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Abstract 

Coral reefs are complex systems shaped by numerous evolutionary and ecological processes. 

Each process introduces its own unique ‘push’ and ‘pull’ on the evolution of a given species; shaping 

how it ultimately behaves, interacts, and functions within its environment. Colouration is a prime 

example of a trait that is shaped by numerous evolutionary forces. Coral reefs are often regarded as one 

of the most colourful ecosystems on Earth, with reef organisms displaying a remarkable diversity of 

colours and patterns. However, the processes that have shaped the evolution of colouration across reef 

fishes, and other organisms, remain to be resolved. 

This thesis investigated the complex evolutionary history and ecological relationships that shape 

colouration (i.e. colours and their patterns) across one of the most colourful groups of vertebrates on the 

planet; reef fishes. Combined, the chapters cover a broad range of questions and used multiple, 

complementary approaches. The specific aims of this thesis were: 1) to unravel the evolutionary history 

of specific colour patterns on coral reef fishes, 2) to determine in-detail how the morphology and ecology 

of a species shapes its appearance, and 3) to investigate the relationship between coral reef habitat 

features and fish colouration. 

The first data chapter (Chapter 2) investigated the processes that shaped the evolution of reef 

fish eyespots at a global scale. The eyespot is a widespread and conspicuous colour pattern that has been 

experimentally demonstrated to reduce predation by resembling an eye. Its ease of identification makes 

it a perfect candidate to study colouration at a global, evolutionary scale. After surveying almost half of 

all coral reef fish species (42%, 2664 spp.) eyespots were demonstrated to have an extremely strong 

phylogenetic signal, meaning they are either very common or notably rare within specific clades. 

Furthermore, the presence of an eyespot and its location on the fish’s body are strongly determined by 

the ecology of the species, suggesting that this marking only provides a functional benefit (i.e. deterring 

predation) in specific, ecological contexts. But, while functional, it is not a universal solution to reducing 

predation. 
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The second data chapter (Chapter 3) built upon these findings and investigated in detail which 

morphological features shape the size and presence of eyespots in coral reef fishes. The eyespot’s ‘pupil’ 

in most fish species was consistently larger than their real pupil (presumably to draw attention to it), and 

rarely occurs on fishes that are greater than 10 cm in length, indicating that the functionality of this 

colour pattern is both fish size and context dependent. 

In Chapter 4, the focus shifted to investigate if the factors that shape the evolution of colouration 

in terrestrial systems are similar to those in the marine environment. Terrestrial research has 

demonstrated that traits important for identity (like colouration) tend to be more pronounced and 

different in species that evolved in sympatry (shared areas of occurrence) than in those that evolved in 

allopatry (different areas of occurrence) – the concept of character displacement. This was examined in 

reef fishes using a novel image analysis technique to compare both the colour and pattern (i.e. their 

colouration) of closely related butterflyfish species (family: Chaetodontidae). The quantitative evidence 

revealed that species in sympatry had markedly different colourations, but those in allopatry were more 

similar in appearance. This supports the findings from terrestrial ecosystems and identified what may 

be a ‘universal’ rule shaping colour pattern evolution across species. 

The final data chapter (Chapter 5) explored how aspects of the local environment shape the 

colouration of fish communities. Multiple reef patches were surveyed that varied in their cover of 

different substratum types; ranging from a high cover of structurally complex coral species to habitats 

dominated by turf algae and coral rubble. As the cover of structurally complex corals increases, so did 

the diversity of colours found present in their resident fish assemblages (quantified as an ‘assemblage 

colouration’). Conversely, as the cover of turf algae and coral rubble increased, the resident fish 

assemblages became more similar in appearance. Integrating our results with a long-term dataset on reef 

fish assemblages, collected in the same location, demonstrated that the 1998 mass coral bleaching event 

was responsible for a profound and significant change in the relative occurrence of different colours in 

resident fish assemblages. These results indicate that reef degradation may lead to less colourful coral 

reefs. 
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Chapter 6 aggregates recent methodological advances in the field of colour science. This chapter 

serves as a starting point for researchers entering the field of biological colour patterns. It first covers 

some of the key considerations that need to be made when photographing specimens for colour analyses. 

It then covers many of the current resources available to assess biological colouration, including both 

the older techniques and newer tools. Finally, it shows how these resources can be integrated to ask 

exciting new questions in biological colour science. 

Overall, this thesis demonstrated that an organism’s colouration is not simply determined by one, 

single process. On coral reefs, there are numerous, interacting processes that ultimately dictate a fish’s 

colouration. Herein, phylogenetic history, morphology, behaviour, and environment have all been 

shown to influence the colouration of fishes; as both individual species and local assemblages. Although 

colouration in reef fishes is often attractive and bold, it may also provide valuable clues to the functions 

of colour and the role of ecology and history in shaping the beautiful fishes that characterise modern 

coral reefs. 
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Chapter 1: General Introduction 
 

The ecological and evolutionary context of colour 

The mosaic of various colours and patterns found in the natural world is striking. Every organism 

possesses its own unique colouration (i.e. the combination of colours and patterns) that confers various 

fitness costs and benefits. When comparing the colouration of all organisms within an ecosystem, one 

can quickly see various themes emerge. Some species have a highly cryptic colouration that closely 

matches the background of their native environment (Endler 1978; Kelley et al. 2017; Merilaita et al. 

2017). Others possess bright colours and patterns that signal their presence to others (Caro and Ruxton 

2019). Others fall in-between, showing colourations that combine various aspects of the previous two 

strategies (Cuthill et al. 2017). Unsurprisingly, these different colourations are often tightly linked to an 

organism’s ecology; reflecting how it behaves and interacts within its environment. 

The fitness benefits that colouration can provide are manifold and exist on numerous biological 

scales. Most fundamentally, colouration allows for the capture of energy from light. This gives plants 

the ability to photosynthesize (Lambers et al. 2008) and darker coloured organisms the ability to more 

easily maintain higher body temperatures (Zeuss et al. 2014). At the organismal level, colouration can 

provide camouflage from predators (Merilaita et al. 2017; Stevens and Ruxton 2019), relay information 

about an individual’s health (Hill et al. 2002), and aid in mate selection and signalling (Reynolds and 

Fitzpatrick 2007; Kelley et al. 2019). At the population and community level, colouration can help 

establish and maintain species boundaries (Puebla et al. 2007). This widespread utility makes 

colouration a critical component of an organism’s life history strategy. 

Although infinite possibilities of colours and patterns theoretically exist, natural selection favours 

those that serve specific, and often multiple, functions. Colouration appears to be under constant, strong, 

selection. Even in environments that lack light, and subsequently colour, entirely (like the abyssal depths 

of the ocean or deep within caves), selection has favoured the convergent loss of costly yet non-

functional pigmentation. Consequently, most organisms in these environments are white or translucent 
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in colour (Romero and Green 2005; Rogers et al. 2012; Soares and Niemiller 2020). Metaphorically, 

colours represent a painter’s palette, evolution via natural selection – one of the painters. 

What, then, are the processes that underpin an organism’s colouration? Although a seemingly 

simple question, the answer is far more complex. Unlike the white and translucent cave-dwelling 

organisms, we have learned that the colouration of light-experiencing organisms is not simply the 

product of a single, selective force. As with most traits, multiple forces act upon colouration – each 

shaping its final appearance in their own specific way (Kelley et al. 2016). Therefore, the colouration of 

an organism is a compromise between these, often opposing, evolutionary forces. This trade-off was 

clearly demonstrated by John Endler working on Trinidadian guppies (Poecilia reticulata; Endler, 1978, 

1980). Endler showed that the ‘gaudiness’ of a given population of guppies in the wild was directly 

correlated with the density of co-occurring predators. As predator densities decreased with altitude, i.e. 

higher up in the mountain streams, the population of male guppies became more colourful – a pattern 

driven by sexual selection by females which prefer gaudy males (Kodric-Brown 1985). The colouration 

of these guppies exists on a simple continuum from dull to colourful. The exact position where an 

individual falls on this continuum is dictated by the trade-off between predation pressure and sexual 

selection. 

For most other organisms, this continuum is far more complex and extends along other axes of 

interaction. Alfred Russel Wallace, a 19th century naturalist and pioneer in the field of evolution, 

identified five potential functions that a specific colouration may provide: 1) protective colours, 2) 

warnings colours, 3) sexual colours, 4) typical colours, and 5) attractive colours (Wallace 1877). Despite 

being established almost 150 years ago, many of these groups are still used today (Caro 2017), although 

some have been expanded upon or subdivided to provide higher levels of detail (Caro and Allen 2017; 

Caro and Ruxton 2019; Caro and Mallarino 2020). While these categories are useful, it is becoming 

increasingly apparent that an organisms colouration can – and often does – serve numerous functions 

simultaneously (Marshall 2000b; Cuthill et al. 2017). 

In this regard, coral reefs offer an extremely interesting ecosystem in which to study colour. The 

diversity of colours and patterns found on coral reefs is profound, earning them a reputation as one of 
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the world’s most colourful ecosystems. Interestingly, this diversity of colours and patterns suggests that 

many of the traditional ‘rules’ that dictate an organism’s appearance, described from other ecosystems, 

are not as widely applicable on coral reefs. For example, the bright and conspicuous colouration of 

poison dart frogs (family: Dendrobatidae) serves as a clear advertisement of their noxious composition 

(Summers and Clough 2001). These frogs contain toxic compounds capable of causing illness or in 

extreme cases, death for most animals that ingest the frog. Many reef fishes possess the same bright 

colours found on these frogs (vibrant blues, yellows and reds) but they are not toxic, suggesting that the 

these colours may serve a fundamentally different role in reef ecosystems (Rocha et al. 2020). This 

notion was highlighted by Marshall (2000b) who showed that the bright yellow and blue colours found 

on many reef fishes serves two unique functions: signalling and camouflage (Marshall 2000b). Although 

poison dart frogs and coral reef fishes both use bright yellow as a clear signal to other organisms, the 

use of bright yellow for camouflage on coral reefs is completely unique. This is just one instance where 

the rules that dictate colouration on reefs (and more broadly, in aquatic environments, e.g. Kelley et al. 

2012) may differ from those in terrestrial systems (Marshall 2017). There are almost certainly numerous 

processes shaping colouration on coral reefs that have yet to be described, offering much promise in the 

field of colour research (Marshall et al. 2018b). 

 

Methodological challenges 

If we are to ask questions about colouration, its function, and that factors that shape it, we need 

effective tools to characterise and measure it. Colouration is inherently difficult to study due to its 

subjective nature. Since humans have highly adept visual systems relative to many other organisms 

(Caves et al. 2018), we have long been able to comment on and hypothesize about the function that a 

specific colour patten may serve for its bearer (Wallace 1877; Caro 2017). However, even in the earliest 

years of modern natural sciences, it was recognised that we need to remain cautious in how we interpret 

colouration. Variation within the perceptive abilities among individuals or between taxa prevented 

consistent, quantifiable, descriptions of colouration (Endler 1990; Caves et al. 2019). Most early studies 

could only describe obvious patterns (e.g. mottled or banded) and make comparisons with common 

colours seen in everyday life (e.g. ‘cream’ coloured; Longley, 1917). But even these are mired in 
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subjectivity. Indeed, as noted by Longley (1917) when visually assessing the colouration of coral reef 

fish specimens, “the method is crude; allowance for the personal equation of the observer must be large”.  

Accurate quantitative classification of colours first became attainable with the advent of 

spectrometers. Visible light is broadly defined as the wavelengths (λ) that are detected by most 

vertebrates, which roughly falls between 400 – 700 nanometres (Kelber et al. 2003). Spectrometers 

operate by detecting the intensity of reflected electromagnetic radiation at various wavelengths (Johnsen 

2016). This method provides the most fundamental measurement of light based on its physical 

properties: by quantifying the concentration of photons at each wavelength. While this is by far the most 

accurate method for characterising and measuring colours, it does possess setbacks. Reflectance curves 

must be remeasured for each specific location on an individual, making it both labour-and equipment-

intensive (Stevens et al. 2007). Furthermore, these measurements only inform us about the colour of a 

specific point on an organism’s body which is assumed to be ecologically or behaviourally relevant 

(Dalrymple et al. 2015b). Most importantly, spectrometers do not provide any information about 

patterns, leaving the description of this component up to the viewer (i.e. humans). 

Thus, it is critically important to make the distinction between colours and patterns. While colours 

represent the specific wavelength of light reflected or emitted by a surface (what humans would call red, 

for example), patterns are the organisation of colours within a spatial context (a red dot for example; 

Endler 1978). In line with the previous metaphor, colours are the ‘paint’, while an organism’s pattern 

would be the finished ‘painting’; the exact composition of colours arranged in a spatial context. Indeed, 

making this distinction and thinking about patterns as a hierarchical tier above colours is necessary when 

investigating colouration through an ecological or evolutionary lens. How colours are specifically 

arranged into patterns is critically important in determining how they function for many organisms 

(Umeton et al. 2019). The term ‘colouration’ is therefor used herein to signify both the colours and the 

patterns they create. For example, the vertical bands on the banded humbug damselfish (Dascyllus 

aruanus) appears to most successfully reduce predation when they closely match the width of the coral 

branches in which it lives (Phillips et al. 2017). Similarly, cleaning behaviour on reefs is strongly 

indicated by the colours blue and yellow, and specifically when these colours are present in horizontal 
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stripes along the length of the fish (Cheney et al. 2009). Essentially, patterns give colour context. 

Therefore, considering both the colour and pattern (the colouration) is critical when interpreting the 

specific function(s) that a certain colouration may serve. 

Characterising the wavelength sets clear definitions of what comprises a specific colour (e.g. red 

being 630 to 700 nm). Patterns, however, are far more abstract. For example, what is the difference 

between a line, stripe, or band? Humans have established definitions for some of the common and 

widespread colour patterns (Kelley et al. 2013; Miyazawa 2020) like eyespots, for example (which are 

studied herein). However, more complex colourations do not conform to such discrete, anthropocentric, 

classifications and consequently, often lack an obvious ‘category’ to be placed within. Many coral reef 

fishes exemplify this notion. Parrotfish in the genus Scarus, for example, have some of the most complex 

colourations found on corals reefs (Marshall 2000a) making them far too difficult to categorise simply. 

Therefore, assessing the often-complex colouration found on many reef fishes requires new and 

innovative approaches. 

In this respect, digital photography makes the objective description of colour patterns far more 

tenable. As opposed to the point-by-point measurements made using spectrometry, digital photography 

works by capturing the available light within a scene. This allows for large amounts of information to 

be recorded in intuitive formats that can be repeated quickly and efficiently. Importantly, images contain 

information about the spatial arrangement of colours meaning they also capture information about 

patterns. Digital images therefore offer an exciting medium with which to investigate organismal colours 

and patterns. There has been a recent surge in the resources available that use image analysis approaches 

to analyse colourations (Caves and Johnsen 2018; Van Belleghem et al. 2018; Van Den Berg et al. 

2019). Recently developed toolkits available in open-source software (Schneider et al. 2012; R Core 

Team 2020) allow researchers to objectively explore colour patterns in ways that have not been 

considered previously, opening the door to countless new research questions. 
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Thesis outline 

This thesis uses a range of novel approaches and techniques to investigate the evolutionary and 

ecological relationships of colour patterns in coral reef fishes. The chapters herein follow a natural 

progression that gradually transitions from questions that are global in scope, evolutionary in nature, but 

limited in detail, to questions that are local in scope, ecological in nature, with extremely fine resolution. 

In my first data chapter, Chapter 2, I seek to identify the factors that have shaped the evolution of 

colouration across the global reef fish community. To circumvent the issue of image accuracy for such 

a large set of species, I focus specifically on a widespread and functionally important colour pattern: the 

ocellus or eyespot. This marking strongly resembles a vertebrate eye making it easy to identify on fishes 

even when image quality is limited. I surveyed over 2,500 species of reef fishes from all global reef 

locations to identify the evolutionary and ecological factors that shape its occurrence. In Chapter 3, I 

dive into further detail investigating exactly how morphology can shape colouration by again using 

eyespots as a model study system. However, in this chapter I move beyond the discrete categorisation 

scheme used in the previous chapter (presence vs. absence) and measure features of the eyespot and 

relate these to the morphology of their bearers. Importantly, I identify assumed fitness costs associated 

with possessing this marking to identify when it may no longer serve its intended function. 

In Chapter 4, I transition to focusing on a specific reef fish family to ask how co-occurrence 

between sister species cause reef fishes to differentiate in colour. Terrestrial research has demonstrated 

the concept of reproductive character displacement; a phenomenon in which traits important for 

reproduction are selected to differentiate when closely related species co-occur. Using an innovative 

new application that characterises both colour and pattern, I assess whether reproductive character 

displacement is occurring in butterflyfishes (family: Chaetodontidae), an iconic family of reef fishes 

found all over the globe. In the final data chapter, Chapter 5, I focus on ecological factors that may be 

responsible for supporting colourful reef fish assemblages and how these relationships might change in 

response to global environmental disturbances. In this chapter, I investigate the relationship between 

fish colouration and the composition of the substratum, using complete fish assemblages (photographing 
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all individuals in-detail) and relating their colouration to the different substratum types where the fishes 

live (e.g. live branching coral, rubble, etc.). 

Finally, in Chapter 6, I aggregate all the tools and machinery available to analyse biological 

colouration. This chapter is essentially a ‘how-to’ guide that summarises the different approaches I used 

throughout my dissertation. It addresses 1) the considerations that must be made when analysing colour 

patterns, 2) the resources currently available for colouration analyses and, 3) some of the questions that 

can be asked when taking colour pattern research into new and exciting areas of study. 
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Chapter 2: Drivers of eyespot evolution in coral reef fishes 
Published as: Drivers of eyespot evolution in coral reef fishes. Evolution. (2021). 

 

2.1 Introduction 

The colouration of an organism is often tightly linked to its life history strategy; reflecting how it 

behaves and interacts with other organisms and its environment (Endler 1992; Caro and Allen 2017). 

Specific colourations can aid in creating and maintaining species boundaries (Seehausen 1997; 

Hemingson et al. 2019; Hench et al. 2019), facilitate mate selection (Reynolds and Fitzpatrick 2007), 

indicate fitness (McGraw et al. 2002), or provide protection from predators through camouflage (Cortesi 

et al. 2015; Phillips et al. 2017). Across all groups of organisms, coral reef fishes stand out as one of the 

most colourful and diverse found on the planet (Marshall 2000a; Marshall et al. 2018b). This unrivalled 

diversity in colouration has garnered the interest of researchers since the dawn of modern ecology, 

However, due to the intricate relationship between the light environment (i.e. the available light in a 

scene) and a viewer’s perceptive abilities (i.e. what they can and cannot detect or perceive), colouration 

becomes increasingly difficult to study at broader scales across many taxa (Caves et al. 2019). To 

overcome this challenge, one of the most promising avenues is to examine specific aspects of colouration 

at large evolutionary scales (Ortolani 1999; Caro 2005; Dalrymple et al. 2015b; Salis et al. 2018; 

Wisocki et al. 2019). 

The eyespot, or ocellus, is well suited to investigate some of the evolutionary drivers of 

colouration on coral reefs. From a human perspective, this marking strongly resembles a typical 

vertebrate eye; with a dark, circular interior surrounded by a lighter, often white, ring (Poulton 1890; 

Blest 1957). In both terrestrial and aquatic ecosystems, eyespots are widespread with numerous 

examples in insects, molluscs, crustaceans, birds, and fishes. Eyespots have been shown to provide a 

range of potential fitness benefits (Stevens and Ruxton 2014), including conspecific communication 

(Gagliano 2008; Gagliano and Depczynski 2013), enhanced reproductive success (Robertson and 

Monteiro 2005; Theis et al. 2012) and, most commonly, enhanced survival (Winemiller 1990; Stevens 

2005). Despite these advantages, only a minority of fish species have eyespots. This raises the question: 
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what evolutionary and ecological drivers promote or impede eyespot presence? As one of the most 

iconic colour patterns involved in predation avoidance, this topic is central to our understanding of the 

function of colouration in animals. 

Although widely studied (Lyytinen et al. 2004; Stevens 2005; Merilaita et al. 2011), relatively 

few studies have investigated eyespots from a broad phylogenetic or evolutionary perspective (but see 

Kelley et al. 2013; Kodandaramaiah et al. 2013; Hossie et al. 2015; Ho et al. 2016). Most eyespot 

research has been experimental, using a small subset of all eyespot-bearing taxa (e.g. Merilaita et al. 

2011; Hossie and Sherratt 2013; Olofsson et al. 2015). While these experiments have been invaluable 

in establishing the functional role of eyespots, numerous broad-scale questions still remain. For 

example, do eyespots have a geographic or phylogenetic bias in their occurrence? Where are eyespots 

distributed on the organism’s body and, more importantly, does this relate to the ecology and behaviour 

of the species that bear them? Essentially, are there basic rules that govern when, where, and on who 

eyespots occur? 

Here, we examine the potential factors that determine the evolution and possible function of 

eyespots in coral reef fishes. Specifically, we aim to determine how widespread eyespots are within 

coral reef fishes, how often this pattern has arisen and where they occur on the body of these species. 

Finally, we relate the presence/absence of eyespots, as well as their location, to the ecology of the species 

to identify what suite of ecological characteristics may favour their occurrence. The overall goal is to 

shed light on how these various processes have shaped the evolution and ecology of eyespots in one of 

the most colourful groups of organisms on the planet. 

 

2.2 Methods 

Coral reef fish survey 

We conducted an extensive survey to determine which reef fish taxa have eyespots within four 

distinct biogeographic regions (sensu Kulbicki et al. 2013; Cowman et al. 2017): the Tropical Atlantic 

(specifically, the Caribbean), the Indian Ocean and Red Sea, the Great Barrier Reef and Coral Sea, and 

the Tropical Eastern Pacific (Figure 2.1). Collectively, these four regions contain approximately 42% 
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of all described coral reef fish species (Kulbicki et al. 2013; Parravicini et al. 2013) and represent a 

broad subset of all coral reef fishes globally. Additionally, these regions are geographically distinct, 

allowing us to determine if the development and presence of eyespots are globally ubiquitous or 

geographically constrained. 

Species were placed into one of two categories: eyespot-bearing or eyespot-lacking. We defined 

an eyespot based on three criteria: 1) the marking is approximately circular or elliptic in shape, b) it has 

a dark (typically black) interior surrounded by no less than 75% of its circumference by a concentric 

ring of differing, much lighter colour (typically white), and c) there could be no more than 10 eyespots 

present on one side of the individual (following Hemingson et al. 2020). Where possible, juvenile life 

stages were included as some species only possess this marking at certain life-stages. The proportion of 

species with and without eyespots (at any life-stage) were then compared between realms to identify if 

eyespots are more or less common in taxa from a given geographic location. 

 

Phylogenetic distribution and ecological relationships 

The presence or absence of eyespots was then mapped onto a phylogeny of reef fishes to assess 

their evolution and phylogenetic signal. The largest published fish phylogeny using both molecular data 

and fossil calibrations (Rabosky et al. 2018) was trimmed to contain only the coral reef fish species for 

which eyespot data were collected. Since detailed evolutionary relationships are critical for subsequent 

analyses based on trait evolution (Rabosky 2015), only species with molecular data were included. This 

tree, therefore, contains a subset of the species in the eyespot dataset (58%; 1544/2664). This tree 

contained all consensus list families that characterise coral reefs (Bellwood and Wainwright 2002). 

Using this coral reef fish phylogeny, we plotted the distribution of eyespots and mapped their evolution 

using stochastic character mapping following Bollback (2006), within the ‘phytools’ library in R 

(Bollback 2006; Revell 2012). Additionally, we calculated the phylogenetic signal relating to eyespot 

presence, by analysing multiple models of discrete character evolution and selecting the most 

parsimonious based on AICc (model comparison in Table A1). The most parsimonious model 

incorporated the lambda parameter (λ; Pagel 1999), which gives a robust estimate of the phylogenetic 

signal for a given trait (in our case eyespots Münkemüller et al. 2012; Molina-Venegas and Rodríguez 
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2017). If lambda is low (e.g. 0.1), the presence of eyespots is essentially randomly distributed across 

species within the phylogeny. If lambda is high (e.g. 0.9), it indicates a highly-structured distribution 

within the phylogeny. Furthermore, the model using the resulting value of lambda (λ) was tested against 

a model in which lambda was set to 0 (i.e. no phylogenetic signal). These two models were then 

compared using a likelihood ratio test to determine if there was a significant phylogenetic signal. 

To reconstruct the evolution of eyespots, 1000 stochastic character maps (SIMMAP; Bollback 

2006) of eyespot evolution were generated (using the ‘ape’; Paradis and Schliep 2019 and ‘phytools’; 

Revell 2012 libraries in R). The model also estimated different transition rates to and from eyespot-

bearing and eyespot-lacking states (specifically, ‘ARD’ in phytools: ‘all rates different’). Furthermore, 

we generated the Q matrix using the ‘empirical’ method within phytools, which is very similar to the 

original procedure that first introduced stochastic character mapping (Bollback 2006). Finally, we 

allowed the model to freely estimate the probabilities of each trait state at the root of the tree, instead of 

forcing each trait state to have equal probabilities (the default). This was important, since the freely 

estimated root probabilities (eyespot presence: 8%, eyespot absence: 92%) were markedly different from 

the default expectation of fixed probabilities (50% – 50%). We then averaged all 1000 SIMMAP 

iterations to calculate the likelihood of each trait state at ancestral nodes throughout the phylogeny. This 

approach was used to interpret trait evolution across all species in the molecular phylogeny, as well as 

specifically focusing on damselfishes. 

Previous research has shown that exposure in the water column (the amount of ‘openness’) 

increases the likelihood of being consumed (Mittelbach 1986; Lester et al. 2020). Therefore, 

planktivorous species - those that feed exposed in the water column farther away from structural refuges 

- are presumed to have a higher predation risk than other feeding ecologies (e.g. herbivory). We were 

curious if this influences the presence of eyespots, which have been shown to provide anti-predatory 

benefits (Kjernsmo and Merilaita 2013; Prudic et al. 2014). To explore the potential role of position in 

the water column (and the implied increase in predation pressure; Motro et al. 2005) on eyespot 

presence, we quantified if the presence or absence of eyespots in reef fish is linked to specific feeding 

ecologies. Damselfishes were specifically selected as the focal group because they have a large number 
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of surveyed species in the phylogeny (147 spp.) and have many species that are planktivorous – a feeding 

mode that implies high predation risk. (Froese and Pauly 2019). We collected feeding ecology data (a 

proxy for position within the water column and exposure) for the 147 species of damselfishes present in 

the molecular phylogeny (i.e. with eyespot data). 

To identify any correlations, we used two complementary approaches. First, we used the Bayesian 

framework of BayesTraits (Meade and Pagel 2019) to compare dependent vs independent models of 

trait evolution. Since these models only support discrete, binary traits (presence/absence), we classified 

the damselfish feeding ecology as: planktivorous or non-planktivorous. These groupings were chosen 

as they represent the largest difference in exposure that individuals would likely incur while feeding. 

All other possible feeding ecologies (herbivory, detritivory, sessile-invertivory, etc.) represent modes 

that feed directly on or close to the substratum. We thus applied BayesTraits to assess whether the 

evolution of eyespots was correlated with the evolution of feeding ecology. We ran both dependent and 

independent models of discrete trait evolution for 50 million iterations each, sampling parameters every 

5,000 iterations. Both models were run using the VarRates option (Venditti et al. 2011) which accounts 

for heterogeneity in evolutionary rates within the phylogeny. We also used the rjMCMC option with an 

exponential prior to handle the high number of parameters in the models (Meade and Pagel 2019). After 

removing 10% of samples as burn in, we assessed convergence through effective sample sizes. 

Subsequently, we assessed the marginal likelihood of each model through the stepping stone sampler 

(Xie et al. 2011). The marginal likelihood was then used to compare models through the Bayesian 

Information Criterion (BIC). 

After finding that the dependent model of evolution performed far better than the independent 

one (Δ BIC > 23), we applied a quantitative threshold model to quantify the extent of correlated 

evolution (r) between different discrete traits (Felsenstein 2012). A Bayesian threshold model was 

generated using the ‘threshBayes’ function within the ‘phytools’ library in R (Revell 2012). This model 

was run for 50 million generations and sampled at 5,000 generation intervals yielding 10,000 samples 

per chain (three chains total). The first 10% of each chain was discarded as burn in. Trace plots identified 
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optimal convergence and mixing, and the effective sample size of both the log likelihood estimate (455) 

and correlation coefficient (372) were well above generally accepted cut-offs (>200). 

 

Eyespot heatmaps and distribution 

Heatmaps were constructed to provide a high-resolution map of eyespot locations across the 

bodies of coral reef fishes. All species across all families that were identified to have an eyespot were 

checked for images in a staged, lateral position available in either the Smithsonian Institute’s Division 

of Fishes Collections or Williams et al. (2010). Only high-quality images were included in the heatmap 

analysis (species included listed in Table A2). Using Adobe Photoshop (CC2019), all images were 

converted to grayscale. Then, for every image, the entire eyespot was manually coloured using the 

paintbrush tool. We used red, although the specific colour is irrelevant so long as it is not grayscale and 

is the same colour used in all photos. This yielded a dataset of images in which the fish’s body was 

grayscale, yet the eyespot was coloured. Using ‘patternize’ (Van Belleghem et al. 2018), a toolkit to 

compare colour patterns in animals, heatmaps were created that display the distribution of eyespots 

across the body of fishes. Functions within ‘patternize’ align images based on morphological landmarks 

that have been placed using imageJ (Schneider et al. 2012). Thus, the final summarised output displays 

the distribution of eyespots in a morphologically consistent framework across species. We used 20 

landmarks to align the images (following Hemingson et al. 2019, landmarks shown in Figure A1) that 

accurately capture broad morphological variation. This allowed us to compare the distribution of 

eyespots across the bodies of all species. 

There is a connection between the location of an eyespot and its function as deflective eyespots 

are expected to divert attacks towards them, away from vital body locations (Kodandaramaiah et al. 

2013). We were therefore curious if the location of this marking may reflect this difference in coral reef 

fishes. To classify the location of an eyespot, we divided the body of every fish in half by extending a 

vertical line upwards from the base of the first anal fin spine and perpendicular to the midline (for details 

see Figure A2). This allowed us to classify if eyespot was located on the anterior or posterior section of 

the body. This landmark was chosen because it is present in all species surveyed, represents a relatively 
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consistent half-way split of the body of most reef fishes, and can be easily identified and located across 

species. 

The location of the eyespot was then related to the ecology of the eyespot-bearing species. We 

classified the species based on a major ecological axis: being cryptobenthic (resting directly on/within 

the reef substratum) or active swimmers living off the benthos. This is a robust division with clear 

delineation that can be applied to all reef fish species. Brandl et al. (2018) provide a quantitative 

definition of cryptobenthic fishes, which are smaller fishes (10% of species in families with <50 mm 

maximum body length) that are benthic in nature. We utilise this definition to classify species herein but 

extend it to include highly cryptic and benthic species that may reach lengths greater than 50 mm TL 

(e.g. Parapercis clathrata; list of species classifications in Table A2). These alternative habitat-use 

lifestyles have been shown to be clearly linked to many other differences in life history traits (Koslow 

1996). Fish were thus characterised based on two features: (1) having an eyespot in the front or back 

half of their body and (2) being either cryptobenthic or active. If the eyespot split the dividing line, the 

location was categorised based on which half possessed the majority of the marking. This generated two 

sets of binary variables: benthic vs active and eyespot anterior vs posterior. 

Since both of these traits are phylogenetically conserved, the correlated evolution of these 

variables were then analysed following the methods described by Pagel (1994). This method compares 

competing models in which the evolution of two binary traits are either independent or dependent. 

Furthermore, the direction of dependence can be specified. We generated and tested three possible 

dependent models: the first specified that the evolution of eyespot location is dependent upon swimming 

activity. The second model is the reverse: that swimming activity is dependent on eyespot location. The 

final model assumes these two traits are co-dependent and have evolved together. The most 

parsimonious model was selected using AIC and compared to the independent model using a likelihood-

ratio test. This was implemented using the ‘fitPagel’ function in the ‘phytools’ library in R (Revell 

2012). 
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2.3 Results 

In total, 2664 coral reef fish species were surveyed from the four major marine realms. We 

identified 282 species with eyespots (10.59 %). The Tropical Eastern Pacific displayed a significantly 

smaller proportion of species with eyespots (5.8%) when compared to the Indian Ocean (9.7%) and the 

Great Barrier Reef and Coral Sea (9.9%). The Tropical Atlantic, had an intermediate proportion of 

species possessing eyespots (8.9%) but it was not significantly different from the three other locations 

(Figure 2.1; Table A3). 

 

Phylogenetic patterns of eyespot occurrence 

Eyespots were found in 31 reef fish families and have arisen at least eight times in deep 

evolutionary time (>10 mya based on ancestral reconstruction estimates from the 1000 averaged 

SIMMAPs). Most of these events occurred between 20 and 60 million years ago. Three families have a 

particularly high proportion of species with eyespots: Labridae (wrasses, 33.3%, 82/246), 

Pomacentridae (damselfishes, 23.9%, 42/176) and Chaetodontidae (butterfly- and bannerfishes, 28.7%, 

37/129; Figure 2.2). Interestingly, other common coral reef fish families have no or very few species 

possessing eyespots. Only two species of acanthurids (surgeonfishes) and no species of siganids 

Figure 2.1 The global distribution of coral reef fishes with eyespots. While the overall taxonomic and 

phylogenetic richness of coral reef fish species varies substantially among regions, the proportions of species 

with and without eyespots are remarkably similar. The total number of species surveyed in each location are 

listed and have been used to scale each chart accordingly. Black: eyespot-bearing; grey: eyespot-lacking. 

Throughout all figures, these colours will represent eyespot-bearing and eyespot-lacking species, 

respectively. 
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(rabbitfishes) have this marking. Analysing the distribution of eyespots throughout the phylogeny 

showed that eyespots are highly conserved within clades (Figure 2.3). The most parsimonious value of 

lambda (λ), i.e. the strength of phylogenetic signal for eyespots, is 0.93 and significantly differed from 

0 (likelihood ratio = 267.025, p-value <0.0001). This demonstrated that having an eyespot is very 

strongly correlated with a species’ position within the phylogeny. Essentially, eyespots were not 

randomly distributed throughout the reef fish phylogeny and occurred in a highly structured manner, 

predominantly within specific lineages. 

Within these three eyespot-rich families (Labridae, Pomacentridae, and Chaetodontidae), there 

are further, distinct patterns of presence and absence. At the genus level, eyespots were found to be 

either very common or notably absent. In pomacentrids, for instance, the genera Chromis, Abudefduf, 

and Amphiprion have no species possessing eyespots, while in other genera like Pomacentrus, Parma, 

Stegastes, and Dichistodus, eyespots are extremely common (Figure 2.4). Investigating the associations 

between feeding ecology and eyespot occurrence in detail showed a moderate amount of correlated 

evolution (median r = 0.54; Figure 2.5). Approximately 44.1% (30/68) of non-planktivorous 

Figure 2.2 The number of species, by family, with eyespots. Only families with >1 species with an eyespot 

have been plotted. The percentage of species with eyespots is represented by the large number above each 

bar. The total number of species surveyed in each family is given in parentheses. Note this is not the total 

number of species within each family. Three families make up 57.1% of all species with eyespots: Labridae 

(wrasses), Pomacentridae (damselfishes), and Chaetodontidae (butterflyfishes). 
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pomacentrid species possess an eyespot while in planktivores the marking is extremely rare (1.3%, 

1/79). 

 

Eyespot location 

The distribution of eyespots across the bodies of coral reef fishes was highly conserved. The 

location with the most frequent occurrence of eyespots was along the dorsal fin (Figure 2.6). Within 

Figure 2.3 The evolutionary history of eyespots within coral reef fishes. The internal branches have been 

painted according to which trait state was estimated to have the higher probability at each node. The 

concentric rings represent 25 million-year increments. The full phylogeny with the exact character 

probabilities at each node (obtained from the 1000 averaged SIMMAPS) is available in the supporting 

information (Figure A3). 
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this location, there were two peaks of highest occurrence: one located centrally along the fin and one 

located along the posterior margin of the fin. The second highest location of eyespot density after the 

dorsal fin was, surprisingly, located on the operculum; a location close to the real eye. There was 

significantly more support for models of dependent evolution between activity and eyespot location 

when compared to the independent model. (likelihood ratio statistic = 8.43, p-value = 0.0148). 

Furthermore, the most parsimonious of the three dependent models indicated that the location of the 

eyespot was dependent upon a fish’s affinity to the substratum, but critically, not the reverse i.e. activity 

did not evolve dependent on eyespot location (details of model comparisons in Table A4). We can 

Figure 2.4 The evolution of eyespots and planktivory in 

damselfishes. The phylogenetic tree shows the 

evolutionary history of damselfishes through time. 

Black lineages within the tree indicate a greater 

calculated probability of eyespot presence as 

determined from the 1000 averaged SIMMAPs. Grey 

lineages indicate a greater likelihood of eyespot 

absence. Black dots at the tips represent actual 

presence of eyespots in extant taxa; absence indicates 

eyespot-absence. Tips denoted by the cyan line indicate 

planktivorous species, tips lacking cyan represent 

alternative feeding ecologies (i.e. herbivory, omnivory, 

etc.). Note the near mutually exclusive nature of 

planktivory and eyespot-presence. 
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therefore conclude that the location of the eyespot on the body of a fish is largely driven by its lifestyle. 

Cryptobenthic species were more likely to have an eyespot located on the operculum, while active, non-

cryptobenthic fishes primarily have an eyespot on the dorsal fin. 

 

2.4 Discussion 

Eyespots in space and time 

Eyespots are common on reef fishes, with approximately one in every ten species possessing this 

marking. The high levels of visibility associated with clear reef waters (Lewis et al. 1988; Brewin et al. 

2010) have likely facilitated the utility of this marking as it functions primarily through vision-based 

predation. Eyespots have an extremely strong phylogenetic signal, often becoming a defining feature of 

a given family or genus. Three iconic reef fish families (Labridae, Pomacentridae and Chaetodontidae), 

collectively account for approximately 57% of all reef fish species with eyespots. Interestingly, there 

are also families that completely lack eyespots, including the Holocentridae (squirrel and soldierfishes), 

Carangidae (jacks and trevally), and the Siganidae (rabbitfishes). Holocentrids are nocturnal and 

Carangids are pelagic, which may explain their lack of eyespots. However, there is no obvious ecological 

reasons for their absence in Siganids. Nevertheless, it appears that once this colour pattern arises, it has 

a high propensity to remain in new lineages. 

Figure 2.5 The relationship between feeding ecology and eyespot presence. On the left, the proportion of 

damselfishes with (black) and without (grey) eyespots based on feeding ecology. On the right, the posterior 

estimate of the correlation (r) between eyespot absence and planktivory based on 50 million generations of 

a Bayesian MCMC. The median value of r (0.54) has been highlighted. 
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Interestingly, the ancestral state reconstruction estimated eyespot presence as the ancestral 

condition in the three most eyespot-rich families: wrasses, damselfishes, and butterflyfishes. Therefore, 

eyespot loss represents the derived character state in these clades. While our methods are sensitive to 

missing data, incredibly, the timing of estimated eyespot origins agree well with the fossil record. 

Paleopomacentrus orphae, an extinct pomacentrid from the Eocene deposits of Monte Bolca (Bellwood 

and Sorbini 1996), possessed an eyespot which is evident in the fossilized remains. Furthermore, the 

location of this marking is consistent with the location of eyespots on many extant damselfish species 

(Bellwood et al. 2017). It appears that eyespots may have been providing anti-predatory benefits to reef 

fishes since the Eocene, and probably even earlier (c.f. Cantalice et al. 2020). 

Figure 2.6 The total heatmap for all species (a). Eyespot heatmaps for active (b) and cryptobenthic (c) coral 

reef fishes. The changing colour from red to yellow reflect the frequency of occurrence of eyespots in that 

location. Yellow has been scaled to represent the location of highest eyespot occurrence in each heatmap. 

To the right are examples of species within each category: (b) Pomacentrus vaiuli and (c) Labrisomus 

nuchipinnis. Photo credit: Jeffery T. Williams, Smithsonian Institute. 
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Of the four survey locations, the Tropical Eastern Pacific (TEP) was the only one to show a 

significantly smaller percentage of species with eyespots. Historic vicariance events have isolated the 

TEP from other tropical marine realms (Bellwood and Wainwright 2002). This time in isolation, with 

its associated environmental challenges, has led to a more coastal reef fish community containing fewer 

species in the ‘eyespot-rich’ families (Dominici-Arosemena and Wolff 2006). Nevertheless, in all major 

reef systems, eyespots are both widespread and present which, unsurprisingly, suggests that they serve 

a fundamental role that has been consistently selected for on evolutionary timescales. 

 

Ecological links in damselfishes 

The absence of eyespots in damselfishes is inextricably linked to a planktivorous feeding mode. 

Our results indicate that not only have planktivorous damselfish species likely transitioned from 

alternative feeding ecologies in the past (e.g. herbivory, omnivory, etc., c.f. Siqueira et al. 2020), but 

that this transition is associated with a concomitant loss of eyespots. Clearly, there is some aspect of the 

pelagic environment that does not favour eyespots. It is possible that this pattern is being driven by the 

predation risk associated to a planktivorous feeding mode; one in which individuals are highly exposed 

and visible to predators (Turner and Mittelbach 1990; Werner et al. 2012). Although eyespots clearly 

provide anti-predatory benefits to numerous organisms (Kjernsmo and Merilaita 2013; Prudic et al. 

2014), they appear to be functionally irrelevant for fishes that occupy highly exposed, open-water 

habitats given that all but one planktivorous damselfish species lacked this marking (1.1%, 1/79). 

Interestingly, the one exception, Pomacentrus nagasakiensis, although categorised as a planktivore 

(based on diet), is commonly found associated with the benthos. 

Although we were able to demonstrate the link between feeding ecology and eyespot presence in 

damselfishes, we were unable to do so in wrasses and butterflyfishes because models do not converge, 

likely due to the low proportion of planktivorous species in these families. Given our damselfish 

findings, one might logically expect that species incurring the highest predation-pressure would utilise 

eyespots more frequently. The lack of eyespots on almost all planktivorous damselfishes suggests that 

there are fitness costs associated with eyespots; they are not a universal solution to predation. Reef fishes 
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display a clear ontogenetic size threshold above which eyespots are typically lost (75-85 mm TL). This 

strongly suggests clear selection against this marking in larger fishes (Hemingson et al. 2020). Perhaps 

eyespots are too conspicuous in open environments and draw an excessive amount of (unwanted) 

attention (Stevens et al. 2008). Indeed, previous research has highlighted that in some specific contexts, 

remaining purely cryptic (i.e. not having eyespots) can provide greater anti-predatory benefits than 

possessing eyespots (Lyytinen et al. 2004; Stevens et al. 2008). Alternatively, eyespots may be a costly 

feature to maintain in energetic terms (Rodgers et al. 2013). Regardless of the mechanism, the traits that 

reduce predation in the water column (e.g. deciduous scales, Morgan and Godin 1985; Stevens and 

Merilaita 2011; Vernerey and Barthelat 2014) appear to be very different to those utilised by more 

benthic-associated species. This is likely a consequence of the different predatory fish morphologies and 

behaviours that occur in benthic vs. pelagic environments (Mihalitsis and Bellwood 2019). 

 

Evidence for location-dependent eyespot functions 

This same benthic-pelagic axis may also be important in determining where eyespots are located 

on a fish’s body. We found a distinct relationship between the location of the eyespot and how tightly 

associated a species is with the substratum. Interestingly, the evolutionary models suggest that the level 

of substratum association determines eyespot location, but eyespot location does not determine 

substratum association. Essentially, as fish species evolved different ecologies, their eyespots evolved 

in response to the niche occupied. 

A large body of literature on eyespots (with some key findings briefly summarised in Table 2.1) 

has identified that their functionality differs between taxa. From a predation perspective, eyespot have 

been shown to provide anti-predatory benefits to their bearers through two primary mechanisms (Prudic 

et al. 2014; De Bona et al. 2015; Kjernsmo and Merilaita 2017). These are: (1) deflection, by directing 

strikes away from vital organs like the brain and viscera and towards bodily locations that are more 

capable of regeneration (Vallin et al. 2011; Kjernsmo and Merilaita 2013) and, (2) intimidation, by 

mimicking larger organisms to deter or intimidate potential aggressors and predators (De Bona et al. 

2015; Kjernsmo and Merilaita 2017). We found that eyespots occur in two, primary locations on the 
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bodies of fishes that likely reflect markedly different functional roles. Therefore, eyespots in reef fishes 

may have multiple functions, with its function connected to its location on the body. While this is 

currently a hypothesis based on strong correlations, it may help explain why eyespots have been found 

to provide different fitness benefits among taxa (Kodandaramaiah et al. 2013). 

Table 2.1 The conflicting evidence of eyespot function. Some highlighted eyespot studies and their 

summarised findings. In the column ‘Study System’, an ‘A’ represents studies in aquatic systems, while a ‘T’ 

represents terrestrial. In the ‘Sender/Receiver’ column, the first letter presents the organism bearing the 

eyespot, and the second represents the intended viewer of the eyespot. An ‘I’ represents an invertebrate, 

while a ‘V’ represents a vertebrate. 

Hypothesized 

function 
Mechanism 

Study 

System 

Sender/ 

Receiver 

Support 

for? 

Support 

against? 
Reference(s) 

Anti-predation Deflection A -/V   Kjernsmo, Grönholm, & Merilaita, 2016, 

2018; Kjernsmo & Merilaita, 2013 

Anti-predation Deflection T I/V   Lyytinen, Brakefield, & Mappes, 2003; 

Vlieger & Brakefield, 2007 

Anti-predation Deflection T I/V   Olofsson, Vallin, Jakobsson, & Wiklund, 2010 

Anti-predation 
Deflection 

& Mimicry 
T I/V   Olofsson, Wiklund, & Favati, 2015 

Anti-predation 
Deflection 

& Mimicry 
T I/V   Halali, Krishna, Kodandaramaiah, & 

Molleman, 2019 

Anti-predation Mimicry T I/V   Vallin, Jakobsson, & Wiklund, 2007 

Anti-predation Mimicry T I/V   Hossie & Sherratt, 2012, 2013 

Conspecific 

signalling 

Badge of 

status 
A V/V   Gagliano, 2008; Gagliano & Depczynski, 2013 

Conspecific 

signalling 

Cannibalism 

inhibition 
A V/V   Zaret, 1977 

Sexual 

Selection 

Display of 

fitness 
T I/I   Robertson & Monteiro, 2005 

Intimidation Deception T V/V   Deppe et al., 2003 

Intimidation Deception T -/V   Belant, Woronecki, Dolbeer, & Seamans, 1998 

Intimidation Deception A V/V   Winemiller, 1990 

Reproduction Deception A V/V   Theis, Salzburger, & Egger, 2012 
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In our study system, cryptobenthic species have the highest density of eyespots located on the 

operculum, a position very close to the real eye. This location does not support the deflective function 

of eyespots since strikes would be directed towards the viscera or head. Therefore, eyespots in this 

location are more likely to be functioning through intimidation or predator mimicry (Kjernsmo and 

Merilaita 2017), or by making prey appear larger to gape-limited predators (Mihalitsis and Bellwood 

2017). By contrast, active species most often possess eyespots towards the posterior portion of the dorsal 

fin. Not only is this location far from vital organs near the head, but fins also have a much higher capacity 

to fully regenerate (Nakatani et al. 2007). Eyespots found in this location align more strongly with the 

deflective function; where eyespots divert attacks to less-important body locations allowing the 

individual to escape relatively unscathed. 

The historical debate concerning deflection versus intimidation stems almost completely from 

terrestrial research; most notably butterflies as a study species (Stevens 2005). Since predatory fishes 

consume prey whole (Mihalitsis and Bellwood 2017), it is possible that marginal eyespots in fishes may 

be functioning through an entirely novel deflection mechanism (Kjernsmo et al. 2016). Prey fishes often 

avoid predation by rapid forward movement away from the predator (their escape response, Eaton and 

Emberley 1991). In anticipation of this escape response, identification of the head is crucial for 

successful capture by the predator, with the location of the pupil being a key, identifying feature (hence 

the use of eye stripes to conceal the pupil; Karplus and Algom 1981; Kelley et al. 2013; Kjernsmo et al. 

2016). A false eyespot may therefore suggest the prey fish is facing the opposite direction which would 

cause the predator to misidentify the escape direction and allow the prey fish to successfully avoid 

capture. While the eyespot-habitat correlations are strong, a detailed understanding of the mechanistic 

basis of eyespot function and body location in reef fishes will require a thorough evaluation using 

experimental trials. 

 

Conclusions 

Overall, we show that eyespots have arisen independently on multiple occasions, have probably 

been providing anti-predatory benefits for over 50 million years, and have become a defining feature of 
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many fish groups. However, their presence is strongly correlated with the ecology of the organism. In 

damselfishes, species that live in more exposed environments rarely have eyespots, while species that 

interact more with the benthos are more likely to possess this marking. This suggests that the anti-

predatory function of eyespots may be strictly habitat dependent. Across eyespot-bearing fishes, there 

is a further separation that may indicate how the eyespot functions in reef fishes. In cryptobenthic reef 

fishes, the eyespot is most often near the head suggesting a role in intimidation or mimicry. By contrast, 

active species most often have eyespots on the rear of the dorsal fin, supporting a role in deflection. 

Regardless of the location, eyespots appear to be a strongly selected and functionally important colour 

pattern in coral reef fishes. 
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Chapter 3: Body size determines eyespot size and presence in coral 
reef fishes 
Published as: Body size determines eyespot size and presence in coral reef fishes. Ecology and 

Evolution. (2020). 10 (15). 8144 – 8152. 

 

3.1 Introduction 

Many organisms use colouration for differing fitness benefits (Cuthill et al. 2017). Quite often, 

colouration is tuned to aid in survival (Caro and Allen 2017). One example may be the eyespot or 

ocellus, a highly conspicuous marking that is believed to resemble the eyes of some vertebrates (Blest 

1957). It is comprised of a dark, circular ‘pupil’, surrounded by a pale ring that contrasts against both 

the pupil and the base colour of the organism. Eyespots are extremely common in nature and are found 

in numerous taxa from phylogenetically distinct lineages, including insects, molluscs, amphibians, 

crustaceans, birds, and fishes (Kodandaramaiah 2011; Stevens and Ruxton 2014). Furthermore, eyespots 

are found on species that have vastly different morphologies, life histories, behaviours and colourations, 

suggesting a widespread underlying role (Figure 3.1; Marshall, Cortesi, de Busserolles, Siebeck, & 

Cheney, 2018). 

The conspicuous nature of eyespots, along with their widespread occurrence, has made them 

historically appealing to study. Indeed, this marking has received continual research attention since the 

19th century (Poulton 1890). Independent studies on different taxa have identified multiple, different, 

functions of eyespots. These include mate selection and preference (Robertson and Monteiro 2005; 

Kodandaramaiah 2011), intraspecific competition between juveniles and adults (Gagliano 2008; 

Gagliano and Depczynski 2013), reproduction (Egger et al. 2011; Theis et al. 2012), and anti-predation 

benefits (Stevens et al. 2008; Kjernsmo and Merilaita 2013, 2017).  

While extensive in nature, the majority of research has focused on the latter topic, describing how 

eyespots promote survival through two, primary mechanisms: predator deflection and intimidation. 

(Lyytinen et al. 2003). Deflective eyespots operate by directing strikes away from vital organs, like the 

real eyes and head (Kjernsmo and Merilaita 2013; Prudic et al. 2014). Alternatively, eyespots can 
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function by intimidating potential predators by making the individual bearing them appear larger in size 

(De Bona et al. 2015). Most research has examined these mechanisms by using experimental 

approaches, primarily on insects (e.g. caterpillars, butterflies, and moths; Hossie & Sherratt, 2013; 

Lyytinen, Brakefield, & Mappes, 2003). Often, this entails presenting or manipulating the pattern on a 

prey item and subjecting it to a model predator species to record the interaction (Prudic et al. 2014; De 

Bona et al. 2015). These approaches have been particularly informative in describing how the pattern 

functions and which features may make it successful. 

Although these experiments have been supported by field observations (Hossie and Sherratt 2012, 

2013) surprisingly few studies have utilised more broad, analytical approaches to describe 

commonalities in eyespots among many species (but see Ho, Schachat, Piel, & Monteiro, 2016; Hossie, 

Skelhorn, Breinholt, Kawahara, & Sherratt, 2015). Indeed, several key questions remain: for example, 

how does the size of the eyespot relate to the size of the real eye, if present? And at what size do eyespots 

become irrelevant (i.e. when do animals lose them)? These basic questions, albeit critically important, 

have received relatively little attention (cf. Hossie et al., 2015; Karplus & Algom, 1981). Body size and 

morphology often strongly constrain the life history traits of many organisms. (Bellwood and Choat 

1990; Berumen et al. 2011; Mihalitsis and Bellwood 2017). Therefore, approaching eyespots from a 

Figure 3.1 The diversity of coral reef fishes with eyespots. a) a sandperch, Parapercis clathrata, b) an 

angelfish, Pygoplites diacanthus, and c) a pufferfish, Cathigaster solandri. Photos with permission from Rick 

Stuart-Smith (a) and François Libert (b,c). 
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more general perspective, and analysing these questions across many species, may provide insights into 

what makes this marking so common and how it may function. 

 Coral reef fishes offer an ideal group to study this marking. Unlike insects that have a compound 

eye, reef fishes have an eye with a pupil and iris that the eyespot may resemble. This similarity allows 

for direct comparison between features of the eyespot and features of the real eye; a comparison not 

possible in insects. Furthermore, reef fish colouration is highly adaptive (Hemingson et al. 2019) and 

many species gain or lose eyespots through development. To understand what rules shape the presence 

of eyespots in reef fishes we ask, 1) how does the eyespot compare to the eye in size and 2) at what body 

size are eyespots typically gained or lost in coral reef fishes? In doing so, we shed light on the processes 

that may shape eyespot use in one of the world’s most diverse and colourful group of vertebrates. 

 

3.2 Methods 

Defining an eyespot 

For reef fishes, we defined an eyespot based on three criteria. 1) The entire eyespot needs to be 

approximately circular or elliptic in shape. 2) It has a dark (typically black) interior circle or ellipse that 

is surrounded by no less than 75% of its circumference by a concentric ring of differing, much lighter 

colour (typically white). 3) There could be no more than 10 eyespots present on an individual. These 

criteria were chosen to ensure that the pattern is as a distinct marking that is visually conspicuous against 

rest of the fish’s colouration. Strict criteria are necessary since there is a broad spectrum of markings 

present on coral reef fishes. Establishing these criteria allow us to focus on the species with a consistent 

eyespot form to determine what influences their presence and appearance. 

 

Image sourcing and data collection 

Bony fishes from four geographically distinct ecoregions were surveyed for the presence of 

eyespots (The Great Barrier Reef and Coral Sea, the Red Sea and Indian Ocean, the Caribbean Sea, and 

the Tropical Eastern Pacific; Cowman, Parravicini, Kulbicki, & Floeter, 2017; Kulbicki et al., 2013). 

Collectively, these locations encompass approximately 45% of all currently described coral reef fish 
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species. To assess the taxa present in these ecoregions, we surveyed multiple species identification 

guides, including published ID books, as well as online databases like FishBase (www.fishbase.com) 

and Reef Life Survey (www.reeflifesurvey.com). After identifying which species have eyespots, fish 

images were sourced from the Smithsonian Institute’s Division of Fishes Collections, supplemented by 

images from Williams et al. (2010). Images in this database or publication contain standard length (SL) 

and/or total length measurements (TL) which permit further measuring of morphological features (e.g. 

the eye, etc.). Furthermore, photographs of specimens in these collections have been photographed in a 

standardised manner, with the left side of the fish photographed, typically, shortly after death. However, 

not all individuals had their dorsal, anal, and caudal fins fully exposed which dictated whether the 

eyespot could be measured (see Figure 3.2). Therefore, this catalogue yielded two datasets which 

contained different information; each of which were used for different analyses. The first dataset 

contained length measurements of all eyespot-bearing species in which the presence or absence of the 

marking could be identified (n species = 167, n samples = 1140). For example, if the specimen 

photographed was in too poor of condition to allow for measurement (a consequence of preservation or 

the manner in which the individual was collected) but the presence/absence of an eyespot could be 

determined, its length and presence/absence was recorded. The second dataset contained only the images 

of specimens in high resolution of excellent preservation quality which permitted detailed measurements 

of the eyes and eyespot (n species = 140, n samples = 354). This data set was used to make direct 

comparisons between the size of the eye and the size of the eyespot. 

 

Morphological measurements and comparisons 

We were curious if there is a distinct relationship between the size of the eyespot and the size of 

the eye. To test this, we measured four different features on both the eye and the eyespot. These four 

measurements were: 1) the maximum width of the eye, 2) the maximum width of the pupil, 3) the area 

of the eye, and 4) the area of the pupil (Figure 3.2, further detail in Figure B3). These four features 

were measured using ImageJ (Schneider et al. 2012) and were repeated on the matching features of the 

eyespot (e.g. the maximum width of the eyespot’s pupil). Each matched feature between the eye and 

eyespot were then compared using phylogenetic generalised least squares (PGLS) regression analyses 
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due to the non-independent nature of species data (the details of the phylogenetic tree used are described 

in the following section). Since the linear and area measurements measure the same features in 

alternative ways, only the area PGLS regression results are presented in the main text (linear regression 

results were identical and are presented in the supplemental material Figure B2 and Table B1). In all 

analyses, we used the measurements of the eye as the explanatory variable, and the measurements of the 

eyespot as the response variable. For species with more than one eyespot, measurements were taken of 

the largest eyespot. All measurements were converted into millimetres (mm) or mm2. 

 

Figure 3.2 An example photograph from the Smithsonian Institute’s Division of Fishes Collections. On top 

is the raw image of Halichoeres ornatissimus. The scale bar has been added. In this photograph the fins are 

exposed, which permits morphological measurements of both the eye and, most importantly, the eyespot. In 

fishes with folded fins only the presence, not the size, of the eyespot can be recorded. Below are the 8 

measurements (both linear and area) of the eye and eyespot features. Photo: 2006 Moorea Biocode/Jeffrey 

T. Williams, Smithsonian Institution. 
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Phylogenetic backbone construction 

To account for non-independence due to shared evolutionary history (Felsenstein 1985), a 

topology of all species included in this study was constructed using the most recent and comprehensive 

published phylogeny of coral reef fishes (Rabosky et al. 2018). Missing species were inserted based on 

previously published phylogenetic hypotheses (Betancur-R et al. 2017). Replicate tips for each species 

were added to the tree depending on the number of images with measurable features available for each 

species. For example, five images of Chrysiptera biocellata were available that permitted measurements 

of the eye and eyespot. Therefore, four additional tips (since one tip was already present during the 

initial construction of the phylogeny) were added to the tree. These replicated tips have a branch length 

of zero, meaning each of the individuals within a species (e.g. C. biocellata #2 and C. biocellata #5) 

have the same phylogenetic distance to all other species. In doing this, we could add as many replicates 

for individuals within a species as there were images available, without letting species with many images 

drive relationships. This backbone was then incorporated into phylogenetic generalised least squares 

(PGLS) regression analysis to account for phylogenetic nonindependence (phylogenetic tree available 

in Figure B1). 

 

Estimating size distributions and eyespot transitions 

We utilised two separate statistical approaches to investigate the size at which fish have eyespots, 

and consequently, at what sizes this feature is lost. The first dataset (containing only eyespot 

presence/absence and standard length, n = 1140) was divided into those fish with or without an eyespot. 

This yielded two separate datasets: one containing the size measurements of fish with eyespots (n species 

= 140, n samples = 586; 51.4%), and one containing the sizes of fishes that had or will have eyespots (n 

species = 115, n samples = 554, 48.6%). This is essentially the ecosystem perspective on eyespots: 

regardless of phylogeny, i.e. at what size do fishes have eyespots and at what size do they not? To 

generate the size distribution of eyespot-bearing and eyespot-lacking individuals, a bootstrapping 

procedure was utilised that sampled one size measurement per species. This approach was used to 

account for variation in image sample-sizes among species and more importantly, the variation in the 

size of individuals at which eyespots are lost or gained, i.e. the size range where species may be 
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transitioning from having an eyespot to losing it, or vice versa. This bootstrapping procedure is 

important since eyespots are gained or loss during ontogeny, but the size at which this happens differs 

for each individual within a species. These distributions were compared using a generalised linear model 

incorporating a gamma distribution which best accommodates the error structure of the data. The 

explanatory variable was eyespot presence or absence and the response variable was the standard length 

(SL). This test was run for each iteration of the resampled dataset (250 times). Essentially, this approach 

tests if the size of individuals with eyespots is significantly different to those without. 

This dataset can also be used to ask the question “what is the probability that a fish has an eyespot 

at a given size”? To answer this, we modelled the probability of possessing an eyespot at various 

standard lengths. This was done by using a binomial regression in which eyespot presence and absence 

were modelled as 1 or 0 (the response variable) and regressed against standard length (the explanatory 

variable). This was also run for 250 iterations. Additionally, the 50-50 point were calculated for each 

iteration. This is defined as the size in which the probability of having an eyespot is equal to the 

probability of not having it. All statistical analyses were conducted using the ‘stats’ and ‘nlme’ packages 

in R (Pinheiro et al. 2019; R Core Team 2020) 

 

3.3 Results 

Morphological relationships 

The eyespot’s total area and the eyespot’s ‘pupil’ area are significantly related to the area of the 

real eye and real pupil, respectively (Figure 3.3; all summary statistics in Table B2). The eyespot and 

the eye were almost identical in area. The slope was significant, indicating that the larger the individuals 

eye size, the greater in size of the eyespot. The slope was significantly greater than 1 which was likely 

driven by a few outliers of individuals which had the largest eyes recorded. However, since this 

relationship did not have an intercept significantly different than zero it indicates a consistent scaling 

between the size of the eyespot and the size of the real eye (Figure 3.3). Essentially, the size of the 

eyespot is almost identical to that of the real eye. 
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The real pupil area and the eyespot’s ‘pupil’ area were also significantly related with a slope that 

is not significantly different than 1. However, this relationship’s intercept was significantly greater than 

zero and the confidence intervals were completely separated from the isometric line. In this case, the 

eyespot’s ‘pupil’ is consistently four times larger, on average, than the real pupil. When we compare the 

slope and intercept estimates from both models (the eyespot to eye and the eyespot pupil to the real 

pupil), it is evident that the slopes are not significantly different, but the intercepts are (Figure 3.3). 

Thus, in fish of all sizes, the overall size of the eyespot is remarkably similar to that of the eye, but the 

size of the eyespot’s pupil is about four times larger. 

 

Size distributions and eyespot loss 

The size distributions of fishes with eyespots (n = 586; 51.4%) were significantly smaller than 

those without (n = 554, 48.6%; Figure 3.4). This pattern was consistent across all 250 iterations (median 

Figure 3.3 Relationship between the eye area and eyespot area (left) and pupil area and the eyespot ‘pupil’ 

area (middle). The coloured lines represent the phylogenetic generalised least squares regression (PGLS) 

lines with 95% confidence intervals. The solid black line represents an isometric growth pattern; where the 

area of one feature (in this case, the eye) would be equivalent to the area of the other feature (the eyespot). 

Estimates and 95% confidence intervals (right) of the regression models slope and intercepts for eye/eyespot 

(red) and pupil/eyespot pupil (blue). Both comparisons have identical slopes but different intercepts 

indicating that these features scale in the same manner, however the eyespots pupil is consistently larger. 
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p-value = 0.0007, mean p-value = 0.002; histogram of all p-values in Figure B4), indicating that even 

whilst accounting for individual variation, there were still pronounced differences. Individuals that 

possessed an eyespot were significantly smaller than the individuals of the same species which no longer 

had this marking. The variation within each iteration was low since most curves followed the same 

general trajectory; there was little influence of sampling differences among species. 

Furthermore, the standard length of an individual could significantly predict the probability of 

having an eyespot, with the highest probabilities occurring at the smallest sizes (Figure 3.5). All 250 

iterations of the binomial glm were significant (both mean and median p-value < 0.001; histogram of p-

values in Figure B5). The size in which a fish was equally likely to have/not have an eyespot (50-50 

point) ranged from 75 mm to 85 mm (SL) depending on the iteration (mean: 79.77 mm, median: 79.51 

Figure 3.4 The size distribution of individuals with (red) and without (blue) an eyespot based on 250 

bootstrapped size estimates. Below are the means and 95% confidence intervals plotted for each iteration. 

On the right are five individuals of Halichoeres marginatus, a species that displays the ‘window’ of eyespot 

use in coral reef fishes. The number next to each image corresponds to their standard-length measurement 

which are plotted on the main graph. Therefore, we can see the approximate sizes in which the eyespot is 

gained (+) and lost (-) marked by vertical dashed lines. Photos: Jeffrey T. Williams, Smithsonian Institution. 
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mm; Figure B6). We can interpret this range of standard lengths as the sizes at which the costs of an 

eyespot outweigh the benefits. 

 

3.4 Discussion 

Eye size induced constraints on eyespot size 

The morphological regressions provide direct clues to the features that may determine eyespot 

size and structure in coral reef fishes. Since the area of the eyespot is approximately equivalent to the 

area of the eye at all fish sizes, eye size appears to strongly constrain the maximum effective size of 

eyespots. Essentially, it appears that the eyespot is not free to become as large as possible; it is strongly 

linked to fish size and presumably must be of a realistic size. Such size constraints have been 

demonstrated previously in reef fishes, especially in ecological and morphological features (Schmitz 

and Wainwright 2011b; Mihalitsis and Bellwood 2017), but not with colouration. However, within this 

constraint, the eyespot’s ‘pupil’ is consistently and significantly larger than the real pupil. This suggests 

that the eyespot’s pupil is responding to different selective pressures and may be responsible for drawing 

attention to this marking since the overall size of the eyespot is consistent with the real eye. Experimental 

studies are needed to explore this hypothesis and the extent to which pupil-based conspicuousness could 

play a role in an eyespot’s ability to grab attention (c.f. Kjernsmo, Grönholm, & Merilaita, 2018). 

Interestingly, the outer ring appears to be critically important in the anti-predatory function of eyespots, 

as purely black, circular markings do not deter predators to the same extent (Winemiller 1990). So, in 

reef fishes, eyespots do appear to resemble the overall size of the real eye, but the eyespot typically 

possess an exaggerated pupil which may aid in grabbing the attention of predators. 

Furthermore, the presence of eyespots appears to be an ‘all or nothing’ phenomenon. In coral reef 

fishes, eye size displays negative allometry, that is, for a given increase in body size, the eye does not 

increase in size to a similar extent (Howland et al. 2004; Goatley and Bellwood 2009; Schmitz and 

Wainwright 2011a). Eyespots show similar, negative allometry (non-significantly different, Figure B7 

Table B3), tracking an identical decrease in the relative eye size as body size increases. This suggests 

that to be effective eyespots must match eyes or be avoided entirely. 
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The notion of body size constraints on eyespot size have been found in caterpillars, butterflies 

and freshwater fishes (Kodandaramaiah et al. 2013; Hossie et al. 2015; Ho et al. 2016; Kjernsmo et al. 

2018). A lower limit based upon the size of the real eye makes ecological sense from a predation 

perspective. If attention is to be brought away from the real eye, logically, the eyespot would need to be 

realistic if not larger (Ho et al. 2016; although eye concealment may mitigate this relationship – 

Kjernsmo, Grönholm, & Merilaita, 2016). The upper limit remains more difficult to explain. Possibly, 

the upper limit reflects the size range of predators most likely to consume a prey of a given size. 

Restricting the upper limit may most effectively deter predators that are most likely to consume the 

individual (Kjernsmo and Merilaita 2017). 

 

Figure 3.5 Probability of eyespot occurrence with increasing fish size. 250 bootstrapped binomial glms’s 

displaying the relationship between standard length and the probability of having an eyespot. Each 

iteration’s trendline is in black, the mean of these 250 trendlines is in orange. Additionally, the raw 1140 

specimen length measurements with their presence or absence (1 or 0 respectively) of an eyespot have been 

plotted. 

 



Chapter 3: Linking Eyespots to Eye and Body Size 37 

Reduced presence with increasing size 

The widespread and relatively rapid loss of an eyespot with growth suggests a marked decrease 

in their benefit during development. There appears to be a distinct ‘window’ of eyespot effectiveness in 

coral reef fishes between 30 to 60 mm SL. Interestingly, a similar phenomenon has been described in 

caterpillars, with eyespots only benefitting species that are larger in size (Hossie et al. 2015). In this 

caterpillar example, eyespots were actually a detriment to smaller caterpillar species, increasing their 

probability of being attacked/eaten. A comparable scenario may operate in coral reef fishes. Many small 

coral reef fishes in the families Gobiidae and Tripterygiidae do not have eyespots although these families 

are particularly speciose. Furthermore, the majority of species within these families do not reach lengths 

greater than 50 mm, making them some of the smallest fishes on coral reefs (Brandl et al. 2018). They 

are therefore of a size that is subjected to some of the highest predation rates on reefs (Goatley and 

Bellwood 2016). In this case, having purely cryptic colouration probably provides the most effective 

solution to avoiding predation at these smaller sizes (Lyytinen et al. 2004; Cortesi et al. 2016). An 

eyespot would presumably draw the attention of predators, as in the caterpillar experiment. 

The widespread loss of eyespots at 50 – 85 mm SL in multiple phylogenetically distinct lineages 

of reef fishes suggests that this loss is driven by strong selective pressure (Stevens 2005). Of the samples 

surveyed herein, only 3.58% of individuals possessed this marking above 150 mm SL. Interestingly, the 

size at which fishes start to lose eyespots coincides with a significant decrease in the mortality rates of 

fishes on coral reefs. Previous research has shown that 43 mm total length is an important transition 

point in mortality rates for fishes on coral reefs (Goatley and Bellwood 2016). Above this size threshold, 

predation pressure decreases substantially. The presence of an eyespot appears to reflect this threshold 

since eyespot presence decreases rapidly past this critical size. This narrow size window of eyespot 

presence (between 30 and 60 mm SL) offers support for the suggestion that eyespots in fishes may be 

functioning primarily as anti-predatory mechanisms, amongst other mechanisms (Gagliano and 

Depczynski 2013). 

The consistent eyespot loss through development strongly suggests that their presence (and 

consequently, function) is strictly size-dependent. If there were no costs in maintaining eyespots, they 
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would in theory persist throughout the lifetime of many species. Since this is clearly not the case, there 

must be consequences for maintaining this feature through adulthood. Transitioning from prey to 

predator may operate in some species, i.e. increasing crypsis as an adult. However, many reef fish 

species with eyespots as juveniles are not piscivorous as adults (e.g. all damselfishes and butterflyfishes; 

many wrasses). Clearly, there are strong selective pressures that constrain the presence of eyespots to 

moderately sized individuals. Investigating the fitness costs of eyespots for fishes offers a promising 

future avenue of research. 

Herein, we identify the factors that determine eyespots size and form in coral reef fishes 

(matching eye size and maximising the pupil) as well as evidence supporting a threshold associated 

with body size (the systematic acquisition then loss of eyespots through ontogeny). We show that 

eyespots have constraints that dictate how large the eyespot can become as well as the size of fishes 

that can utilise these markings. Our data highlights how certain factors can shape the appearance of an 

animal’s colouration, since an eyespot is clearly for small, not large, reef fishes. 
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Chapter 4: The influence of range overlap and symmetry in shaping 
the evolution of reef fish colouration 
Published as: Colour pattern divergence in reef fish species is rapid and driven by both range overlap 

and symmetry. Ecology Letters. (2018). 22 (1). 190 – 199. 

 

4.1 Introduction 

Signals that relay information about identity, like colouration, are important for the creation and 

maintenance of species boundaries. Often, these signals are heavily shaped by selective pressures. In 

particular, sexual selection can have a profound influence on the colouration of species (Panhuis et al. 

2001; Gray and McKinnon 2007). Numerous studies on birds, freshwater fishes, lizards and frogs have 

documented a choice for mates based on various aspects of colouration and pattern (Seehausen 1997; 

Figuerola and Green 2000; Reynolds and Fitzpatrick 2007; Bastiaans et al. 2014). Given enough time, 

this gradual selection pressure can shape the colouration of a species over evolutionary timescales and 

subsequently lead to the diversification of lineages (Seehausen et al. 1999). While sexual selection is 

well described in species that are sexually dichromatic (i.e. when males and females are visually 

different), active selection for certain visual attributes in the opposing sex can also occur in species that 

are sexually uniform in colour but exhibit assortative mating (Puebla et al. 2007; Whitney et al. 2018). 

Assortative mating can occur when an individual chooses a mate based on preferences for 

phenotypes that are similar to their own. Albeit more gradual, this process can also influence colouration 

and may lead to the divergence and reinforcement of colour patterns in separate lineages (Mavárez et 

al. 2006; Puebla et al. 2007; Reynolds and Fitzpatrick 2007). This process can be expedited if lineages 

develop in sympatry because they would have the potential to interact through the entirety of their 

divergence (Barluenga et al. 2006). This form of selection requires rapid differentiation of the phenotype 

and significant reinforcement, if that phenotype is to persist through time (Kondrashov and Mina 1986; 

Kondrashov and Kondrashov 1999; Marshall et al. 2002). 

The species recognition hypothesis posits that signals, like colour pattern, are important in species 

identification by conspecifics (Ryan and Rand 1993). Therefore, colour patterns are expected to be more 

different in closely-related species that co-occur geographically (i.e. exhibit a high degree of sympatry). 
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It is hypothesized that differences in colouration prevent hybridisation amongst sympatric species. If the 

signals are not sufficiently divergent, regression of the signal takes place and the species does not 

diverge. This concept of increased signal divergence in sympatric vs allopatric taxa has been widely 

documented, especially in studies focusing on mate song/call (Höbel and Gerhardt 2003; Seddon 2005; 

Lemmon 2009) and colouration (Reynolds and Fitzpatrick 2007; Martin et al. 2010; Doutrelant et al. 

2016). 

However, one aspect of how species distributions influence signal divergence that has received 

far less attention is the effect of range size. Termed “range symmetry” by Barraclough & Vogler (2000), 

it is defined as the relative difference in the total range area of two species. Range symmetry is necessary 

to include when analysing the extent of overlap because it gives context to the influence that genetic 

changes may have within a population (Barraclough and Vogler 2000). Genetic changes are more 

influential in populations with restricted size, thus allowing for quicker rates of differentiation in 

genotype and phenotype. One may therefore hypothesise that small range species with extensive overlap 

would display the greatest colour differentiation. Indeed, range symmetry has been shown, in some 

groups, to be a critical component that supports barriers to gene flow and drives signal diversification 

(Seddon and Tobias 2007; Malay and Paulay 2010). Therefore, the interplay of both range overlap (i.e. 

allopatry vs sympatry) and range symmetry (i.e. peripatry) is likely to contribute to resultant patterns of 

signal diversification, especially in taxa with highly variable range sizes such as reef fishes. 

Coral reef fishes exhibit exceptional signal diversity and possess some of the most complex and 

intricate colours and patterns found in the natural world (Marshall 2000a). However, due to the 

attenuation of light in water, aquatic environments dictate different colour pattern assembly rules when 

compared to terrestrial systems (Levine and MacNichol 1982; Marshall 2017). For example, blue and 

yellow are extremely common on coral reefs (Marshall et al. 2003), yet quite rare in terrestrial 

environments. For reef fishes, these colours serve a dual purpose of camouflage and signalling, 

depending on the context (Marshall 2000b). This combination of extreme colour diversity and differing 

rules makes coral reef fishes a prime study group to explore how signal divergence arises in marine 

ecosystems. 
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Historically, the study of colour patterns has proved challenging due to difficulties in objectively 

quantifying an organism’s visual appearance (Endler 1990). Colour quantification became possible with 

the advent of high-resolution spectrophotometers, which measure light reflectance at various 

wavelengths. However, studies incorporating patterns have had to rely on categorisation schemes based 

upon human constructs (cf. Kelley et al. 2013). While informative, they retain a level of human-induced 

bias. Research has shown that it is critically important to consider both colour and pattern when 

interpreting the function of an organism’s appearance (Phillips et al. 2017). Fortunately, recent advances 

in image-analysis techniques permit us to objectively describe colour patterns based on both colour and 

location (Van Belleghem et al. 2018). We are now able to quantitatively compare organisms in terms of 

both their colours and patterns simultaneously. Herein, colours and patterns are collectively termed 

colouration or colour patterns. 

Our goal, therefore, was to use high-resolution digital colour photographs of reef fishes to 

quantify colour patterns and explore how they are influenced by evolutionary processes. The genus 

Chaetodon was selected for study as they: 1) do not exhibit sexual dichromatism, 2) possess high levels 

of recent diversification and, 3) possess strongly contrasting colour patterns that are highly variable 

among species but highly conserved within species. This allows us to not only examine the role of 

colouration in the evolution of species that are sexually uniform in colouration, but to also test if trends 

observed in terrestrial and freshwater systems (Seehausen and Schluter 2004; Seddon 2005; Lemmon 

2009) hold true for the marine environment. Specifically, our goals are: 1) to examine how colour 

patterns change over evolutionary time, 2) to investigate the relationship between the extent of sympatry 

and colour pattern differences among recently diverged species-pairs; and 3) to examine the effect of 

range size symmetry on the extent of colouration differences between species-pairs. Terrestrial systems 

predict that colour patterns will diverge with increasing sympatry (Martin et al. 2010; Doutrelant et al. 

2016), a pattern which may be further accentuated by large differences in range size (Seddon and Tobias 

2007). This will be the first study to quantitatively evaluate this pattern in a marine ecosystem. 
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4.2 Methods 

Study group: Chaetodon 

Butterflyfishes (Family: Chaetodontidae; Figure 4.1) are a family of fishes found in tropical 

and temperate reef environments. The genus Chaetodon contains 89 nominal species (Eschmeyer et al. 

2018) of iconic tropical and sub-tropical reef fishes. This genus is relatively well known, with high 

resolution taxonomically, near-complete phylogenies and well documented distributions, many of which 

span the Indian and Pacific Oceans. Their high lateral body compression gives them ample body area to 

display bold colour patterns. Interestingly, the majority of species are comprised of three primary 

colours: yellow, black and white (with the occasional different accent colour). Colour patterns are highly 

conserved within species but vary remarkedly between species. Chaetodontids possess three peaks in 

their spectral sensitivities which are centred around 430, 490 and 530 nanometres (Losey et al. 2003; 

Marshall 2017); corresponding to blues for the two shorter wavelengths and green/yellows for the longer 

wavelength. It is likely that species within this family can detect the colour patterns of other 

Figure 4.1 Four butterflyfish species comprising two species-pairs. Allopatric species a.) Chaetodon 

speculum and b.) Chaetodon zanzibarensis; and highly sympatric species. c.) Chaetodon reticulatus and d.) 

Chaetodon meyeri. Photos with permission from François Libert. 
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chaetodontids, supporting the notion that colour patterns are influential in species recognition. These 

factors identify butterflyfishes as a promising group in which to study the evolution of signal divergence. 

 

Species-pair approach 

For identifying species-pairs, we used a published chaetodontid phylogeny with > 77% taxa 

represented (69 of 89 Chaetodon species) sampled from four mitochondrial and four nuclear gene 

regions (Cowman & Bellwood 2011). We identified 22 distinct species-pairs. A species pair was defined 

as two species who share a single common ancestor that is not shared with any other taxa based on our 

phylogeny. Of the 22 distinct species pairs, all current molecular and morphological information 

indicates that at least 17 of these pairs also represent direct sister-species. We utilised species-pairs as 

our sampling unit because they are the simplest group for comparisons and offer insights into the most 

recent divergence events. Only one species-pair was not included in the analyses as images could not be 

sourced that were of sufficient quality (C. robustus and C. hoefleri pair), therefore 21 species-pairs were 

analysed. Five images were used for each of the 42 focal species providing a sufficient number of 

replicates to accurately capture colour pattern variation within species (Dalrymple et al. 2015a), as well 

as any variation that may arise due to image quality. 

 

Image sources, selection criteria and colour calibration 

Images were compiled from various online image databases (Reef Life Survey, Fishes of 

Australia, FishBase, etc; all image details are listed in the Supporting Information). For initial selection, 

images were required to be in lateral view with adequate illumination to reveal the whole body. This 

meant the majority of photographs were taken using flash photography, the remainder being in well-lit 

positions. It must be noted that Chaetodontidae are exceptionally stable with regards to colour. Colour 

patterns are based largely on three, dominant colours in distinct, bold, blocks. It was this stability that 

was part of the reason for selecting Chaetodon for this study. For more variable coloured species, 

standardised photographs are likely to be particularly important. 
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A colour calibration procedure was performed using “patternize” (Van Belleghem et al. 2018) 

to establish the working RGB (Red, Green, Blue) centre points and thresholds for the colours of interest 

(yellow, black, white, and ‘other’, i.e. not yellow, black or white; Figure 4.2). These colours were 

chosen as they are the dominant colours found on most species within this family (Marshall et al. 2003). 

The fourth category, ‘other’, was incorporated to allow for variation due to other colours while 

preventing a single unique occurrence of one colour to bias dissimilarity calculations. Chaetodon 

fasciatus was chosen for initial colour calibration as it clearly exhibits the three focal colours: yellow, 

black and white. Five images were analysed from different sources, each representing varying degrees 

Figure 4.2 The initial colour calibration technique. a) Collect images of the calibration species; in this 

example, Chaetodon fasciatus. b) Establish colours of interest to be analysed. c) Run colour detection for 

each colour. The RGB centre-point and thresholds may need to be altered until images produce similar colour 

pattern heatmaps. d) Analyse colour areas for each image in a statistical framework, with χ2 goodness of fit. 

e) Once stabilised, test the framework with other species to validate among-species applicability. 
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of image quality. Colour values (the RGB centre point) and cut-offs (the RGB offset) were procedurally 

increased until images produced statistically identical colour areas and colour heatmaps (Figure 4.2c 

and 4.2d; RGB values and cut-offs are given in Supporting Information Table C1). When using these 

centre points and offsets, all five photos of this species produced non-significantly different images (χ2 

= 8.0795; p-value = 0.4393). These working values were then validated using multiple species to test 

their effectiveness in detecting between-species variation in colour patterns (Figure 4.2e). The principal 

coordinates analysis displaying five test species, with five test images each, shows strong species-level 

congruence (Figure 4.2e) except in C. fasciatus and Chaetodon lunula, which are a visually similar 

species-pair. 

 

Colour-pattern quantification 

Images were analysed for presence and distribution of yellow, black and white at 250,000 

locations across each image using the package “patternize” in R (Van Belleghem et al. 2018). After 

images were aligned using morphological landmarks (landmarks given in Supporting Information, 

Figure C1), colour detection was run on each image. The presence of yellow, black, white and ‘other’ 

colours were recorded based on our predetermined RGB and offset values. Patternize works by 

subdividing an image into a predetermined number of blocks. The greater the resolution requested by 

the user, the smaller in size and the greater the number of these blocks (Figure C2). Each block is 

effectively a variable that corresponds to a column in a data matrix, the rows being each image that is 

analysed. The value within each column for a specific image is either 1 or 0 depending on whether the 

colour being assessed is present or absent within each specific block. The algorithm moves procedurally 

from block to block, recording the presence or absence of the specified colour. The path it takes from 

block to block throughout the image is specific and occurs in the exact same manner for every 

subsequent image analysed. Since all images have been pre-aligned, meaning the morphological 

landmarks between them coincide, the order of blocks represents a specific pathway across the body. 

For example, if a colour is present in block 417 on image 1, but absent in block 417 on image 2, we 

know that the colour occurred  on fish 1 but not in the same morphological location on fish 2. In our 

analysis, we specified a resolution that sub-divides each image into 250,000 blocks. Therefore, the result 
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of our detection protocol was a matrix of 250,000 columns (these being the 250,000 blocks) and 210 

rows (210 rows = 210 images analysed = 5 for each of the 42 species). 

However, patternize can only record the presence of one single colour at a time. Therefore, the 

colour detection protocol was run three times, once for each of the three colours of interest. Whichever 

blocks received absences (i.e. they didn’t have yellow or black or white) across all three colours matrices 

were coded as our fourth ‘other’ colour category. Each colour matrix was converted to a unique 

alphabetic identifier that represents which colour it was told to detect (Y for yellow, B for black, etc). 

These were then combined to form a full colour-pattern matrix. The alphabetic identifier allows each 

colour to have an even contribution to the multivariate analyses, as numeric values would contribute 

uneven weights based on their size (full details in Figure C3). The full colour pattern matrix was 

analysed using Gower’s dissimilarity measure due to its compatibility with categorical data (Gower 

1971). This measure generates a dissimilarity value for each pair-wise comparison of every image to 

ever other image. This value ranges from 0, where images are completely identical, to 1, where images 

are completely different. Since we used five images for each species, there were 25 pairwise 

comparisons for each of the recently diverged species-pairs that were assessed. Therefore, a total of 525 

individual species-pair comparisons were recorded. Each of the 25 comparisons per species-pair were 

averaged, yielding a mean dissimilarity value representative of difference between colour patterns of 

each species-pair. 

 

Photograph ground-truthing 

To ensure the colour pattern dissimilarity between species-pairs was not a product of image 

quality, the mean within-species, between species-pairs and random-pair dissimilarities were compared 

using a one-way ANOVA with Tukey’s HSD post hoc tests. If our methods accurately capture variation 

between species, the mean within-species colour pattern dissimilarity should be substantially lower than 

the mean colour pattern dissimilarity between species-pairs or between random-pairs. Furthermore, we 

tested the influence of geographic location on colouration on a focal species to ensure it did not differ 

depending on the location in which the individual was photographed.  
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Statistical Analyses 

Mean species-pair colour pattern dissimilarity values were compared using phylogenetic 

generalised least-squares models in R (package ‘nlme’, Pinheiro et al. 2018). To account for non-

independence of species due to shared evolutionary history, a phylogenetic correlation structure was 

incorporated into the model. Since each observation represents the mean relative colour pattern 

difference between a species-pair, the tips of the phylogeny were collapsed to the node that represents 

the divergence of each species-pair. Therefore, our working groups (i.e. the tips on our phylogeny) were 

the nodes of each pair (Figure C4). 

Three variables were used to explain variation in species-pair colour pattern dissimilarity. The 

first was time of divergence, defined as the estimated time (Ma) when each species-pair diverged. These 

values were based on fossil-calibrated, mean ages in Cowman & Bellwood (2011). This was chosen as 

a form of null hypothesis testing which follows the assumption that colour patterns are merely a product 

of genetic drift and mutations. The second and third variables were range overlap and range symmetry. 

Species’ range size and location data were compiled from the IUCN Red List website (IUCN 2017). 

Range overlap and range symmetry between species-pairs were calculated following the methods 

established in Barraclough & Vogler (2000). Range overlap is defined as the area of overlap between 

two species divided by the area of the species with the smaller range. This value spans from 0 to 1. 

Range symmetry is defined as the range of the smaller clade divided by the total area of both clades. 

This value spans from 0.5, where ranges are equal in size, to approaching 0 where ranges are vastly 

different in size. Range overlap was subsequently multiplied by 100 to yield a percentage, and all 

explanatory variables were mean-centred to reduce the effects of collinearity. Models were generated 

that incorporated all possible combinations of variables and their interactions while simultaneously 

accounting for phylogeny (PGLS). The best fitting model was then chosen using  AICc and AICc 

weights (Akaike 1987; Wagenmakers and Farrell 2004). All analyses were conducted in R (R Core 

Team 2018). 
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4.3 Results 

Photographic ground truthing 

The mean within-species colour pattern dissimilarity was significantly lower than the mean 

between species-pair and mean random-pair colour pattern dissimilarities, with values of (mean ± 95% 

C.I.) 0.1648 ± 0.0061, 0.2340 ± 0.0062 and 0.2862 ± 0.0056 respectively (all significantly different, 

Tukey’s HSD post hoc test; details in Figure C5, Table C2). This validated the colour pattern 

quantification method as it displayed its ability to discern similar images (i.e. of the same species) and 

separate them from different images (i.e. compared to other species). Additionally, it shows that a 

species-pairs’ colour patterns are not generated via random processes, as they possessed colour pattern 

dissimilarity values significantly lower than the values observed when comparing random-pairs (i.e. a 

random comparison of two images from different species). We also found no geographic location effect 

on colour patterns within a species (Figure C6, summary statistics Table C3). 

 

Time of divergence effect 

Time of divergence was not deemed an important predictor of colour pattern dissimilarity between 

species-pairs, indicating no influence of evolutionary time on species-pair colour pattern divergence 

(model selection criteria in Table C4). While there is a slight positive relationship when only time of 

divergence is analysed, this relationship is non-significant (p-value = 0.1351, R2 = 0.0907; Figure 4.3, 

summary statistics Table C5). All models incorporating time of divergence as a predictor were not 

suited for describing colour pattern dissimilarity between species-pairs. 

The youngest species-pairs reached mean colour pattern dissimilarity within 1 million years; 

subsequently this level of dissimilarity is maintained. Four of the five highest species-pair dissimilarities 

were achieved in less than 1 million years. In extreme examples (e.g. C. kleinii and C. trichrous which 

possess the second highest dissimilarity between any pair), colour pattern differences were achieved in 

just over 300,000 years (highest posterior density interval = 0.0381 – 0.6883). Conversely, the third 

oldest pair, C. plebeius and C. bennetti, (mean age = 3.30 Ma; HPD interval = 2.217 – 4.49 Ma) are the 
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second most similar of all pairs. It appears that differences in colour pattern can occur rapidly, in the 

youngest of species-pairs, with no significant influence of time thereafter. 

 

Range effects 

Like time of divergence, there was no significant effect of only range overlap or only range 

symmetry. However, the model incorporating range overlap, range symmetry and their interaction was, 

by far, best suited for describing colour pattern dissimilarity between species-pairs. Only the interaction 

between range overlap and range symmetry was found to be significant (p-value = 0.0129, R2 = 0.349; 

Figure 4.3, summary statistics in Table C6). It appears there is a trade-off between the influence of 

Figure 4.3 The rapid differentiation of colour patterns among species-pairs. a) high levels of differentiation 

in C. kleinii and C. trichrous which separated approximately 300,000 years. b) minimum differentiation in 

C. speculum and C. zanzibarensis. c) high levels of differentiation in the oldest pair C. ephippium and C. 

semeion which diverged 3.96 Ma. Phylogenetic generalised least squares regression (PGLS - blue line) of 

time of divergence against species-pair colour pattern dissimilarity. The trendline with 95% confidence 

intervals shows a marginally positive but non-significant slope. Each point represents the mean colour 

pattern dissimilarity of the 25 individual pairwise comparisons for each species-pair. 
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range overlap and range symmetry on colour pattern dissimilarity between species-pairs. When ranges 

are of similar size (symmetry ≥ 0.4, n = 4), there is an increase in colour pattern difference with an 

increase in range overlap, i.e. species-pairs become more visually different within increasing sympatry 

(Figure 4.4a). However, if species-pairs have drastically different range sizes (symmetry ≤ 0.1, n = 5), 

there is an inverse relationship, i.e. colour patterns between species-pairs become more similar with 

increasing sympatry (Figure 4.4c). 

 

4.4 Discussion 

We found that colour pattern dissimilarity between species-pairs is significantly related to the 

interaction between range overlap and range symmetry. Butterflyfishes species-pairs that overlap more 

in their geographic range tend to have larger differences in colour patterns, but only when their ranges 

are symmetric (i.e. of similar size). At the mean level of range symmetry (symmetry > 0.1 and < 0.4), 

colour patterns are equally similar regardless of overlap. At extremely asymmetric range sizes, the 

pattern is reversed – highly overlapping species-pairs have the lowest colour pattern difference. 

When species-pair ranges are symmetric, our results are in broad agreement with much of the 

literature that has quantified signal divergence in terrestrial organisms (Seddon 2005; Bothwell et al. 

2015; Doutrelant et al. 2016). Furthermore, we show that this relationship also holds for the full 

organismal colouration, incorporating both colour palette and patterns, for an iconic group of coral reef 

fishes. However, we found a surprising, and previously undescribed, reversal when species-pairs with 

highly asymmetric ranges are included in the analyses. Additionally, colour pattern differences appear 

to arise shortly after species diverge regardless of the extent of sympatry. 

 

Colour patterns and time 

The rate at which species-pairs diverge in colour pattern is extremely fast when compared to 

morphological traits (Floeter et al. 2018). Since species-pairs must have diverged from the same 

common ancestor and chaetodontids lack colour polymorphisms, colour pattern dissimilarity at the time 
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of divergence must be near to zero. Yet, in just over 300,000 years, rapid divergence in colour patterns 

can occur. We observed some of the youngest species-pairs achieving greater colour pattern differences 

then the average difference of all species-pairs analysed. Similar rapid colour differentiation between 

Figure 4.4 Phylogenetic generalised least squares regression with 95% confidence intervals displaying the 

relationship between range overlap, range symmetry and species-pair colour pattern dissimilarity. 
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species-pairs has been reported in African cichlids (1 -2 million years, Smith & Kornfield 2002; Kocher 

2004). However, these are mouth-brooding, site-attached cichlids restricted to specific lakes. To see 

comparable changes in pelagic-spawning, reef fishes with geographic ranges spanning one- to two-thirds 

of the global tropics was most unexpected. 

Furthermore, there was no significant relationship between the difference observed between 

species-pair colour patterns and their time since divergence. Therefore, colours patterns are not merely 

a product of genetic drift and mutations. While time may influence colour patterns for some species in 

this matter, colour patterns are not exclusively driven by this phenomenon. Colour pattern divergence 

in birds has been shown to have the same disjunct relationship (Cooney et al. 2017). Two different bird 

Figure 4.5 Two examples of asymmetric range sizes. a) Peripheral speciation in C. trichrous (brown) vs. the 

widespread C. kleinii (yellow). The transparent brown and yellow areas help visualise the total geographic 

distribution of each species vs. reef-based occurrences denoted by the darker colours. The range area of C. 

kleinii is over 18x greater than the area occupied by C. trichrous. Although there is no overlap between these 

two species, their colour patterns are highly divergent. b) The entirety of C. ocellicaudus’ range (blue) is 

within the range of its pair, C. melannotus (green), yet they retain similar colour patterns; contrary to 

theoretical expectations. Photos with permission from François Libert. 
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datasets measuring the level of dichromatism between male and females of the same species displayed 

a similar slightly positive but non-significant relationship with time. While this does not represent the 

same scenario as that studied herein, (as one is comparing colour divergence between species and the 

other between sexes), both display a general disconnect between colouration and time. 

The ability for colour patterns to evolve rapidly may be a key factor underpinning the vast 

taxonomic diversity in coral reef fishes. Often, colouration is the only factor differentiating closely 

related species (McMillan et al. 1999). While these new colour-forms increase the visual complexity 

and perceived taxonomic diversity of coral reef ecosystems, they often contribute little to their functional 

diversity (Bellwood et al. 2017). Evolution of certain morphological aspects (e.g. teeth, gut, etc.) are 

often tightly linked to ecology (Bellwood and Choat 1990; Berumen et al. 2011). Colour patterns, 

however, may be more neutral in that there are potentially multiple options that can meet the basic  

evolutionary requirements allowing lineages to differentiate. Whether a diverging lineage develops 

spots or stripes may be irrelevant; the only important feature is that this colour pattern is sufficiently 

different from its congener. In effect, colour patterns may be an extreme evolutionary example of many-

to-one mapping (Wainwright et al. 2005) where numerous alternatives may deliver the same functional 

outcomes. 

 

Species ranges and their relationship to colour patterns 

Of the three explanatory variables investigated herein, geographic range overlap was by far the 

most likely to predict colour pattern dissimilarity. A pattern which is consistent with previous studies 

(Martin et al. 2010). Evolution offers diverging lineages two options: 1) to increase signal divergence 

thereby making species identity more easily distinguishable, promoting speciation, or 2) fail to increase 

signal divergence and regress back into the original form (Templeton 1981). C. reticulatus and C. meyeri 

are a prime example of colour pattern differentiation coinciding with overlap (Figure 4.1c and 4.1d). 

These two species co-occur throughout much of their ranges and, presumably through reinforcement, 

have vastly different colour patterns. This relationship between co-occurrence and signal divergence has 
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been shown repeatedly in frogs, birds and lizards, based on evidence from both sound and colour (Höbel 

and Gerhardt 2003; Seddon 2005; Bastiaans et al. 2014). 

Maximizing signal divergence where species co-occur is likely to be critically important for 

chaetodontids due to their heavy reliance on pair formation and strong territoriality (Roberts and 

Ormond 1992). Some species maintain territories that they aggressively defend to ensure dietary 

resources; often the level of aggression is dependent on the dietary speciality of the species (Righton 

and Mills 2006). In this context, having highly contrasted signals would make ecological sense, to 

prevent unwarranted aggression from species that may have different dietary needs. Additionally, 

having bold and brightly contrasting colour patterns that are highly differentiated from heterospecifics 

would permit effective visual communication over large distances (Marshall et al. 2003; Marshall 2017) 

whether defending areas of locating a partner. The common colours found on most individuals within 

this family further optimise conspicuousness thus enhancing the signals strength. Black and white are 

the most contrasted of all colours, while yellow is highly contrasted with blue, the ambient background 

colour found in coral reef ecosystems. Together, the use of these specific colours, and the strength of 

social/territorial structure, puts the divergence of these signals into perspective. Interestingly, defensive 

morphological traits in chaetodontids, like the dorsal and anal fin spines, have been show to follow axes 

driven by their pairing tendency and foraging strategies (Hodge et al. 2018). It appears that colour 

patterns may be reflecting a similar relationship. 

What was most surprising was the reversal of this relationship in species-pairs with highly 

asymmetric ranges. Asymmetry is commonly associated with peripheral speciation (Rocha et al. 2008; 

Hodge et al. 2012; Gaither et al. 2015). Often, this equates to allopatry (specifically, peripatry). In our 

study, this is exemplified by the non-overlapping species-pair C. kleinii and C. trichrous (Figure 4.5a). 

C. trichrous is endemic to French Polynesia, while C. kleinii possess an extremely broad distribution 

over 18 times greater than that of C. trichrous; spanning the entirety of the Indian and western Pacific 

Oceans. This pair possessed the second highest mean dissimilarity value between any pair, providing an 

example of large colour pattern changes likely associated with asymmetric peripatric speciation. 
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However, we found that when species-pair range sizes are highly asymmetric, yet also highly 

overlapped, there is a decrease in colour pattern dissimilarity (Figure 4.4c). Theory would predict that 

these highly overlapped, highly asymmetric species would have the most differentiated signals of all 

species-pairs that were analysed. This was not the case. There are a few potential explanations for the 

maintenance of these non-geographically delineated colour patterns. Firstly, fine-scale patterns may play 

a key role (Grether et al. 2015). For example, the spot on the caudal peduncle that differentiates C. 

ocellicaudus from C. melannotus (Figure 4.5b) could be important in species identities. Alternatively, 

UV-reflective colouration may be important (Siebeck 2004), although this is unlikely given the spectral 

sensitivity of chaetodontids (Losey et al. 2003; Marshall 2017). These minor colouration components 

and how they relate to the recognition of conspecifics warrants further attention. Secondly, and possibly 

more likely, other non-visual methods of species recognition may be more influential (McMillan et al. 

1999), like sound (Bowen et al. 2013; Tricas and Boyle 2014) and smell (Boyle and Tricas 2014). 

Indeed, repeated hybridization in colourful reef fish, i.e. those with highly differentiated colour patterns 

(Yaakub et al. 2006; DiBattista et al. 2012), including chaetodontids, points to the potential limitations 

of species boundaries based exclusively on colour (Gaither et al. 2014). Lastly, these species may be 

occupying different specific habitats within their shared geographic range. While at the global scale they 

appear to co-occur, there may be partitioning at the localised scale. Investigating more specific patterns 

of co-occurrence and overlap may shed light on the lack of colour patterns differentiation in species with 

shared geographic ranges. 

 

Future Directions 

By incorporating both colour and pattern, we can begin to explore the functional basis of 

organismal colour patterns. This new method of colour pattern quantification (Van Belleghem et al. 

2018) shows great promise and offers a first step towards more holistic colour pattern analyses. Our 

quantification of both colour and pattern in butterflyfishes revealed clear trends in the evolution of 

colour with rapid differentiation and the influence of geographic range components. We show support 

for the traditional paradigm of increased divergence in visual signals with increasing range overlap, but 
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only when range sizes are symmetric. The most surprising trend is a reversal of this relationship when 

ranges are highly asymmetric. 

Our findings contribute to an increasing body of evidence that suggests that the evolution of 

colouration, in relation to species distributions, may be quite conserved; operating consistently across 

numerous terrestrial and aquatic ecosystems (Puebla et al. 2007; Martin et al. 2010; Bothwell et al. 

2015). However, it is remarkable that butterflyfishes should exhibit such similarity to terrestrial species, 

especially as they arise in organisms with geographic ranges that span over half the global tropics. 
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Chapter 5: Fish communities on coral reefs are becoming less 
colourful 
 

5.1 Introduction 

There is often a strong link between and organism’s appearance and the environment in which it 

lives (Green et al. 2019; Hulse et al. 2020). Specifically, the local biotic and abiotic factors of an 

ecosystem strongly shape how and what function colouration serves (Endler 1992; Phillips et al. 2017). 

Whether the goal is to conceal one’s appearance from predators or to remain conspicuous to attract 

mates, the characteristics of the surrounding environment must be considered (Endler 1978; Marshall 

2000b). Interestingly, profound changes to the environment can induce equally profound changes in an 

organisms appearance and colouration (Seehausen et al. 1997; Fuller 2002; Camacho et al. 2020). 

Historically, researchers have approached colouration from an individualistic perspective, i.e. 

focusing on the individual or species, rather than on communities. This has often meant treating every 

organism’s colouration as independent samples and using analyses that describe how these may be 

similar or different to one another (Hemingson et al. 2020). While informative, it has left the field with 

a limited understanding of how communities use colour as a collective whole. Ecologists have used 

taxonomy (Warwick and Clarke 1991; Öhman et al. 1997; Hemingson and Bellwood 2020), morphology 

(Hulsey and Wainwright 2002; Mihalitsis and Bellwood 2019; Su et al. 2019) and more recently traits 

and functions (Villéger et al. 2008; Hemingson and Bellwood 2018; McWilliam et al. 2018), to describe 

the multidimensional nature of community data. However, colour as a community-level trait has 

received little attention although it is one of the most conspicuous features of many ecosystems, 

including coral reefs. 

From a community perspective, the diversity of colours found on coral reefs is striking (Alieva et 

al. 2008; Lapshin et al. 2015). The benthos on healthy coral reefs is dominated by numerous different 

colourful organisms, primarily corals. Intermittent patches of differing substratum types create a visual 

mosaic that is unrivalled by most other ecosystems. Fishes that inhabit coral reefs are equally, if not 

more, diverse in their colouration, and have consequently received much research attention (Marshall, 
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2000b; Marshall, Cortesi, de Busserolles, Siebeck, & Cheney, 2018). These complex and unique colours 

and patterns have been linked to a broad range of functions, from camouflage (Cortesi et al. 2015; Tyrie 

et al. 2015; Phillips et al. 2017), to communication (Cheney, Grutter, Blomberg, & Marshall, 2009; 

Hamilton III & Peterman, 1971; Marshall, 2000a), and maintaining species boundaries (Choat, Klanten, 

Van Herwerden, Robertson, & Clements, 2012; Hemingson, Cowman, Hodge, & Bellwood, 2019). 

Indeed, we have learned much about how colouration may function in various reef fish groups. However, 

we lack a broader understanding of the extent to which environmental factors may shape fish colouration 

on coral reefs, especially at a community or assemblage level. 

The relationship between fish colour and environment may be further altered by the drastic 

transitions occurring on coral reefs due to climate change. Human-induced stressors are severely 

impacting coral reef ecosystems, causing a transition from coral-dominated to alternative reef states 

(Nyström et al. 2000; Bellwood et al. 2004; Morais et al. 2020). Contemporary reefs are becoming 

increasingly characterised by non-coral substrata including turf algae, macroalgae, and coral rubble 

(Graham et al. 2015; Bellwood et al. 2019a). Marked changes have already been documented, in both 

the taxonomic structure of fish assemblages (i.e. what species are present, Bellwood, Hoey, Ackerman, 

& Depczynski, 2006; McClure et al., 2019) and in their traits (Richardson et al. 2018) or functional 

characteristics (Morais et al. 2020), following disturbances and environmental change. But how has this 

impacted fish colouration on reefs? 

Herein, we utilise a novel image-analysis approach to characterise the colouration of entire fish 

assemblages; the ‘assemblage colouration’. We then relate this directly to the environment in which the 

assemblage was collected. Furthermore, using a dataset that has tracked reef fish assemblages over 27 

years, we determine if assemblage colouration has changed in response to large-scale disturbance events. 

Specifically, we ask:  1) does reef fish colouration relate to the benthic configuration of the immediate, 

local environment? Essentially, does benthic composition shape the diversity of colours in resident reef 

fishes? And 2) have large-scale environmental disturbances (mass bleaching events) affected colour 

diversity through time? These questions will shed light on the role of environmental factors in shaping 
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the vast diversity of colours observed in coral reef fishes and how robust they are to environmental 

change. 

 

5.2 Methods 

Method development and habitat relationships 

This study is comprised of two major components: in the first component (Part A) we developed 

a framework for measuring and quantifying the colouration of an entire fish assemblage: the ‘assemblage 

colouration’. This was then used to examine how the local habitat characteristics (e.g. branching coral 

cover) correlate with the assemblage colouration measured as multidimensional ‘colour space’. The 

second component (Part B) applies this assemblage colouration approach to a 27-year time series that 

encompassed all four global bleaching events. This component aims to analyse how the assemblage 

colouration may have been impacted by major environmental disturbance events. 

 

Part A - quantifying ‘assemblage colouration’ 

We wanted to measure and quantify the collective appearance of an entire fish assemblage; 

namely its ‘assemblage colouration’. To do this, we first needed an approach that quantifies the full 

colouration of an organism, that is, measuring both the number of different colours present as well as 

their relative amounts on every individual. To do this, we used the colordistance library in R (Weller 

and Westneat 2019). Briefly, colordistance quantifies colouration by measuring the number of pixels 

on an image that fall within specified regions of the RGB colourspace. This procedure essentially creates 

a ‘colour thumbprint’ for every image by recording the relative amount of each colour in each image 

(for more details, see Weller & Westneat, 2019). 

These ‘thumbprints’ can then be compared using standard multivariate techniques because, when 

combined, they are simply a matrix of specific colours and their relative amounts on every image. To 

display similarities and differences between colourations, they can be visualised using a non-metric 

multidimensional scaling (NMDS) ordination. This NMDS plot displays the summarised, full 

colouration of numerous organisms. Within the plot, each organism’s colouration becomes a point. 
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Points that are closer together have similar colourations; points farther apart have very different 

colourations. 

With a biplot of colourations, we can now ask questions relating to the ‘assemblage colouration’, 

defined herein as the ‘collective colouration of a group of organisms from a single location’. Herein, we 

use two separate metrics to measure space use in the NMDS ‘colour space’; both of which have been 

well established in the literature: convex hulls and multivariate dispersion (Mouillot et al. 2013a). The 

convex hull is the smallest possible polygon in two-dimensional space that encompasses all points 

within a specified group. In our scenario (analysing colouration), this effectively represents the area 

encompassed by the most uniquely coloured species within an assemblage. The second metric, 

dispersion, measures the spread of points within this multivariate space – typically the average distance 

of all points from the centroid. A higher average dispersion means the colouration of organisms in that 

assemblage is, on average, more different looking. Details of these two metrics can be found in Figure 

D1. From here on, these metrics will be referred to as ‘colour-area’ (the convex hull) and ‘colour-spread’ 

(the multivariate dispersion). Furthermore, we establish one overarching measure of colour: the ‘faunal 

colouration’ i.e. the ‘collective colouration of all organisms surveyed’. While the assemblage 

colouration represents the colouration of distinct, sampling units (herein quadrats described in the 

following sections), the faunal colouration is the full colouration of all sampling units combined (all 

quadrats). Ultimately, these steps allow us to 1) characterise the full colouration of an individual, 2) 

compare them between individuals to note similarities and differences, and 3) quantify the assemblage 

colouration of a local assemblage and to compare this to the potential colouration of the total fauna. 

 

Study group 

We focus on small, site-attached reef fishes. This includes damselfishes (Pomacentridae), small 

wrasses (Labridae), butterflyfishes (Chaetodontidae), and groupers (Serranidae), as well as 

cryptobenthic reef fishes. Cryptobenthic reef fishes (Brandl et al. 2018) are small bodied, 

morphologically or behaviourally cryptic fishes that are a key component for the functioning of coral 

reef ecosystems (Brandl et al., 2019). These fishes are characterised by high site-fidelity and limited 
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movement (Nash, Welsh, Graham, & Bellwood, 2015) which allows for direct comparison with the 

habitat in which they live. Thus, this group of fishes offers an ideal assemblage with which to study the 

relationship between substratum types and fish colouration. For the sake of brevity, the general term 

‘cryptobenthic’ is used herein to include all the previously mentioned groups of fishes. 

 

Substratum and fish surveys 

Fishes and benthic images were collected from three sampling sites at Orpheus Island (18.6161°S, 

146.4972°E) in the mid-section of the Great Barrier Reef. Specific sampling locations were chosen to 

encompass varying levels of the six focal substratum types: structurally complex hard corals, massive 

and encrusting hard corals, soft corals, rubble, turf algae-covered reef matrix, and sand (Figure D2). 

The cover of each substratum type varied significantly between sites (Table D1) highlighting that a 

wide diversity of benthic configurations was surveyed. 

At each sampling location, a 1m2 PVC quadrat was placed onto the substratum. The quadrat was 

then photographed directly from above using a Nikon Coolpix W300; capturing the entire 1m2 quadrat 

in planar view. The quadrat was then enclosed in a 2mm mesh mosquito net and anchored to the benthos 

using a chain to completely seal off any gaps (image of collection technique in Figure D3). Two divers 

each applied 250 mL of diluted clove oil solution (a mixture of 15% clove oil and 85% ethanol) from 

hand operated spray bottles. The spraying continued until the netted area was completely exposed to the 

diluted clove oil solution. The mixture was left for approximately five minutes to ensure all fishes within 

the quadrat were anesthetized. Both divers carefully examined the quadrat collecting all fishes using 

forceps until no new fishes were found after approximately 3-5 minutes of intense searching. Following 

the dive, the fishes were placed in an insulated cooler filled with ice. Ethical and permitting permission 

allowed a total of 12, 1m2 quadrats to be sampled, which yielded a total of 139 fishes. Average 

abundance per quadrat was 11.6 individuals (range: 4 – 20) and average species richness was 6.25 

species (range 4 – 9) per quadrat. 
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Photography, image processing, and analysis 

The fish were immediately transported back to the lab and photographed. Photographs were taken 

using a Nikon D200 in raw format with the same camera settings (ISO: 400, f-number: 9, shutter speed: 

1/40 to 1/80). Specimens were submerged in a petri dish of saltwater on a white background, laid on 

their side and photographed laterally while illuminated with a white LED dissection lamp (mounted at 

45° to avoid reflection). To ensure all photos were colour-standardised, a colour standard slate (the X-

Rite ColorChecker Passport) was included next to the fish in all photos. This small slate contains 24 

different colour patches which cover most of the visible light spectrum, including white and black. This 

was later used to standardise all photos. 

Images were generally slightly under-exposed, so the exposure was increased by 1 exposure value 

in Adobe Lightroom (CC2019) to ensure the photographs accurately reflect each fish’s true colours in 

life. Since all fish were photographed using the same camera settings, increasing exposure on all photos 

applies the same correction to all images thus keeping them standardised. Once completed, all images 

were exported as .jpg files then colour standardised (Bergman and Beehner 2008) using the 

‘colorChecker’ function in the patternize library in R (Van Belleghem et al. 2018; R Core Team 2020). 

This function detects the RGB (red, green, blue) values in each patch on the colour standard within every 

image and compares it to the known RGB values of each patch as determined by the manufacturer. The 

algorithms within the function then make corrections to the various colour channels to rebuild each 

image to match the known colour values as close as possible. These steps ensure the colouration is 

accurate and standardised between specimens. 

After colour standardisation, images were imported back into Adobe Photoshop (CC2019) to 

remove the background. The fish in each image was cropped using the selection tool and pasted onto a 

solid, bright green background (specific RGB values: 64, 255, 0). This background colour is ignored 

when the colour detection protocol is run. It is therefore necessary to choose an extremely saturated 

colour not present in any of the fishes’ colours. The colouration was then analysed using the 

aforementioned procedure in colordistance (Weller and Westneat 2019). We chose to partition each axis 

of the RGB colourspace into 6 sections (double the default number dictated by colordistance) which 
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yielded a total of 216 possible colour categories that a pixel could fall within (6 sections per axis ^3 axes 

= 216). We utilised the chi-squared distance in colordistance to generate the colouration dissimilarity 

matrix. The dissimilarity matrix was then visualised using a NMDS and the colour-area and colour-

spread were then measured for the fish assemblage within each quadrat. 

The relative cover of the six focal substratum types were measured in each quadrat using ImageJ 

(Schneider et al. 2012). Some substratum types were combined to generate more comprehensive 

substrate groups based on different ecological hypotheses. For example, assuming that live corals may 

be important for colouration the category ‘live coral cover’ = ‘structurally complex hard coral cover’ + 

‘massive and encrusting hard coral cover’ + ‘soft coral cover’. 

Species richness was found to have a significant and positive effect on both colour-area and spread 

(Figure D4 and Table D2). Therefore, the residuals from this analysis were used in the subsequent 

analyses as the dependent variable to account for the confounding effect of richness. Multiple regression 

models were generated in which the explanatory variable was the cover of different substratum types 

and the response variable was species-standardised colour-area and colour-spread. The most 

parsimonious models were chosen using AICc and AICc weights. Furthermore, each variable’s 

predictive power (R2) was calculated to explore the substratum types (or combinations) that best explain 

variation in colour-area and spread. 

 

Part B – Temporal variation and disturbance effects 

We then examined if the assemblage colouration of cryptobenthic reef fishes was impacted by 

major environmental disturbances, most notably, mass coral bleaching events. To assess this, we 

quantified the colour-area of cryptobenthic fish assemblages in annual samples from Orpheus Island, 

Australia spanning 27 years. We utilised a long-term dataset of cryptobenthic fish assemblages in the 

same location and using the same technique as outlined above. This dataset started in 1993 (described 

in Bellwood et al., 2012, 2006), and encompasses all global bleaching events and multiple major 

cyclones that have severely impacted the reefs surrounding Orpheus Island. This includes the first 
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recorded global mass coral bleaching event in 1998 that was responsible for a complete shift in the 

structure of local cryptobenthic fish assemblages (Bellwood et al. 2006). 

The fish abundances in this dataset were used to calculate assemblage colourations through time. 

Simply put, the colouration NMDS plot (displayed in Figure. 5.1) created in Part A was used as a ‘key’ 

to calculate colour-areas based on the abundances present in the long-term monitoring dataset (for 

specific details, see the Supporting Information, Figure D7). Using this approach, we could recreate 

each year’s cryptobenthic assemblage colouration and quantify changes through time and in response to 

disturbances. A generalised additive model (gam) was used to visualise changes in the colour-area 

between years since relationships may be non-linear. Given the exceptional focus of humans on 

‘desirable’ or ‘attractive’ yellow-coloured fishes (Tribot et al., 2018, 2019), we also examined the 

relative abundance through time of species that occupy the yellow-green component of the faunal 

colouration. 

All analyses were conducted in R (R Core Team 2020). The specific libraries used were patternize 

(Van Belleghem et al. 2018) and colordistance (Weller and Westneat 2019) for image analysis, dplyr 

(Wickham et al. 2020) for data manipulation, mgcv (Wood 2011), betareg (Cribari-Neto and Zeileis 

2010), emmeans (Lenth 2020), and vegan (Oksanen et al. 2019) for model fitting and testing, and ggplot2 

for visualisation (Wickham 2016). 

 

5.3 Results 

Part A: visualising reef fish colourations 

The NMDS of fish colouration could accurately discern differences between species and among 

individuals within species with a high degree of accuracy (Figure 5.1, stress = 0.12). The distribution 

of colourations followed three primary axes: those comprising large amounts of dark colours (e.g. blacks 

and dark browns), those comprising large amounts of light colours (light browns and greys), and those 

with predominantly yellows. The edges of the full convex hull, the faunal colouration, were defined by 

species with unique appearances defined by ‘bright’ colours, like Gobiodon histrio, Paragobiodon 

xanthosoma, Neamia octospina, and male Enneapterygius atrogulare. The convex hulls of each species 
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generally occupied their own, distinct, areas in the NMDS with limited overlap between species (Figure 

D5). 

 

Habitat relationships 

The colour-area and colour-spread of each assemblage colouration differed markedly among 

quadrats (Figure D6). The least colourful quadrat (quadrat 12) only occupied 3.6% of the area of the 

full faunal colouration. The quadrat with the largest assemblage colouration (i.e. the most colourful 

quadrat; quadrat 9) occupied over half of the full faunal colouration (52.6%) and was almost 15 times 

larger in area than the least colourful quadrat. On average, assemblage colourations occupied 

approximately a quarter of the area of the full faunal colouration (26.7% ± 4.4 [standard error]). Colour-

spread yielded almost identical results among quadrats (details in Appendix D). 

Figure 5.1 The ‘faunal colouration’ of cryptobenthic fishes at Orpheus Island. The non-metric 

multidimensional scaling (NMDS) ordination displays the diversity of fish colourations. Stress = 0.12. All 

individuals that were collected (n = 139) have been plotted. The grey, shaded area is the faunal colouration 

(the full convex hull area) of all individuals analysed. The species hulls for Pomacentrus moluccensis, 

Pleurosicya sp., Asterropteryx semipunctata, and Neopomacentrus bankieri have been delineated (all species 

hulls available in Figure D5). On the right are the vectors of the most common colours driving the 

distribution of individuals (and species) within multivariate colourspace. 
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There were strong, significant, linear relationships between the cover of certain substratum types 

and the assemblage colourations of cryptobenthic fishes. Structurally complex coral cover (structurally 

complex hard coral cover and soft coral cover combined) was the best factor to explain assemblage 

colouration areas (adjusted R2 = 0.67, p-value < 0.001, Figure 5.2a, Table D3) and the second-best 

factor to explain colour-spread (adjusted R2 = 0.43, p-value =0.012, Figure D8, Table D4). In both 

models, structurally complex coral cover displayed significant and positive relationships with both 

metrics (Table D5). Inversely, the total cover of rubble & turf-covered reef matrix was the best model 

to explain colour-spread (adjusted R2 = 0.43, p-value = 0.012, Figure D8, Table D4) and the second 

best to explain colour-area (adjusted R2 = 0.64, p-value =0.001, Figure 5.2b, Table D3). For both 

metrics, turf & rubble cover displayed significant negative relationships. Our results were strongly 

supported by additional permutation tests which assessed the robustness of our findings (Figure D9). 

Simply put, as structurally complex coral cover increases, so does the total range (area) and difference 

(spread) of colours present in cryptobenthic fish assemblages. Inversely, as rubble and turf area increase, 

there is a contraction of colour-area and fishes begin to have more similar colourations. It is important 

to note that these relationships are after accounting for known differences in species richness among 

quadrats. 

The different substratum types showed considerable variability in their ability to predict colour-

area and spread. Complex coral cover and turf & rubble area were the two best fitting variables with R2 

values >0.60. All other substratum types goodness-of-fit values (R2) decreased gradually in their ability 

to predict species-standardised colour-area and spread (Figure D10). Interestingly, the worst predictor 

was massive & encrusting coral cover, possessing an R2 of 0.03 for both colour-area and spread. Both 

relationships were non-significant. 

 

Temporal changes 

Applying the above assemblage colouration approach to the time-series, we found that the 

assemblage colour-area occupied by cryptobenthic fishes varied substantially from year-to-year 

throughout the 27-year sampling period (Figure 5.3a). The largest change was a drastic decrease in 
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colour-area following the 1998 mass coral bleaching event. This bleaching event was responsible for a 

>30% decline in colour-area. The following five years (2000 – 2004) showed a gradual recovery back 

Figure 5.2 The relationship between substratum type and the colour-area of the assemblage colouration, i.e. 

all species within a single quadrat. A quadrat with high structurally complex coral cover (a. left) and a 

quadrat completely covered in rubble and reef matrix (a. right). The linear regressions ± 95% confidence 

intervals display the relationship between colour-area and the cover of structurally complex corals (b. left) 

and turf and rubble (b. right) per quadrat. The specific quadrat in a. has been highlighted with the arrow in 

each regression. The assemblage colouration from a given quadrat (c. pink and pale green) is compared to 

the faunal colouration i.e. all individuals collected (grey). 
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to pre-bleaching levels. Interestingly, if these five, post bleaching and recovery years are removed from 

the analysis, the best fitting gam model actually becomes a non-significant linear model (Figure D11, 

Table D6). This further suggests that there is a consistent, baseline assemblage colouration inherent to 

cryptobenthic fish assemblages at Orpheus Island, and that this baseline was severely impacted by the 

’98 bleaching event. 

Although assemblage colouration areas appear to have recovered to pre-’98 bleaching levels, the 

extreme parts of this area are being supported by increasingly fewer individuals, especially in the area 

occupied by yellow and green fishes. Pomacentrus moluccensis, Gobiodon histrio, and Paragobiodon 

xanthosoma are the only predominantly yellow and/or green fishes and consequently, they are the only 

species that constitute the top right-hand ‘yellow’ section of the colour-area (representing approximately 

29% of the faunal colour-area; Figure D12). The abundance of these three focal species has decreased 

significantly over the last 27 years. A negative binomial regression had a significant and negative 

relationship (R2 = 0.39, p-value < 0.01, Table D7) between the year surveyed (explanatory variable) 

and the annual abundance (response variable; Figure 5.3b). Prior to the 1998 bleaching, the average 

abundance of these three species was 18.1 ± 3 individuals per 7m2. Post bleaching, there was over a 70% 

decline to just 4.8 ± 1 individuals per 7m2. 

 

5.4 Discussion 

There is a clear relationship between the substratum type and the colouration of the associated 

cryptobenthic fish assemblage. As the cover of structurally complex corals increases, so does the 

diversity of colours present on fishes that reside in and around them. Conversely, as the cover of turf 

and rubble increases, the diversity and spread of colours contracts to a more generalised, uniform 

appearance. Furthermore, long term data suggests that assemblage colourations respond negatively to 

major environmental disturbance. Although the total colour-area has recovered in recent times, this 

colour-area is becoming increasingly fragile; with outlying areas supported by fewer and fewer 

individuals every year. This is particularly marked for the more attractive yellow species. These findings 

provide direct evidence that the state of the reef benthos is critically important for supporting the 
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diversity of colours seen on the fishes that live on reefs, and that Anthropocene reefs are becoming less 

colourful and ‘attractive’ in terms of fish colours. 

 

Figure 5.3 Changes in cryptobenthic fish assemblage colourations over 27 years. a) the annual colour-area 

through time. The dashed line represents the 1998 global coral bleaching event which is followed by a major 

decline in the colour-area of fishes for multiple years until recovery in 2005. b) the decrease in abundance of 

yellow and green coloured fishes. The negative binomial regression model of the abundance (rounded to nearest 

whole number per 7m2) tracks the decline in these three, colourful species through time. 
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A new paradigm: ‘assemblage colouration’ 

The use of assemblage colouration – the colour composition of an entire local assemblage – enable 

us to analyse the full, multivariate nature of colouration and offers much promise for future studies. 

Using concepts developed by community ecologists (Villéger et al. 2008; Mouillot et al. 2013b) the 

notion of assemblage colouration moves beyond individual colouration to consider the measurement 

and description of a full group of organisms, in concert. Furthermore, differences can be observed 

between species as well as between individuals within a species. Our analysis revealed clear differences 

between the colouration of both individuals and species with a high level of accuracy (demonstrated by 

the low stress values; Rabinowitz, 1975). The vectors from the NMDS also show the specific colours 

most responsible for driving the distribution of colourations within an assemblage allowing for further 

inferences to be made about important colours. The colourations of fishes we collected followed three 

primary axes: darks, pales, and yellows. Interestingly, these three colour axes are the same principal 

colour axes in other reef fish groups (Hemingson et al. 2019). 

 

‘Assemblage colouration’ through space and time 

In recent times, coral reefs have changed profoundly. Human-induced stressors, especially global 

warming due to climate change, have caused widespread reconfiguration of coral reefs (Graham et al. 

2015) with the loss of many temperature-sensitive coral taxa such as branching Acropora spp. and soft 

corals (Hughes et al. 2017). These species are often the first to bleach and die when exposed to increased 

temperatures. Future reefs are likely to have increased cover of algal turfs and rubble and a higher 

relative cover of temperature-resistant coral species such as massive Porites (Bellwood et al., 2019). 

Our evidence strongly suggests that turf & rubble dominated reefs are likely to support smaller colour-

areas, but critically, that encrusting and massive coral types, like massive Porites, do not mitigate against 

this effect since they displayed no significant relationship with colour-area or spread. Unfortunately, 

this means that the corals that are most capable of surviving the immediate impacts climate change are 

unlikely to maintain the diversity of colours currently supported by coral reefs. Fish assemblages on 

future reefs are likely to be a duller version of their previous configurations. 
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In this context, the long-term data from Orpheus Island enables us to directly test the impact of 

the first recorded mass bleaching event on fish colours – a bleaching event that had a major influence 

on fish assemblages at this location (Bellwood et al. 2006). We found that the assemblage colouration 

of reef fishes responded quickly to large scale environmental disturbance. The assemblage colouration 

showed a clear decline in response to the severe bleaching event that occurred in 1998. During this 

event, there was widespread coral mortality responsible for marked decreases in the amount of live coral 

cover present on impacted reefs (Bellwood et al. 2012). This event also triggered significant changes to 

many of the fish communities present on impacted reefs (Booth and Beretta 2002; Bellwood et al. 2006). 

However, our data show a recovery of the assemblage colouration in the following five years, returning 

to the ambient, pre-bleaching levels. This may be a product of the gradual recovery of coral abundance 

following the bleaching event (Bellwood et al. 2012). 

While this initially offers hope that the colouration, and the underlying attractive appearance of 

reefs is resilient to coral loss, a more detailed look into the make-up of the fish assemblage highlights 

the need for caution. The 1998 bleaching event was responsible for profound changes in the 

cryptobenthic and site-attached fish assemblages at Orpheus Island (Bellwood et al. 2006, 2012). 

Although most species are still present in samples, the abundance of various species have changed 

markedly. This is particularly evident in the abundance of the only yellow and green fishes collected in 

our quadrats: P. moluccensis, G. histrio, and P. xanthosoma. These three fish species are responsible for 

occupying a large and unique portion of the yellow-green colour-area; an area that is of direct aesthetic 

interest to humans (Bellwood, Hemingson, & Tebbett, 2020; Tribot et al., 2019). While these species 

are still present, they have declined in abundance by two-thirds over the last 30 years. Unfortunately, 

the total assemblage colouration does not reflect this decline until it is too late (colour-area is maintained 

until the last outlying individual is lost). Ongoing declines (exacerbated by further disturbance events) 

are likely to lead to a complete loss of these brightly coloured species and consequently, to large losses 

in the assemblage colouration. Thus, the assemblage colouration post-bleaching is becoming 

increasingly vulnerable to future disturbance and change. 
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Implications for future reefs; a social-ecological perspective 

Many of the aesthetic values human place on coral reefs are associated with the diversity of forms, 

shapes, and colours (Marshall et al., 2019; Tribot et al., 2016). It has recently been shown that research 

on coral reef fishes is biased (likely unknowingly) towards brightly coloured, yellow fishes which are 

studied more frequently than expected, even after accounting for local abundance and species richness 

(Bellwood et al. 2020). Furthermore, brightly coloured, yellow reef fishes are given greater aesthetic 

value when compared to duller and darker-coloured species (Tribot et al., 2018). Many brightly coloured 

reef fishes are often highly coral-associated, like the three species described herein. The continual 

decline in coral cover on reefs (Bellwood et al. 2004; Bruno and Selig 2007) is likely to negatively 

impact many of these species. Outside of their more fundamental values like the provision of 

consumable protein, humans place great value on the aesthetic properties and recreation that coral reefs 

provide (Costanza et al., 1997; Marshall et al., 2018). Reefs have already experienced precipitous 

declines in value which is unrivalled by any other ecosystem (Costanza et al. 2014). Loss of these 

colourful species may underpin a broad range of human responses, including grief (Curnock et al. 2019). 

So, are degraded coral reefs less colourful? At a small spatial scale, the absence of structurally 

complex corals results in a smaller colour-area, so yes. Over a 27-year period, there was a marked 

decrease in the assemblage colouration following the ’98 bleaching event, so initially - yes. And despite 

the recovery of assemblage colouration long-term, the abundance of yellow and green coloured fish 

which are ‘attractive’ has fallen by two-thirds – so again yes. In all three cases, reefs do appear to be 

becoming less colourful and thus, likely less attractive to humans. 

 

Conclusions 

We demonstrate that the colouration of reef fishes has an intrinsic link to the environment in 

which they live. High coral cover facilitates a broad diversity of colourations. As structurally complex 

coral cover is lost and replaced by turf algae and rubble, the colouration of fish assemblages become 

increasingly restricted. Crucially, this loss of colour occurs both spatially and temporally, in response to 

severe coral bleaching events. Our findings suggest that reefs may be at a critical transition point and 
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might be poised to become much less colourful in the coming years. The loss of these colourful fishes 

may not have a huge impact if we are assessing reefs through a functional or ecological lens (Tribot et 

al. 2018; Bellwood et al. 2019b), but in a human context, these aesthetic changes represent the loss of 

an important and culturally significant, ecosystem service (Marshall et al. 2018a; Pert et al. 2020). 
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Chapter 6: A practical guide to analysing colours and patterns in 
biology: integrating theory, principles, and practice 
 

6.1 Introduction 

Understanding the role of colour has remained a central focus in evolutionary and ecological 

studies. An organism’s colouration (the combination of both colours and patterns) often has an intrinsic 

link to its life history strategy; dictating how it behaves and interacts within its environment. Colouration 

can facilitate species boundaries (Puebla et al. 2007; Hemingson et al. 2019), aid in mate selection (Hill 

1990), or provide crypsis from predators (Endler 1980). Therefore, colouration is critical to the success 

of both the individual and the species. Researchers and naturalists alike have been fascinated with the 

intricacies of animal colouration since the times of Darwin and Wallace (Darwin 1859; Wallace 1877; 

Caro 2017). However, the physical properties that create colouration can make it a difficult subject to 

study (Endler 1978). How light behaves and interacts within an environment is extremely context 

dependent. Furthermore, how this light is then perceived by a viewer makes this seemingly simple field 

rather complex (Endler 1990). 

Darwin and Wallace would be impressed with the progress that has been made in objectively 

quantifying organismal colouration (Endler 1978, 1990). Historically, descriptions of colouration were 

both context and viewer dependent, which, as noted by Longley (1917), “…is crude; allowance for the 

personal equation of the observer must be large”. The advent of spectrometers allowed for more physical 

descriptions of light, and consequently colour, to be made. These instruments operate by detecting the 

intensity of electromagnetic radiation at various wavelengths, giving a measure of reflectance via a 

wavelength distribution (Endler 1990; Johnsen 2016). While this is by far the most accurate method for 

characterising the colour of an object, it does possess setbacks. Reflectance spectra must be remeasured 

for each specific colour of interest (Marshall et al. 2003), making it both labour and equipment intensive. 

Additionally, and more importantly, they fail to provide any objective description of patterns, leaving 

this to the interpretation of the viewer. 
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Patterns are quite simply the arrangement of colours in a spatial context. Due to their abstract 

nature and unlimited possibility of combinations, their objective description has historically remained 

even more difficult than the evaluation of colours. Yet patterns remain critically important when 

considering the visual appearance of an organism and its functional implications (Phillips et al. 2017). 

Patterns provide camouflage (Umeton et al. 2019), aid in selection for mating purposes (Kodric-Brown 

1985; Eakley and Houde 2004), and facilitate waring colouration (Maan and Cummings 2012; Caro and 

Ruxton 2019). Quite simply, patterns give colour context. Therefore, it is often critical to consider both 

colour and patterns when assessing an organism’s visual appearance (termed colouration herein, i.e. the 

combination of colour and patterns). 

However, it is becoming increasingly apparent that most organism’s visual systems are 

substantially different from our own (Osorio and Vorobyev 2005, 2008). An organism’s vision can differ 

in either the colours they perceive (Kelber et al. 2003) or how detailed they visually resolve their 

environment (Caves et al. 2018). Since colouration provides a medium by which signals are sent, 

research investigating these signals often needs to account for how this signal is received (Endler 1992; 

Caves et al. 2016). Through dedicated research, we are beginning to have a more nuanced understanding 

of the specific visual capabilities of many organisms (Losey et al. 1999, 2003; Osorio and Vorobyev 

2008). Incorporating this aspect into research is allowing us to better understand the complex trade-offs 

in the roles of colours and colour patterns. 

The study of biological colour is currently benefitting from the combination of eloquent and 

informed research design and brute-force computing. Through the advent of open-source programming 

languages, like R, many new, freely available computational resources have arisen in recent years. These 

new resources are incredibly powerful and allow researchers to ask and answer questions that previously 

were not possible. However, each technique or application possesses its own strengths and weaknesses, 

answers specific questions, and requires time to learn and master. 

Herein, I present an overview of the recent tools that have become available and the steps 

necessary to effectively quantify and interpret full organismal colouration (colours + patterns). The goal 

of this review is to provide a starting point for researchers entering the field of biological colouration. 
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First, it details some key considerations that need to be addressed when photographing organisms. It 

then provides an overview of what resources are available to measure and characterise colours and 

colour patterns from digital images. Finally, it demonstrates how these various techniques can be 

brought together and describes their potential applicability and future directions for holistic colour 

pattern studies. The tools and resources covered will primarily focus on image analysis techniques, as 

these are the methods that have seen the most recent growth. My overall aim is to provide a resource for 

beginners and experts alike to help design, develop, and conduct studies on biological colouration using 

new techniques in a rapidly growing field. 

 

Colours or patterns: which to study and why? 

An organism’s colouration is comprised of two components: individual colours and pattern. 

Colours are the specific wavelengths of light reflected or emitted while patterns are how these colours 

are arranged spatially on a surface or object; i.e. their spatial geometry (Endler 1978). Without pattern, 

colours often lack context, and consequently would likely not serve their intended function for many 

organisms (i.e. camouflage; Phillips et al., 2017; Umeton, Tarawneh, Fezza, Read, & Rowe, 2019). The 

nature of the research question being asked strongly determines if patterns need to be considered when 

analysing colouration (Figure 6.1). As a rule of thumb, questions involving physical, chemical, or 

biological properties of colour often do not require the inclusion of pattern. For example, analysing how 

well a certain of shade of black absorbs light to assess thermoregulation does not need pattern data. 

Figure 6.1 The importance of considering patterns. These two fish species (left – Dascyllus aruanus and 

right – a hypothetical species) possess identical colours. If only colour was measured, no distinctions would 

be made between these two individuals. When pattern is considered, there are clear differences that can (and 

do) affect their ecologies. 
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However, behavioural and ecological questions often need to include pattern as they typically involve 

how organisms are perceived by others or how well they match their environment (e.g. Tyrie, Hanlon, 

Siemann, & Uyarra, 2015). For example, how easily a prey species can be detected by a predator would 

need to include both colour and pattern since the predator would be viewing the prey in its entirety 

against a background (Green et al. 2019). 

 

6.2 Methodological Approaches 

Digital images are the primary means of obtaining full organismal colours and patterns for 

analysis. Digital images allow for large quantities of information to be collected in intuitive formats that 

are easily visualised. However, their ease of collection can lead to simple yet significant problems unless 

care is taken from the outset. Many so called ‘point-and-shoot’ cameras (entry level cameras) 

automatically alter photographs; either by adjusting the colour, contrast, or white balance in a permanent 

and irreversible manner. Often these cameras increase the ‘saturation’ of the photo which boosts the 

colours to make the image appear more vibrant (Figure 6.2). While this processing may make 

photographs look more appealing to the human viewer (more colourful and brighter), they do not 

accurately represent the true colouration of the organism or scene. Furthermore, these in-camera 

transformations make it almost impossible to recreate the native light environment in which the 

photograph was captured (Stevens et al. 2007; Akkaynak et al. 2014). 

Quite obviously, these transformations are detrimental when the goal is to quantitatively compare 

colour patterns between subjects or images in a standardised manner. It is therefore paramount that the 

camera being used is capable of shooting in a ‘raw’ format. Raw is a colloquial term that refers to 

uncompressed image file formats. This format is the closest a camera can get to capturing a ‘true’ 

representation of a scene or object. The widely used .jpeg file type is a compressed format, meaning 

some of the image data is deliberately discarded to reduce file size. Although these changes are not often 

noticeable to the naked eye, it makes this file type unfavourable for image science (Akkaynak et al. 

2014). For a comprehensive guide to using digital cameras to study biological colouration, see Stevens 

et al. (2007) and White et al. (2015). 
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Standards are used to ensure colour consistency between images. Grey and colour standards are 

small slates that contain patches of different colours that intentionally vary in their brightness and hue. 

Grey standards only contain a neutral grey colour of known reflectance whereas colour standards contain 

multiple colour patches designed to cover the full visible light spectrum (Figure 6.3). The standard is 

included in the image alongside the subject being photographed. Afterwards, the standard is used to 

adjust/correct the colours within an image to accurately resemble the colours of the subject in life. To 

work effectively, standards need to be the same distance from the camera as the subject and receive the 

same amount of light. Including a colour standard in every image is the most reliable way to ensure 

colour consistency between images. The most popular commercially available colour standards are the 

X-Rite ColorChecker Passport and ColorGauge Analyzer which work well in biological applications 

Figure 6.2 How various photographic properties can alter an organism’s appearance. The top row is the 

same image of Neamia octospina (with the background removed) that has been altered in various ways. The 

middle row shows the RGB values of 100,000 randomly sampled point from each fish. The bottom rows show 

the number of pixels that fall into 8 major colour categories determined by splitting the RGB colour space 

into 8 cubes of equal area. a) an image in the common .jpg file format displaying extreme colour 

manipulation performed in-house by the camera. In this example, the subject is extremely red; much more 

than is typical in life. b) the raw image of N. octospina, however the image is severely underexposed making 

the subject appear much darker. c) the same subject but overexposed. d) properly exposed, and e) a properly 

exposed and colour corrected image; the desired product for all images. The histogram has slightly changed 

from d), reflecting minor differences in the colour of the fish due to correction protocol. 
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(Bergman and Beehner 2008; Westley et al. 2013). These standards come with software to aid in the 

colour correction process, however libraries within R (patternize; Van Belleghem et al., 2018) offer 

freely-available functions to correct images using either of these standards. 

 

Platforms for analyses 

Currently, there are multiple software platforms that conduct biological colour pattern analyses. 

The most supported platforms are R (R Core Team 2020) and ImageJ (Schneider et al. 2012) which are 

both freely-available and open-source. Each platform has unique packages/addons that have been 

designed to meet specific needs. Depending on your research question, it may be necessary to use 

multiple platforms for their unique applications. Generally speaking, the add-ons and tools available in 

ImageJ are strictly for processing or measuring images prior to any statistical analyses. For example, 

converting an image of a flower to mimic how it would be seen by a Bumble bee both in terms of spectral 

sensitivities and acuity (Van Den Berg et al. 2019). ImageJ has the advantage of providing a graphical 

user interface (GUI) which makes it relatively easy to navigate. Most of the resources in R involve 

assessing and comparing images, after processing (Caves and Johnsen 2018; Van Belleghem et al. 

2018). R’s strength is that further statistical analyses on the colour data (like a generalised linear model) 

are relatively easy. Matlab and Python have the same functional capabilities of R and ImageJ (if not 

more) but lack many of the user-friendly packages and addons. Using these platforms will require a 

much greater proficiency and knowledge of programming as most functions will need to be written 

manually. A current list of available methods, their description, and platforms on which they are 

available is listed in Table 6.1. 

 

An overview of the resources available 

Following is a brief summary of the current resources available for colour pattern processing and 

analysis. The resources have been categorised largely based on whether they: A) are used for image 

processing prior to measurements and analysis, B) aim to compare only the colours within and between 

images, or C) analyse both colour and pattern within and between images. It is important to note that 

within each of the three categories (A, B, and C), there are techniques that either do or do not analyse 
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Table 6.1 The current resources available for assessing biological colouration. For more details, see Mason and Bowie (2020) or the original publication. 

 

Technique/Approach 
name Description 

Resource 
Provided Platform/Language Reference 

Overall Pattern 
Contrast Overall comparison of colour pattern differences  - - Endler and Mielke 2005 

Adjacency Analysis 
Assess transitions between different colours along a 'transect' across the 
image being studied - 

MatLab or R (not 
explicitly stated) Endler 2012 

Boundary Strength 
Analysis 

Combines geometry of pattern edges with receptor-noise estimates of 
boundary intensity - Matlab or ImageJ 

Endler et al. 2018, van 
de Berg, 2019 

NaturePatternMatch Program to compare patterns between images. 
Stand-alone 
program c++ 

Caswell-Stoddard et al. 
2014 

PAVO & PAVO 2.0 

Analyzes spectral data and performs k-means clustering on image 
colouration. Has capacity for plotting in different colourspaces, visual 
modelling, measuring colour distances and performing adjacency and 
boundary strength analyses. R package - 'pavo' R Maia et al. 2019 

Quantitative Colour 
Pattern Analysis 
(QCPA) 

Provides a wide suite of functions available for the processing and 
interpretations of images explicitly from the viewers perception. Includes 
visual modelling, Local edge intensity analysis, colour adjacency and 
boundary strength, and visual contrasts 

MICA toolbox 
plugin ImageJ van de Berg et al. 2019 

Patternize 
Objectively analyses both colour and pattern to quantify colour pattern 
variation between individuals 

R package - 
'patternize' R 

Van Belleghem et al. 
2018 

ColorDistance 
Objectively analyses colour variation between individuals. Supports 
multiple different dissimilarity measures as well as colour spaces 

R package - 
'colordistance' R 

Weller and Westneat 
2019 

PAT-GEOM 
Measures specific aspects of pattern, including shape, directionality, and 
distribution, amongst others 

PAT-GEOM 
plugin ImageJ Chan et al. 2019 

AcuityView Renders images based on the visual acuity of a given observer. 
R package - 
'acuityview' R Caves and Johnsen 2018 

Sea-thru 
Algorithms to reconstruct near-accurate colouration of images taken 
underwater. Importantly, it does not require the use of a colour standard. Script Python Akkaynak et al. 2019 

Colourvision 
Modelling of various photoreceptor sensitivities and plotting in 
colourspace 

R package - 
'colourvision' R Gawryszewski 2018 

Color Inspector 3D 
Program that displays image colours in colourspaces as specified by the 
user 

Program and 
ImageJ plugin ImageJ and Java Barthel 2007 
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colouration explicitly from a visual perspective. This means some techniques deliberately model how a 

certain colour or pattern would be perceived by a viewer (dependent entirely on their visual capabilities). 

For example, modelling how well a human can see the text in a book at 1 metre away will yield different 

results when compared to a Wedge-tailed Eagle (Aquila audax), given that the visual acuity (how well 

it resolves detail) of an Eagle is greater than ours. Your research question will dictate whether you need 

to use descriptive colour analyses or visual-based colour analyses. 

 

A) Image processing prior to measurement and analysis 

The first step for most colour-based research questions will involve processing and manipulating 

images in various ways to prepare them for analyses (Figure 6.3). If colour or grey standards have been 

included in the images, then the image’s colours can be adjusted to ensure the lighting is standardised 

between all photos. This is particularly important if images are taken outdoors or underwater where 

cloud cover, time of day, and depth can greatly impact the available light spectrum (Stevens et al. 2007; 

Bergman and Beehner 2008; Akkaynak 2019). Images containing the XRite ColorChecker Passport or 

the Image Science Associates ColorGauge can be adjusted within the R package patternize using the 

function ‘colorChecker’ (Van Belleghem et al. 2018). Alternatively, if the approach is based more in 

visual-modelling (i.e. what organisms see and perceive), images can be reflectance normalised if a grey 

standard was included using the Multispectral Image Calibration and Analysis (MICA) toolbox 

(Troscianko and Stevens 2015). 

Once images are colour-accurate, further changes can be made to mimic how certain organisms 

may perceive the scene or subject photographed within each image (Troscianko and Stevens 2015). 

These are made by adjusting either: a) the colours present, and/or b) the level of detail based on the 

visual acuity of the viewer. Every organism possesses their own unique suite of photoreceptor cells 

which gives them the ability to perceive certain colours (Kelber et al. 2003; Osorio and Vorobyev 2008). 

If your research question involves specifically what colours an organism can perceive, colours within 

an image may need adjusting (Figure 6.3a). These image transformations can only currently be made 
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using the MICA toolbox (Troscianko and Stevens 2015; Van Den Berg et al. 2019) and require 

knowledge of the spectral sensitivities of the taxon whose vision is being modelled. 

Visual acuity is defined as how well an organism can resolve details from a scene. Most organisms 

have visual acuities much worse than our own (Caves et al. 2018). Therefore, if perception is an 

important component of the research question, then visual acuity may need to be incorporated into the 

analysis. Perhaps your research question involves how well a predatory coral reef fish (e.g. 

Cephalopholis miniata) can detect a prey fish species (e.g. Eviota guttatus). Adjustments can be made 

to the images of the prey fish species to more accurately reflect how well the predator fish can perceive 

the prey (Figure 6.4). 

There are multiple applications available that provide these acuity adjustments. AcuityView is an 

R package that can provide acuity modelling (Caves and Johnsen 2018). The user needs to specify the 

a) viewer’s visual acuity (the unit is typically cycles per degree) and, b) the distance between the subject 

Figure 6.3 Some examples of the alterations that can be made to images prior to analysis. a) changing the 

colours within an image to reflect a viewer’s spectral sensitivity. b) adjusting an image to reflect a given 

viewers visual acuity. c) cropping a subject and placing it onto a solid-coloured background. d) defining a 

region of interest (ROI) for analysis in the MICA toolbox or placing landmarks. These techniques are not 

mutually exclusive and can be combined depending on the research question. 
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in the image and the viewer. AcuityView uses a fast Fourier transformation to remove details that a 

viewer would not likely resolve. While this is effective, it is not meant to mimic what an organism is 

actually seeing, but more accurately represent the level of detail it may perceive. The MICA toolbox 

provides further application of acuity modelling by more accurately mimicking what an organism would 

actually perceive (Troscianko and Stevens 2015). The MICA toolbox also uses a Fast-Fourier 

transformation to remove details from an image. However, the MICA toolbox can further apply a 

Receptor Noise Limited model to recreate sharp edges between elements in the photo (Van Den Berg et 

al. 2019). Thus, the final image has reduced detail while maintaining sharp borders between elements 

within the image. 

Finally, images may need to have the subject cropped out or outlined to facilitate further analyses. 

Cropping the subject is most easily done in Adobe Photoshop using the selection tool. Some analyses 

need the subject to be placed onto a solid-coloured background which is then subsequently ignored from 

the calculations. If this is required for your research question, it is imperative to use a colour that is not 

found on any of the subjects being analysed as it will be discarded. Using a highly saturated colour (i.e. 

bright, neon green) is the most effective as these colours rarely occur in nature (Figure 6.3c). 

Figure 6.4 Modelling the visual acuity of a predatory coral reef fish using AcuityView. On the left is the 

original image as captured by the camera. On the right is the simulated image according to the visual acuity 

of a common predatory coral reef fish (Cephalopholis miniata). It becomes evident that the small prey fish 

(Eviota guttatus) is harder to detect than is shown in the original image. The distance between the predator 

and prey fish is assumed to be 1m. Note, the colours have not been altered based on the Coral grouper’s 

spectral sensitivities. 
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Alternatively, your research question may only be concerned with a specific aspect of an image. For 

these cases, you may need to designate a region of interest (ROI) which essentially is a boundary or 

outline (Figure 6.3d). Inside this boundary, the colours and patterns are analysed; outside, they are 

ignored. Last, your analysis may require the placement of landmarks to align images during analysis 

(Van Belleghem et al. 2018). Landmarks can easily be placed in ImageJ using the ‘point’ tool (Figure 

6.3d). After placing the landmark points of interest on a given image, the x and y coordinates of all 

points can be exported and saved as a spreadsheet. 

 

B) Comparing only colours within and between images 

The largest methodological decision is whether pattern (i.e. the spatial arrangement of colours) 

needs to be explicitly considered (Figure 6.5). Most of the ‘traditional’ image analysis techniques 

generally do not account for pattern. These techniques often require the user to specify what colours 

within an image are to be measured; for example, measuring the colour of throat patches within a group 

of birds. While useful, these ‘patch-measuring’ approaches do not consider the amount of a given colour 

on an organism, so discretion is advised when interpreting the behavioural or ecological significance of 

the results (e.g. Dalrymple et al. 2015b). 

The most simplistic method to characterise colours on a computer is by recording their 

colourspace triplet value. This triplet value is the combination of three numbers that correspond to that 

specific colours x,y, and z coordinates within a given colourspace. The most common computer-based 

colourspace used is RGB (red, blue, green, Figure 6.6a) whose three axes (x,y,z) are meant to loosely 

imitate the three peak spectral sensitivities of humans (blue – short wavelengths, green – medium 

wavelengths, and red – long wavelengths). While useful to work within, distances in this colourspace 

are not representative of perceptual distances, that is, how different we as humans would perceive two 

or more colours (see Figure E1 for details). To overcome this limitation, the CIELab colourspace was 

intentionally designed so that Euclidean distances between colours reflect their perceptual difference in 

life. CIELab’s colourspace uses lightness (L), differences along a red – green axis (a) and differences 

along a blue – yellow axis (b). Weller & Westneat (2019) provide a more detailed description of different 
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Figure 6.5 What technique should you use to answer your research question? 
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colourspaces, and the 3D Color Inspector program (Barthel 2017) is a useful tool to understand the 

nuances between various colourspaces. The in situ measurement of colours uses spectrometry on the 

actual organism. This has historically been the most common approach to describe colours because it 

measures the amount of reflected light at specific wavelengths (Figure 6.6b). This method is extremely 

accurate, but it is labour and equipment intensive. For a more comprehensive overview of how to 

measure colours using spectrophotometry, see (Endler 1990; Johnsen 2016). 

More recent image analysis techniques can assess all colours within an image (although they still 

disregard the position of each colour within the image). Differences between colours within an image 

can be visualised using a chromaticity diagram which plot colours in a log transformed opponent colour 

space (Hempel De Ibarra et al. 2001; Kelber et al. 2003, similar to that shown in Figure 6.6c). Quite 

simply, a colours specific location in this plot reflects how strongly it stimulates different photoreceptors 

present in a viewer. Every pixel of colour assessed in the image corresponds to a point in the colourspace. 

If the point clouds created by different colours are distinct, you can conclude that those colours are 

perceptually different. This approach is particularly useful for comparing similarities and differences 

between and organism’s colouration and its environment. For example, the Killdeer (Charadrius 

Figure 6.6 Three different ways to represent colours. a) colours represented in the RGB colourspace. This 

colourspace is most often used to display colour in computer graphics. b) colours represented as a 

wavelength distribution which displays the relative amount of light at each wavelength. c) colours 

represented by how strongly they stimulate various photoreceptors. In this example, the viewer has three 

photoreceptor types that are sensitive to short (S), medium (M), and long (L) wavelengths (identical to human 

visual systems). 
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vociferus) is a species of ground-nesting bird found in the Americas which constructs very rudimentary 

nests (if at all, Figure 6.7). Therefore, the eggs rely heavily on camouflage to avoid predation. A 

chromaticity diagram could be used to assess any perceptive differences between egg colour and 

substrate colour using known Coyote (Canis latrans) spectral sensitivities, a common predator of 

Killdeer eggs. Indeed, how closely the egg colouration of ground-nesting birds matches the colouration 

of their nesting habitat is indicative of hatching success (Troscianko et al. 2016). 

Alternatively, you may want to compare all the colours within an image to all the colours within 

another image (or multiple other images). colordistance is a relatively recent package in R that has utility 

to measure the similarity between the colours of n images (Weller and Westneat 2019). Although 

colordistance does not incorporate the specific location of where each colour occurs, it does measure a 

proxy for pattern – the relative abundance of each colour in each image. colordistance measures 

colouration by plotting the pixels of an image within a colourspace specified by the user (RGB, HSL, 

CIELab). The colourspace is then divided into equal area subsections whose size are determined by the 

user. The number of pixels that fall within each subsection (which can be thought of as colour categories 

– e.g. ‘blues’) is recorded and compared between all images using multivariate approaches. This 

Figure 6.7 The nest of a Killdeer (Charadrius vociferus). This bird lays eggs directly on the ground without 

constructing a nest. Therefore, the eggs rely heavily on camouflage to protect them from potential predators. 
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generates a measure of dissimilarity between the colours found in each image. The intuitive nature of 

this approach allows for the full colouration of any number of organisms to be compared regardless of 

morphological differences. Furthermore, the user can specify the: a) colourspace used, b) how fine the 

resolution of colours are (i.e. the number of ‘subsections’), and c) the method to compare the distribution 

of colours (e.g. earth movers distance, chi squared distance, etc.). 

A further benefit of using multivariate techniques to compare colouration is that differences can 

be visualised with ordinations. Ordinations are a data plotting technique that aims to reduce 

dimensionality and display complex, multivariate data in a simplified format (Rabinowitz 1975). Simply 

put, they seek to display a dataset with many variables into one that can typically be plotted on only 2-

3 axes. Thus, an organisms entire colouration (colour + pattern) can be condensed into two values (x 

and y coordinates in a Cartesian plane; e.g. Alfaro et al. 2019; Hemingson et al. 2019). Various metrics 

of multivariate space occupation can then be measured (following Mouillot et al. 2013), Figure 6.8). 

This allows for widespread utility in many different applications. 

 

C) Comparing the colour patterns within and between images 

The most comprehensive techniques analyse the full colourations of an organism or scene. These 

techniques explicitly incorporate the location of colours (their pattern) into the analyses. However, they 

are not restricted to only analysing colour patterns at the scale of the individual (e.g. the colouration on 

Figure 6.8 Different metrics for characterising the colourations of a group of organisms. a) colour area: the 

area of the convex hull. This approach is sensitive to outliers, i.e. very unique coloured organisms. b) colour 

spared: the average difference between colourations. c) colour density. The metric identifies the most 

common colourations found within an assemblage. 
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a frog), but can also assess colour differences between elements within an image. For example, some of 

these techniques could be used to assess how strongly the subject of a photograph (a red flower) stands 

out against its background (a green, grassy field). In this example, the techniques are not assessing 

pattern per se, but rather the difference between colours with respect to their location within the image. 

When the focus of the research question is assessing aspects of colouration within a single image, 

the Quantitative Colour Pattern Analysis framework (QCPA; Van Den Berg et al. 2019) using the MICA 

Toolbox provides numerous resources. Boundary Strength Analysis (Endler et al. 2018) and Local Edge 

Intensity Analysis (LEIA; Van Den Berg et al. 2019) are useful techniques to explore chromatic 

contrasts (colour differences) between elements within an image. These approaches work by modelling 

both the chromatic and luminance differences (ΔS) between various colours. Quite simply, these 

techniques aim to assess the strength of colour changes from a visual perspective. The strength of these 

changes will therefore depend on the model visual system. For example, following the previous scenario, 

let us assume your research question involves how strongly a flower stands out against a grassy 

background to a Bumble bee (the viewer). You could use either Boundary Strength Analysis or LEIA 

to determine how significant the perceptual transition is from the flower to the background. Both 

techniques can be performed using the MICA Toolbox in ImageJ. 

If the research question is more concerned with characterising the complexity of a colour pattern 

at the scale of the individual (i.e. the colour pattern of an Orchid flower – see Van Den Berg et al. 2019), 

Colour Adjacency Analysis provides a simplified metric. This analysis runs multiple transects across 

the subject or region of interest in both the x and y dimensions. The colour is recorded at evenly spaced 

points along the transect. These transects are then summarised and used to create a transition matrix that 

contains how often one colours changes to another across the entire subject (Van Den Berg et al. 2019). 

This technique is particularly useful when a single, simple metric is needed to characterise the 

complexity of an organism’s colouration. This Colour Adjacency metric can then be easily used in 

further statistical analyses. However, if the pattern between two images is the same but the colours are 

different, the Colour Adjacency metric for both images will be identical. Thus, careful consideration is 

needed when using and interpreting the output of this technique. 
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If the focus is on aspects of pattern geometry at the individual scale, the R package PAT-GEOM 

provides the most suited resources for measurement (Chan et al. 2019). These range from assessing the 

individual markings shape (how round or jagged the patches are), marking size, directionality (how the 

patches are oriented with respect to the organism’s body), randomness, and distribution (where do the 

patches occur). These methods only work on colour patterns that have distinct differences; that is, the 

markings clearly stand out against the background colour of the organism. For instance, if you wanted 

to investigate the direction a certain spotted pattern follows along the body of a lizard, you could use 

PAT-GEOM to determine the pattern’s directionality. This technique essentially performs a regression 

using the colour patches as points to determine a line of best fit along the body of the organism. 

Your research question may involve analysing the similarity or difference of colouration among 

multiple individuals or species. patternize is an R package that provides tools to analyse an organism’s 

complete colouration; inclusive of both colours and patterns (Van Belleghem et al. 2018). This resource 

compares the variation in colours and patterns between every possible pair of images analysed – yielding 

a unique dissimilarity value for each pair. Importantly, patternize can use landmarks identified by the 

user to align the images which ensures that the colourations can be compared. The algorithms within 

patternize warp and resize each image in certain ways to match up the landmarks. Thus, if the final 

processed images were stacked on top of each other, a perfectly vertical line could be drawn through all 

images which would intersect the same landmark in every photo (see Figure E2 for details). This key 

functionality allows for the comparison of colour patterns between individuals or species that have 

different shapes/morphologies or between images in which the orientation of the subject differs. The 

output of this analysis can be visualised using an ordination, which as discussed previously, allows for 

further interpretation and unique metrics to be measured. 

For example, let’s assume our research question is investigating colour pattern variation between 

two butterfly populations (Figure 6.9). One population lives in pristine, old growth forest which has 

experiences minimal human interference. The second population is found in a highly urbanised area 

significantly impacted by humans. We are curious if habitat disturbance has selected for butterflies with 

different colourations. We collect 10 individuals from each habitat (undisturbed vs. disturbed) and 



Chapter 6: Tools and Techniques 91 

photograph them individually. Since this species naturally varies in the size and shape of its wing, we 

manually identify a handful of landmarks across the wing that accurately capture its shape. We then 

record the x and y coordinates of each landmark on the butterfly in each image. Next, the images (along 

with their list of coordinates for the landmarks per image) are analysed in patternize to assess colour 

pattern variation. The output of the analysis is a dissimilarity matrix which contains the dissimilarity 

value for every possible pairwise comparison of images. We visualise the similarity and differences of 

each butterfly’s colouration by using an ordination (specifically a nMDS). Finally, we test for statistical 

differences in the colouration of the sampled butterflies to determine if forest degradation is possibly 

causing changes in the colouration of this species. Given the significant finding, we conclude that habitat 

degradation may be playing a role in causing changes to this species colouration. 

 

Figure 6.9 An example of how to use patternize to 

test ecological hypotheses. 1) establish a hypothesis 

to test. In this hypothetical example, anecdotal 

evidence suggests that populations of butterflies 

living in more disturbed forests may have different 

colourations. 2) collect individuals from each 

location, take photos, and place landmarks. 

Perform patternize analyses to 3) visualise the data 

and test hypotheses. Colour patterns for all 

butterflies photographed were visualised using an 

ordination. Differences between the two groups 

(old growth forest vs. disturbed) were tested using 

a PERMANOVA. A significant difference was found 

(p-value < 0.05) indicating that there are 

differences in colouration between the two groups. 
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6.3 Conclusions and Moving Forward 

The multitude of recent advances has made the field of organismal colouration studies exciting. 

By combining old and new techniques from different fields, we are now capable of asking detailed 

questions about the appearance of organisms and how they are perceived. This resource provides a solid 

starting point to help researchers navigate the methodologically dense field of biological colouration. 

We must be explicit, however, and reiterate that this is a guide; essentially a ‘cookbook’. Every good 

chef makes modifications to the recipe to suit their own taste. Your research questions will almost 

certainly require modifications to some of these workflows. Furthermore, it is also important to ensure 

credit is given to the original creators of these various resources. These applications take an immense 

amount of time to develop and create. Thus, anytime a resource is used, the proper attribution should be 

given to ensure the creators receive credit for their work. 

Future research merging many of these resources will yield new ways of thinking about 

colouration. Just in the last five years, there have been numerous developments and modifications made 

to these techniques to answer interesting new questions. By combining new ways to assess colouration 

and adding in the visual capabilities of a viewer, we are gaining an extremely comprehensive 

understanding of how colouration functions in the natural world.  
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Chapter 7: General Discussion 
 

Colouration in coral reef fishes 

The processes that shape the evolution of colours and patterns on coral reefs are numerous and 

complex. Over twenty years ago, when considering colouration on coral reefs, Justin Marshall stated 

that “it is almost inconceivable for only one evolutionary force to be behind the colours of such a diverse 

assemblage…” (Marshall 2000a). Since this time, the field has progressed rapidly. However, only in the 

last decade have new methods allowed us to explore the complexity of this fascinating system. Indeed, 

using many recently developed analyses, this thesis was able to show some of this complexity, revealing 

the evolutionary and ecological processes that have influenced the colouration of reef fishes at multiple 

spatial and temporal scales. At the individual level, there was evidence that a fish’s morphology strongly 

relates to its colouration, evident in eyespots closely mimicking the size of the real eye, but the pupil 

being exaggerated. Within clades, speciation processes like reproductive character displacement, shaped 

the difference in colouration between closely related species. From an ecosystem perspective, certain 

environmental features clearly shaped the diversity of colours found on fishes, demonstrating real-world 

implications of current environmental change. And across the entire reef fish tree of life, broad 

evolutionary processes have had their own consistent impacts dictating the colouration of fishes across 

large taxonomic groups. So quite simply, yes, numerous evolutionary forces are responsible for the 

diversity of colours and patterns seen on coral reef fishes. 

 

Future directions and new avenues of research 

We are currently experiencing a renaissance in the study of organism colouration. This surge of 

research interest is largely fuelled by the wide array of newly available image analysis resources, 

especially image banks and analytical programs, making the future of colour science extremely exciting. 

Integrating aspects of the full colours and patterns of an organism, the context/environment in which the 

organism lives, and the visual perception of the viewer allows for an increasingly holistic study of animal 

colouration. Research is just at the beginning of merging these three aspects. The advancement of new 
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techniques holds much promise, as each provide their own specific manner in which they assess colours 

and/or patterns.  

In this regard, the study of animal colour patterns is evolving rapidly. Many of these new 

techniques and approaches are in their infancy and will surely experience significant modifying, 

tweaking, and perfecting in the coming years. While some of the traditional approaches to analysing 

colourations will always have their utility (Johnsen 2016; Miyazawa 2020), many of these new methods 

lend themselves to integrate seamlessly into other fields of study, like ecology and phylogenetics. 

Crucially, this combination of multiple fields is allowing researchers to ask, and subsequently answer, 

questions that have not previously been possible. 

A prime example of this emergent property of merging fields is characterising the ‘colourfulness’ 

of a community or assemblage. In recent years, there has been a shift in the field of community ecology 

to assess an assemblage by the composition of its traits or functions (Tilman et al. 1997; Hemingson and 

Bellwood 2018; Bellwood et al. 2019b) as opposed to the taxonomic identity of its species (MacArthur 

and MacArthur 1961; Öhman and Rajasuriya 1998; Anderson and Willis 2003). This shift came with its 

own construction of new metrics that are used to measure and quantify various aspects of 

multidimensional trait/function space (Mouillot et al. 2013b). Each metric is selected to provide a 

distinct insight into the composition, and potentially the functions operating within various assemblages 

(Legendre et al. 2005). The detailed description of traits and potential functions in trait space is perfectly 

suited for describing multivariate colour spaces. 

These developments offer the potential for new and exciting comparisons to be made in the 

colouration of organisms between habitats, ecosystems or populations. This community led approach is 

likely to be particularly important for extremely colourful ecosystems like coral reefs. Previously, trying 

to simply describe the diversity of different colours and patterns found on coral reefs was nearly 

impossible. However, within a multivariate framework, the colouration of multiple groups of organisms 

(be it between habitats, geographic locations, etc.) can be easily compared. In Chapter 5, we defined 

the collective colouration of an entire assemblage of organisms as the ‘assemblage colouration’. We 

quantified aspects of the assemblage colouration using two of the most fundamental multivariate indices: 
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convex hulls and multivariate dispersion. These indices were some of the first developed to measure 

aspects of multivariate space and have a long standing history of use in the literature (DeVantier et al. 

1998; Anderson et al. 2006). However, many other measures of multivariate space exist (Mouillot et al. 

2013a), with some specifically designed to measure colouration (Gruson 2020). 

Current resources also offer an enhanced capability to more accurately model what certain 

organisms perceive. Applications are available that can both alter the specific colours within an image 

to recreate what colours a given organism can detect (e.g. Van Den Berg et al. 2019), as well as the level 

of detail they can perceive those colours and patterns (their visual acuity, e.g. Caves and Johnsen 2018). 

This allows research questions that directly involve how organisms recognise their world. Thus, there is 

current capability to: 1) alter an image based on an organism’s spatial and spectral abilities, 2) analyse 

the full colouration (both colour and pattern) of the organisms in each image, and 3) assess the 

colouration of multiple organisms from an assemblage perspective. Although this thesis did not ask 

questions related to perception, they can be easily integrated into a similar workflow given these new 

advances. 

Future research will benefit immensely from publicly available images that contain both image 

metadata and colour standards. Given enough widespread support and participation, researchers will 

have the ability to assess colour-accurate images for any species without the need to travel, collect, and 

photograph individuals personally. The current, publicly available image databases (e.g. FishBase, Reef 

Life Survey, Smithsonian Institute’s Division of Fishes Collections, etc.) have been invaluable for 

science, benefitting researchers around the world, including the research conducted herein. Special 

thanks must be given to the contributors of these key resources. Maintaining these databases and adding 

support for image metadata and colour standards will further increase the already immense value these 

resources currently provided to science. 

 

Concluding remarks 

We are only just beginning to understand the functions various colours and patterns serve on coral 

reefs and how they came to be. Given the incredible methodological advances in recent years, we have 
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uncovered numerous, complex processes that shape colouration in this highly diverse ecosystem. This 

thesis contributes to this growing body of work and to our understanding of the factors that may shape 

colouration in coral reef fishes. However, there is still much to be learned. Given their unique nature, 

coral reefs offer an unparalleled opportunity to explore the evolutionary origins and ecological 

maintenance of colouration in one of the most diverse ecosystems found on Earth. 
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Appendix A 
Eyespot Definition: 

We defined an eyespot based on the following three criteria. 1) The entire eyespot needs to be approximately 

circular or elliptic in shape. 2) it has a (typically) black interior circle or ellipse that is surrounded by no less 

than 75% of its circumference by a contrasted concentric ring of differing, much lighter colour. 3) there 

could be no more than 10 eyespots present on an individual. These criteria were chosen to ensure that the 

pattern was clearly an eyespot that functions as a distinct marking that is visually conspicuous against rest 

of the fish’s colouration. These criteria were necessary since there is a broad spectrum of markings present 

on coral reef. Establishing strict criteria allow us to focus on the species with a consistent eyespot form to 

explore their subsequent function. 
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Table A1. Parameters estimates and selection criteria for each model of discrete character evolution. 10 

different models of evolution were generated and the most parsimonious was selected using AICc. ER = 

equal rates, ARD = all rates different, lnL = log likelihood. Each model was run for 1000 iterations and fit 

using the ‘fitDiscrete’ function in the geiger library. Models are ranked in descending order from best to 

worst. 

Model 
Extra 

Parameter  

Parameter 

Estimate  
AICc ΔAICc lnL 

ARD Lambda (λ) λ = 0.9309 922.49 0 -458.24 

ARD Kappa (κ) κ = 0.3068 947.20 24.71 -470.59 

ARD Alpha (α) α = 0.0203 953.21 30.72 -473.59 

ARD Delta (δ) δ = 2.9999 956.19 33.7 -475.09 

ARD n/a n/a 967.41 44.92 -481.70 

ER Lambda (λ) λ = 0.8536 1009.99 87.5 -502.99 

ER Kappa (κ) κ = 0.1827 1012.84 90.35 -504.41 

ER Alpha (α) α = 0.0796 1020.33 97.84 -508.16 

ER Delta (δ) δ = 2.9999 1058.52 136.03 -527.26 

ER n/a n/a 1083.98 161.49 -540.99 

 

  



Literature Cited 127 

Table A2.  List of species used in the heatmap analysis.

NO. SPECIES CATEGORY 

1 Acanthurus bariene active 

2 Acanthurus tennentti active 

3 Anampses femininus active 

4 Anampses geographicus active 

5 Anampses meleagrides active 

6 Anampses neoguinaicus active 

7 Anampses twistii active 

8 Apolemichthys trimaculatus active 

9 Arothron hispidus active 

10 Belonoperca chabanaudi active 

11 Bodianus bimaculatus active 

12 Bodianus diana active 

13 Bodianus neilli active 

14 Canthigaster bennetti active 

15 Canthigaster papua active 

16 Canthigaster rostrata active 

17 Canthigaster solandri active 

18 Centropyge flavissima active 

19 Centropyge multispinis active 

20 Cephalopholis leopardus active 

21 Cetoscarus bicolor active 

22 Chaetodon bennetti active 

23 Chaetodon capistratus active 

24 Chaetodon lunula active 

25 Chaetodon madagaskariensis active 

26 Chaetodon melannotus active 

27 Chaetodon ocellicaudus active 

28 Chaetodon octofasciatus active 

29 Chaetodon plebeius active 

30 Chaetodon striatus active 

31 Chaetodon unimaculatus active 

32 Chaetodon xanthurus active 

33 Cheilinus oxycephalus active 

34 Chelmon marginalis active 

35 Chelmon muelleri active 

36 Chelmon rostratus active 

37 Choerodon fasciatus active 

38 Chrysiptera biocellata active 

39 Chrysiptera brownriggii active 

40 Chrysiptera talboti active 

41 Chrysiptera unimaculata active 

42 Cirrhilabrus cyanopleura active 

43 Cirrhilabrus exquisitus active 

44 Coradion altivelis active 

45 Coradion chrysozonus active 

46 Coradion melanopus active 

47 Coris aygula active 

48 Coris batuensis active 

49 Coris dorsomacula active 

50 Coris formosa active 

51 Coris variegata active 

52 Cymolutes praetextatus active 

53 Diodon liturosus active 

54 Dischistodus melanotus active 

55 Dischistodus perspicillatus active 

56 Dischistodus prosopotaenia active 

57 Halichoeres biocellatus active 

58 Halichoeres bivittatus active 

59 Halichoeres chrysus active 

60 Halichoeres cosmetus active 

61 Halichoeres hortulanus active 

62 Halichoeres leucoxanthus active 

63 Halichoeres margaritaceus active 

64 Halichoeres marginatus active 

65 Halichoeres melanurus active 

66 Halichoeres melasmopomus active 

67 Halichoeres miniatus active 

68 Halichoeres nebulosus active 

69 Halichoeres nigrescens active 

70 Halichoeres ornatissimus active 

71 Halichoeres prosopeion active 

72 Halichoeres radiatus active 

73 Halichoeres trispilus active 

74 Heniochus chrysostomus active 

75 Holacanthus ciliaris active 

76 Holacanthus tricolor active 

77 Iniistius aneitensis active 

78 Iniistius pavo active 

79 Macropharyngodon kuiteri active 

80 Macropharyngodon meleagris active 

81 Neoglyphidodon polyacanthus active 

82 Oxycheilinus arenatus active 

83 Oxycheilinus digramma active 

84 Oxycheilinus unifasciatus active 

85 Paracentropyge multifasciata active 

86 Parachaetodon ocellatus active 

87 Parma polylepis active 

88 Plectroglyphidodon leucozonus active 

89 Plectroglyphidodon phoenixensis active 
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90 Pomacanthus chrysurus active 

91 Pomacanthus imperator active 

92 Pomacentrus amboinensis active 

93 Pomacentrus bankanensis active 

94 Pomacentrus chrysurus active 

95 Pomacentrus indicus active 

96 Pomacentrus nagasakiensis active 

97 Pomacentrus sulfureus active 

98 Pomacentrus vaiuli active 

99 Pseudocheilinus hexataenia active 

100 Pseudocheilinus ocellatus active 

101 Pteragogus cryptus active 

102 Pteragogus enneacanthus active 

103 Pygoplites diacanthus active 

104 Roa excelsa active 

105 Stegastes diencaeus active 

106 Stegastes variabilis active 

107 Stethojulis albovittata active 

108 Stethojulis bandanensis active 

109 Stethojulis strigiventer active 

110 Symphorichthys spilurus active 

111 Thalassoma jansenii active 

112 Thalassoma quinquevittatum active 

113 Xyrichtys splendens active 

114 Acanthemblemaria aspera crypto 

115 Amblycirrhitus bimacula crypto 

116 Amblyeleotris randalli crypto 

117 Amblygobius decussatus crypto 

118 Amblygobius phalaena crypto 

119 Amblygobius semicinctus crypto 

120 Antennatus nummifer crypto 

121 Apogonichthys ocellatus crypto 

122 Belonepterygion fasciolatum crypto 

123 Calloplesiops altivelis crypto 

124 Chaenopsis limbaughi crypto 

125 Cheilodipterus artus crypto 

126 Cheilodipterus quinquelineatus crypto 

127 Cirrhitichthys aprinus crypto 

128 Cirripectes quagga crypto 

129 Crossosalarias macrospilus crypto 

130 Cryptocentrus caeruleopunctatus crypto 

131 Cryptocentrus strigilliceps crypto 

132 Cypho purpurascens crypto 

133 Dactylopus kuiteri crypto 

134 Dendrochirus biocellatus crypto 

135 Fowleria aurita crypto 

136 Fowleria marmarota crypto 

137 Fowleria variegata crypto 

138 Grammistops ocellatus crypto 

139 Iracundus signifer crypto 

140 Koumansetta hectori crypto 

141 Koumansetta rainfordi crypto 

142 Labrisomus nigricinctus crypto 

143 Labrisomus nuchipinnis crypto 

144 Liopropoma carmabi crypto 

145 Lipogramma evides crypto 

146 Lotilia graciliosa crypto 

147 Lucayablennius zingaro crypto 

148 Neosynchiropus ocellatus crypto 

149 Ostorhinchus cookii crypto 

150 Paraclinus nigripinnis crypto 

151 Parapercis clathrata crypto 

152 Parapercis hexophtalma crypto 

153 Pseudogramma polyacantha crypto 

154 Pseudorhombus dupliciocellatus crypto 

155 Rainfordia opercularis crypto 

156 Signigobius biocellatus crypto 

157 Valenciennea helsdingenii crypto 

158 Valenciennea wardii crypto 

159 Wetmorella albofasciata crypto 

160 Wetmorella nigropinnata crypto 

161 Xiphasia setifer crypto 
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Figure A1. The 20 morphological landmarks used for image alignment in ‘patternize’. 
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Figure A2. Guidelines used to classify eyespot location in active and cryptobenthic fishes. 
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Table A3. P-values of ‘prop.test’ (stats library R) pairwise comparisons between locations of the proportion 

of species with and without eyespots. Significant differences in proportions are denoted in bold. Only the 

tropical eastern pacific was significantly different from the Great Barrier Reef and Indian Ocean. 

 Atlantic GBR Indian TEP 

Atlantic -    

GBR 0.6898 -   

Indian 0.6268 0.9463 -  

TEP 0.0842 0.0055 0.0045 - 
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Table A4. Models of independent and dependent trait evolution. 

Model 
Dependent 

Trait 

Independent 

Trait 
AIC ΔAIC Log-Lik 

Significantly different 

from Ind. Model? 

ARD Location Activity 223.843 - -105.9215 p-value = 0.0148 

ARD 
Location & 

Activity 
- 226.0975 2.1725 -105.0487 p-value = 0.0376 

ARD Activity Location 227.8384 0.4316 -107.9192 p-value = 0.1091 

ARD - 
Location & 

Activity 
228.2700 4.427 -110.135 n/a 
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Figure A3. 1000 averaged stochastic character maps of eyespot evolution. The node values represent the 

averaged probabilities calculated across all 1000 SIMMAP iterations. 
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Appendix B 

 

Figure B1. Phylogenetic tree of all species measured herein to account for non-independence in the 

regression analysis.  
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Figure B2. Morphological regressions using linear measurements of eye/eyespot (left) and pupil/eyespot 

pupil (right) features. 
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Table B1. Summary statistics from phylogenetic generalised least squares regression analysis of 

eye/eyespot diameter and pupil/eyespot ‘pupil’ diameter. 

Predictors Estimate 
Confidence 

Interval 
t - value p - value R2 

Intercept 0.07 -0.03 – 0.18 1.35 0.178 
0.57 

log10(Eye Diameter) 1.07 0.99 – 1.15 26.56 <0.001 

Intercept 0.28 0.18 – 0.39 5.23 <0.001 
0.54 

log10(Pupil Diameter) 1.05 0.96 – 1.14 23.36 <0.001 
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Figure B3. a) Lateral view of the eye’s external components. Herein, ‘eye area’ is defined to be the 

approximately flat disc that equivalates the iris in many other vertebrates (the orange disc in this figure). 

This feature is the outermost portion of the internal bones that form the sclerotic ring. b) The eyespots 

components. The eyespot’s area is the full area of the entire feature whereas the eyespots ‘pupil’ area is only 

that of the dark interior. 
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Figure B4. Distribution of p-values from the generalised linear model using a gamma distribution. This 

analysis was used to test for differences between the size distribution of fishes with and fishes that no 

longer/are yet to have an eyespot.  
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Table B2. Summary statistics from phylogenetic generalised least squares regression analysis of 

eye/eyespot area and pupil/eyespot ‘pupil’ area. 

Predictors Estimate 
Confidence 

Interval 
t - value p - value R2 

Intercept 0.06 -0.13 – 0.24 0.58 0.565 
0.61 

log10(Eye Area) 1.11 1.03 – 1.18 29.14 <0.001 

Intercept 0.48 0.28 – 0.67 4.70 <0.001 
0.55 

log10(Pupil Area) 1.06 0.97 – 1.14 24.53 <0.001 
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Figure B5. Distribution of p-values from the generalised linear model using a binomial distribution. This 

analysis was used to test for the relationship between standard length and the probability of having an 

eyespot. All 250 iterations were significant.  
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Figure B6. The distribution of 50-50 probability points for each of the 250 iterations of the binomial glm. 
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Figure B7. Slope estimates between body size and eye/eyespot size. Both body size and eye/eyespot diameters 

were log10 transformed to yield these slope estimates. Green indicates the max diameter of the full 

eye/eyespot; purple indicates the max diameter of the pupil/eyespot pupil. All slope estimates are <1 

indicating negative allometry. 
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Table B3. Summary statistics from phylogenetic generalised least squares regression analysis of eye 

diameter, eyespot diameter, pupil diameter, and eyespot ‘pupil’ diameter. The explanatory variable in all 

models was the standard length (mm). 

Response Estimate 
Confidence 

Interval 
t - value p - value R2 

Intercept -0.52 -0.59 – -0.45 -15.45 <0.001 
0.75 

log10(Eye diam) 0.65 0.62 – 0.67 48.09 <0.001 

Intercept -0.55 -0.69 – -0.41 -7.49 <0.001 
0.45 

log10(Eyespot diam) 0.72 0.67 – 0.78 24.79 <0.001 

Intercept -0.83 -0.90 – -0.76 -22.99 <0.001 
0.69 

log10(Pupil diam) 0.65 0.62 – 0.68 45.54 <0.001 

Intercept -0.68 -0.84 – -0.53 -8.48 <0.001 
0.42 

log10(Eyespot pupil diam) 0.74 0.67 – 0.80 22.94 <0.001 
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Appendix C 
Table C1: Colour centre point RGB values and offsets used in colour pattern detection performed by 

patternize. 

Colour Red Green Blue Offset 

Yellow 220 220 20 0.35 

Black 0 0 0 0.30 

White 255 255 255 0.45 
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Figure C1: Graphic displaying the location of the 20 morphological landmarks used to align each image. 1) 

anterior most point of premaxilla, 2) centre of pupil, 3) anterior attachment of the dorsal fin, 4) midpoint 

between landmarks 3 and 5, 5) point on dorsal fin in which the direction of the fin changes from running 

primarily horizontal to primarily, 6) midpoint between landmarks 5 and 7, 7) posterior attachment of the 

dorsal fin, 8) midpoint between landmarks 7 and 9, 9) dorsal tip of the caudal fin, 10) midpoint between 

landmarks 9 and 11, 11) ventral tip of the caudal fin, 12) midpoint between landmarks 11 and 13, 13) 

posterior attachment of the anal fin, 14) midpoint between landmarks 13 and 15, 15) point on anal fin in 

which the direction of the fin changes from running primarily vertical to primarily horizontal, 16) midpoint 

between landmarks 15 and 17, 17) anterior attachment of anal fin, 18) anterior attachment of pelvic fin, 19) 

dorsal attachment of pectoral fin, 20) anterior most point of dentary. 
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Figure C2: Alternative outputs of patternize’s ‘plotHeat’ function showing two analyses of the same five 

images using different resolutions. Plots represent heatmaps: the darker the yellow the greater the number 

of images were found to have yellow in that location. a) output using 100 resolution yielding 10,000 sample 

locations (blocks) that were analysed for the presence of yellow. Note that this resolution is low enough to 

see the individual blocks. b) same analysis but using 500 resolution which generates 25x the number of 

sample locations (250,000 blocks). The higher the resolution used, the finer the amount of small-scale pattern 

captured. Note: resolution (“res”) is an argument within the patternize functions – the actual resolution of 

the original images analysed remains unchanged between these two outputs. 
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Figure C3: Workflow of numeric individual colour detection to full colour pattern analysis. a.) run colour 

detection for each colour of interest. In our study and for this example, the colours detected are yellow, black 

and white. patternize’s colour detection protocol works by creating a presence/absence data matrix in which 

each column (variable) is a block associated to a specific location on the image and the rows (samples) are 

each image analysed. If the colour analysed is found within the block according the RGB values we tell 

patternize to detect, the that cell in the data matrix is recorded as a 1 for presence. If it is lacking that colour, 

as 0. We have left 0’s out for visualization purposes. b.) convert each colour to a unique numeric identifier. 

This follows a binary logic; calculated for each number by the following equation: 2n-1. Each colour 

represents an integer in the series 0 to n, where n is the total number of individual colours being analysed. 

In this example, yellow is the first colour of interest, so 21-1 = 1. Therefore, we code all presences for yellow 

in the yellow data matrix to “1” (for the first colour, it always remains 1). For black, our second colour of 

interest, we code to 22-1 = 2, so we recode all presences in the black data matrix to “2”. White is our third 
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and final colour of interest, so we recode it to 23-1 = 4. Now, each data matrix has a unique numeric identifier 

that represents each colour. c.) add together all the colour pattern matrices, yielding a full numeric colour 

pattern matrix. d.) convert our numeric colour pattern matrix into a character colour pattern matrix. This is 

done by changing all values of our converted series into a character that represents them. In our example, 

yellow (which is 1) is converted to a “Y”. Black, which is 2 in the numeric matrix, is converted to “B”. Lastly, 

white which is 4 in the numeric matrix, is converted to “W”. A binary series is used because it provides 

flexibility with overlapping colour categories. If our colour categories had overlapping values (let’s say a 

specific RGB value fell within two of our colour ranges for two separate colours we are analysing), when we 

add our matrices together in the previous step c.), we would know exactly which colours created that value. 

For example, if colour detection was positive for both yellow which is numerically coded as “1”, and also 

white, which is numerically coded as “4”, we would know for sure that a 5 in our combined colour matrix 

meant that the specific colour in that location was categorised as both “yellow” and “white”. This logic is 

useful when analysing many colours that may have overlapping RGB ranges. e.) Lastly, we analyse the full, 

character colour pattern matrix using Gower’s dissimilarity measure. The result is a diagonal dissimilarity 

matrix containing the dissimilarity values between every possible pair of images analysed. 

  



Appendix C 149 

 

Figure C4: Phylogeny adapted from Cowman and Bellwood (2011) that contains only reciprocally 

monophyletic species pairs (from species in which molecular data exists). The species-pairs have been 

collapsed to the nodes that represent the estimated time of divergence for each respective pair. This yields a 

tree with non-contemporaneous tips (i.e. a non-ultrametric tree). Since the residual variance may differ, we 

altered the weights of the model (gls) to represent the diagonal of the phylogenetic variance-covariance 

matrix. The number at each tip are the node numbers from the original phylogeny. Each number represents 

a species pair; for the pair that each number specifically represents, see the column in raw data called 

‘pairID’. 
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Figure C5: Plot displaying the mean within-species (n = 420), between species-pairs (n = 420), and between 

random-pair (n = 420) dissimilarity values with 95% confidence intervals. Between-species pairs and 

random-pair values analysed were randomly sub-sampled to allow for an even comparison with ANOVA and 

Tukey’s HSD post hoc test. 
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Table C2: Mean and 95% confidence intervals for within-species, between species-pairs and random-pair 

dissimilarity values. Asterisks denote significant differences from pairwise Tukey’s HSD post-hoc test. All 

groups were significantly different from each other group. A subset of random pair values were randomly 

sampled from all possible random pair values to allow for a balanced statistical comparison. 

Group Mean Lower 95% CI Upper 95% CI Significance 

Within Species 0.1648 0.1587 0.1709 *** 

Between Species Pairs 0.2340 0.2278 0.2401 *** 

Random Pairs 0.2862 0.2806 0.2918 *** 
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Figure C6: Comparison of colour patterns between sample species, one of which (Chaetodon 

quadrimaculatus) possesses images two different geographic provinces. a) PCoA of colour patterns of nine 

sample species with five images per species except for Chaetodon quadrimaculatus which had five from 

French Polynesia (turquoise) and five from Hawaii (purple). Clear congruence is observed when using 

images from either location. Histogram and density estimates of dissimilarity values to all other species for 

b) Hawaiian individuals and c) French Polynesian individuals.  To ensure that these sets of images from 

different locations had no effect on colour pattern dissimilarity calculations, we compared images of C. 

quadrimaculatus from both locations to 8 other test species. These 200 pairwise comparisons (5 images of 

C. quadrimaculatus x 5 images of each 8 other species = 200 total) were compared using a Welch’s two 

sample t-test. There was no significant difference between the mean colour pattern dissimilarity of fishes 

from French Polynesia or Hawaii when compared to the other fishes. This shows there is no geographic 

variation in butterflyfish colour patterns. 
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Table C3: Test statistics of a Welch’s Two Sample t-test comparing colour pattern dissimilarity from French 

Polynesia or Hawaii to all other samples. 

 Df t value p - value 

FPoly ~ Hawaii 395.45 1.8809 0.0607 
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Table C4: Model selection diagnostics. Models are ranked in descending order from best to worst based on 

AICc weights. All variables were mean-centred. 

Model Variables K AICc 
Delta 

AICc 

AICc 

Weight 

Cumulative 

Weight 

Log 

Likelihood 

Overlap * Symmetry 6 -80.41 0.00 0.76 0.76 49.20 

ToD * Overlap 6 -78.05 2.36 0.23 1.00 48.02 

ToD * Symmetry 6 -68.14 12.26 0.00 1.00 43.07 

ToD 4 -61.27 19.14 0.00 1.00 35.89 

Overlap * ToD * Symmetry 10 -59.58 20.83 0.00 1.00 50.79 

Overlap 4 -59.05 21.36 0.00 1.00 34.77 

Symmetry 4 -59.02 21.39 0.00 1.00 34.76 
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Table C5: Test statistics for phylogenetic generalized least squares of time of divergence on species-pair 

colour pattern dissimilarity. 

 Value Standard Error t - value p - value 

Intercept 0.2421 0.0325 7.4472 < 0.0001 

Time of Divergence 0.0143 0.0091 1.5608 0.1351 
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Table C6: Test statistics for phylogenetic generalized least squares of geographic range aspects on species-

pair colour pattern dissimilarity. 

 Value Standard Error t - value p - value 

Intercept 0.2275 0.0297 7.6486 < 0.0001 

% Overlap 0.0001 0.0002 0.3909 0.7007 

Symmetry 0.0460 0.0548 0.78390 0.4131 

% Overlap : Symmetry 0.0038 0.0014 2.7783 0.0129 
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Figure C7: Phylogenetic generalised least squares regressions of time of divergence and range overlap (a 

– c). This model was the only other model that received support, however it was substantially worse than the 

best fit model. The x-axis represents increasingly greater time since the hypothesized divergence of each 

species-pair. We see a mirrored relationship as to the one observed when comparing range overlap and 

range symmetry in the main text. a – c) reversal of colour pattern dissimilarity related to varying levels of 

range overlap. a) 0% range overlap between species-pairs, b) mean overlap % = 34.66, c) 100% range 

overlap. When species have a high amount of range overlap which would equate to high levels of interaction, 

we see the colour pattern dissimilarity increasing through time. Essentially, the older a species pair gets, the 

more different looking the two species become. The negative relationship displayed in a) is likely a product 

of high range asymmetry, which is not captured in this model. Test statistics for the phylogenetic regression 

are given in the following Table C6. 
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Table C7: Test statistics for phylogenetic generalized least squares of range overlap and time of divergence 

on species-pair colour pattern dissimilarity (Figure C7). Both variables were mean-centred. 

 Value Standard Error t - value p - value 

Intercept 0.2384 0.0291 8.2035 < 0.0001 

Time of Divergence -0.0023 0.0103 -0.2234 0.8259 

Overlap % 0.0002 0.0001 1.7193 0.1037 

ToD : Overlap % 0.0003 0.0001 2.4706 0.0244 
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Appendix D 

 

Figure D1. The difference between convex hull area (left) and multivariate dispersion (right). The convex 

hull is the area created by the smallest possible polygon that encompasses all points. Multivariate dispersion 

is the average distance from all points to their geometric median (the red dot). 
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Figure D2. Photographs of the 12 quadrats sampled herein. As displayed, a wide diversity of substrate 

configurations were surveyed.  
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Table D1. Model parameters from PERMANOVA tests using different dissimilarity indices. Regardless of 

the indices chosen, the results are identical. 

Terms Dissimilarity 
measure Permutations d.f. F model p - value R2 

Sampling site Euclidean 10,000 2 6.2021 0.0011 0.58 

Residuals - - 9 - - 0.42 

Sampling site Bray-Curtis 10,000 2 6.5730 <0.0001 0.59 

Residuals - - 9 - - 041 

Sampling site Gower 10,000 2 5.6217 0.0011 0.56 

Residuals - - 9 - - 0.44 
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Figure D3. The typical procedure for sampling a fish community using an enclosed clove oil station. C.R.H. 

is applying diluted clove oil solution which can be seen as the white haze filtering out of the upper section of 

the net. The floats help keep the net suspended in an upright position. Following a soak time of approximately 

5 minutes, both divers then systematically survey portions of the quadrat to collect any fishes that have been 

euthanized by the clove oil. 
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Figure D4. Beta regressions of species richness relating to colour area (above) and colour spread (below). 

Both are significantly related to species richness. 
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Table D2. Model parameters from the abundance and richness beta regressions. 

Predictor Response Estimate Confidence 
Interval z - value p - value pseudo R2 

Abundance Colour-area 0.0527 -0.05 – 0.16 1.01 0.315 0.07 

Richness Colour-area 0.3998 0.18 – 0.62 3.57 < 0.001 0.58 

Abundance Colour-spread 0.0274 -0.08 – 0.13 0.50 0.617 0.02 

Richness Colour-spread 0.3040 0.03 – 0.58 2.19 0.029 0.28 
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Figure D5. Convex hulls for all species surveyed herein. Points connected by a line are species with only 2 

individuals collected. Lone points are species in which only 1 individual was collected.  
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Figure D6. Colour areas (convex hulls) for each quadrat’s fish community. As a guide, the full colour area 

has been highlighted for all fishes sampled. Each plot corresponds to the quadrat in the same position as 

displayed in Figure D2.  
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Temporal assemblage colouration reconstruction 

Since the number of individuals per species varied from year to year in the long-term sampling dataset, 

we needed to create a procedure that could simulate new individuals within our pre-constructed colourspace. 

While a basic approach would be to simply use the centroid of each convex hull created by each species to 

describe what the ‘average’ colouration is for a species, by doing this we lose variation that is clearly present 

in the colouration between individuals. We therefore created a procedure that would simulate individuals 

within a pre-established colourspace. This gives us more representative colour-areas per year that reflect 

differences in the colourations of individuals of the same species. 

To aid understanding this process, the figure below has been made to help interpretation. First, we 

needed to define the colouration of each species in colourspace. To do this, we utilised the photographs of 

fishes that were collected herein. The colourspace MDS displayed in Figure 6.2 was used as our ‘key’ 

(Figure D7a in the example). We generated the convex hull for each species in our dataset that contained ≥3 

individuals per species (since a minimum of three points are needed to create a polygon; Figure D7b). The 

convex hull for a given species represent the most ‘extreme’ or ‘unique’ colourations for that species. 

Therefore, we can assume the area within the convex hull, or the polygon created by the convex hull, 

represents a conservative estimate of possible colourations for that species (Figure D7c). Although it is 

distinctly possible that new individuals make occupy locations outside of our defined polygon, we cannot 

know how far outside the polygon they may be. Thus, we rely only on the distinct possibilities defined from 

our data. 

Points were then generated for each species within their respective polygons according to the number 

present in the long-term monitoring dataset (Figure D7d). For example, if 13 Eviota zebrina were collected 

in 2008, 13 points were generated with random coordinates that fall within the convex hull for that species. 

This procedure was used to reconstruct the colour-area for each year (Figure D7e & D7f). Some species only 

had two or one individual present within the colourspace key. If two individuals were present, one of the two 

coordinates were randomly selected with equal. If a species only had one individual, the coordinates for this 

point were generated as many times as there were individuals. 

Since this procedure is simulating the hypothetical appearance of individuals, there is inherent 

variation in the size of the colour-area per year since the colour-area is directly a product of where the points 
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fall in colourspace. Although most species colourations are often quite similar and have small convex hulls, 

they can lead to differences in colour-area depending on exact location of where a simulated individual is 

placed. Therefore, we ran the simulation procedure five times for every year to capture the inherent variability 

of individual colouration. These five different estimates are represented in Figure 5.3a as the lines extending 

from the point (which is the mean) for each year. Almost all years had relatively little variation in the different 

simulated colour-areas leading us to conclude that this procedure is effective and accurate. 

 

 

Figure D7. How to simulate new individuals within a pre-made colourspace. 

 

Colour-spread between quadrats 

The spread of the least colourful quadrat (station 12, 0.23) was close to 1/4th the spread of the most colourful 

quadrat (station 9, 0.86). The average colour spread (distance to the median) was 0.63 ± 0.06. 
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Table D3. Model comparison for colour-area (convex hull). 

Predictor K AICc Δ AICc AICc 
weight 

Cum. 
weight Log Lik. 

Complex corals 3 31.83 0.00 0.50 0.50 -11.42 
Matrix & Rubble 3 32.67 0.83 0.33 0.84 -11.83 
Live coral 3 35.54 3.70 0.08 0.91 -13.27 
Sand 3 36.02 4.19 0.06 0.98 -13.51 
Rubble 3 40.12 8.29 0.01 0.98 -15.56 
Branching corals 3 40.35 8.51 0.01 0.99 -15.67 
Turf covered matrix 3 42.09 10.26 0.00 0.99 -16.55 
Hard corals 3 42.24 10.41 0.00 1.00 -16.62 
Soft corals 3 43.00 11.17 0.00 1.00 -17.00 
Massive corals 3 45.71 13.87 0.00 1.00 -18.35 

 
  



Appendix D 170 

Table D4. Model comparison for colour-spread (multivariate dispersion). 

Predictor K AICc Δ AICc AICc 
weight 

Cum. 
weight Log Lik. 

Matrix & Rubble 3 37.37 0.00 0.22 0.22 -14.19 
Complex corals 3 37.50 0.12 0.21 0.43 -14.25 
Branching corals 3 37.84 0.47 0.18 0.61 -14.42 
Sand 3 37.98 0.61 0.17 0.78 -14.49 
Live corals 3 39.55 2.18 0.08 0.85 -15.28 
Rubble 3 39.61 2.23 0.07 0.93 -15.30 
Hard Corals 3 40.24 2.87 0.05 0.98 -15.62 
Turf covered matrix 3 43.84 6.46 0.01 0.99 -17.42 
Soft corals 3 44.48 7.11 0.01 0.99 -17.74 
Massive corals 3 44.93 7.56 0.01 1.00 -17.97 
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Table D5. Model parameters from the top two most parsimonious models for colour-area and spread. 

Predictor Response Estimate Confidence 
Interval t - value p - value adj. R2 

Complex corals Colour-area 4.6774 2.50 – 6.86 4.780 <0.001 0.67 

Matrix & Rubble Colour-area -2.7858 -4.15 – -1.42 -4.545 0.001 0.64 

Complex corals Colour-spread 3.7686 1.01 – 6.53 3.042 0.012 0.43 

Matrix & Rubble Colour-spread -2.2933 -3.96 – -0.63 -3.075 0.012 0.43 
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Figure D8. The linear regression ± 95% confidence intervals display the relationship between colour-spread 

and the cover of structurally complex corals (top) and turf and rubble (bottom) per quadrat. 
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Figure D9. The distribution of R2 values from 10,000 random linear regression permutations. In each 

permutation, a random y-value (colour area) was selected within our observed range of y-values and 

regressed against the known x-value (complex coral cover per quadrat). Our studied yielded an R2 value of 

0.67. The chance of observing a similar relationship with identical strength (R2 > 0.65) by chance is 0.0026, 

or approximately 1 in 386. Our results are therefore highly improbable if only due to chance. 
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Figure D10. The variance in colour-area explained (R2 values) by each substratum type. Single substratum 

variables are coloured in light blue, combinations of two variables (e.g. rubble & matrix) are displayed in 

middle-tone blue, and combinations of three variables (i.e. all live corals) are displayed in dark blue.  
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Figure D11. The relationship between year surveyed and the colour area with (top) and without (bottom) 

the 5 years following the recovery from bleaching. If these five years area removed (bottom) the generalised 

additive model (gam) actually determined the line of best fit is linear, even though it was given the freedom 

to add splines (wiggliness) if necessary. A linear regression (the model output table following) displayed no 

significant relationship between year and colour-area. Therefore, without major disturbance, there is a 

‘base-line’ level of colour-area characteristic to the reefs surrounding Orpheus Island. 
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Table D6. Model parameters for the linear regression removing the five recovery years. 

Predictor Response Estimate Confidence 
Interval t - value p - value R2 

Year (sampled) Colour-area 0.1569 -0.06 – 0.38 1.505 0.150 0.06 
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Figure D12. The colourspace occupied by yellow and green species. The green polygon represents 

approximately 29% of the total colourspace and is created from just three species: Pomacentrus moluccensis, 

Gobiodon histrio, and Paragobiodon xanthosoma. 
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Table D7. Model parameters from the negative binomial abundance regression. 

Predictor Response Estimate Confidence 
Interval z - value p - value adj. R2 

Year sampled Abundance -0.066 -0.11 – -0.02 -2.847 0.004 0.39 
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Appendix E 

 

Figure E1. Euclidean distances in the RGB colourspace are not representative of perceptual differences. 

Displayed is only the Green (x) and Blue (y) axes of the RGB colourspace (Red in this figure would be the z 

axis) adapted from Weller and Westneat 2019. The red triangle is equilateral meaning that each of the three 

vertices are equally distance from each other. Most human viewers would identify the green and blue colours 

as being far more perceptually similar than either two colours are from black. However, their distances in 

RGB colourspace are identical, meaning the distance between black-and-green and black-and-blue are the 

same as that between blue-and-green. 
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Figure E2. Aligning landmarks in patternize. This is a representation of images after they have been aligned. 

Note how the landmarks in each image can be connected to the same landmarks in the other images with a 

perfectly straight, vertical line. This utility allows for the comparison between images in which the subjects 

vary in size and orientation. 
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