; Bailey & van de Pol 2016). Sometimes it is not the

absolute value of a weather variable that affects trait expres-

sion, but the seasonal rate of change or daily range (Biro, Beck-

mann & Stamps 2010; Schaper et al. 2012). Finally, not all

days within a period are necessarily equally important, with

more recent weather potentially having a stronger influence

than weather in the more distant past (Gienapp, Hemerik &

Visser 2005; van de Pol, Osmond&Cockburn 2012). Such pat-

terns – reflective of a fading memory – can be described using

weightedmeans (van de Pol &Cockburn 2011). Evidently, sev-

eral biologically plausible choices of aggregate statistic exist,

but few studies actually compared competing hypotheses

(Fig. 1c). This is concerning, because studies that have made

this comparison illustrate that results can strongly depend on

the choice of aggregate statistic used (Charmantier et al. 2008;

Husby et al. 2010).

Astepwise systematic approach towardsmore
rigorousweather signals usingRpackage
climwin

Our literature review showed that there is currently no system-

atic approach to identify the weather signals affecting biologi-

cal processes. Furthermore, the typical practice of considering

only a limited range of hypotheses, often founded on unveri-

fied a priori assumptions, seems at odds with how little we still

Fig. 2. Graphical explanation of the differ-

ence between short- and long-lag time win-

dows and between absolute and relative

windows. Short- and long-lag time windows

are, respectively, more recent or distant since

the timing of trait expression. Individual varia-

tion in the timing of expression of a trait (black

circles) affects the choice of whether to use

absolute time windows (i.e. the same window

for all individuals; grey areas) or relative time

windows that depend on the individual and

the time when the trait was expressed (striped

areas). Relative time windows assume that,

instead of using an absolute period (e.g.

March–April temperatures), windows are rel-

ative to the timing of expression of a trait for

each individual (e.g. the temperature in the

month preceding the time of trait expression

by each individual).

Fig. 1. Histograms of the number of different (a) weather variables, (b) weather windows and (c) aggregate statistics considered per study (N = 50

studies, see Appendix S1 for details).
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know about how weather affects organismal functioning in

most species. Therefore, we propose a four-step approach that

investigates a broader set of competing hypotheses concerning

the choice of weather variable, time window and aggregates

statistic used (Fig. 3). This more exploratory approach is not

meant to be exhaustive, but primarily to widen the number of

competing hypotheses beyond the small number of confirma-

tory hypotheses typically considered.

Our stepwise approach is easily implementable with the new

R package climwin (Bailey & van de Pol 2015; Fig. 3), and we

illustrate our approach with an example data set. The R code

and the detailed description of analyses are available in

Appendix S2; here, we will focus on the key outcomes and their

interpretation. Although our approach is developed for

weather variables, it can also be used for any predictor variable

for which data are available at high temporal resolution. For

example, studies that repeatedly measure dominance scores,

food abundance or body size during the year could use the

tools developed here to investigate over which period such

variables best explain the trait variation.

STEP 1: DETERMINE A BASELINE MODEL STRUCTURE

WITHOUT WEATHER EFFECTS AS A NULL HYPOTHESIS

Our overall approach will be to compare the support by the

data for competing hypotheses formalized into regression

models. To assess the performance of competing models,

one needs to have a yardstick, which will be a baseline

regression (null) model containing no weather effects, but

that can include other confounding predictor variables (e.g.

the sex of an individual, a random effect of study site; see

Fig. 3 for R code example). The climwin package allows for

baseline models using most types of regression models that

can be fitted in R (models that return a likelihood or AIC;

we have tested ‘lm’, ‘glm’, ‘lmer’, ‘glmer’, ‘coxph’; the main

constraint in adding more type of models is differences in

syntax used among packages).

STEP 2: CREATE A CANDIDATE MODEL SET BY

IDENTIFYING ALL COMPETING HYPOTHESES THAT

REQUIRE TESTING

In the second step of our approach (Fig. 3), we create a candi-

date model set by identifying all competing hypotheses. The

first substep (step 2a) in this process involves identifying all

weather variables (temperature, precipitation, etc.) that could

be of potential interest. Ultimately, our aim will be to limit the

candidate variables to a reasonable number (Grosbois et al.

2008). Furthermore, weather variables often exhibit strong

collinearity, which needs to be dealt with. However, before

reducing the number of weather variables, for each weather

variable of interest we first have to make various choices about

– and therefore a more detailed investigation into – the critical
time window (step 2b and c), the best aggregate statistic (step

2d) and function of the relationship (step 2e) for describing the

biological response to each weather variable. Since the choice

of best weather variable may depend on the choice of time win-

dow, aggregate statistic or response function of the relation-

ship, it is not clear that one aspect can be investigated

sequentially or independently of the other. Therefore, we pro-

pose to try all combinations of choices made in step 2b-e for

eachweather variable to identify the timewindow(s), aggregate

statistic(s) and response function(s) that are best supported by

the data. Once such candidate signals are identified for each

variable (using single variable models; step 3), their number

can be subsequently reduced using conventional methods for

multiple variable model selection and dealing with collinearity

(step 4).

To compare the different time windows, one needs to decide

in step 2b whether it is biologically more appropriate to use

absolute or relative time windows (Fig. 2; Box 1). If there is

large individual variation in the timing of expression or mea-

surement of a trait, or short lag times of the weather signal are

expected, a relative window (e.g. temperature during the

month preceding reproduction) may be more biologically rele-

vant than an absolute time window (e.g. June temperature). If

there is no clear a priori expectation, one can try both window

types and compare their model support in step 3.

In step 2c, we must decide the period over which we should

look at each weather variable. Computationally, it is now pos-

sible to trymany time windows and decide from such an analy-

sis what the most appropriate window is (sometimes called a

sliding or moving window approach; e.g. Husby et al. 2010).

Consequently, we suggest testing a wide diversity of time

Box 1. Absolute vs. relative timewindows.

The choice of the type of time window – absolute or relative

(Fig. 2) – becomes particularly crucial when traits are expressed at

different times among individuals (Gienapp, Hemerik & Visser

2005; van de Pol & Cockburn 2011). The reason for this is that

individuals that express traits at different times of the year are

likely to have been affected by weather over different time win-

dows. Even quantitative traits such as offspring size and reproduc-

tive success are often expressed at variable times among

individuals, because the moment traits can be quantified typically

depends on phenological events (e.g. individuals from the same

cohort vary in their natal weather conditions if some offspring are

born earlier than others and weather varies during the season).

Assuming the same absolute time window (e.g. June temperature)

for all individuals is unlikely to be appropriate if the timing of trait

expression varies substantially among individuals and if the time-

lag is short (i.e. if some individuals reproduce in May instead of

July, then they cannot be affected by June temperatures). In such

cases, the use of relative time windows (e.g. temperature during the

month preceding reproduction) is needed that cover different peri-

ods for early- and late-reproducing individuals (Fig. 2; van de Pol

&Cockburn 2011).

An advantage of using absolute windows is that the weather win-

dows are easier to interpret and use in future projections, as there

is only one weather window for the entire population. However,

instead of viewing this as a drawback of using relative windows, it

should be seen as a biological reality that time windows can be

heterogeneous. Future projections on the biological consequences

of climate change in situations of relative windows can still be

made using numerical simulations (van de Pol, Osmond & Cock-

burn 2012). Finally, the choice of either using an absolute or rela-

tive time window can amount to asking slightly different biological

questions (see Appendix S2 formore details).
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windows, also to investigate the possible effects of weather sig-

nals with both short and long lag times (Fig. 2). For example,

when looking at the effects of temperature on summer body

mass, all possible combinations of time windows within the

previous year can be investigated (see R code in Fig. 3), as

summer body mass may depend on spring temperatures, but

carry-over effects of winter temperature may also be plausible

(Harrison et al. 2011). Ideally, time windows are varied at a

daily resolution, as this avoids the rather arbitrary use of

monthly or seasonal data typically used in existing studies and

allows for the detection of short signals of a few days (Kruuk,

Osmond&Cockburn 2015).

Next, in step 2d, a decision is made on the aggregate statistic

used to summarize the weather variable over each time win-

dow. The choice of aggregate statistic(s) to be considered can

be driven by the possible biological mechanism involved, while

in systems with limited mechanistic knowledge one could

explore several statistics.

In the final step of model set identification (step 2e), we

choose the response functions to be considered. Many fields

strongly focus on linear relationships (e.g. reaction norms), but

this is probablymostly driven by the need for simplification. In

reality, trait values often peak at a certain optimum weather

value (e.g. thermal performance curves; Angilletta 2009) and

the fact that threshold values are regularly used as an aggregate

statistic emphasizes that the responses of traits to weather sig-

nals can be nonlinear. Sometimes the shape of the response

curve may even be of interest in itself: the effects of environ-

mental variability on population dynamics may depend on the

curvature of the response of demographic or population

growth rates to weather (Lawson et al. 2015).

STEP 3: RUN MODEL SET AND SELECT BEST CANDIDATE

WEATHER SIGNALS

In the right panel of Fig. 3, we illustrate how the function ‘slid-

ingwin’ from the climwin package can be used to automatically

translate all hypotheses considered in step 2 into a set of many

thousands of single variable regression models (see

Appendix S2 for details). In step 3, we fit each of these models

to the biological data and compare and interpret their output

to (a) distinguish real weather signals from false-positive sig-

nals inevitably occurring by chance due to the testing of a large

model set and (b) identify multiple (short- and long-lag)

weather signals within the same weather variable. The time it

takes to run all the models can vary from minutes to days,

depending on the sample size, model complexity and computer

speed. We can then use the results from these steps to select

typically a few candidate weather signals for eachweather vari-

able for further analysis. To compare the empirical support for

each of the different regression models, climwin uses the infor-

mation-theoreticmodel selection criteriaAICc, with the option

of usingK-fold cross-validation to address issues of overfitting

(Box 2).

Fig. 3. The four steps used in our systematic approach to determine the best weather signals for a specific response, and an illustration of how the R

code from package climwin implements those steps.
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The ‘plotall’ function provides several tools for visual inter-

pretation of results (see code Fig. 3). In Fig. 4a, we illustrate

how DAICc (the AICc difference between candidate and null

models) can be used to compare the effects of mean tempera-

ture on the egg-laying date of British Chaffinches over different

absolute time windows (data 1966–2012; Baillie et al. 2014).

The best supported time window during which mean tempera-

ture affects laying date is effectively the 2 months before egg

laying (Fig. 4a).Mean annual laying dates have advancedwith

4�3 days/°C over this critical period (Fig. 4b). Many neigh-

bouring windows are almost equally well supported (broad red

peak in Fig. 4a), as could be expected due to their overlapping

periods and due to temporal autocorrelation in weather, and

their biological effect size is very similar (Fig. 4c).

The model support for the best time window (Fig. 4a) can

be directly compared to other models using different response

functions, aggregate statistics or types of windows (absolute or

relative). For example, there was equal support for both a

quadratic and linear response of mean temperature on

Chaffinch laying date, while models using mean temperature

were much better supported than models using temperature

degree days or rate of temperature increase (Table 1). In cases

where the mean of a weather variable is the best supported

aggregate statistic, it can be worthwhile to explore the use of a

weighted mean, as this may allow for further refinement of the

weather’s temporal signal (Box 3).

In step 3a, climwin’s randomization function can be used to

quantify the likelihood of obtaining such a strong model sup-

port by chance (in this case for a linear effect of mean tempera-

ture on Chaffinches laying dates) due to the high number of

models tested (step 3a, see Bailey & van de Pol 2015). Ideally,

one performs thousands of randomizations and compares the

DAICc of the best model fitted to the observed data to the dis-

tribution of DAICc values from the best model in each ran-

domized data set. It should be noted that by chance even some

of the many models fitted using the randomization method

can achieve DAICc scores that would be considered evidence

for strong model support by conventional standards

Box 2. Criteria to determine whichmodel is ‘best’.

The R package climwin uses the Akaike Information Criterion (AIC; Akaike 1973) to compare support for the different models. Information-

theoretic criteria trade off goodness-of-fit withmodel complexity and allow for direct comparison of non-nestedmodels that have variable num-

bers of parameters (e.g. models with different response functions):

AICcmodel ¼ �2 logðLÞ þ 2Pþ 2PðPþ 1Þ
N� P� 1

� �
; eqn 1

where L is the likelihood of the data given the model, P is the number of estimated model parameters, and the term ð2PðPþ1Þ
N�P�1 Þ is a small-sample

size correction that is negligible if the sample sizeN is large (Burnham&Anderson 2002). To facilitate the comparisons among models, climwin

compares theAICc for eachmodel i relative to the support for the baselinemodel without aweather effect:

DAICcmodel i ¼ AICcmodel i �AICcbaselinemodel eqn 2

Thismetric is used to decide whichmodel in themodel set has the strongestmodel support (themodel with the lowestDAICcmodel i).

As ametric formodel diagnostics, climwin also determines theAkaikeweight of eachmodel:

Akaike weightmodel i ¼ e�
1
2DAICci=

XJ
j¼1

e�
1
2DAICcj ; eqn 3

where the sum of all weights across all models J considered add up to one (
PJ

j¼1 Akaike weightj = 1). Simulations showed that the proportion

of all models from the candidate set that is in the 95% model confidence set (i.e. together account for the top 95% of the total Akaike weight

across all models) is a very useful measure (henceforth metric C) to distinguish false from true positives. If C is close to zero, this means that a

small subset of all testedmodels receives 95%of all model support (in terms ofAkaike weights) and this is what we typically found to be the case

for true signals, while ifC is close to one, then almost all models are roughly equally well (or poorly) supported and this is what one would expect

if there is no true climate signal. By comparingC of the observed data to the distribution ofC in randomized data in combination with the sam-

ple sizeN, one can quantify the probabilityPC whether the candidate signal in the observed data is likely to be due to chance or not (see worked

example andAppendix S3 for details).

AlternativeModel Selection Based onCross-Validation

Themodel set typically involves a huge number ofmodels, which consequently increases the risk of overfitting (i.e. the amount of variation that

the best weather signal will explain in the response variable (R2) may be systematically overestimated). UsingK-fold cross-validation formodel

selection can reduce such biases (Arlot &Celisse 2010) and can be implemented in climwin by setting the argument ‘K’ in the slidingwin function

to, for example,K = 10.K-fold cross-validation divides the data set intoK training data sets (of lengthN-N/K) andK test data sets (of lengthN/

K, withK ≤ N). Subsequently, eachmodel is first fitted to one of the training data sets and its predictive accuracy tested on the corresponding

test data set. Tomeasure the predictive accuracy, themean square error (MSE) of the training fit to the test data is used to calculate theAICc:

AICcmodel ¼ N logðMSEÞ þ 2Pþ 2PðPþ 1Þ
N� P� 1

� �
eqn 4

and subsequently compared to the fit of the baseline model (sensu eqn 2). This procedure is repeatedK times (once for each test data set), after

which the DAICcmodel is averaged across all folds to obtain the cross-validated DAICcmodel i. Similar to above, this cross-validated DAICcmodel i

can be subsequently used for identifying the best supportedmodel in themodel set and to calculatemetricPC used formodel diagnostics.
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(DAICc < �5; Burnham & Anderson 2002). This shows that

randomization is a necessary step to assess the chance of a can-

didate signal being a false positive (andminimize type I errors).

Comparing the DAICc value from our Chaffinch example

(DAICc = �97) to randomized data sets with no weather sig-

nal shows that none of the 1000 randomized data sets dis-

played such a high level of model support (Fig. 4d), indicating

that such a strongly supported temperature signal is very unli-

kely to have occurred by chance (PDAICc ≤ 0�001; see

Appendix S2 for other examples with less strong weather sig-

nals). In practice, for some data sets carrying out so many ran-

domizations may take too much computation time. For such

situations, we have developed an alternative statistic for

PDAICc, namelyPC, that requires much less randomizations (5–
10) but still gives a reliable indication of whether a signal is spu-

rious or not (herePC = 1�7E-05; for details, see Appendix S3).

In some situations, the DAICc landscape of the different

time windows shows multiple peaks instead of a clear single

peak as in Fig. 4a. This can indicate the presence of multiple

(e.g. both long- and short-lag) weather signals within the same

weather variable, but it can also occur due to collinearity or

Fig. 4. Illustration of the functions and visual output available in climwin to select the best weather windowmodels from amodel set. Output shown

is produced by functions ‘plotall’ (a–d), ‘crosswin’ (e) and ‘autowin’ (f). (a) The difference in model support (DAICc) for the different time windows

of an effect of mean temperature on Chaffinch’ laying date compared to a null model with no weather effect included. The circle and dotted lines

point towards the time window that was best supported by the data (from day 49–113 [12May-9March]). (b) The relationship between temperature

and Chaffinch annual mean egg-laying date for the best supported time window. (c) The slope estimates for the relationship between temperature

and egg-laying date for each time window in the model set. (d) The distribution of the DAICc values of the best supported model in each of the 1000

randomized data sets (grey bars) can be compared to theDAICc value of the best supportedmodel in the observed data set (dashed line) to determine

the likelihood an observed signal is real. The models assumed absolute time windows going back 365 days from 30th of June (British Chaffinches

generally lay in May) and investigated the linear effects of mean temperature. (e) The correlation between mean temperature and rainfall sum over

different timewindows. (f) The correlation between themean temperature during eachwindowwith themean temperature in the best supported time

window.

Table 1. Model support (DAICc compared to amodel with no temper-

ature effects included) for the best time windows using different aggre-

gate statistics and response curves. ‘Mean’ refers to mean temperature,

‘degree days’ to a model that sums the temperatures of days above

10 °C and ‘rate of increase’ to the mean rate of temperature increase

per day during the critical window. The values in between brackets indi-

cate the time window belonging to the lowest DAICc value, as illus-

trated in Fig 4a

Aggregate statistic

Mean Degree days Rate of increase

Response curve

Linear �96�8 (49–113) �58�1 (36–148) �55�5 (46–322)
Quadratic �96�9 (49–113) �59�4 (71–152) �53�5 (46–322)
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chance. In step 3b, the evidence for multiple signals can be

investigated by adding the best supported of the two weather

windows to the baseline model, and re-fitting all the different

time windows again: this tests whether there is still strong

model support for the second best (e.g. short-lag) weather win-

dow once the other best supported (e.g. long-lag) weather win-

dow has been accounted for in the baseline model (see

Appendix S2).

By repeating step 3 a&b for each weather variable, we can

select the candidate signals for each weather variable. For

someweather variables, there will be no candidate signals if the

model support for the best combination of time window,

aggregate statistic and response function is no higher than

those observed in the randomized data. For other weather

variables, there may be either one (Fig. 4a) or possibly several

candidate signals (Appendix S2; it should be noted that multi-

ple effects of a single variable such as temperature may be bio-

logically plausible, but nonetheless statistically hard to detect).

STEP 4: PERFORM MODEL SELECTION TO SELECT THE

FINAL MODEL CONTAINING ALL WEATHER SIGNALS

Sometimes we may end up with a large number of candidate

signals. In step 4, we aim to (a) reduce the number of poten-

tially intercorrelated weather signals and (b) explore the possi-

ble interactions between weather signals in order to (c) report

in a standardized way the final multiple variable model that

contains all important weather signals. Reducing the number

of collinear variables is a common problem and other papers

describe established methods well (e.g. Freckleton 2011; Grue-

ber et al. 2011). Notwithstanding, climwin offers two specific

functions to explore the degree of correlation among and

within weather variables over different time windows: ‘cross-

win’ and ‘autowin’. Figure 4e illustrates that the correlation

between weather variables (here mean temperature and sum of

rainfall in the UK) can be weak in some parts of the year but

strong in others, highlighting that dealing with collinearity is

most sensible once the critical time windows are known. Fig-

ure 4f illustrates that mean temperatures are typically strongly

correlated among nearby overlapping time windows, which

explains why a wide range of adjacent time windows can

receive highmodel support (see red peak in Fig. 4a).

Interactions between weather signals have rarely been

explored, and it is thus unclear how common and strong they

might be. One way to investigate the interactions by means of

proxy is to replace, for example, the temperature and rainfall

variables in the model set (step 2a) by a single weather-derived

variable that integrates the interactions between temperature

and rainfall (e.g. a drought severity index). A more direct way

is to include two-way interactions between the temperature

and rainfall candidate signals. In step 4b, one could investigate

such interactions as part of the model selection procedure to

identify the final model containing all important weather

signals.

In the final step, 4c, we suggest that the output should be

reported in a standardized way such that effect sizes and

hypotheses considered can be easily compared among studies.

Reported effect sizes could be based either on the estimates

Box 3. Weightedmeans in climwin.

Arguably, aggregating weather over a certain time window by weighting each day in that window equally (i.e. by calculating the unweighted

mean) may generally be biologically unrealistic, as more recent weather could have a stronger influence than weather in the more distant past

(Gienapp,Hemerik&Visser 2005; van de Pol, Osmond&Cockburn 2012).Weightedmeans can account for such gradual decay effects and also

do not have the abrupt change in influence that normal (unweighted) means have at the beginning and end of the window.

climwin allows for testing of weightedmeans via the function ‘weightwin’ based on themethods described in van de Pol&Cockburn (2011). Since

the weight function used to calculate the weighted mean needs to be estimated (it has a shape, location and width parameter, reflecting, respec-

tively, the decay in weight/importance, the lag time and duration of the time window), and can take on an infinite number of forms, weightwin

uses different optimization methods than slidingwin to find the best window described by the weighted mean function. Nonetheless, the output

fromweightwin that describes the best supportedweather signal can be directly compared to the output frommodels fitted by the slidingwin func-

tion to investigate whether a weighted mean model is better supported by the data than, for example, a model with the aggregate statistic

unweightedmean (seeAppendix S2). For alternative nonparametricmethods using smoothing, see Roberts (2008) and Teller et al. (2016).
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from the single final model containing all important weather

signals, or onmodel averaging of effect size estimates (Grueber

et al. 2011) across all models considered in the model selection

process of step 4 (but see Cade 2015). To improve the interpre-

tation of effect sizes and interactions, we suggest rescaling

covariates (Schielzeth 2010). Furthermore, for comparisons

among studies, it is important to report the model set consid-

ered (steps 2& 4). Finally, for futuremeta-analyses, one should

report the variability in both the weather signal and biological

response variable to facilitate standardized comparison, and

present all model parameters that are needed to reconstruct

response functions (e.g. including the estimates of intercepts

and random effects in the case of logistic or Poisson regres-

sion). Online archiving of climwin R code and the data used

also contributes to these goals.

Performance of our approach and sample size
considerations

A crucial step is to assess how well our approach actually per-

forms in identifying weather signals. This requires a statistic to

decide whether a weather signal is real or not, and what its

associated rate of misclassification is (i.e. type I/II error rate).

Furthermore, a question that has received surprisingly little

attention in the literature is: ‘How many different environ-

ments (years, sites; i.e. sample size) should bemeasured to iden-

tify and estimate weather signals precisely and accurately?’

Investigating this question requires deciding what one would

like to estimate precisely or accurately. Statistical modelling in

general, and studies on climate change ecology in particular,

have two goals: explanation and prediction (Shmueli 2010). To

explain which weather signals are most important, we need

unbiased estimates of their explanatory value (R2). To predict

(via extrapolation) what future effects of weather on the

response variable will be, we need to estimate the slope of the

relationship between the weather signal and biological trait

both accurately and precisely, and identify the period of the

time window correctly (as climate change can cause different

parts of the year to change variably).

To assess the rate of misclassification (false positives and

negatives) and determine the accuracy and precision of model

characteristics (R2, slope and time window location), we gen-

erated simulated data sets. We created data sets with one bio-

logical response measurement for each sampled environment

(e.g. the mean laying date in a given year or site) based on the

previously introduced Chaffinch data set (i.e. assuming a lin-

ear effect of mean temperature between March 9th – May

12th). We generated 1000 data sets each for a wide range of

sample sizes (10, 20, 30, 40 or the original 47 data points) and

effect sizes (the ‘true’ R2 of the underlying model was set to

either very high (0�80), high (0�40) and moderate (0�20), while
keeping the slope constant). Additionally, we generated and

analysed data without any weather signal (for R code and

details, see Appendix S4). Note that a sample size of 30 may

reflect a single location followed over 30 years, 30 locations

with varying climates measured in 1 year, or any combination

in between. Subsequently, we randomized (step 3a in Fig. 3)

each simulated data set five times to calculate the PC statistics

from climwin (see Appendix S3) to classify signals as either

true or not. The rate of false negatives was calculated as the

proportion of simulated data set that contained a true weather

signal, but was misclassified as containing no signal (i.e.

PC ≥ 0�5). The rate of false positives was calculated as the

proportion of simulated data set that contained no weather

signal, but was misclassified as containing a weather signal

(i.e. PC < 0�5).
When the effect sizes were high (R2 = 0�80 or 0�40), we

found the rate of false negatives to be very low, even with a low

sample size (Fig. 5a-i, a-ii). However, when effect sizes were

moderate (R2 = 0�20), low levels of false-positive rates (<10%)

were only achieved with a relatively high sample size (N > 47;

Fig. 5a-iii). The rate of false negatives also strongly depended

on sample size, with low false-negative rates (<10%) only

achieved with relatively large sample sizes (N ≥ 30; Fig. 5a-iv).

Notably, we had to set an arbitrary cut-off point for our statis-

tic during these simulations (PC < 0�5) to decide whether we

considered a climate signal to be ‘real’. However, in practice,

the value of PC will give additional information on the cer-

tainty of a given climate signal (i.e. PC = 0�1 and PC = 0�4 are
both likely a true signal, but the likelihood is much higher for

PC = 0�1), and users can use different cut-off values depending

on whether they think false positives or negatives are most

problematic for their study.

In the simulations,R2 was greatly overestimated at low sam-

ple sizes (N ≤ 20) (Fig. 5b). This bias could be expected due to

overfitting and was indeed substantially reduced by using 10-

fold cross-validation (see Box 2; some bias remains because

the best model has itself been selected based on its cross-

validation score from a large set of candidate models; Gelman,

Hwang&Vehtari 2014).

Simulations were able to estimate the true slope of the cli-

mate signal with high accuracy, as long as only those climate

signals that were classified as true signals were considered (i.e.

PC < 0�5; Fig. 5c). Nonetheless, some underestimation, par-

ticularly at low effect size, occurred when cross-validation was

used (Fig. 5c). The choice of using cross-validation may there-

fore depend on whether one is most interested in explanation

or prediction (i.e. accurate R2 or slope, respectively). Gener-

ally, our method selected for windows that were too short

(Fig. 5d; although this bias largely disappearedwith increasing

effect and sample size). The reason for this bias seems to be that

in situations of small sample or moderate effect size, very short

spurious windows were best supported by the data (as sug-

gested by the duration of ‘best windows’ in the randomized

data Fig. 5d-iii).

Precision of the slope was generally low at low sample size

(N = 10) and substantially improved as sample size increased

(N = 20–30), although precision did not improve much past

this point (Fig. 5c). For example, when N = 10, R2 = 0�2 and

only signals classified as ‘true’ are considered (i.e. PC < 0�5;
without using cross-validation), 19% of the simulations over-

or underestimated the slope by a factor of two or more, and

5% of the simulations estimated the direction of the slope

incorrectly (Fig. 5c-iii).
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Overall, our simulations show that our approach can detect

and estimate weather signals without substantial bias when

sample and/or effect size is large. Inaccurate estimation is a

problem when sample and/or effect size is low, but most bias

can be avoided as long as one uses the right methods. We

encourage the use of our P-statistic to filter out ‘false’ signals

and avoid biased slopes, and recommend cross-validation to

avoid overestimation of R2 when sample size is low (N ≤ 20).

Furthermore, our simulations show that the precision of the

weather slope estimate is low at small sample sizes, reminding

us that measurements often need to be collected over long time

periods or in many sites before reliable conclusions can be

reached.

Our simulations covered awide range of scenarios, including

the challenging case of using climwinwith a very small data set

and moderate effect size. However, within this context, our
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results should be seen as a best-case scenario: we assumed that

the aggregate statistic and response function were known, that

there were no confounding variables, nor multiple or interact-

ing weather signals, and we did not consider binary or count

response variables. Furthermore, results may depend on the

structure of the data, such as the number of measurements per

year or the degree of temporal autocorrelation in the weather

variable (e.g. rainfall typically has lower autocorrelation than

temperature). This analysis should thus be taken as a first step

towards identifying the potential pitfalls of weather window

selection and methods to circumvent them; further simulation

studies incorporating a wider range of weather data and bio-

logical response structures would help to expand and general-

ize these basic principles.

Alternatives, limitations and future avenues

Roberts (2008) and Teller et al. (2016) have suggested alter-

native explorative methods to identify the critical time win-

dow, but their ability to distinguish true from false signals

and accuracy and precision of most of the key metrics are

unknown. These studies used multiple regression methods in

which each daily, weekly or monthly mean temperature is

used as a separate predictor variable, and subsequently

identified which predictor variables over which time window

best explain the variation in the response variable. They

employed penalized (ridge) regression and smoothing func-

tions to deal with collinearity and identify contiguous pre-

dictor variables (e.g. months) during which the weather

signal is strongest. The results from these alternative meth-

ods can be used to derive a weighted mean (sensu Box 3),

but are not applicable to other aggregate statistics. The

advantage of multiple variable methods over our single vari-

able method is that they utilize statistical frameworks

(LASSO, machine learning) that are particularly suitable for

dealing with correlated variables, meaning they can identify

the best time window of multiple weather variables simulta-

neously within a single model, instead of sequentially as in

our method.

Further research is needed to determine the performance

of different methods on the same simulated data over a

wider part of the parameter space and different data struc-

tures, while keeping in mind that different biologists are

interested in optimizing the reliability of different metrics

(slope, R2, false-positive or negative rate). Our aim is to

extend climwin to include a variety of methods and provide

the tools and benchmarks to compare them, as the question

of what constitutes the best method may depend on the bio-

logical question (Teller et al. 2016; this study). Another inter-

esting avenue would be to adapt our approach to the

question of over which spatial window one should aggregate

environmental predictors (Mesquita et al. 2015), as for spe-

cies moving between various locations, the locations at which

the weather influence is strongest may in fact need to be

determined (note that climwin can already incorporate

weather data from different locations in a single model, see

Appendix S2).

Conclusion

We have developed a stepwise approach and accompanying

statistical tools to quantify how biological responses are

affected by weather drivers, or any other intrinsic or extrinsic

environmental variable for which high temporal resolution

data are available. Our approach is predominantly explora-

tory, avoiding the need to make untested a priori assumptions

and to consider only a small number of competing hypotheses.

Crucially, however, this exploration is both systematic and sta-

tistically grounded, such that the detected effects of weather

reflect biological patterns rather than potentially arbitrary

decisions made by the modeller. Although this more open-

ended approach has some drawbacks, such as the risk of over-

fitting and bias that can occur at low sample and effect sizes,

these issues can be addressed with the right knowledge and

tools. Our simulation approach, focused on a diversity of per-

formancemetrics, provides amuch needed benchmark to facil-

itate future objective comparison across methods. By

providing both the tools to fit weather windows to awide range

of biological responses, and the methods to validate them and

determine sample size requirements, we hope that the climwin

package will make it easier for researchers to explore and

quantify the biological effects of weather in a rigorous, replica-

ble and comparable way.
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