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A B S T R A C T   

The unsteady natural convection boundary layer (NCBL) on a vertical wall heated by time- 
varying flux in initially quiescent homogeneous fluid with a small Prandtl number (Pr) was 
studied. Scalings for the parameters typifying NCBL behavior, including plate temperature, 
maximum vertical velocity, thermal boundary-layer thickness, and velocity boundary-layer 
thickness, at different development stages, and the time for the transition from the start-up 
stage to the quasi-steady state, were developed by scaling analysis. The obtained scalings were 
compared to and validated by the numerical results with different values of Pr, the Rayleigh 
number Ra and the dimensionless time-varying heat flux frequency fn, over 106 ≤ Ra ≤ 109, 0.01 
≤ Pr ≤ 0.5, and 0.001 ≤ fn ≤ 0.025. It is also found that the development of the boundary layer at 
the start-up stage is one-dimensional and but becomes two-dimensional at the quasi-steady state.   

1. Introduction 

In numerous practical applications, the unsteady NCBL and heat transfer are caused by a time-varying flux or temperature. One 
exemplary case is in a passive solar house where the vertical Trombe wall painted in black or with a solar selective coating is heated by 
time-varying heat flux in the form of solar radiation, which varies sinusoidally under a clear sky condition (only in the first half of the 
sinusoidal cycle), which produces the NCBL of air transferring the absorbed heat to the space of the house [1]. The understanding of the 
unsteady NCBL and the associated heat transfer produced by time-varying heating conditions is still limited, although there have been 
some studies on the topic (e.g., Refs. [2–12]) and a summary of some of these studies can be found in Ref. [3]. 

Saha, Brown & Gu [7] carried out scaling analysis to give the scalings for unsteady NCBL adjacent to a vertical flat plate for fluids 
with the Prandtl number (Pr) larger than 1 subject to ramp surface heat flux which increases with time up to some specific time and 
then remains constant, and validated the obtained scalings with their numerical simulation results. Hattori, Patterson & Lei [13] 
studied the characterization of linear and oscillatory behaviours of the NCBL induced by the absorption of time-varying solar radiation, 
and obtained the time and frequency scales of the unstable thermal boundary layer. A series of studies have been conducted recently by 
Liu and his co-workers [10,14,15] on the unsteady natural convection flow subject to linear thermal forcing. They used scaling analysis 
to develop various scalings to characterize the unsteady natural convection behavior and verified them with numerical simulation 
results. Zhou et al. [16] investigated numerically the unsteady NCBL in a cavity with time-varying thermal forcing on a sidewall which 
varies sinusoidally with time and found that the flow behavior is governed by three characteristic time scales including the forcing 
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period. Loenko, Shenoy & Sheremet [17] carried out a numerical study on the effect of the wall temperature, which changes with time 
sinusoidally, on the unsteady natural convection of a non-Newtonian fluid in an enclosure, and found that a pseudoplastic fluid with 
large Ra values and large oscillation frequencies is more favorable for enhancing the convective heat and mass transfer. We and our 
co-workers have carried out a series of studies on the unsteady NCBL of either a homogenous or a stratified Pr > 1 or Pr < 1 fluid on a 
vertical plate subject to different time-varying heat flux or temperature over a wide range of Ra, Pr, thermal forcing frequency, and 
stratification extent, and obtained various scalings characterizing the NCBL behavior through scaling analysis which were found to 
agree well with numerical simulation results [2–4,11,18]. For example, we obtained the scalings through scaling analysis for the 
unsteady NCBL of a homogeneous Newtonian fluid with Pr > 1 on a vertical plate heated with time-varying sinusoidal heat flux and 
validated them with numerical simulation results [3]. The results show that the transient flow dynamics and heat transfer charac-
teristics of the unsteady NCBL are well predicted and quantified by these scalings in terms of the governing parameters including Ra, 
Pr, and the frequency of the time-varying heating flux. 

There are some studies on the unsteady NCBL on inclined plates, also subject to time-varying heating conditions. Fohr & Moussa 
[19] studied experimentally and numerically the NCBL and heat transfer in a cylindrical grain silo which was heated with 
time-dependent solar radiation. Wang, Zeng & Wang [5] studied numerically the three-dimensional unsteady NCBL in an inclined 
porous cavity heated by time-dependent sinusoidal oscillating temperature and examined the influence of inclination angle and 
temperature oscillation frequency on the NCBL characteristics at intermediate Rayleigh number (Ra) of 106 and 107. They also 
conducted an experimental study on the unsteady NCBL in an inclined enclosure with time-periodically-varying wall temperature [6]. 
Yu, Patterson & Lei [20] numerically studied the unsteady natural convection in a triangular domain induced by ramped iso-flux 
cooling at the water surface and presented qualitative and quantitative results showing the effects of the ramp time on the tran-
sient behaviour at different Rayleigh numbers. Saha, Patterson & Lei [21] and Mao, Lei & Patterson [22] used scaling analysis and 
numerical simulations to study the unsteady behavior of NCBL in similar configurations (in attics and reservoir sidearm) subject to 
time-varying heating conditions. 

In our previous study [23], the transient behavior of the NCBL of a homogeneous fluid with Pr < 1 on a vertical wall heated by 
constant flux was examined by scaling analysis and numerical simulation. This previous work is extended in the present study to the 
situation when the applied heat flux is time-varying in the sinusoidal form. 

2. Scalings 

The considered problem is the two-dimensional (2D) unsteady NCBL of a homogeneous Pr < 1 fluid on a vertical wall of height H, 
heated by a time-varying flux, as sketched in Fig. 1(a). The flux is quantified by the following time-varying temperature gradient across 
the wall T0

X(t), 

T0
X(t) =

dT
dX

⃒
⃒
⃒
⃒

X=0
= − Γw(t) = − Γwmsin(2πft), (1)  

in which T is temperature, X the horizontal coordinate, Γw(t) the temperature gradient across the wall at time t with the maximum 
value Γwm, and f the frequency of the heating flux, respectively. The wall is of no thickness, with its bottom tip at the origin where X =

Fig. 1. (a) Sketch of the NCBL flow with the temperature and vertical velocity profiles and (b) the initial and boundary conditions for the 
computational domain. All parameters in (b) are dimensionless and the subscripts ‘x’ and ‘y’ represent the first derivatives with respect to x and y, 
respectively. 
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0 and Y = 0 (Y is the vertical coordinate). The boundary conditions on the wall are, 

U = V = 0,
dT
dX

= − Γwmsin(2πft), (2)  

where U and V are the velocity components in the X and Y directions. 
The equations of the flow and heat transfer are the 2D Navier-Stokes equations with the Boussinesq approximation for buoyancy 

and the temperature equation. The flow is governed by Pr, Ra, and fn, which is the dimensionless frequency of the flux, defined as 
follows, 

Pr =
ν
κ
, Ra =

gβΓwH4

νκ
, fn =

f
V0/H

=
0.5/ttotal

V0/H
=

0.5
τtotal

, (3)  

in which g is the acceleration of gravity, β, ν and κ are the thermal expansion coefficient, kinematic viscosity and thermal diffusivity of 
fluid, and Γw is the time-averaged temperature gradient at the wall, i.e., 

Γw =
1

ttotal

∫ ttotal

0
Γwmsin(2πft)dt =

2
πΓwm, (4)  

where ttotal (s) is the total heating period, which is made dimensionless as τtotal = ttotal/(H/V0), and V0 = κRa2/5/H is the characteristic 
velocity [3,11,24]. Similar to the clear-sky solar radiation model [1], only the first half, heating cycle is considered here, hence fn =

0.5/τtotal. 
As shown in the previous studies [3,11,18,23], the unsteady NCBL on a heated vertical wall develops from the initial unsteady 

start-up stage to the fully developed, quasi-steady state. The transient NCBL behavior is typified by four characteristics parameters, i.e., 
δT (the thermal boundary-layer thickness), θw (the wall temperature), vm (the maximum velocity), and δvi (the inner velocity 
boundary-layer thickness, i.e., the distance from the wall to the location vm occurs). These parameters are made dimensionless by their 
corresponding characteristic scales, i.e., H, ΓwH, V0, and H, respectively. 

Scalings related these parameters to Ra, Pr and fn can be developed using scaling analysis by evaluating the magnitudes of the terms 
in the governing equations. In the present study, the scaling analysis follows the same procedure that we used for unsteady NCBL under 
a range of heating conditions and configurations [3,4,11,23–27], and particularly, that used in Ref. [23], as it is the extension from 
Ref. [23] which deals with the same NCBL flow problem but the applied heat flux is constant (i.e., T0

X is fixed). More specifically, the 
same scaling analysis procedure detailed in Ref. [23] is followed step-by-step in the presented study by replacing the constant T0

X used 
in Ref. [23] with the time-varying T0

X(t) given by Eq. (1). To avoid repetition, only the outcomes from this scaling analysis are pre-
sented here. The details of the scaling analysis procedure can be found in Ref. [23]. 

The scaling analysis for the present study yields the following scalings for the four characteristics parameters at different devel-
opment stages. 

At the start-up stage when the flow is unsteady, 

δT ∼
τ1/2

Ra1/5, (5)  

θw ∼
sin(2πfnτ)τ1/2

Ra1/5 , (6)  

δvi ∼
Pr 1/2τ1/2

Ra1/5 (7)  

vm ∼
sin(2πfnτ)Pr τ3/2

[O(1) + O(Pr )]
. (8)  

The time for transition to the quasi-steady state is 

τs ∼
[O(1) + O(Pr )]2/5y2/5

[sin(2πfnτ)]2/5Pr 2/5
, (9)  

and at the quasi-steady state when the flow becomes fully developed, steady, 

δT,s ∼
[O(1) + O(Pr )]1/5y1/5

[sin(2πfnτs)]
1/5Ra1/5Pr 1/5

, (10)  

θw,s ∼
[sin(2πfnτs)]

4/5
[O(1) + O(Pr )]1/5y1/5

Ra1/5Pr 1/5 , (11)  
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δvi,s ∼
[O(1) + O(Pr )]1/5Pr 1/2y1/5

[sin(2πfnτs)]
1/5Ra1/5Pr 1/5

, (12)  

vm,s ∼
[sin(2πfnτs)]

2/5Pr 2/5y3/5

[O(1) + O(Pr )]2/5 . (13)  

The function [O(1) + O( Pr )] presented in these scalings represents the contribution from the friction to the inertia when it balances 
the buoyancy within the boundary layer when Pr is smaller than 1, as discussed in Ref. [23]. 

The obtained scalings show that at the start-up stage the NCBL is one-dimensional (1D) as they do not depend on y. However, they 
change to 2D as they depend on y at the quasi-steady state. 

When the scalings obtained for the present case are compared to those obtained for the case with constant heating flux [23], it is 
found that only the scalings for δT and δvi at the start-up stage are exactly the same for both cases, and all others differ with the functions 
of the time-dependent factor sin(2πfnτ). 

The scalings obtained in the present study for the Pr < 1 case are significantly different from those for the Pr > 1 case as obtained by 
Lin and Armfield [3]. The comparison of these scalings for both cases is presented in Table 1. It is seen from the table that the de-
pendences of the scalings on Ra, τ, and fn are the same for both cases, however, their dependences on Pr are significantly different. The 
dependence on Pr for the Pr > 1 case is in the term of (1 + Pr− 1/2), whereas for the Pr < 1 case it is in the term of [O(1) +O( Pr )], due to 
the different boundary layer structures for both cases. Our previous studies (e.g., [4, 25, 26, 28]) shown that for the Pr > 1 case, the 
viscous boundary layer is significantly thicker than the thermal boundary layer and a distinct three-region boundary layer structure is 
present, whereas for the Pr < 1 case, the viscous boundary layer is essentially as thick as the thermal boundary layer and such a 
three-region boundary layer structure is not applicable. 

3. Numerical results and discussion 

The above scalings are compared with the numerical simulation results in this section (see Table 1). To validate their individual 
dependence on Ra, Pr, and fn, 14 numerical simulation runs were carried out, with the details of these runs presented in Table 2. Runs 
1–4 are at four Ra values (106, 107, 108 and 109) with Pr = 0.1 and fn = 0.01 to examine the Ra dependence; Runs 3 and 5–10 are at six 
Pr values (0.01, 0.025, 0.05, 0.075, 0.2 and 0.5) with Ra = 108 and fn = 0.01 to demonstrate the Pr dependence; and Runs 3 and 11–14 
are at four fn values (0.001, 0.0025, 0.005 and 0.025) with Ra = 108 and Pr = 0.1 to check the fn dependence. The maximum value of fn 
studied is 0.025, as it is found that the required information is not available beyond it. As the scalings are obtained assuming Pr ≪ 1 for 
the validity of the boundary-layer assumption, which was made in the scaling analysis, the Pr values studied are no more than 0.5. 

The numerical simulations were performed using the same in-house code used in Ref. [3] and some of our previous studies on NCBL 
(such as [4,11,18,24–28]). Particularly the computational domain (sketched in Fig. 1(b)) and the mesh used in Ref. [3] (597 × 597 
grids) were also used in the present study. As the numerical methods, governing equations, initial and boundary conditions (sketched 
in Fig. 1(b)), construction of meshes, and benchmarking of the code against the known theoretical results were well documented in 
those papers, they are not presented here. 

3.1. Quantification of the scalings at the end of the start-up stage 

Fig. 2 presents the typical time series of δT, θw, δvi and vm at y = 0.5 for Run 3. It is seen that δT, θw, and vm end their respective start- 
up stage at almost the same time, τs, which is determined as the instant when δT attains the maximum for the first time, after the start- 

Table 1 
A comparison of the scaling laws between the current case for Pr < 1 and the case for Pr > 1 [3].  

Parameter The current case for Pr < 1 The case for Pr > 1 [3] 

δT 
∼

τ1/2

Ra1/5  ∼
τ1/2

Ra1/5  

θw 
∼

sin(2πfnτ)τ1/2

Ra1/5  ∼
sin(2πfnτ)τ1/2

Ra1/5  

δvi 
∼

Pr 1/2τ1/2

Ra1/5  ∼
τ1/2

(1 + Pr − 1/2)Ra1/5  

vm 
∼

sin(2πfnτ)Pr τ3/2

[O(1) + O(Pr )]
∼

sin(2πfnτ)τ3/2

(1 + Pr − 1/2)
2  

τs 
∼

[O(1) + O(Pr )]2/5y2/5

[sin(2πfnτs)]
2/5Pr 2/5  

∼
(1 + Pr − 1/2)

4/5y2/5

[sin(2πfnτs)]
2/5  

δT,s 
∼

[O(1) + O(Pr )]1/5y1/5

[sin(2πfnτs)]
1/5Ra1/5Pr 1/5  

∼
(1 + Pr − 1/2)

2/5y1/5

[sin(2πfnτs)]
1/5Ra1/5  

θw,s 
∼

[sin(2πfnτs)]
4/5

[O(1) + O(Pr )]1/5y1/5

Ra1/5Pr 1/5  ∼
[sin(2πfnτs)]

4/5
(1 + Pr − 1/2)

2/5y1/5

Ra1/5  

δvi,s 
∼

Pr 1/2[O(1) + O(Pr )]1/5y1/5

[sin(2πfnτ)]1/5Ra1/5Pr 1/5  
∼

y1/5

(1 + Pr − 1/2)
3/5

[sin(2πfnτs)]
1/5Ra1/5  

vm,s 
∼

[sin(2πfnτs)]
2/5Pr 2/5y3/5

[O(1) + O(Pr )]2/5  ∼
[sin(2πfnτ)]2/5y3/5

(1 + Pr − 1/2)
4/5   
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up stage. However, δvi attains its maximum for the first time, after the start-up stage, at an earlier instant, τvi. This is because the inner 
viscous boundary layer is closer to the wall and accordingly undergoes the development earlier. It is therefore appropriate to use τs as 
the time scale for the end of the start-up stage for δT, θw, and vm while to use τvi for δvi, in the subsequent analysis of the results. 

Fig. 3 presents the numerically obtained results for τs, δT,s, θw,s, and vm,s, plotted against the values calculated with their respective 
scalings at the end of the start-up stage with the numerical results, i.e., from (5), (10), (11), and (13), 

τ̂s =
y2/5

[sin(2πfnτs)]
2/5Pr 2/5

, (14)  

δ̂T,s =
y1/5

[sin(2πfnτs)]
1/5Ra1/5Pr 1/5

, (15)  

θ̂w,s =
[sin(2πfnτs)]

4/5y1/5

Ra1/5Pr 1/5 , (16)  

v̂m,s = [sin(2πfnτs) ]
2/5Pr 2/5y3/5. (17) 

Table 2 
Values of Ra, Pr, fn and τtotal for the 14 numerical simulation runs.  

Run Ra Pr fn τtotal 

1 106 0.1 0.01 50 
2 107 0.1 0.01 50 
3 108 0.1 0.01 50 
4 109 0.1 0.01 50 
5 108 0.01 0.01 50 
6 108 0.025 0.01 50 
7 108 0.05 0.01 50 
8 108 0.075 0.01 50 
9 108 0.2 0.01 50 
10 108 0.5 0.01 50 
11 108 0.1 0.001 500 
12 108 0.1 0.0025 200 
13 108 0.1 0.005 100 
14 108 0.1 0.025 20  

Fig. 2. Typical time series of δT, θw, δvi and vm at y = 0.5 for Run 3.  
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In the above equations, all [O(1) + O( Pr )] terms are omitted as their effects will be accounted for in the subsequent quantification of 
each scaling involved. From the figure, it is seen that, after the exclusions of the numerical results at small y values (y = 0.1 and 0.3) for 
all runs and for vm,s with an additional strong Pr effect (the reason for such exclusions will be discussed in the subsequent sections), the 
scalings (5), (10), (11), and (13), collapse their corresponding quantified relations of τs against ̂τs, δT,s against ̂δT,s, θw,s against ̂θw,s, vm,s 
against v̂m,s with the numerical results, onto a straight line, i.e., 

τs = 3.785τ̂s − 0.524, (18)  

δT,s = 4.909δ̂T,s − 0.0146, (19)  

θw,s = 1.937θ̂w,s + 0.00198, (20)  

vm,s = 1.149v̂m,s + 0.0016, (21)  

with the coefficients of regression of 0.9789, 0.9978, 0.9977, and 0.9935, respectively. These results clearly show that (5), (10), (11), 
and (13) are the correct scalings for τs, and δT,s, θw,s, and vm,s at τs, respectively. 

Similarly, the numerical results also validate the scalings (9) and (12). This is demonstrated by the numerical results presented in 
Fig. 4, which, after the exclusion of the data at small y values (y = 0.1 and 0.3) and with additional strong Pr effects, shows that 

τvi,s = 2.972τ̂vi,s − 0.3707, (22)  

δvi,s = 1.495δ̂vi,s + 0.00116, (23)  

with the coefficients of regression of 0.9984 and 0.9995, respectively. In the above equations, τ̂vi,s and δ̂vi,s are as follows, 

τ̂vi,s =
y2/5

[
sin
(
2πfnτvi,s

)]2/5Pr 2/5
, (24)  

δ̂vi,s =
Pr 1/2y1/5

[
sin
(
2πfnτvi,s

)]1/5Ra1/5Pr 1/5
. (25)  

Fig. 3. (a) τs plotted against τ̂s, (b) δT,s plotted against δ̂T,s, (c) θw,s plotted against θ̂w,s, (d) vm,s plotted against v̂m,s. The linear fits in (a)-(c) are 
obtained with linear regression by excluding the data at y = 0.1 and y = 0.3 for all runs and that in (d) by excluding Runs 5, 6, 9, 10 and all data at y 
= 0.1 and y = 0.3 for the remaining runs. 
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3.2. Scalings for δT 

Fig. 5 illustrates the time series of δT with varying y. δT is determined as the distance between the wall and the x location where the 
local temperature reduces to 1% of the wall temperature. At the start-up stage, the scaling (5) for δT predicts that the time series of δT 
depends on Ra only. The numerical results shown in Fig. 5(a) verify this, as the time series of all runs with the same Ra value (Ra = 108) 
are the same before the end of their individual start-up stage, while the times series with Ra = 106, Ra = 107 and Ra = 109 are 
substantially different from those with Ra = 108. The 1D behavior of the NCBL at the start-up stage is also clearly demonstrated as the 
time series with the same Ra value (Ra = 108), which are at different heights, are the same before the end of their individual start-up 
stage, indicating they are not y dependent. At the quasi-steady stage, all time series are different, showing the 2D behavior as they 
become y dependent, as predicted correctly by the scaling (10). 

From Eq. (5), it is apparent that δT,s ∼ τ1/2
s /Ra1/5, hence, 

δT

δT,s
∼

τ1/2
/

Ra1/5

τ1/2
s

/
Ra1/5

∼
τ1/2

τ1/2
s

, (26)  

which also means that 

δT

δ̂T,s
∼

τ1/2

τ̂1/2
s

. (27)  

This is affirmed by the numerical simulation results shown in Fig. 5(b), which demonstrates that the scaling (27) brings all scaled time 
series together until τ = 0.5τtotal (i.e., when the heat flux on the wall attains its maximum value). 

At the start-up stage, as presented in Fig. 5(b), all scaled time series overlap each other approximately on the single straight line 
quantified by 

Fig. 4. (a) τvi,s plotted against ̂τvi,s and (b) δvi,s plotted against δ̂vi,s. The linear fits are obtained with linear regression by excluding Runs 5, 6, 7, 9, 10 
and all data at y = 0.1 and y = 0.3 for the remaining runs. 
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δT

δ̂T,s
= 2.646

τ1/2

τ̂1/2
s

, (28)  

or, alternatively, 

δT = 2.646δ̂T,s
τ1/2

τ̂1/2
s

= 2.646(y/[RaPrsin(2πfnτs)])
1/5 τ1/2

[
(y/[Prsin(2πfnτs)])

2/5
]1/2

= 2.646
τ1/2

Ra1/5,

(29)  

in which 2.646 is the average value of the coefficients of all runs. It is found that the changes of the coefficients from 2.646 among all 
runs are between -0.4% and 2%, clearly verifying the scaling for δT, i.e., Eq. (5). The largest variation (2%) is from the time series with 
fn = 0.025 (Run 14), which is due to the short total heating period (τtotal = 20), leading to a very short quasi-steady state. 

At the quasi-steady state, all of the time series overlap well until τ = 0.5τtotal (i.e., the half of the heating period), which verifies the 
scalings (10) and (9). It is observed that at the end of the start-up stage, if the results at y = 0.1 and 0.3 for all runs and that of Run 1 are 
excluded, the average value of δT,s/δ̂T,s is 4.573, with the variations between -2.5% and 6.0%. These results show that the effect of [O 
(1) + O( Pr )] in the scaling (10) for δT,s is minimal. This is the same as that in the case when the applied heat flux is constant [23]. 
Similarly, the numerical results presented in Fig. 5(b) also confirm the scaling (9) for τs, which is determined as the time for the time 
series of δT to attain the end of the start-up stage. It is found that (τs/τ̂s)

1/2 is around 1.887, i.e., 

τs ≈ 3.56
(

y
Pr sin(2πfnτs)

)2/5

, (30)  

with the coefficient in the above equation varying within ± 11.5%, if the results at y = 0.1 and 0.3 for all runs and that of Run 1 are 
excluded, indicating the effect of [O(1) + O( Pr )] in the scaling (9) for τs, in the case of δT, is also not significant. This is again the same 
as that in the case when the applied heat flux is constant [23]. 

Fig. 5. Time series of δT of all numerical simulation runs: (a) raw data and (b) scaled data with δT scaled by δ̂T,s = (y/[(RaPr)sin(2πfnτs)])
1/5 and τ 

scaled by τ̂s = (y/[Prsin(2πfnτs)])
2/5, which are the scalings (10) and (9) for δT,s and τs, respectively. 
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In Run 1 (with Ra = 106), δT is not much less than y (except at the very early stage), as shown in Fig. 5(a), which means that the 
boundary-layer assumption is not valid. In fact, if we arbitrarily take the maximum value of δT ≤ 0.5y as the criterion for the validity of 
the boundary-layer assumption at height y, it is also observed that all runs at y = 0.1, the majority of runs at y = 0.3, and a few runs at y 
= 0.5 do not meet the boundary-layer assumption. In the above and the subsequent analysis of the numerical simulation results, those 
at y = 0.1 and 0.3 are thus excluded. 

The scalings for θw, vm, and δvi can be validated in the same way, as described below. 

3.3. Scalings for θw 

At the start-up stage, the scaling (6) shows that Ra and fn affect θw, however, θw is independent of Pr and y. The numerical results 
shown in Fig. 6(a) verify this, with all of the six time series at Ra = 108 and fn = 0.01, with varying Pr and y (Runs 5–10), overlaying 
each other at the start-up stage, while there are significant variations in the time series of the runs with different Ra and fn values. This 
further illustrates the 1D behavior of the boundary layer at the start-up stage. At the quasi-steady stage, all of the time series are 
different, agreeing with Eq. (11), which predicts that θw,s depends on all these four parameters, and the flow becomes 2D. Similar to δT, 
from the scaling (6), the following relation is expected, 

θw

θw,s
∼

sin(2πfnτ)τ1/2
/

Ra1/5

sin(2πfnτs)τ1/2
s

/
Ra1/5

∼
sin(2πfnτ)τ1/2

sin(2πfnτs)τ1/2
s

, (31)  

which also indicates that 

θw

θ̂w,s
∼

sin(2πfnτ)τ1/2

sin(2πfnτs)τ̂1/2
s

. (32) 

At the start-up stage, as presented in Fig. 6(b), all scaled time series come together on the following single straight line, 

θw

θ̂w,s
= 1.191

sin(2πfnτ)τ1/2

sin(2πfnτs)τ̂1/2
s

, (33)  

that is, 

Fig. 6. Time series of θw of all numerical simulation runs: (a) raw data and (b) θw/θ̂w,s plotted against [sin(2πfnτ) /sin(2πfnτs)](τ/τ̂s)
1/2, with θw scaled 

by θ̂w,s = [sin(2πfnτs)]
4/5y1/5/(Ra1/5Pr 1/5) and τ scaled by τ̂s = (y/[Pr sin(2πfnτs)])

2/5, which are the scalings (11) and (9) for θw,s and τs, respectively. 
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θw = 1.191θ̂w,s
sin(2πfnτ)τ1/2

sin(2πfnτs)τ̂1/2
s

= 1.191
sin(2πfnτs)τ̂1/2

s

Ra1/5
sin(2πfnτ)τ1/2

sin(2πfnτs)τ̂1/2
s

= 1.191
sin(2πfnτ)τ1/2

Ra1/5 ,

(34)  

in which 1.191 is the average value of the coefficients of all runs. The changes of the coefficients from 1.191 among all runs are 
between -1.7% and 3.2%, clearly verifying the scaling for θw, i.e., Eq. (6). The largest variation (3.2%) is again from the time series with 
fn = 0.025 (Run 14), due to the same reason as mentioned above. 

At the quasi-steady stage, the majority of the scaled time series of θw/θ̂w,s, up to τ = 0.5τtotal, overlay relatively well, which verifies 
the scaling (11), although noticeable variations observed for different Pr values. These variations are apparently due to the effect of [O 
(1) + O( Pr )], as predicted by the scalings (11) and (9) for θw,s and τs, respectively. However, as these variations are not significant, the 
effects of [O(1) + O( Pr )] are very weak for the θw case, similar to the δT case. 

3.4. Scalings for vm 

The scaling (8) at the start-up stage demonstrates that vm depends on Ra and y. This is verified with the numerical simulation 
results, as presented in Fig. 7(a) which shows that the time series of Runs 1–4, which have varying Ra and y values, overlay each other 
at the start-up stage, but they vary significantly at different Pr and fn values. The 1D behavior of the NCBL at the start-up stage is once 
more affirmed. At the quasi-steady state, all time series are different, agreeing with the scaling (13), which predicts that vm,s is 
dependent on Pr, fn and y, but not of Ra, and the flow becomes 2D. 

From the scaling (8), the following relation is expected, 

vm

vm,s
∼

sin(2πfnτ)Prτ3/2

sin(2πfnτs)Prτ3/2
s

∼
sin(2πfnτ)τ3/2

sin(2πfnτs)τ3/2
s

, (35)  

Fig. 7. Time series of vm of all numerical simulation runs: (a) raw data and (b) scaled data with vm scaled by v̂m = Pr 2/5[sin(2πfnτs)]
2/5y3/5 and τ 

scaled by τ̂s = (y/[Pr sin(2πfnτs)])
2/5, which are the scalings (13) and (9) for vm,s and τs, respectively. 
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which also indicates that 

vm

v̂m,s
∼

sin(2πfnτ)τ3/2

sin(2πfnτs)τ̂3/2
s

. (36) 

As presented in Fig. 7(b), at the start-up stage, the above relation is linear for each scaled time series, i.e., 

vm

v̂m,s
= C

sin(2πfnτ)
sin(2πfnτs)

τ3/2

τ̂3/2
s

, (37)  

that is, 

vm = Cv̂m,s
sin(2πfnτ)
sin(2πfnτs)

τ3/2

τ̂3/2
s

= CPr2/5[sin(2πfnτs)]
2/5y3/5 sin(2πfnτ)

sin(2πfnτs)

τ3/2

(
y2/5

Pr 2/5[sin(2πfnτs)]
2/5

)3/2

= CPr sin(2πfnτ)τ3/2,

(38)  

where C is a proportional coefficient, which is found to vary significantly when Pr changes. If Runs 5–10 with different Pr values from 
Pr=0.1, along with Run 14 (due to a very short quasi-steady state as discussed above), are excluded, the numerical simulation results 
presented in Fig. 7(b) give the average value of C = 0.199 for all the remaining runs, with very small variations in the range of -3.2% 
to1.8%. However, for the runs with Pr=0.01, 0.025, 0.05, 0.075, 0.2 and 0.5, the values of C vary substantially, with the variations of 
73%, 44.9%, 19.8%, 12.8%, -17.8%, and -43.4%, respectively, from C = 0.199 for Runs 5–10, clearly showing the significant effect of 
Pr. Each of the scalings (8), (9) and (13) has a function of Pr term (in the form of [O(1) + O( Pr )]). But in the above equations, such a 
function of Pr is omitted in each scaling when the results are analysed. Thus different from that in the δT and θw cases, as shown above, 
the additional Pr effect is significant in the vm case and must be accounted for in the quantified scalings. As vm is the maximum value of 
v within the inner boundary layer, with its location at δvi near the wall, it is expected that Pr (representing the relative strength of 
convection compared to the conduction) has a much stronger effect on both vm and δvi than on θT and θw which are parameters at the 
end of the outer boundary layer. The above C value represents the combined effect of Pr from each parameter on the relation. 

Fig. 8. (a) fvm(Pr) plotted against Pr, (b) fvm,τs (Pr) plotted against Pr, and (c) vm/[fvm(Pr )v̂m,s] plotted against 
[sin(2πfnτ) /sin(2πfnτs)](τ/fvm,τs (Pr )/τ̂s )

3/2. The legends are the same as that in Fig. 7. 

W. Lin et al.                                                                                                                                                                                                             



Case Studies in Thermal Engineering 27 (2021) 101351

12

The effects of [O(1) + O( Pr )] on vm,s and τs can be quantified by the numerical results with the function fvm( Pr ) and fvm,τs (Pr ), 
which are the values of vm/v̂m,s and (τ/τ̂s)

3/2 at the end of the start-up stage, respectively, as shown in Fig. 8(a) and Fig. 8(b). The results 
show that when Pr increases, fvm( Pr ) decreases, but fvm,τs (Pr ) increases. They can be quantified by the following power-law fit curves 
obtained by regression from the numerical simulation results, 

fvm(Pr ) = 0.885Pr− 0.112, (39)  

and 

fvm,τs (Pr ) = 5.221Pr0.118, (40)  

with the regression coefficients of 0.9838 and 0.9934, respectively. Again Run 14 is excluded in the above fit curves due to the reason 
discussed above. 

With the inclusion of fvm( Pr ) and fvm,τs (Pr ) in the scalings (13) and (9), the variations in the scaled time series of vm have been 
significantly reduced, as shown in Fig. 8(c), as they overlay each other well over the entire development duration of the boundary layer 
until τ = 0.5τtotal, although there is a noticeable deviation for Run 10 with Pr = 0.5, which indicates that the accuracy of the corre-
lations (39) and (40) reduces at Pr close to 1. However, when Pr becomes close to 1, the assumption of Pr ≪ 1 for the validity of the 
obtained scalings is no longer met satisfactorily. Nevertheless, overall it is observed that the obtained fvm( Pr ) and fvm,τs (Pr ) corre-
lations accurately predict the effects of [O(1) + O( Pr )] on vm,s and τs, verifying the scalings (8), (9) and (13). 

3.5. Scalings for δvi 

The scaling (7) at the start-up stage shows that δvi is of Ra and Pr dependent, but not of y and fn. This is verified by the numerical 
results, as presented in Fig. 9(a) where it is noted that all five time series at Ra = 108 and Pr = 0.1, but with changing y (i.e., Runs 3, 
11–14), overlay each other at the start-up stage, while there are significant variations for the runs with different Ra and Pr values. This 
again illustrates the 1D behavior of the boundary layer at the start-up stage. At the quasi-steady state, all time series are different, 
agreeing with the scaling (12), which predicts that δvi,s is dependent on Ra, Pr, fn and y, and the flow becomes 2D. 

At the start-up stage, from the scaling (7), the following relation is expected, 

δvi

δvi,s
∼

Pr1/2τ1/2
/

Ra1/5

Pr1/2τ1/2
vi,s

/
Ra1/5

∼
τ1/2

τ1/2
vi,s

, (41) 

Fig. 9. Time series of δvi of all numerical simulation runs: (a) raw data and (b) scaled data with δvi scaled by δ̂vi,s = Pr 1/2y1/5/

(Ra1/5Pr 1/5[sin(2πfnτvi,s)]
1/5

) and τ scaled by τ̂vi,s = (y/[Pr sin(2πfnτvi,s)])
2/5, which are the scalings (12) and (9) for δvi,s and τvi,s, respectively. 
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which also means that 

δvi

δ̂vi,s
∼

τ1/2

τ̂1/2
vi,s

. (42)  

This relation is validated by the numerical simulation results as illustrated in Fig. 9(b), as δvi/δ̂vi,s is linearly proportional to τ1/2/τ̂1/2
vi,s for 

each scaled time series at the start-up stage, i.e., 

δvi

δ̂vi,s
= D

τ1/2

τ̂1/2
vi,s

, (43)  

that is, 

δvi = Dδ̂vi,s
τ1/2

τ̂1/2
vi,s

= D
Pr 1/2y1/5

[
sin
(
2πfnτvi,s

) ]1/5Ra1/5Pr 1/5

τ1/2

(
y2/5

Pr 2/5
[
sin
(
2πfnτvi,s

) ]2/5

)1/2

= D
Pr 1/2τ1/2

Ra1/5 ,

(44)  

where D is a proportional coefficient and has a different value for a specific run. For the runs with Pr = 0.1 (i.e., Runs 1–4 and 11–14), D 
≈ 0.986, but it changes substantially with Pr. The values of D are 49.9%, 24.1%, 9.8%, 2%, -16.2%, and -31.9% away from 0.986 for Pr 
= 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, and 0.5, respectively. This is due to the effect of [O(1) + O( Pr )] in the scalings (7), (12) and (9), 
similar to that for vm. Such large variations in D among runs with different Pr values indicate that the extent of this additional Pr effect 
is significant, as discussed above for the vm case. 

Similar to the vm case, the effects of [O(1) + O( Pr )] on δ̂vi,s and τ̂vi,s can be evaluated by the numerical results with the function 
fvi( Pr ) and fτvi,s (Pr ), which are the values of δvi/δ̂vi,s and (τ/τ̂vi,s)

1/2 at the end of the start-up stage, respectively, as shown in Fig. 10(a) 
and Fig. 10(b). It is seen that fvi( Pr ) increases with Pr, but fτvi,s (Pr ) is on the contrary. They can be quantified by the following power- 
law fit curves obtained from the numerical simulation results, 

fvi(Pr ) = 1.133Pr− 0.14, (45)  

and 

fτvi,s (Pr ) = 3.739Pr0.111, (46)  

with the regression coefficients of 0.9974 and 0.9875, respectively. It is noted that in the case when the applied heat flux is constant 
[23], a similar power-law fit curve is obtained from numerical results for fvi, with the index of -0.125, which is close to -0.14 present in 
the correlation (45). 

With the inclusion of fvi( Pr ) and fτvi,s (Pr ) in the scalings (12) and (9), the variations in the scaled time series of δvi have been 
significantly reduced, as shown in Fig. 10(c), as all of them overlay each other very well over the entire development duration of the 
boundary layer until τ = 0.5τtotal. This clearly shows that the obtained fvi( Pr ) and fτvi,s (Pr ) correlations accurately predict the effects of 
[O(1) + O( Pr )] on δ̂vi,s and τ̂vi,s. 

Comparing the correlations (45) and (39), it is noted that the effect of [O(1) + O( Pr )] on δvi,s is essentially the same as that on vm,s, 
with the index of -0.14 in (45) very close to the index of -0.112 in (39). This should be expected as δvi is the distance from the wall to the 
location of the maximum velocity (vm) so δvi is directly governed by vm and the effects of [O(1) + O( Pr )] on vm,s and δvi,s are essentially 
the same. 

4. Conclusions 

Scalings are obtained to characterize and quantify the basic features of unsteady NCBL of a homogeneous fluid with Pr < 1 on a 
vertical wall heated with a time-varying flux by following the same scaling analysis procedure used in our previous study [23] which 
investigated the counterpart of the present case, with the applied heat flux being constant. The scalings are developed in terms of Pr, Ra 
and fn. 

The dominant parameters characterizing the flow behavior are the plate temperature, maximum vertical velocity, thermal 
boundary-layer thickness, velocity boundary-layer thickness, and the time for the transition from the start-up stage to the steady state. 
The scaling analysis shows that the development of the boundary layer at the start-up stage is one-dimensional and y independent but 
becomes two-dimensional and is y dependent at the steady state. 
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The obtained scalings are tested with 14 numerical simulation runs, over 106 ≤ Ra ≤ 109, 0.01 ≤ Pr ≤ 0.5, and 0.001 ≤ fn ≤ 0.025, 
which shows that the numerical simulation results agree well with the scalings and hence these scalings are validated. The 1D behavior 
at the start-up stage and the 2D behavior at the quasi-steady state of the NCBL predicted by the scalings are also affirmed by the 
numerical simulation results. 
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