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ABSTRACT 

 

Background: 

REBOA, a minimally invasive alternative to resuscitative thoracotomy, has been associated with 

significant ischemia reperfusion injury (IRI). Resuscitation strategies utilizing adenosine, 

lidocaine, and magnesium (ALM) have been shown to mitigate similar inflammatory responses 

in hemorrhagic and septic shock models. This study examined the effects of ALM on REBOA-

associated IRI using a porcine model.  

 

Methods: 

Animals underwent a 20% controlled hemorrhage followed by 30 minutes of supraceliac balloon 

occlusion. They were assigned to one of four groups: control (n=5), 4 hour ALM infusion 

starting at occlusion, 2 hour (n=5) and 4 hour (n=5) interventional ALM infusions starting at 

reperfusion. ALM cohorts received a post hemorrhage ALM bolus followed by their respective 

ALM infusion. Primary outcomes for the study assessed physiologic and hemodynamic 

parameters.   

 

Results: 

ALM infusion after reperfusion cohorts demonstrated a significant improvement in lactate, base 

deficit, and pH in the first hour following systemic reperfusion. At study endpoint, continuous 

ALM infusion initiated after reperfusion over 4 hours resulted in an overall improved lactate 

clearance when compared to the 2-hour and control cohorts. No differences in hemodynamic 

parameters were noted between ALM cohorts and controls.  
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Conclusion: 

ALM may prove beneficial in mitigating the inflammatory response seen from REBOA-

associated IRI as evidenced by physiologic improvements early during resuscitation. Despite 

this, further refinement should be sought to optimize treatment strategies.  

 

Study Type: Animal Study, pre-clinical 

 

Level of Evidence: N/A Animal Study 

 

 

Key words: Adenosine Lidocaine Magnesium, REBOA, Noncompressible truncal hemorrhage, 

Ischemia reperfusion 
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BACKGROUND 

 Non-compressible truncal hemorrhage (NCTH) remains a leading cause of mortality in 

both military and civilian trauma populations.1-3 Acute, life-saving measures, such as 

resuscitative thoracotomy (EDT) or resuscitative endovascular balloon occlusion of the aorta 

(REBOA), are frequently required for survival. These techniques work by temporarily occluding 

aortic blood flow proximal to the suspected injury. Despite their life-saving nature, each 

technique is potentially accompanied by a cohort of severe morbidities. While EDT offers the 

advantage of directly assessing the thoracic cavity and pericardium, the resultant morbidity 

associated with thoracotomy in critically ill patients has led to efforts to develop less invasive 

methods for the stabilization of non-compressible hemorrhage. Thus, in the absence of thoracic 

injuries, REBOA has become an increasingly attractive option due to its minimally invasive 

nature. Importantly, both techniques result in tissue ischemia distal to occlusion and require 

emergent surgical intervention for definitive hemorrhage control and restoration of distal blood 

flow.  

 

REBOA proponents advocate for the future possibility of its use in the prehospital setting 

to minimize ongoing hemorrhage. Military efforts mirror these thoughts as recent conflicts in the 

Middle East have placed an increased emphasis on minimizing time from injury to hemorrhage 

control.4,5 Combat casualty populations experience high rates of penetrating and blast injury 

resulting in severe injury patterns that require invasive hemorrhage control techniques near the 

point of injury.6 Consequently, reports of REBOA being deployed as close to the point of injury 

as possible have surfaced with successful use recently reported in the military prehospital 

setting.7 Although hospital transport times within the United States have become increasingly 
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shorter, making point of injury REBOA arguably plausible, the deployed or combat setting 

provides unique set of challenges when transporting a critically injured patient. Thus, the 

forward application of REBOA must be carefully considered in light of the increased morbidity 

and mortality seen with aortic occlusion times greater than 30 minutes.8 The current Joint 

Trauma System Clinical Practice Guidelines recommends that thoracic aortic occlusion (i.e. 

Zone I placement) times do not exceed 30 minutes for REBOA use, with the caveat that shorter 

occlusive times are preferred.9 Civilian literature affirms these findings with shorter occlusion 

times correlating with improved short-term survival.10 Additionally, animal models have 

demonstrated increased release of interleukin 6, higher incidence of acute respiratory distress 

syndrome, increased vasopressor requirements, and higher mortality rates with occlusion times 

greater than 30 minutes.11,  12 Regional tissue ischemia has been shown to significantly increase 

the inflammatory response with occlusion times approaching 60 minutes.13   

 

 Aortic occlusion and malperfusion causes distal ischemia and irreversible organ damage 

that worsen with increasing occlusion times. Restoration of blood flow, although necessary, 

results in a clinical phenomenon called reperfusion injury that frequently worsens the 

physiologic insult by systemically releasing a multitude of inflammatory mediators. This process 

is collectively termed ischemia reperfusion injury (IRI).  Current theories behind IRI suggest that 

following cessation of blood flow to the gut, mesenteric ischemia-induced inflammatory markers 

enter the lymphatic system and eventually the systemic circulation via the thoracic duct.15, 16 

Once in the systemic circulation, the associated cytokines are believed to be responsible for the 

high rates of trauma-related coagulopathy, multiorgan dysfunction, infection, and mortality.16 - 19 

Although the cornerstone of treating or preventing IRI is timely reperfusion, this is not always 

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

ACCEPTED



7 

possible in a far forward environment with limited surgical capabilities. Preventing IRI has been 

a focus of ongoing research for many years through techniques focused on decreasing metabolic 

demand, administration of antioxidant therapies, utilization of immunosuppressive therapies, and 

ischemic preconditioning. Recently, the use of adenosine, lidocaine, and magnesium (ALM) has 

demonstrated early promise in animal studies for IRI mitigation in various hemorrhagic shock 

and sepsis models. This drug combination has been well studied in the field of cardiac surgery  

demonstrating cardioprotective effects from post-operative IRI .20, 21 Several animal studies have 

subsequently demonstrated the potential uses of ALM as a small volume resuscitative agent in 

hemorrhagic shock, cardiac arrest, traumatic brain injury, and sepsis.22 These studies have 

demonstrated improved survival, decreased inflammatory states, correction of coagulopathy, and 

improved hemodynamics following severe and catastrophic blood loss.23 - 26 Although the exact 

mechanism of action has not been fully elucidated, ongoing theories support the notion that 

ALM switches to a survival phenotype and reduces tissue metabolic demand through differential 

expression of the master genes of metabolism.27  

 

While ALM has proven successful for mitigating IRI in various trauma models, its 

application during REBOA-based resuscitation has not been studied. To date, the majority of IRI 

mitigation efforts following REBOA have been mainly focused on decreasing aortic occlusion 

times or utilizing partial occlusion strategies.28 - 30 Thus, the potential for pharmacologic 

strategies to decrease the IRI-associated inflammatory insult offers the opportunity for 

prolonging occlusion times and decreasing the REBOA-associated morbidities. This study 

sought to examine the physiologic effects of utilizing ALM in a REBOA-based IRI porcine 

model to mitigate the deleterious effects of IRI following reperfusion.  
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METHODS 

Animal Care and Invasive Monitoring 

 Institutional Animal Care and Use Committee approval was attained (Protocol 219003) 

and all animals were cared for in accordance with the Guide for the Care and Use of Laboratory 

Animals published by the Institute of Laboratory Animal Research. Adult male Yorkshire swine 

between 40 and 50 kg underwent general endotracheal anesthesia and adequate depth of 

anesthesia was ensured and monitored with pedal reflexes. The study was considered “non-

survival.” This ensured that mortality resulting from the protocol occurred under anesthesia and 

animals that survived to the experimental end point were euthanized.  

 

 Following anesthesia, a midline neck dissection exposed central vessels for invasive 

monitoring. A 5-French (Fr) carotid arterial line was placed for blood pressure monitoring and a 

10-Fr sheath was used as a conduit for pulmonary artery catheter placement. A 7-Fr contralateral 

external jugular vein catheter was placed for central venous access, as well as to provide the 

conduit for controlled hemorrhage. Midline laparotomy was performed for placement of an intra-

abdominal bladder catheter. The distal aorta was accessed at the level of the iliac artery for 

placement of a 7-Fr sheath and the REBOA. The REBOA was pre-placed in the 

supradiaphragmatic or Zone 1 position based on anatomic measurement. Normothermia was 

maintained during and after surgical instrumentation via conductive warming mechanisms. 

Animals received a weight-based maintenance intravenous crystalloid infusion during surgical 

instrumentation. 
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Experimental Design 

Treatment groups consisted of: 1) Saline vehicle control (n = 5), 2) 4 hour ALM infusion 

beginning at aortic occlusion (n = 5), 3) 2 hour ALM infusion during reperfusion (n = 5), or 4) 4 

hour ALM infusion during reperfusion (n = 5). All animals underwent 20% total blood volume 

hemorrhage using the 7-FR central venous catheter. During this time, animals did not receive any 

additional resuscitation and hemorrhage was completed as fast as animals could tolerate via a 

pressure-based hemorrhage to maintain a mean arterial pressure (MAP) greater than 40 mmHg. 

Blood was collected and stored in citrate bags for resuscitation used later in the protocol. ALM 

cohorts received a post-hemorrhage ALM bolus while control animals received saline. Each 

bolus was given over a 5 minute period followed by a 30 minute Zone 1 aortic occlusion via the 

REBOA catheter. All animals subsequently received their respective continuous ALM or saline 

infusions based on their experimental cohort (Figure 1). All animals were followed for four 

hours after systemic reperfusion. 

 

ALM Dosing and Resuscitation Strategy 

 Animals under each ALM intervention arm received the same post hemorrhage bolus 

dose of the drug combination: 4 ml/kg 3% sodium chloride (NaCl) with 0.5 mM adenosine, 1.5 

mM lidocaine, 1.25 mM magnesium sulfate (MgSO4). The continuous infusion dose of ALM 

intervention consisted of: 0.9% NaCl with 8.98 mM adenosine, 16.62 mM lidocaine, 22.26 mM 

MgSO4 at a rate of 2 ml/kg/hr. The continuous infusion was initiated either at time of aortic 

occlusion or at time of REBOA balloon deflation (reperfusion) depending on the experimental 

cohort. Saline vehicle controls received post hemorrhage bolus of 4 ml/kg 3% NaCl followed by 

a continuous infusion of 0.9% NaCl at a rate of 2 ml/kg/hr. Blood product resuscitation followed 
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the practice of hypotensive resuscitation with administration of prior hemorrhaged whole blood 

for MAP less than 40 mmHg. Following administration of blood products, 250 cc lactated 

ringer’s bolus was available in order to maintain MAP above 40 mmHg. 

 

Data Collection and Statistical Analysis 

 Physiologic parameters including basic vital signs, pulmonary artery catheter values, 

volume requirement and urine output were continuously measured. Laboratory evaluation 

included arterial blood gas, hemoglobin and hematocrit, lactate, prothrombin time and 

international normalized ratio and partial thromboplastin time. Measurements were obtained 

following induction and invasive line placement (baseline), post hemorrhage, systemic 

reperfusion (T0), 1 hour after reperfusion (T1), 2 hours after reperfusion (T2), and 4 hours after 

reperfusion (T4).  

 

 Standard descriptive statistics and analysis of variance (ANOVA) with Tukey post hoc 

test were performed using IBM SPSS statistics 24 (IBM Corp., Armonk, NY). Assessment of 

data normality was completed with Shapiro-Wilks.  Comparisons were made between the 

experimental arms for all data points. Significance was set at a p value greater than 0.05.  

 

RESULTS 

 A total of 20 animals weighing 47.6 kg (+/- 2.9 kg) were included in the study. 

Hemodynamics and laboratory values were comparable in all animals at baseline and after 

controlled hemorrhage (Table 1). Survival to study endpoint (4 hours after reperfusion) was 

100% for the control and ALM cohorts that received their infusions following REBOA-balloon 

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

ACCEPTED



11 

deflation. All groups required resuscitation with shed blood in order to maintain MAP at goal 

(>40 mmHg). The cohort receiving ALM infusion during aortic occlusion demonstrated 

significantly worse survival (40%) compared to all other arms (p < 0.05) (Figure 2). The 3 

animals that expired prior to study endpoint did so during the reperfusion time period and all 

experienced similar bradyarrhythmias, followed by cardiac arrest. Furthermore, this specific 

group required significantly more crystalloid boluses in order to maintain MAP > 40 mmHg (p < 

0.001). No other groups required additional crystalloid boluses following shed blood 

resuscitation. 

 

 Hemodynamics following reperfusion were similar between the control and the ALM 

arms that received continuous infusions upon REBOA-balloon deflation at all time points. 

Lactate levels at 4 hours after reperfusion (T4) were significantly lower (p = 0.031) in the 4 hour 

ALM post-deflation infusion group compared to both the control and the 2 hour ALM post-

deflation infusion group (0.8 vs 1.9 and 2.3; Table 1). The overall trend in lactate from time of 

reperfusion to T4 is demonstrated in Figure 3 with the significant value at T4 highlighted for the 

ALM post reperfusion group. The 4 hour ALM cohort that received treatment infusion during 

aortic occlusion was excluded from the analysis after the 1 hour time point (T1) due to decreased 

sample size and inferior survival.  

 

 Following analysis of each individual value at their respective time points, changes in 

lactate, pH and base excess from point of reperfusion (T0) to T1 were reviewed. For this portion 

of the analysis, animals who received post-deflation ALM infusions were grouped together given 

the intervention received was the same until 2 hours after reperfusion. The combined values of 
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pH, base excess and lactate along with the change in values from T0 to T1 are shown in Table 2. 

When combined and compared to the control group, the ALM animals demonstrated a significant 

difference in the changes of lactate, pH and base excess in the first 1 hour following reperfusion 

(p < 0.001, p = 0.048, p = 0.023; Fig 5). Subset analysis of hemodynamics following hour 2 after 

reperfusion of the 4 hour and 2 hour post-deflation ALM infusion groups revealed a significantly 

(p = 0.02) lower heart rate in the 4 hour infusion group (mean = 85, 95% CI 72 - 98) compared to 

2 hour infusion (mean 128, 95% CI 100 - 170), and no significant difference in mean arterial 

pressure at 4 hours after systemic reperfusion. 

 

DISCUSSION 

 The ability to mitigate detrimental effects of IRI represents a highly desirable 

intervention in treatment of traumatically injured patients, especially in austere, far-forward 

military environments where time to definitive surgical intervention may be prolonged. Using 

small volume ALM therapy, we were able to demonstrate findings suggestive of an improved 

physiologic status in a porcine REBOA IRI model during the early resuscitative phases 

following reperfusion. To our knowledge, this is the first study assessing the effect of ALM on 

animals undergoing hemorrhage and aortic occlusion with REBOA. Despite this novel 

application, ALM has been well studied in a variety of other animal models and demonstrated 

positive results, including blunting the inflammatory response, improving coagulation 

parameters, and stabilizing hemodynamics for a multitude of critical illnesses. 27, 31, 32 We believe 

the work displayed by this study represents an advancement in understanding ALM-based 

resuscitation practices and provides a conceptual avenue for optimizing REBOA use in trauma 

care.  

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

ACCEPTED



13 

 

 Initially known for its myocardial protectant properties when compared to other high 

potassium containing solutions used for cardioplegia, the use of ALM has demonstrated multiple 

systemic benefits that remain highly advantageous for traumatically injured patients. 20, 21 Due to 

its cardioplegic roots, concerns have been raised over its early use in trauma models due to fears 

for inducing cardiac arrest. However, through utilizing a lower dosing strategy, proponents of 

ALM have not demonstrated these effects in the multitude of hemorrhagic shock, sepsis, and 

traumatic brain injury models studied.23-27, 31, 32 Interestingly, our study demonstrated fairly 

consistent bradyarrhythmia leading to cardiac collapse when the ALM was infused during aortic 

occlusion, proximal to the REBOA-balloon. This raised initial concerns regarding the solution’s 

safety profile, however, these effects were not demonstrated when the infusion was initiated 

following REBOA-balloon deflation. In the REBOA model, it appears the ALM concentration 

was too high in the cardiopulmonary circuit during aortic occlusion. This finding demonstrates 

the importance of future studies examining the effect of varying the ALM dosing in combination 

with aortic occlusion. Other studies have used similar concentrations and dosing strategies with 

favorable outcomes, however, these were not in combination with REBOA. Importantly, all 

animals who received their ALM infusion following REBOA-balloon deflation did not display 

the previously seen arrhythmias. While this study did not directly assess the effects of initiating 

an ALM infusion distal to the REBOA-balloon during aortic occlusion, further studies utilizing 

this model with lower initial doses would help determine the etiology of these cardiac 

arrhythmias.  

 

 Our study utilized a 30-minute REBOA occlusion time based on the current military 
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clinical practice guidelines and a dosing strategy per expert guidance from leaders in ALM 

resuscitation. Despite this, it remains highly possible that our model contains much room for 

optimization. Although large animal models may be the best surrogate to human trials, animals 

display inherently different pathophysiology, and therefore, it is possible that a 30-minute 

REBOA inflation period does not create the same degree and temporal progression of 

physiologic insult experienced by humans. Furthermore, while the doses utilized were carefully 

chosen using expert opinion, REBOA-based ALM models may benefit from alternative dosing 

strategies compared to those that demonstrated benefit in previous hemorrhagic shock and sepsis 

models.  One such approach may consist of ALM infusion distal to the balloon catheter during 

occlusion for reasons previously mentioned.  

 

 Early ALM studies have demonstrated promising results in catastrophically injured 

animal models. Notably, ALM bolus/infusion therapy was demonstrated to be associated with 

100% survivability when compared to saline controls following a 60% hemorrhage within a rat 

model.24 Increased survival was thought to be secondary to the improved hemodynamic stability 

via enhanced ventricular-arterial coupling. However further studies have also shown a decrease 

in systemic inflammation, improvements in trauma induced coagulopathies, and reductions in 

cerebral edema following traumatic brain injury.25, 26 These findings were also translated in 

severe hemorrhagic shock porcine models confirming the physiologic benefits of ALM in large 

animals. 20  Interestingly, a recent study by How, et al. failed to demonstrate the previously 

reported benefits of ALM with regards to mortality, hemodynamics, and metabolic parameters 

when comparing an ALM-based resuscitation to the Tactical Combat Casualty Care standard of 

care for prehospital resuscitation during combat settings.33 These findings, however, are not 
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without controversy as there remain concerns regarding the dosing regimens and strategies used 

in the previously mentioned study, including the use of the opioid buprenorphine, which has 

recently been shown to reduce ALM survival.34,35 Similarly, our study failed to demonstrate any 

significant hemodynamic changes between the control and experimental groups. However, four-

hour ALM infusion led to significantly decreased lactate at the completion of the study 

suggesting the potential for improvements in either tissue perfusion or lactate clearance.  

 

 Our focus mainly rested on the two experimental arms that were non arrhythmogenic. 

Each arm received equivalent ALM dosing for the pre-REBOA bolus and the continuous drip 

during the first two hours following REBOA-balloon deflation. When combining these arms, 

ALM displayed significantly improved changes in lactate, pH, and base excess compared to 

saline controls one hour following reperfusion. These physiologic improvements support the 

resuscitation benefits previously shown in early ALM studies. Conversely, the proposed 

hemodynamic effects of ALM were not demonstrated within our combined cohorts. Due to the 

study design, only the laboratory values and data points up to one hour following balloon 

deflation could be combined for evaluation. 

 

 There are several limitations to this study that should be considered. First, small sample 

sizes create a high possibility for type II error. The improvements seen within the combined 

ALM cohorts during the early reperfusion phase highlight this notion as the sample size was 

effectively doubled resulting in statistically significant findings. Moreover, as this study was the 

first to assess ALM with REBOA use, it remains possible that the induced physiologic insult 

within this model did not drive the same degree of hemodynamic and cardiovascular 
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derangements seen within previous studies. This is supported by the 100% survival rate of the 

control group and may account for the lack of hemodynamic differences between our study 

groups. Further model testing to assess varying degrees of hemorrhage, increased aortic 

occlusion times, and partial REBOA techniques should be evaluated in order to optimally define 

the potential role of ALM use with REBOA during acute traumatic resuscitation. Alternative 

laboratory testing such as coagulation and inflammatory parameters, tissue analysis, metabolic 

testing, and gene expression analysis could be implemented in future studies to gain insight into 

further ALM-associated changes at the organisms, tissue, and cellular levels. Finally, although 

large animal models embody the best representation of human physiology for nonclinical 

research, the complexities of the human inflammatory, cardiovascular, endocrine, and metabolic 

responses to traumatic insult are notoriously difficult to replicate within animal models resulting 

in heavily scrutinized findings prior to any human implementation.  

 

 ALM-based therapy may have a role in mitigating the inflammatory and physiologic 

response seen with REBOA-associated IRI as evidenced by physiologic improvements early 

during resuscitation. Despite this, the findings from this study suggest that further investigations 

assessing the use of ALM with REBOA should be performed prior to wide-scale adoption. The 

successful mitigation of IRI during REBOA may allow for prolonged aortic occlusion times 

while decreasing the morbidities associated with reperfusion. To date, efforts to do so have 

largely focused on partial REBOA techniques, however we believe that using pharmacologic 

therapies, such as ALM, to reduce IRI and decrease metabolic requirements represent a relatively 

unexplored avenue that may result in expanded indications for REBOA use, particularly in far-

forward military and prehospital civilian setting.  
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FIGURE LEGENDS: 

 

Figure 1. Experimental Outline 

 

Figure 2. Kaplan-Meier curve demonstrating decreased survival in 4 hour ALM occlusion group 

compared to all other groups. 

 

Figure 3. ALM Cohorts vs Control Lactate Trend 
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Figure 1 
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Figure 2 
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Table 1. Individual group values are shown, significant comparisons are highlighted 
 

 

 

 
Control  4 Hour ALM post reperfusion  2 Hour ALM post reperfusion  4 Hour ALM on occlusion 

 
B PH T0 T1 T4  B PH T0 T1 T4  B PH T0 T1 T4  B PH T0 T1 T4⸸⸸ 

Hemodynamics 
    

 
     

 
     

 
        Heart rate, bpm 79.4 87.6 142.4 105.4 100.2  83.8 112.3 133.75 113.5 85⸸  83.3 125.8 152 129 128.5  98.2 136.2 136.4 105.8 130.5 

   MAP, mmHg 52.8 42 54 51.8 45.2  65.5 55.25 63.5 54.3 52.8  60.3 46.5 58.5 55.8 49.3  64.4 45 49.6 47.6 63.5 
   CO, L/min 3.1 2.6 3.8 4.6 4.1  3.5 3.4 5.4 4.9 3.7  3.2 3.2 4.4 4.6 4.4  3.6 2.7 3.3 4.3 5.2 
                        
Lab Values 

    
 

     
 

     
 

        pH 7.52 7.49 7.28 7.39 7.46  7.48 7.47 7.22 7.4 7.48  7.58 7.57 7.32 7.48 7.52  7.52 7.46 7.29 7.31 7.31 
   Lactate, mg/dL 1.3 1.7 7.1 5.2 1.9  1.5 2.1 7.8 4.2 0.8*  1.4 1.7 7.6 5.1 2.3  0.9 2.1 8.4 7.5⸸* 1.5 
   Base Excess 8.6 7.8 -2.4 2.2 7.2  8.3 7.5 -4.75 3 9.75  13.3 11.5 -1 4.5 9  11 7.8 -6 -2.4 5 
   Hematocrit, % 24.2 24.4 30.2 26.6 25.6  21 21.5 23 22.8 22.8  23.5 25.8 29.5 26.8 28  26.4 28.8 26.8 29.5 28 
   Hemoglobin, g/dL 8.2 8.3 10.3 9.1 8.8  7.1 7.3 7.9 7.5 7.1  8 8.8 10 9.1 9.5  8.9 9.8 9.1 10.1 9.3 
   Potassium, mg/dL 4.2 4.4 3.9 4.9 6.7  3.9 4 3.7 4.1 5.6  3.9 3.9 3.8 4.5 6  4.4 3.6 4.9 5.7 6.7 
                        
 

B, baseline; PH, post hemorrhage; T0, time of systemic reperfusion; T1, 1 hour after reperfusion; T4, 4 hours after reperfusion. 

      *, p < 0.05 when compared to 2 hour ALM group and control; ⸸,  p < 0.05 when compared to 2 hour ALM; ⸸*, p < 0.05 when compared to all groups; ⸸⸸, n = 2 (40% survival) 
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TABLE 2. Lactate, pH and base excess for control and ALM cohorts: baseline to one 
hour after reperfusion  

 Control  ALM 

 B PH T0 T1 ∆  B PH T0 T1 ∆ 

Lactate 1.27 1.73 7.11 5.23 1.88  1.49 2.03 7.82 4.90 2.91* 

pH 7.52 7.49 7.28 7.39 0.10  7.53 7.50 7.25 7.41 0.15* 

Base Excess 8.60 7.80 -2.40 2.20 4.6  9.78 8.44 -3.89 2.89 6.78* 

       B, baseline; PH, post hemorrhage; T0, time of systemic reperfusion; T1, 1 hour after 
reperfusion; ∆, change in value from T0 to T1. 
      *, p < 0.05 compared to control group 
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