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Extra-pair paternity (EPP) has been suggested to improve the genetic quality of offspring, but evidence has been equivocal. Benefits

of EPP may be only available to specific individuals or under certain conditions. Red-winged fairy-wrens have extremely high levels

of EPP, suggesting fitness benefits might be large and available to most individuals. Furthermore, extreme philopatry commonly

leads to incestuous social pairings, so inbreeding avoidance may be an important selection pressure. Here, we quantified the fitness

benefits of EPP under varying conditions and across life-stages. Extra-pair offspring (EPO) did not appear to have higher fitness

than within-pair offspring (WPO), neither in poor years nor in the absence of helpers-at-the-nest. However, EPP was beneficial

for closely related social pairs, because inbred WPO suffered an overall 75% reduction in fitness. Inbreeding depression was

nonlinear and reduced nestling body condition, first year survival and reproductive success. Our comprehensive study indicates

that EPP should be favored for the 17% of females paired incestuously, but cannot explain the widespread infidelity in this species.

Furthermore, our finding that fitness benefits of EPP only become apparent for a small part of the population could potentially

explain the apparent absence of fitness differences in population wide comparisons of EPO and WPO.

KEY WORDS: Compatible genes, cooperative breeding, fitness, good genes, inbreeding avoidance, Malurus, pairwise

relatedness.

Understanding genetic mating behaviors is crucial as it alters

estimates of fitness and thus influences the evolution of such be-

haviors. Many bird species live in socially monogamous pairs, yet

genetic monogamy is rare (Griffith et al. 2002). The widespread

occurrence of extra-pair paternity (EPP), whereby offspring are

sired by a male other than the social partner, implies that EPP

might be beneficial. For males, extra-pair mating is expected to

increase their reproductive success, but for females the benefits
∗Joint first authors.

are less obvious. Females may benefit directly as extra-pair

males might provide them with additional food (Tryjanowski and

Hromada 2005), parental care (Townsend et al. 2010), and/or

protection against predators (Gray 1997; Eliassen and Jørgensen

2014). However, females may also gain indirect benefits through

enhanced offspring quality. For example, it has been suggested

that females enhance offspring fitness by seeking extra-pair mates

with more diverse (Brown 1997), better (‘good genes’, Hamilton
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and Zuk 1982), or more compatible genes (Zeh and Zeh 1996)

than her social mate. In addition to seeking genetic improvements,

extra-pair mating might be used to avoid the cost of inbreeding

when a female is paired to a closely related male (Blouin and

Blouin 1988; Brooker et al. 1990; Pusey and Wolf 1996).

Despite the many mechanisms for potential indirect bene-

fits of EPP, studies comparing fitness traits between extra-pair

offspring (EPO) and within-pair offspring (WPO) in birds have

found contrasting results. Some studies have found that EPO are

fitter than WPO, manifested as higher growth rates, recruitment,

or lifetime reproduction (e.g., Forstmeier et al. 2002; Foerster

et al. 2003; Gerlach et al. 2012). However, other studies found

that EPO have similar or even worse performance than WPO

(Sardell et al. 2012; Moreno et al. 2013; Hsu et al. 2015). One

explanation for the lack of evidence for indirect benefits could be

that the advantage of being extra-pair might only become appar-

ent in specific situations. If only certain types of individuals in

the population may benefit, for example females paired to inferior

males (Brouwer et al. 2010), it may be hard to detect benefits of

EPP in species where EPP is rare. Benefits might also only be-

come apparent under unfavorable conditions (Schmoll et al. 2005;

Arct et al. 2013) or during specific life-stages (Gerlach et al. 2012;

Hsu et al. 2017). Thus, to fully understand the potential indirect

benefits of EPP for females, ideally fitness of EPO and WPO need

to be compared in situations where benefits are expected in the

first place.

Under the inbreeding avoidance hypothesis, EPO should not

suffer the inbreeding depression that results from the expression

of recessive deleterious alleles or perhaps from loci where

heterozygous combinations are advantageous (Charlesworth and

Charlesworth 1987; Hedrick and Garcia-Dorado 2016). However,

the benefits for EPP as an inbreeding avoidance mechanism

might only become apparent when the fitness costs of inbreeding

are strong or when inbreeding is frequent (Hajduk et al. 2018).

Inbreeding is for example expected to be frequent in viscous pop-

ulations, where many social pairs are formed by close relatives

due to high philopatry of both sexes. Furthermore, inbreeding de-

pression can affect different fitness traits (e.g., growth and repro-

ductive success) throughout the lifespan of the individual (Keller

and Waller 2002). However, most studies have focussed on early

life, since inbreeding depression is likely to be less pronounced

in adults because of selective disappearance of the most inbred

individuals during the juvenile stage. On the other hand, weaker

selection against deleterious alleles that act late in life might cause

inbreeding depression to be more prevalent among the remaining

inbred adults (Szulkin et al. 2013; Huisman et al. 2016). Thus,

to determine whether extra-pair mating serves as an inbreeding

avoidance mechanism, one ideally determines the importance

of inbreeding depression in fitness components at different life

stages.

In addition to the assumptions that EPO should have a re-

duced degree of inbreeding and that there is inbreeding depression

in the population, the inbreeding avoidance hypothesis also pre-

dicts that more closely related pairs should have higher EPP rates

(Leclaire et al. 2013; Arct et al. 2015). To date these assump-

tions have only been tested comprehensively in song sparrows

(Melospiza melodia; Taylor et al. 2010; Reid et al. 2015) and

superb fairy-wrens (Malurus cyaneus; Hajduk et al. 2018). How-

ever, we argue that for a complete understanding of EPP as an

inbreeding avoidance mechanism, we also need to quantify the

fitness benefits of EPP, as such quantifications are essential when

determining the strength of selection (although indirectly as it

affects the offspring) and thus the evolution of extra-pair mating

behavior.

Here, we present a comprehensive study that tests whether fe-

males gain indirect benefits from EPP in the cooperatively breed-

ing red-winged fairy-wren (Malurus elegans). This is an excellent

system to study this topic, because (i) the majority of female red-

winged fairy-wrens gains EPP (Brouwer et al. 2011), without any

indication of gaining direct benefits, suggesting there must be in-

direct benefits of EPP for the majority of the population. (ii) The

limited dispersal of both sexes means that the probability of social

pairing between relatives and thus the risk of inbreeding is high

(Russell and Rowley 2000). (iii) At the same time, the limited

dispersal means that key fitness components such as survival and

recruitment are not confounded with undetected dispersal. (iv)

Finally, large natural variation in the number of helpers per group

and yearly breeding conditions mean that we can evaluate benefits

of EPP under good and poor rearing conditions.

Previous work in red-winged fairy-wrens suggests that EPP

plays a role in inbreeding avoidance, because more closely related

social pairs have higher EPP and females gain paternity from

extra-pair mates that are less closely related to them than their

social partner (Brouwer et al., 2011, 2014a). At the same time, the

high levels of EPP mean that social context is no reliable cue for

relatedness. Thus, by choosing an extra-pair mate, females might

inadvertently mate with a relative in such viscous populations. In

addition, it remains unknown whether there actually is inbreeding

depression or whether extra-pair mating helps with avoiding it.

Using the red-winged fairy-wren as a model system, we aim

to test the following predictions: First, under the ‘good genes’ hy-

pothesis EPO are generally expected to outperform WPO, whereas

if this is only true for siblings from mixed paternity broods (i.e.,

for females that are apparently paired to an incompatible male),

this provides evidence for the compatible genes hypothesis. Sec-

ond, if the benefits of extra-pair paternity only become apparent

under poor rearing conditions, we predict that EPO will outper-

form WPO when hatched in poor years (with lower than average

reproductive success) or in the absence of helpers at the nest,

because helped offspring are heavier and grow better, and larger
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offspring survive better in their first year of life (Brouwer et al.

2014b). Third, we predict that the high philopatry of both sexes

results in frequent inbreeding and inbreeding depression. Fourth,

if females paired to a highly related male use EPP to avoid the

negative consequences of inbreeding, we expect that EPO will be

less inbred, and predict that WPO of highly related social pairs

perform worse than their EPO and also worse than offspring from

unrelated pairs.

To compare performance of EPO and WPO, we use an in-

tegrated fitness measure that combines several fitness compo-

nents: first year and adult survival, recruitment to a breeding

position and reproductive success within the first three years

of life. Such an integrated fitness measure accounts for the

facts that some components of fitness are more important than

others and that singling out specific life-stages may under- or

overestimate the overall benefits of EPP on lifetime fitness. In

addition, to determine which underlying processes of inbreed-

ing depression and benefits of EPP play a role, we examine

nestling body condition and growth and each fitness component

separately.

Methods
STUDY AREA AND DATA COLLECTION

Data were collected for seven cohorts of offspring hatched during

the 2008 to 2014 seasons that were monitored up to and including

2016 in Smithbrook Nature Reserve, Western Australia (34°20′S,

116°10′E). The main study area comprised �65 territories in

which > 99% of the adult birds were individually color-banded.

In this area, each territory was checked at least fortnightly for

group composition, survival, and breeding activity throughout the

breeding season (October–January). In addition, in another �30

territories surrounding the main area 80% of the birds were color-

banded and nest searching was done opportunistically. Social sta-

tus was determined from behavioral observations, plumage vari-

ation, and age (Russell and Rowley 2000; Brouwer et al. 2011),

with each group comprising a “dominant” pair-bonded male and

female and from zero to eight subordinate male and/or female

helpers (Lejeune et al. 2016). Once located, nests were checked

(at least) twice a week to collect data on number of eggs, hatch-

lings, and fledglings. Blood samples were taken when nestlings

were �2 two days old and any unhatched eggs were collected

for genotyping. Nestlings were colour-banded, weighed and mea-

sured when they were �8 days old. Sex of birds was based on

plumage characteristics for adults and DNA sexing of nestlings

using P2/P8 primers (Griffiths et al. 1998).

Eighty-eight percent of the border of the reserve is bounded

by unsuitable habitat (farmland), but three narrow corridors lead

away from the reserve allowing for dispersal to the surrounding

state forests (Brouwer et al. 2014a). From 2009 onwards, each

year 50–220 territories in the areas surrounding the study area

were monitored opportunistically and checked for dispersers (up

to 2-km radius). The spatial configuration of our main study area

and the fact that long-distance dispersal is extremely rare (median

dispersal distance = 150 m, L. Brouwer unpublished data), mean

that we can accurately estimate survival consequences for both

males and females (detection rate is virtually 100%) (Lejeune

et al. 2016).

PATERNITY AND INBREEDING

All blood (ca. 15 µL) and tissue samples were stored in 1 mL

of 100% ethanol and stored at room temperature. Parentage was

determined with high accuracy using 7 or 8 hypervariable mi-

crosatellite markers (mean: 30 alleles) with a parent-pair analysis

in program Cervus 3.0 (Kalinowski et al. 2007) as described

in Brouwer et al. (2011). Samples from 1599 offspring from

717 broods were genotyped. Parentage (extra-pair or within-pair)

could be determined for 98% of all sampled offspring (N = 1565

from 711 broods) and showed that 58% of offspring was extra-

pair (i.e., sired by another male than the dominant pair-bonded

male) and 67% of broods contained at least one EPO. For 93%

of these offspring both parents were assigned with high accuracy

(Brouwer et al. 2011), with most unassigned offspring due to in-

complete sampling of adults in outer areas. In the main study area,

both parents could be assigned for 99% of all offspring. Starvation

of nestlings was negligible, but nest predation was high (�70%).

There was no evidence that unhatched eggs were more likely to

be inbred or sired extra-pair (Table B9).

Red-winged fairy-wren offspring of both sexes usually stay

with their parents for at least one year to help raise the next

brood. This means that despite that we have genotyped seven

cohorts, sample sizes of known grandparents that are required to

build up a pedigree are small. We used the microsatellite marker

data to calculate pairwise relatedness (r), which measures the

proportion of alleles shared by two individuals that are identical

by descent (Keller and Waller 2002). Pairwise r of the genetic

parents was used as an estimate of the inbreeding coefficient

f ( = r/2) of the offspring, whereas pairwise r of the social parents

was used to estimate the coefficient of kinship k ( = r/2) between

social parents (Szulkin et al. 2013). Pairwise r was calculated

according to Wang’s method (2002) in the program KINGROUP

v2 (Konovalov et al. 2004), as previous work has shown that this

measure performs best for our highly polymorphic microsatellites

(Brouwer et al. 2011). Note that these r values (and thus our f

estimates) can become negative (Wang 2002).

Validating raw r values against the available pedigree of

individuals with known relatedness showed that this measure

performed well with mean r = 0.47 ± 0.002 S.E. for known first

order relatives and r = 0.24 ± 0.001 S.E. for known second-order

relatives (see also Fig. A2). Methods exists to estimate an
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inbreeding coefficient f directly from the microsatellite data

(Ritland 1996; Lynch and Ritland 1999) instead of using f = r/2,

but this measure did not perform as well as pairwise r. Estimating

f directly showed that two out of the five known inbred offspring’s

genetic parents had r = 0.36, close to the expect 0.375, whereas

the offspring’s f was only estimated as f = 0.02 (Lynch and Ritland

1999). For graphical purposes and to enable comparison of groups

of individuals we binned f and k values as follows, based on

f = 0.24 ± 0.03 S.D. for known mother-offspring dyads: f (or k)

� 0.25 (f > 0.22), f � 0.1875 (0.16< f � 0.22), f � 0.125 (0.10<

f � 0.16), f � 0.0625 (0.04< f � 0.10), f � 0 (–0.02 < f � 0.04),

f � –0.0625 (f � –0.02). We considered offspring with f�0.125

to be highly inbred.

INDIVIDUAL FITNESS

For each offspring we calculated its fitness over the first three

years of life. We chose to focus on the first three years, because

(i) most birds that obtain a breeding position do so within that

period (72%, 103 out of 143 individuals) and being recruited as a

breeder is major determinant of fitness (Brouwer et al. in review),

(ii) this allowed us to include four cohorts, while any extra year

of life over which we would calculate fitness would reduce our

sample size by one entire cohort.

In its simplest form individual fitness can be thought of as

the number of gene copies an individual contributes to the next

generation. If we initially focus on one time step, the contribution

W of individual i to the next year is given by one’s own survival

(J = 0 or 1) plus half the number of offspring (Y = 0,1,2, . . . ) an

individual produces:

Wi = Ji + 1

2
Yi (1)

However, this approach counts all surviving individuals

equally, while in species with a clear stage-structure—such as co-

operatively breeding fairy wrens—some individuals have a much

higher contribution to the future generations than others. To ad-

dress this complexity Fisher (1930) developed the concept of re-

productive value, which quantifies the contribution of individuals

of a given state to the long-term population growth rate.

Specifically, in the case of red-winged fairy-wrens the re-

productive value of a surviving offspring is much lower than the

reproductive value of a surviving parent (Brouwer et al. in review).

This is because a surviving female offspring typically becomes a

helper and does not reproduce independently in its second year

of life, while a surviving dominant rarely loses its dominance

status. Similarly, a surviving male offspring also typically be-

comes a helper and rarely gains any within-group or extra-pair

paternity in their first year of life, though dominant males do

routinely gain success in their next year. To account for the dif-

ferences in reproductive value we weighted the contribution of

the focal individual by the reproductive value of an individual

that belongs to that sex and state (i.e., state typically being a

dominant), and that of the offspring by the average reproductive

value (v) of a surviving offspring (i.e., state typically being a

helper) (Engen et al. 2009):

Wi = Jivstate(i),sex(i) + 1

2

y=Yi∑

y=1

Jyvstate(y),sex(y) (2)

Now that we have derived above individual fitness measure

over one year we can expand it to encompass multiple—in our

case three—timesteps t:

Wi, t0 to 3 = Ji, t0 to 3vstate(i,t3),sex(i)

+1

2

t=3∑

t=0

y=Yi,t∑

y=1

Jy,tvstate(y,t),sex(y) (3)

In equation (3), Ji, t0 to 3 denotes a binary variable of whether

one survived the first three years of life or not, while vstate(i,t3),sex(i)

denotes the state-dependent reproductive value of the surviving

individual after three years. Furthermore, the second term in-

cludes whether an offspring survived till the next year or not (Jy,t )

multiplied by the reproductive value of that surviving offspring

(vstate(y,t),sex(y)), which is summed across all offspring produced

by individual i in each of the three years.

(Brouwer et al. (in review)) already quantified the reproduc-

tive value of individuals that differed in state (helper or breeder)

and sex (male or female) for this population, here we reiterate

the rationale. We constructed a two-sex demographic life-cycle

graph model that describes the main life-history stages (domi-

nants, subordinates, and fledglings). In this model the transitions

between states are described by the following sex-dependent fit-

ness components: number of genetic fledglings produced, the

fledging survival till the next breeding season; the annual adult

survival for subordinates and dominants; the transition rates (con-

ditional on survival) among states, that is the probability that a

fledgling, subordinate or dominant will be a dominant the next

year. The next step was to translate this life-cycle graph into a

matrix population model, in which the matrix elements consist of

the fitness components that were derived from the field data as

input to the projection matrix. Finally, we used standard matrix

algebra to derive the state- and sex-dependent reproductive values

from the transition matrix (Caswell 2001). Reproductive values

were scaled such that individual fitness is in units of reproductive

value of a female dominant breeder (vD♀).
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Statistical Analyses
INDIVIDUAL FITNESS

The distribution of individual fitness contains many zeros (most

offspring die before ever producing any offspring of their own),

and for individuals that do survive or produce offspring in the first

three years of their life, individual fitness is a noninteger positive

value due to the weighting with reproductive value. To model the

bimodally distributed individual fitness variable we used a two-

part hurdle model. The first part modeled whether an individual

had any fitness or not by fitting individual fitness as a binary

variable (fitness = 0/fitness > 0) in a logistic linear-mixed model.

In the second part, for individuals with nonzero fitness their fitness

was fitted in a linear mixed model using a Gaussian distribution.

Both models contained mother and nest identity as nested random

effects, to account for non-independence of the data. The joint

likelihood of both parts of the hurdle model was used for model

inference using a model selection approach (see below).

We tested whether EPO outperformed WPO, or whether this

is only true under poor rearing conditions, by including the follow-

ing fixed factors/covariates as main effects and their interactions

with EPP (whether an offspring was sired extra-pair (yes/no)) in

both parts of the hurdle model: quality of hatch year (yearly mean

number of fledglings per group), number of helpers at the nest, and

k of the social parents. In addition, models were also built to in-

vestigate the possibility that variation in fitness is better described

by a nonlinear (i.e., threshold) relationship, by creating three

binary-fixed factors for whether or not offspring were: extra-pair

and hatched in a poor quality year; extra-pair and reared without

helpers at the nest; within-pair from closely related social pairs

(related at the level of a half-sib or higher). There were two

poor cohort years (2009 and 2011; fledgling production 0.97 and

1.13, respectively) and two good years (2008 and 2010; fledgling

production 1.58 and 1.69, respectively). Although female helpers

benefit offspring growth more than male helpers (Brouwer et al.

2014b), there was no indication that helpers of both sexes affected

fitness differently (Fig. A1) and thus we only modeled the total

number of helpers to minimize the number of parameters in the

model.

Subsequently, to investigate the role of inbreeding on individ-

ual fitness a similar hurdle model was used to asses the relation-

ship between fitness and inbreeding, by including either the in-

breeding coefficient as a linear covariate, or by including whether

the offspring was inbred (f � 0.125) or not as fixed categorical

factor (effectively modeling a nonlinear threshold function of f).

FITNESS COMPONENTS

To investigate potential underlying processes leading to fitness

benefits of EPP and/or inbreeding depression, we examined two

measures of offspring quality and four fitness components sep-

arately. Using General(ized) Linear Mixed Models ((G)LMMs),

first year survival after fledging, adult survival (from one to three

years of age) and recruitment to a breeding position (within first

three years of life) were fitted as a binary variable (yes/no) us-

ing a logit link function, whereas nestling body condition (mass

accounting for size) and growth (tarsus size) were fitted using

a Gaussian distribution and identity link. Reproductive success

(number of genetic fledglings produced within first three years of

life) was fitted using a zero-inflated Poisson distribution. Nestling

fitness components were analyzed with nest identity and mother

identity as (nested) random intercepts. For first year survival and

the adult fitness components only mother identity was included as

a random intercept as most females only fledge a single nest per

season and thus no additional variation could be explained by nest

identity. For analyses on recruitment probability and reproduction

only those individuals that survived until three years of age were

included, to avoid bias due to mortality before having the chance

to recruit/reproduce. Data availability varied between the traits of

interest (see for details Table A1).

The role of EPP (yes/no), inbreeding coefficient and whether

an offspring was inbred (f � 0.125) or not, was investigated by

including them as fixed factors/covariates. In addition, where nec-

essary we controlled for the following fixed variables (see Tables

Appendix B): brood size (range 1–3), experience of the breeding

female (first time breeder, yes/no), nestling age (in days, log-

transformed), day of season the nestling was measured (DoS,

starting from October 1), nestling tarsus size, the number of male

helpers, number of female helpers, sex, and quality of the year

of hatching (annual mean number of fledglings produced per

group). In addition, nestling body condition (residuals from a

linear regression of tarsus and age on body mass) and relative

nestling body size (residuals from a linear regression of age on

tarsus size) were accounted for in analyses of first year survival

to be able to distinguish whether potential inbreeding depres-

sion acted directly on survival or via condition or growth of the

young. To test whether inbred offspring benefit more from being

extra-pair, all juvenile fitness components included an interac-

tion between EPP and inbreeding coefficient or between EPP and

whether or not an offspring was inbred (f �0.125). These in-

teractions could not be tested for the adult fitness components,

due to the high mortality, and thus low sample sizes, of inbred

individuals.

To analyze individual fitness and the fitness components, we

used a model selection approach to find the most parsimonious

models, using Akaike’s information criterion corrected for sample

size (Akaike 1973; Burnham and Anderson 2002). Models that

are better supported by the data result in lower AICc values.

We used an all-subset approach with all possible combinations of

predictors (Appendix B), except that predictors in their linear form

were not included simultaneously with their nonlinear (threshold)
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Figure 1. Individual fitness within the first three years of life of within-pair offspring (WPO) and extra-pair offspring (EPO) of red-winged

fairy-wrens for (A) all individuals, (B) maternal half-sib (N = 56 sibpairs from 42 nests, 35 sibpairs both had zero fitness), (C) offspring

hatched during “poor” (below average reproduction) and “good” (above average reproduction) years, (D) in the absence and presence

of helpers-at-the-nest and (E) unrelated and related social parents (at the level of half-sibs). Reproductive values were scaled such that

individual fitness is in units of reproductive value of a female dominant breeder (vD♀). Note that in (B) lines connect WPO and EPO from

the same brood and the thickness of the symbols indicates the sample sizes with many maternal-half sibs comparisons both having zero

fitness. Error bars represent SE.
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form. All covariates were scaled to z-scores before including in

the models.

In addition to using the full datasets for each fitness com-

ponent, we investigated whether there was evidence for the com-

patible genes hypothesis by performing paired comparisons of

EPO and WPO from the same nest (maternal half-sibs). This was

done for individual fitness, nestling condition and size and first

year survival, and has the additional advantage that it reduces the

potential bias due to confounding variables (because the offspring

experience the same environment). For these paired analyses

non-parametric tests were performed. All statistical analyses

were performed in R3.4.0 (R Development Core Team 2017)

using RStudio (RStudio Team 2016). Binomial and Gaussian

distributions were fitted using package lme4 (Bates et al. 2015),

zero-inflated Poisson models were fitted using glmmTMB

(Brooks et al. 2017). Model selection was carried out using

package MuMIn (Bartoń 2016).

Results
ARE THERE FITNESS BENEFITS OF EPP?

Our results show that there is no evidence for the “good” genes

hypothesis, because EPO did not appear to be fitter than WPO in

the first three years of life (Fig. 1A): including EPP as a predictor

of variation in individual fitness was not supported by the data

(�AICc = +2.2; Table B1 model 20 vs 1). Our results also

failed to support the compatible genes hypothesis, as EPO did

not appear to have higher fitness than their maternal half-sibs

from the same brood (Fig. 1B; Wilcoxon V = 82.8, P = 0.78, N

= 42 half-sib pairs). In addition, there was no evidence that EPO

outperformed WPO under poor rearing conditions: EPO did not

appear to have higher fitness than WPO when hatched in a poor

year (Fig. 1C; �AICc = +1.0, Table B1, model 3 vs 1) or in the

absence of helpers at the nest (Fig. 1d; �AICc = +1.1, Table

B1 model 17 vs 1). However, in accordance with the inbreeding

avoidance hypothesis, WPO of close kin (k �0.125) did have

much lower fitness than all other offspring (Fig. 1E), this associ-

ation was consistently included in the top models and accounted

for 52% of the Akaike model weight (�AICc = –1.0; Table B1,

model 1 vs 4).

IS THE RISK OF INBREEDING HIGH?

The risk of inbreeding was high, as due to the limited dispersal

of both sexes, 17% of social pairings were between close kin

(k � 0.125; 53 of 310 pairs), and 8% between first-order relatives

(k � 0.25; 24 of 310). However, inbreeding itself occurred less

frequently, as only 7% of all assigned offspring were the result of

inbreeding at the level of half-sibs or higher (f � 0.125; 106 of

1458 offspring; 68 of 680 (10%) broods) and inbreeding between

first-order relatives was even more rare: 1% of all assigned
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Figure 2. Inbreeding coefficient (f) of within-pair offspring (WPO)

and extra-pair offspring (EPO) given for varying values of kinship

of the social parents (k). Numbers indicate sample sizes, error bars

represent 95% confidence intervals around means. Dotted line

indicates f = 0.

offspring (f � 0.25; 14 of 1458; 8 of 680 (1.2%) broods). A full

breakdown of rates of inbreeding and inbred individuals can be

found in Table A3.

DOES EPP REDUCE INBREEDING?

In accordance with the inbreeding avoidance hypothesis, EPO

were less inbred than WPO when considering offspring of social

pairs that were related to the degree of cousins or higher (k �

0.0625, Fig. 2). On average the inbreeding coefficient of the EPO

was close to zero (mean ± SE: 0.015 ± 0.004), whereas logically

the inbreeding coefficient of WPO mirrored k (Fig. 2). Despite

the finding that EPP reduced inbreeding, 50% (7 out of 14) of the

first-order inbred offspring were the result of extra-pair mating,

and all of these were sired by males from other social groups.

IS THERE INBREEDING DEPRESSION?

Our results show strong inbreeding depression: inbred individuals

(f � 0.125) had � 75% lower fitness than less inbred individuals

(Fig. 3; individual fitness: 0.05 + 0.04 vs. 0.21 + 0.02, respec-

tively). This association received considerable support as all top

models included one of the two predictors of inbreeding (model

without inbreeding: �AICc = +2.5, Table B2, model 4 vs model

1). The fitness reduction depended nonlinearly on inbreeding, as

only offspring inbred at the level of half-sibs or more suffered

from fitness reductions (Fig. 3); indeed whether or not an indi-

vidual was inbred was a better predictor than a linear effect of

the inbreeding coefficient (�AICc = –3.0, Table B2, model 1 vs

model 5).
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Figure 3. The relationship between the inbreeding coefficient (f)

and individual fitness of individuals in their first three years of

life. Individual fitness is in units of reproductive value of a fe-

male dominant breeder (D♀). Numbers on top indicate sample

sizes. Error bars represent ± SE. Line shows fit of the top model

(Table B2).

WHAT ARE THE UNDERLYING PROCESSES?

The apparent absence of an overall difference in fitness between

EPO and WPO (Fig. 1A) was not due to different fitness

components being affected in opposing directions, as including

EPP as a predictor for variation in fledgling survival, adult sur-

vival, recruitment, and reproductive success were not supported

by the data (Tables B3–6). Similarly, maternal half-sibs did not

differ in any of the separate fitness components (Table A2).

The negative association between the inbreeding coeffi-

cient and individual fitness was mediated through inbreeding

depression at different stages in life. Early in life inbred fledglings

had lower chances of surviving their first year (Fig. 4A), and this

association was strongly supported by the data (�AICc = –5.0,

Table B3, model 366 vs. 1). Later in life there were mixed effects

from being inbred: there was considerable evidence that more

inbred adults survived better between one and three years of age

(Fig. 4B; Table B4, �AICc = –1.7, model 5 vs 1, models with

inbred or inbreeding coefficient accounted for 81% of the Akaike

model weight). At the same time there was some evidence that

these individuals were less likely to reproduce successfully than

noninbred individuals (Fig. 4C), although this model was only

moderately supported, possibly due to low sample sizes of highly

inbred adults (�AICc = –0.7, Table B5, model 3 vs 1). Lower

reproductive success was not the result from less opportunity to

reproduce, as there was no evidence that surviving inbred in-

dividuals had a lower chance of obtaining a dominant position

(Fig. 4D, Table B6, �AICc = +1.8, model 4 vs 1).

Inbreeding depression acted directly on body condition as in-

bred nestlings had lower condition (mass after accounting for size;

Fig. 4E; �AICc = –3.5, Table B7, model 10 vs 1). In contrast,

there was no evidence that inbreeding reduced structural growth

(tarsus size) of nestlings (Fig. 4F, �AICc = +2.0, Table B8,

model 1 vs 8). There was no evidence that inbreeding depression

in first year survival acted through effects of body condition or

size, as the inbreeding coefficient was a better predictor for vari-

ation in survival than condition or size (�AICc >+0.7, models

21 & 6 vs 1, Table B3).

Discussion
Extra-pair mating in birds is extremely widespread, but often there

is no evidence females obtain direct benefits from the extra-group

males with which they mate. This suggests that females might gain

indirect benefits from extra-pair paternity (EPP) by enhancing the

genetic make-up of their offspring. However, many studies have

failed to show that extra-pair offspring (EPO) outperform within-

pair offspring (WPO) in population wide comparisons, perhaps

because benefits might only become apparent during certain life-

stages, under specific conditions or because inbreeding is rare

or its negative effects weak, making it hard to detect potential

benefits. In red-winged fairy-wrens (Malurus elegans), a species

in which the majority of females gain EPP and 17% of social

pairs were closely related, overall EPO did not outperform WPO

(Fig. 1A). However, for females socially paired to a closely re-

lated male the potential benefits from EPP were large, as their

EPO were much less inbred (Fig. 2). Inbred offspring had 75%

lower fitness, providing strong (indirect) selection against in-

breeding (Fig. 3). Inbreeding depression occurred during both

the juvenile and the adult phase (Fig. 4). Inbred offspring had

lower chances of surviving their first year of life and were less

likely to reproduce, which was not negated by the surprising

finding that inbred adults survived better. Despite the finding

that EPP can result in large benefits for females paired to a

closely related male, no benefits were detected for the majority of

the population, which nonetheless routinely engage in extra-pair

mating.

INDIRECT FITNESS BENEFITS THROUGH EPP

Our results support the inbreeding avoidance hypothesis: females

paired to close kin were able to decrease inbreeding depression

through EPP. In addition, previous work showed that M. elegans

females paired to a highly related male are more likely to have

EPP and gain this from males that are less closely related to them

than their social partner (Brouwer et al. 2011). Given our complete

sampling and the fact that unhatched eggs were not likely to be
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more inbred or sired by EP males (Table B9), we are confident

that this was not stemming from inbreeding depression in early

offspring survival (Reid et al. 2015). The idea that EPP helps

reduce inbreeding for highly related social pairs is also supported

by a recent comparative study on nine fairy-, emu-, and grasswren

species, which showed that incestuous social pairs always have

higher EPP rates in the Maluridae genus (Brouwer et al. 2017).

Notwithstanding, to date for only two species the assump-

tions of the inbreeding avoidance hypothesis– the presence of in-

breeding depression in the population; a reduction of inbreeding

through EPP; and higher EPP rates for closely related pairs—have

been comprehensively confirmed (Taylor et al. 2010; Reid et al.

2015; Hajduk et al. 2018). Our study now adds a third species

to the literature. Moreover, our quantitative fitness estimation
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also shows that EPO from closely related pairs have 75% higher

fitness than their WPO, thus EPP in closely related pairs should

be favored and selection for EPP is very strong. In addition, our

study shows that the fitness benefits only become apparent for

offspring inbred at the level of half-sib or higher. This means

that only 17% of females benefited from EPP, whereas �67% of

females gained EPP. These findings suggest that the costs of en-

gaging in extra-pair mating behavior are minimal for fairy-wrens.

A possible explanation is that the presence of helpers compensates

for the risk associated with a reduction of investment in offspring

care when males suspect they have been cuckolded (Mulder et al.

1994; Brouwer et al. 2017). Although it should be noted that the

high frequency of EPP in the population itself potentially reduces

relatedness among potential mates and thus the population as

a whole might already benefit from excessive extra-pair mating

(Cornell and Tregenza 2007; Power and Holman 2014; Germain

et al. 2018).

Despite the fact that extra-pair mating can help reduce in-

breeding, half of the highly inbred offspring (between first-order

relatives) were the result of extra-pair mating. This is perhaps not

surprising, since the high EPP rates mean that many females are

unaware of the identity of their genetic father. In two of these

cases, inbreeding was indeed the result of females dispersing

to a breeding vacancy in their sire’s territory. Together with the

finding that the majority of females do not gain indirect bene-

fits, this suggests that inbreeding avoidance is thus unlikely to

be the main explanation for the occurrence of EPP in our study

species.

It has previously been argued that EPP allows for the forma-

tion of incestuous social pairs (Cockburn et al. 2013) and under

this scenario, there is little cost to incestuous pairings as both

sexes can continue to produce noninbred offspring through extra-

pair mating. Alternatively, EPP has also been suggested to be

a by-product of selection on male mating behavior (Forstmeier

et al. 2014). Contradicting this idea is that female red-winged

fairy-wrens are consistent in their choice of their EP sire and pre-

fer males that are able to moult into their nuptial plumage early

in the season (Brouwer et al. 2011), most likely a reliable cue

for male quality as early moulting is costly (Peters et al. 2000).

Furthermore, radio-telemetry in the superb fairy-wren revealed

that females fly directly to the male’s singing post on his territory,

indicating that females initiate extra-pair fertilizations (Double

and Cockburn 2000).

Since there were no detectable benefits for EPO when either

considering all offspring or when comparing maternal haf-sibs

form the same brood, our study did not provide evidence for the

“good” or compatible genes hypotheses (Hamilton and Zuk 1982;

Zeh and Zeh 1996). Furthermore, EPO did appear to have higher

fitness when reared under poor conditions. However, in our study

we considered fitness components during the first three years of

life, and although most benefits of EPP have been shown to occur

during the juvenile stage (Suter et al. 2007; Wells et al. 2017),

it is possible that certain benefits of EPP only become apparent

later on. For example, timing of moulting into nuptial plumage is

thought to be an honest signal of male quality for female extra-

pair mate choice (Dunn and Cockburn 1999; Brouwer et al. 2011),

and is most variable among older males (van de Pol et al. 2012).

If early acquisition of nuptial plumage is heritable, there could

potentially be reproductive benefits particularly later in life when

variance between males increases.

INBREEDING AND THE UNDERLYING PROCESSES OF

INBREEDING DEPRESSION

We found that 7% of all offspring were inbred at the level of half-

sib mating or higher (and 17% of the social pairs were close kin at

that same level). Although such inbreeding level might seem low

considering the fact that dispersal is low, longer distance dispersal

does occur in M. elegans (i.e., five territories, Russell and Rowley

2000) and such movements have been shown to have large effects

on reducing incestuous pairing in other species (Nelson-Flower

et al. 2012). Combined with the high rates of EPP, which are even

higher for closely related pairs (Brouwer et al 2011), dispersal is

apparently sufficient to reduce the chances of incestuous pairing.

Nevertheless, our inbreeding estimates are much higher compared

to other species. For example, inbreeding to the level of half-sib

mating or higher accounted for only 1% of all pairings in col-

lared flycatchers (Ficedula albicollis) and for 2% of all nestlings

in savannah sparrows (Passerculus sandwichensis) (Kruuk et al.

2002; Wheelwright et al. 2006). Both of the aforementioned pop-

ulations were isolated island populations, with restrictions to

gene flow. Comparable levels of inbreeding are only reported

for a small island population of song sparrows (7.6%; (Keller

1998), indicating that philopatry of both sexes in M. elegans in-

creases the chance of inbreeding to the level found in small insular

populations.

Not surprisingly, the level of inbreeding in M. elegans was

also much higher than in the closely related M. cyaneus (�0.3%,

Hajduk et al. 2018), a species where only males are philopatric.

Routine inbreeding is expected to reduce inbreeding depression,

as recessive deleterious alleles are expected to be purged from

the population (Charlesworth and Willis 2009). However, de-

spite the higher frequency of inbreeding, elegans showed greater

inbreeding depression than cyaneus, where only nestling mass,

and not survival, was negatively associated with inbreeding (Ha-

jduk et al. 2018). This suggests that either the 7% frequency

of inbreeding in elegans is still too low to reduce the fre-

quency of deleterious alleles or that inbreeding depression acts

through cumulative effects of multiple mildly deleterious muta-

tions that are not easily purged from the population (Wang et al.

1999). Alternatively, in their study Hajduk et al. (2018) examined
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inbreeding depression in survival of offspring that are still being

fed by the adults in their group, whereas the costs of inbreeding

might become apparent in the period when young have to forage

independently.

Interestingly, inbreeding depression did not gradually in-

crease with inbreeding, but followed a threshold pattern, with very

strong fitness reductions for highly inbred individuals, whereas

inbreeding at the level of lower than half-sibs did not have fit-

ness consequences. Such patterns can occur when multiple genes

interact (reinforcing epistasis, Lynch and Walsh 1998) and al-

though rarely reported in wild populations, have been found in

studies on dairy cattle (Wall et al. 2005; Gulisija et al. 2007),

horses (Klemetsdal 1998) and Drosophila melanogaster (Sharp

and Agrawal 2016).

In addition to inbreeding depression early in life, inbred

adults were less likely to successfully raise a brood to fledging,

and this was not caused by inbred adults having less opportunity

due to lower chances of obtaining a dominant position. Inbreeding

depression has often been found to reduce fertility, for example

through reduced male attractiveness (Pilakouta and Smiseth 2017;

Vega-Trejo et al. 2017) or reduced parental care behaviors, such

as female incubation attentiveness (Pooley et al. 2014). Future

work will have to show what the underlying mechanisms of the

lower reproductive success of inbred individuals are.

Surprisingly, inbred adults survived better than noninbred

adults. This could simply result from the inbred individuals not

being exposed to the cost of raising fledglings (since they pro-

duced fewer offspring), although this is rather unlikely as even

though helpers of both sexes and dominant males might not have

sired offspring, they routinely take care of young on their home

territory. A few other studies have reported positive associations

between inbreeding and fitness components, which were sug-

gested to be the result of these offspring inheriting a “proven

genotype” (i.e., high quality genotype) from a highly inbred par-

ent (Weiser et al. 2016) or by purging and partial dominance of

deleterious alleles (Moreno et al. 2015). Despite the limited dis-

persal in our study population, purging is extremely unlikely as

there is no evidence for a recent bottleneck. To test the “proven

genotype” idea we will need more data on multiple generations to

investigate whether parents of the successful inbred individuals

were also inbred.

Conclusion
Our study shows that in a highly philopatric species, the risk of

inbreeding was high and resulted in strong inbreeding depression.

Both early and late life fitness components were affected and

unexpectedly, inbreeding was also positively associated with a

fitness component, stressing the importance of considering an

integrated fitness measure to determine the presence and strength

of selection. Despite the fact that no benefits of EPP were detected

for the majority of the population, females paired to a closely

related male were able to substantially increase their offspring’s

fitness through EPP, indicating strong selection for EPP in those

pairs. This can explain why incestuous social pairs in red-winged

fairy-wrens have the highest EPP levels. However, while indirect

selection should favor EPP for the 17% of the females paired

to a close relative, the cost of inbreeding cannot be a complete

explanation for infidelity, as most females gain EPP. Possibly,

our finding that only females paired to a close relative benefited

from EPP might be more widespread and can explain the apparent

absence of indirect benefits of EPP in other studies, where closely

related pairs may be rare.

AUTHOR CONTRIBUTIONS
All authors conceived and designed the study. L.B. coordinated the field
study and collected the data together with M.P. and W.L. L.B. performed
the parentage analyses. M.P. developed the individual fitness calculations.
W.L. analyzed the data with input from M.P. and L.B. L.B. and W.L. wrote
the manuscript with contributions from A.C. and M.P.

ACKNOWLEDGMENTS
The Western Australian Department of Biodiversity Conservation and
Attractions (DBCA) gave permission for fieldwork and sampling, and
the ANU Animal Experimentation Committee licensed our field research.
The Australian Bird and Bat Banding Scheme gave permission for colour-
banding. We thank Adrian & Julia Wayne and other staff of the DBCA
Science division in Manjimup, John Angus and Karen & Michael Keely
for logistical support and hospitality. We are grateful to numerous stu-
dents and assistants who helped in the field, in particular Marina Louter.
We thank Christa Mateman for doing part of the genotyping and Loeske
Kruuk for discussion of results. The work was supported by a Rubi-
con fellowship of the Netherlands Organisation for Scientific Research
(NWO825.08.003) awarded to LB, and by fellowships and grants from
the Australian Research Council awarded to LB (DE130100174), AC
(DP0451018, DP1092565) and MP (FT120100204).

DATA ARCHIVAL
The datasets have been uploaded to DANS EASY-KNAW:
https://doi.org/10.17026/dans-xny-xaed.

LITERATURE CITED
Akaike, H. 1973. Information theory and an extension of the maximum like-

lihood principle. Pp. 267–281 in B. N. Petrov, and F. Csaki, eds. Pro-
ceedings of the 2nd International Symposium on Information Theory.
Akademiai Kiado, Budapest.

Arct, A., S. M. Drobniak, and M. Cichoń. 2015. Genetic similarity between
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Table A1. Details of Datasets used for analyses on effect of EPP and inbreeding in red-winged fairy-wrens for genotyped cohorts 2008-2014 monitored
up to and including 2016.
Table A2. Summary statistics of pairwise comparisons between EP and WP maternal half-sibs from the same brood. In nests with multiple EPO or WPO,
one pair was chosen at random.
Table A3. Rates of inbreeding and number of inbred individuals. The number and percentage of social pairs, broods and offspring per binned inbreeding
coefficient are given.
Figure A1. Individual fitness (± S.E.) within the first three years of life of within-pair offspring (WPO) and extra-pair offspring (EPO) of red-winged
fairy-wrens in a.) the absence and presence of female helpers-at-the-nest and in b.) the absence and presence of male helpers-at-the-nest.
Figure A2. Mean (± S.E.) inbreeding coefficient (f = r/2) for known relationships between dyads of a) grandparent-grandoffspring and half-siblings (f �

0.125) and for b) parent-offspring and full-siblings (f � 0.25).
Appendix B: Model selection tables for individual fitness, first year survival, adult survival, adult reproductive success, adult recruitment, nestling body
condition, nestling size and hatching probability.
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