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ABSTRACT 
 

Mycobacterium tuberculosis (Mtb) kills more people each year than any other infectious disease, 

including HIV and malaria, despite substantial efforts to control it. Currently, multidrug-resistant 

(MDR) TB is emerging as the greatest threat to TB control globally. The world’s highest TB burden 

occurs in the World Health Organization’s (WHO) South-East Asian Region. Bangladesh is a lower-

middle income country located in South Asia, with strong seasonal weather variation and ranks sixth 

among 22 high TB burden countries. The transmission dynamics and epidemiology of TB in the country 

are poorly understood. The aim of my research was to investigate the influence of weather variables 

and the transmission dynamics of drug-susceptible (DS) TB and multidrug-resistant (MDR) TB in 

Bangladesh. To achieve this aim, I conducted a time series analysis to explore the association between 

weather variables and TB epidemic. I also developed a mathematical model of the transmission 

dynamics of DS-TB and MDR-TB in Bangladesh and performed extensive formal analysis of the 

system properties and solutions. I also assessed specific intervention strategies to identify the most 

effective programs for achieving TB control in Bangladesh – an area of study that remains relatively 

neglected in the literature. 

 

In a narrative literature review (Chapter 2), I discussed the emergence and establishment of DS-TB and 

MDR-TB along with the possibility of future epidemics of severe TB. Numerous structural risk factors 

can lead to an outbreak of TB disease. These risk factors include, but are not limited to, health system 

factors, environmental factors, host related factors and sociological factors. These factors are culturally 

sensitive, contributing to a worrisome problem in developing countries such as Bangladesh. TB impacts 

poor populations more because of a lack of health facilities and services, poor nutrition, and crowded 

housing, facilitating the spread of TB disease and worsening outcomes. As a consequence, TB continues 

to be the world’s biggest infectious disease killer and disproportionately impacts developing countries 

such as Bangladesh. 

 

From a generalized linear Poisson regression model (Chapter 3), developed using quarterly TB cases in 

three known endemic districts of North-East Bangladesh from 2007 to 2012, I found that TB risk 

increased with prolonged exposure to temperature and rainfall, and persisted at lag periods beyond 6 

quarters. The association between humidity and TB is strong and immediate at low humidity, but the 

risk decreases with increasing lag. Using the optimum weather values corresponding to the lowest risk 

of infection, the risk of TB is highest at low temperature, low humidity and low rainfall. Measures of 

the risk attributable to weather variables revealed that TB cases attributed to humidity are higher than 

that of temperature and rainfall in each of the three districts. The results have relevance for the 



 
 

x 
 

Bangladesh National TB Control Program (NTP) and act as a practical reference for the early warning 

of TB cases. 

 

In Chapter 4, I developed a two-strain Susceptible-Infected-Recovered (SIR) disease model. The first 

strain represents drug-susceptible (DS) and the other is drug-resistant (DR). In this analysis, I also 

modeled the emergence of drug resistance as a consequence of inadequate treatment, i.e. amplification. 

I performed a dynamical analysis of the resulting system and found that the model contains three 

equilibrium points: a disease-free equilibrium, a mono-existent disease-endemic equilibrium with 

respect to the DR strain and a co-existent disease-endemic equilibrium where both the DS and DR 

strains persist. I conducted a local stability analysis of the system equilibrium points using the Routh-

Hurwitz conditions and a global stability analysis using appropriate Lyapunov functions. I also 

investigated the impact of amplification and treatment/recovery rates of both strains on the equilibrium 

prevalence of infection and found that if amplification and DS treatment/recovery rates increase then 

DR prevalence increases but DS prevalence declines. Further, if amplification and DR 

treatment/recovery rates increase then DR prevalence declines but DS prevalence increases. Following 

this, I performed a sensitivity analysis to investigate the model parameters that have the greatest 

influence on the prevalence.  

 

In Chapter 5, I developed a parsimonious model structure capable of accurately reproducing observed 

TB epidemiology dynamics, particularly the prolonged latency period and the possibility of fast and 

slow progression to active TB. Similar to the model investigated in Chapter 4, I included an 

amplification pathway for individuals that acquire drug resistance during treatment. I performed a 

rigorous analytical analysis of the system properties and solutions to predict both the early- and late-

time behaviour of the model. I again found resistance to drugs increases with increasing drug use, that 

is, active TB treatment results in a reduction of drug sensitive cases and an increase in DR-TB cases 

because of amplification. I also fitted the model to TB prevalence and notification data and performed 

a sensitivity analysis, finding that the contact rate of both strains had the largest influence on DS and 

DR-TB prevalence.   

 

In Chapter 6, an extended version of mathematical two-strain TB model fitted to Bangladesh TB data 

to understand the transmission dynamics of DS-TB and MDR-TB. I performed a sensitivity analysis to 

identify the parameters with the greatest influence on the overall epidemic. I found that the transmission 

rate for DS and MDR-TB is the most important parameter. Different control strategies, including 

distancing, latent case finding, case holding, active case finding, and their combinations are investigated 

within the optimal control framework. Optimal control strategies are used for reducing the number of 

DS and MDR-TB patients with minimum intervention implementation costs. Results recommend that 



 
 

xi 
 

the distancing control strategy is the most cost-effective single intervention that can be applied. My 

findings also recommended that enhancing active case finding instead of case holding together with 

distancing and latent case finding can significantly reduce the rate of spread of DS and MDR-TB in 

Bangladesh. 

 

In Chapter 7, I developed four potential specific intervention scenarios in consultation with the local 

staff of the NTP in Bangladesh during the period from 2020 to 2035. These include increasing the 

detection proportion, DS and MDR-TB treatment rates and drug-susceptibility testing rate from baseline 

to explore the impact of each intervention on TB incidence and mortality. My findings suggest that the 

detection proportion is the most important intervention for decreasing DS and MDR-TB incidence and 

mortality in Bangladesh. However, focusing on the DS and MDR-TB treatment rate alone will not 

dramatically affect the decline in DS and MDR-TB incidence and mortality in the country. Varying 

more key interventions simultaneously is the most effective way to reduce the burden of DS and MDR-

TB incidence and mortality in Bangladesh. 

 

In summary, this thesis provides a better understanding of the changing epidemiology of DS-TB and 

emerging MDR-TB epidemics and will support future policy and planning of TB control efforts in 

Bangladesh. Finally, this flexible modelling (both transmission and economic) framework will be 

adaptable to other settings that are experiencing high burden of DS and MDR-TB. 
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1.1 Emergence of global and national problem 

 
Tuberculosis (TB) is an airborne infectious disease that causes an estimated 1.2 million deaths 

worldwide each year [1]. Mycobacterium tuberculosis (Mtb) is the airborne pathogen transmitted from 

a diseased person to healthy person through expulsion of droplets from the infectious person and 

inhalation of droplets by the susceptible person when they come into contact each other. It is noted that 

a single inhalation or very short duration of contact may not lead to infection. Rather, it usually requires 

frequent or prolonged contact with an infectious person (hence household contacts or close contacts are 

most at risk) [1]. Once infected, the individual will first undergo a period without visible clinical 

symptoms, called latent TB infection (LTBI). The latent period is the timespan from the point of 

infection to the beginning of the state of infectiousness, which may last for weeks, months or the entire 

lifetime of the infected individual. The lifetime risk of progression to active TB for a person with LTBI 

has been estimated to be around 5-15%, depending on the age at infection [2]. 

 

In 2018, the World Health Organisation (WHO) estimated that 1.2 million people died from TB, and 

that an additional 10.0 million people became newly infected. Most of the new cases in 2018 occurred 

in Asia (44%) and Africa (24%) and 87% of TB deaths occurred in low- and middle-income countries 

[1]. The highest burden of TB is not surprisingly in regions where seasonal weather varies markedly 

and health systems are weak. For example, the incidence of TB has been shown to be highest during 

summer, thus, it was hypothesized that the disease infection may have been acquired during winter 

months. This could be attributed to reduction in vitamin D level in the winter season [3-7], winter indoor 

crowding activities [8, 9] and seasonal variation in immune function [10, 11].  

 

In 2015, the WHO recognised 22 high-burden countries according to their actual number of TB cases 

[12]. Among these is Bangladesh, a country where poverty, high population density and malnutrition 

are commonplace, creating a favourable environment for TB outbreaks. Furthermore, TB treatment 

compliance is poor in Bangladesh – presumably as a result of the extensive period of therapy – leading 

to a rise in the number of multidrug-resistant (MDR) TB cases [13]. MDR-TB is defined as TB that is 

resistant to isoniazid and rifampicin (the two most effective and commonly used first-line drugs), with 

or without resistance to additional first-line drugs. There are two major ways of developing MDR-TB: 

one termed amplification, the other primary transmission; the latter term referring to MDR being passed 

directly from an MDR-TB infected person. Amplification refers to the change from DS-TB to MDR-

TB in the same person through naturally-occurring mutations and the selection pressure of antibiotics 

(i.e. if a DS-TB patient has partial resistance or is inadequately treated with first line anti-TB drugs, 

sequential resistance can occur. Thus it is often called amplifier effect of chemotherapy and is in effect 

an iatrogenic phenomenon) [13]. 
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Each year it is estimated that 70,000 people die of TB and 300,000 new cases arise in Bangladesh [14]. 

In 2014, the case notification rates per 100,000 population were 68 and 122 for new smear-positive 

cases (i.e. cases that are usually more infectious and have a higher mortality) and all forms of TB cases, 

respectively. In the same year, the number of all types of TB cases had increased due to increased 

migration to and from endemic countries – an alarming hypothesis given the high TB burden in 

neighbouring countries such as India and China [13]. 

 

In light of these alarming statistics, and similar figures emanating from regions all over the globe, in 

2015 the WHO upgraded their Stop TB Strategy to the End TB Strategy, with the goal of eradicating 

TB from the human population (to reduce TB mortality by 95% and to cut incidence by 90%) by 2050 

through improved case finding and treatment success rates. In order to achieve the global End TB targets 

of achieving at least 70% case finding and 85% treatment success, numerous strategies are used to 

control TB outbreaks at the national and global levels. Programmatic management of drug-resistant TB 

(PMDT) is one of the most effective strategies for the control and prevention of drug-resistant (DR) 

TB. PMDT activities include proper management of contacts by ensuring that optimal treatment, a 

reliable drug supply and adequate health facilities are available [15]. Among these strategies, Directly 

Observed Treatment-Short Course (DOTS) is a very important component in the internationally 

recommended policy package for TB control. During DOTS a qualified practitioner observes the patient 

ingesting their medication, which results in a demonstrable improvement in treatment rates and patient 

outcomes [16]. 

 
Prompt treatment and cure of infectious cases of TB cuts the chain of transmission of TB infection at 

the community level. Therefore, rapid identification of presumptive TB cases, rapid diagnosis, prompt 

commencement of treatment and successful completion of treatment are the most effective ways of 

eliminating TB [16]. Whilst treatment of DS-TB is relatively straightforward: combination therapy 

(isoniazid and rifampicin being the backbone of a four-drug regimen) taken for six months; treatment 

of DR-TB is more lengthy, e.g. treatment for MDR-TB takes approximately nine to twenty four months 

and typically incorporates a combination of both first- and second-line drugs. Moreover, DR-TB 

treatment regimens are also more toxic, have a higher cost of diagnosis and patients typically suffer 

higher mortality and failure rates [16]. 

 

Progress in TB control is constrained by the lack of effective new "tools" (diagnostics, drugs and 

vaccines). The lack of effective tools leads to the increase of new cases of DS-TB as well as MDR-TB. 

Many of the existing tools available for TB control are old and insufficient to address current TB 

epidemics – as evidenced by the 600,000 new cases of rifampicin resistant TB (RR-TB), of which 

490,000 also met criteria for MDR-TB [16]. TB control programs in resource-poor countries have few 
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alternatives but to use a method of diagnosing the disease (sputum smear microscopy) that is 125 years 

old and detects only half of the cases [16]. 

 

Improvements in diagnostics and treatments are particularly needed in countries like Bangladesh, which 

is resource-poor and has a high TB burden. The only vaccine available (BCG) is effective in protecting 

children against severe forms of TB, but provides little protection in adults against developing the 

infectious form of TB [13]. Therefore, new treatment regimens are urgently needed. Current treatment 

regimens for DS-TB usually take approximately six months and for MDR-TB usually take 

approximately nine months in Bangladesh. The impact of these current treatment regimens need to be 

evaluated to investigate which one is optimal to a given scenario. While there are several randomized 

control trials (RCTs) for improved therapies with shorter durations and greater treatment success rates 

currently underway, these trials may take many years to complete, may be unable to ascertain the impact 

of more than one activity at a time and are extremely expensive [17].  Mathematical models offer an 

effective way to include more than one activity together at a time to investigate treatment efficacy and 

cost effectiveness [9, 18-22]. 

 

Statistics show that TB is one of the most pressing public health problems in Bangladesh [16]. However, 

the transmission dynamics and epidemiology of TB in Bangladesh remain poorly understood and no 

novel TB treatment therapies are in development. This means that right now there is an opportunity to 

develop a mathematical modelling framework for TB control efforts in Bangladesh. If delayed, the 

opportunity to identify the leading causes of DS-TB and MDR-TB epidemics will be lost. To my 

knowledge, no previous TB mathematical model structures exist for this country. Furthermore, no study 

has investigated the cost effectiveness of different TB intervention strategies specific to Bangladesh in 

order to identify the optimal approach given the limited resources. 

 

1.2 Aims of this thesis 

 

The first aim of the thesis is to investigate the impact of weather variables on the TB epidemic over the 

period 2007 to 2012 in Bangladesh. I presented time series analysis using datasets including TB 

surveillance data aggregated at the district level and meteorological data recorded from 35 monitoring 

stations across the country to analyse the relationships between weather variables and the number of 

TB cases. The second aim of the thesis was to develop a mathematical model of the transmission 

dynamics of DS-TB and MDR-TB in Bangladesh and perform a rigorous analytical analysis of the 

system properties and solutions. I assessed specific intervention strategies to identify the most effective 

ways to control TB epidemics in this country. 
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1.3 Research objectives 

 

The key objective of this project was to develop robust mathematical models that can be used to simulate 

the epidemic trajectory of TB in Bangladesh. Furthermore, economic models will be integrated to assess 

the efficacy, durability and cost-effectiveness of combinations of novel therapies.  

Specific objectives are as follows: 

 
Objective 1: To explore the association between weather variables and the number of TB cases in 

Rajshahi province, Bangladesh and investigate the risk of TB attributable to weather. 

Objective 2: To investigate the dynamics of a two-strain disease model with amplification and explore 

the impact of poor quality treatment. 

Objective 3: To investigate the dynamics of DS and DR-TB in Bangladesh and identify the most 

important parameters. 

Objective 4: To develop an accurate economic forecasting model and identify the most cost-effective 

intervention strategies for reducing the burden of DS and MDR-TB in Bangladesh (and beyond). 

Objective 5: To explore the TB dynamics in Bangladesh through different specific intervention 

scenarios. 

 

I address each of these research objectives through published papers included as thesis chapters, as 

outlined below. 

 

 

Objective 1: To explore the association between weather variables and the number of TB cases in 

Rajshahi province, Bangladesh and investigate the risk of TB attributable to weather. 

 

In this chapter, I analyzed the number of TB cases from 2007 to 2012 using data sourced from the 

National TB Control Program (NTP) in Rajshahi province, Bangladesh. Weather variables including 

the maximum and minimum temperature, rainfall and relative humidity from 35 weather stations across 

Bangladesh were obtained from the climate division in Bangladesh as well as the National Oceanic and 

Atmospheric Administration (NOAA), and National Centers for Environmental Information (NCEI). I 

used generalised linear Poisson regression models to investigate the association between weather factors 

and TB cases reported to the Bangladesh NTP between 2007 and 2012 in three known endemic districts 

of North-East Bangladesh. The results highlight the high linearity of temporal lagged effects and 

magnitude of TB burden attributable to temperature, humidity, and rainfall. The results can hopefully 

advise the Bangladesh NTP and act as a practical reference for the early warning of TB cases 

particularly in the setting of extreme weather events or persistent weather changes. 
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Objective 2: To investigate the dynamics of a two-strain disease model with amplification and explore 

the impact of poor quality treatment. 

 

I investigated a two-strain disease model (which was not disease specific) with amplification to simulate 

the prevalence of DS and DR disease strains. I modeled the emergence of drug resistance as a 

consequence of inadequate treatment, i.e. amplification. In this case, individuals infected with the DS 

strain acquire drug-resistant infection such that the strains are coupled. I perform a dynamical analysis 

of the resulting system and find that the model contains three equilibrium points (a solution to 

differential system of equations that does not change with time): a disease-free equilibrium; a mono-

existent disease-endemic equilibrium in which only the DR strain exists; and a co-existent disease-

endemic equilibrium where both the DS and DR strains persist. I conducted a local stability analysis of 

the system equilibrium points using the Routh-Hurwitz conditions and a global stability analysis using 

appropriate Lyapunov functions. Sensitivity analysis was used to identify the most important model 

parameters through the partial rank correlation coefficient (PRCC) method. I found that the contact rate 

of both strains had the largest influence on prevalence. I also investigated the impact of amplification 

and treatment/recovery rates of both strains on the equilibrium prevalence of infection; my results show 

that the longer the DS strain takes to recover, the more likely is coexistence and the higher the 

amplification rate, and longer the treatment process, the greater the relative abundance of resistant 

infections. This mechanism, I postulate, explains the relationship between poor quality treatment or 

incomplete therapy of infectious diseases and emergence of drug resistance.  

 

 

Objective 3: To investigate the dynamics of DS and DR-TB in Bangladesh and identify the most 

important parameters. 

 

In this component of the thesis, I developed a mathematical model of TB transmission dynamics over 

time. Taking advice from the recent review by [32] I selected the most parsimonious model structure 

capable of accurately reproducing observed TB epidemiology dynamics, particularly the prolonged 

latency period and the possibility of fast and slow progression to active TB. Then, I extended this model 

to incorporate two co-circulating TB strains: a DS-TB strain; and a DR-TB strain. An important feature 

of this model is the coupling between the two-strain representing the flow of infected individuals who 

acquire resistance during treatment. 

 

I then performed a rigorous analytical analysis of the system properties and solutions to predict both 

the early- and late-time behaviour of the model. For each, I used the next generation matrix method to 

determine analytic expressions for the basic reproduction number, R0  of the different TB strains, where 
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R0 is the expected number of secondary cases created by a single infectious case introduced into a 

totally susceptible population. R0 is often an important determinant of the system dynamics: when R0 >

1 an epidemic occurs (early-time behaviour) and the system settles towards an endemic state (late-time 

behaviour). The asymptotic behaviour of the system is predicted using the next-generation method and 

validated through stability analysis techniques such as the indirect Lyapunov method (i.e. linearisation). 

 

To supplement and validate the analytical analysis, I used numerical techniques to solve the system 

equations and determine the epidemic trajectory for a range of possible parameter values and initial 

conditions. 

 

Following this, I performed a sensitivity analysis to investigate the parameters that possess the greatest 

influence on the model outputs. In the first instance I obtained these parameters directly from inspection 

of the analytical expressions for R0. I then performed a numerical analysis using the partial rank 

correlation coefficient technique to identify the most important model parameters. This analysis, 

performed in Matlab, provided information on the quantitative relationship between parameters and 

model outcomes, particularly over time. After completing my analysis of the system properties I fitted 

my model to the Bangladesh TB prevalence and notification data using least squares optimisation 

method (implemented in Matlab). I then compared my model outputs (e.g. TB prevalence and 

notification data) for supporting future policy and planning of TB control efforts in Bangladesh. 

 

Objective 4: To develop an accurate economic forecasting model and identify the most cost-effective 

intervention strategies for reducing the burden of DS and MDR-TB in Bangladesh (and beyond). 

 

In this component of the thesis, I considered a two-strain TB mathematical model that is fitted to DS- 

and MDR-TB incidence data to understand the transmission dynamics of TB in Bangladesh. Different 

control strategies including distancing, latent case finding, case holding, active case finding, and their 

combinations are investigated within the optimal control framework. Optimal control strategies are used 

for reducing the number of DS and MDR-TB patients with minimum intervention implementation costs. 

Results suggest that enhancing active case finding instead of case holding together with distancing and 

latent case finding is the most significant for reducing the spread of DS and MDR-TB in Bangladesh. 

This study provides an understanding of four different types of control strategies and will be presented 

to the NTP to inform their plan for controlling TB in Bangladesh. 

 

Objective 5: To explore the TB dynamics in Bangladesh through different specific intervention 

scenarios. 

 



 
 

8 
 

In this study, I presented a two-strain mathematical modelling framework (modified version) to explore 

the dynamics of DS and MDR-TB in Bangladesh. Four hypothetical scenarios over the period from 

2020 to 2035 were developed with the help of local staff. During this time, I incorporated four specific 

intervention strategies including improved detection proportion (the number of notified cases divided 

by the number of estimated incident cases for that year, expressed as a percentage), DS and MDR-TB 

treatment rates and drug-susceptibility testing rate to explore the impact of each intervention on DS and 

MDR-TB incidence and mortality. The results show that the scenario that combines improved detection 

proportion, drug-susceptibility testing, and DS and MDR-TB treatment is the most effective at rapidly 

reducing DS and MDR-TB incidence and mortality in Bangladesh. Alternative scenarios can be adopted 

to curb TB depending on the availability of resources and policymakers’ decisions. My findings suggest 

that focusing on a single intervention including increasing the detection proportion turned out to be the 

most impactful strategy on the reduction of DS and MDR-TB incidence and mortality in Bangladesh 

but combine more interventions simultaneously are the most effective in decreasing the burden of DS 

and MDR-TB, which may help TB elimination policies and efforts and enable more effective control 

strategies in Bangladesh.  

 

1.4 Thesis structure 

 

This thesis is based on five published papers and three manuscripts under review addressing research 

objectives concerning the mathematical modelling and TB epidemiology in Bangladesh, along with 

background, discussion, and conclusions chapters. All papers were prepared during my doctoral 

candidature and reproduced with the permission of the publishing company and co-authors. The 

authors’ contributions are detailed in the Appendix. 

 

Chapter 2 provides a summary of the epidemiology of TB globally and in Bangladesh and also provides 

background information on previous studies of mathematical modelling and TB. Further, cost-

effectiveness modelling approaches are also provided at the end of this chapter.    

 

In the paper presented in Chapter 3, I investigated the delay effect of weather variables on TB 

occurrences and estimate the burden of the disease that can be attributed to weather factors. Here, I used 

generalized linear Poisson regression models to investigate the association between weather factors and 

TB cases reported to the Bangladesh NTP between 2007 and 2012 in three known endemic districts of 

North-East Bangladesh.    

 

In Chapter 4, I presented a paper regarding the disease unspecified two-strain model with amplification 

to simulate the prevalence of DS and DR disease strains. Here, I modeled the emergence of drug 
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resistance in, assuming it occurs in a fraction of treated cases (reflecting the assumption that a proportion 

of treatment courses are inadequate), i.e. amplification. I performed a dynamical analysis of the 

resulting system properties and solution coupled with numerical simulations, stability, and sensitivity 

analysis. 

In the paper presented in Chapter 5, I developed a two-strain TB model of DS and DR strains and 

performed an analysis of the system properties and solutions. Here, I also performed the stability and 

sensitivity analysis through appropriate Lyapunov functions and partial rank correlation method 

respectively. Further, I investigated the impact of amplification and treatment rates of both strains on 

the equilibrium prevalence of infection; results suggest that poor quality treatment makes coexistence 

more likely but increases the relative proportion of DR-TB infections. 

 

In Chapter 6, I presented a paper regarding the TB mathematical model that is fitted to the Bangladesh 

TB data to understand the transmission dynamics of DS and MDR-TB in this country. Several control 

strategies including distancing, latent case finding, case holding, active case finding, and combinations 

are examined within the optimal control outline. Optimal control strategies used for reducing the 

number of DS and MDR-TB patients with the lowest intervention execution costs. 

 
In the paper presented in Chapter 7, I extend the TB mathematical model to fit with the DS and MDR-

TB incidence data in Bangladesh. Here, I considered four specific intervention strategy including 

detection proportion, drug-susceptibility testing rate, DS and MDR-TB treatment rates during the time 

period from 2020 to 2035. Results suggest that combining more interventions simultaneously is the 

most effective way to decrease the burden of DS and MDR-TB incidence and mortality in Bangladesh.  

 
A general discussion, recommendations, future directions and conclusions are presented in Chapter 8. 
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CHAPTER 2 
 

 

Background 

 
 

Partial contents of this chapter have been published, under review and copyrighted, as outlined 

below: 

 

Kuddus, M. A., Tynan, E., & McBryde, E. (2020). Urbanization: a problem for the rich and the poor? 
Public Health Reviews, 41(1), 1. 
 
Kuddus, M. A., Meehan, T. M., Doan, T., McBryde, E. S. (2021). The epidemiological presentation 
and management of tuberculosis: A literature review. Antimicrobial Resistance & Infection Control 
(under review). 

Kuddus, M. A., Meehan, T. M., Doan, T., McBryde, E. S. (2021). Tuberculosis in different setting and 
opportunity for modelling: A review. Current Infectious Diseases Reports (under review). 
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Summary of this chapter 

 

This chapter discusses the introduction and endemic establishment of TB, the mathematical and cost-

effective modelling of TB, and the likelihood of future epidemics of severe TB in Bangladesh by 

synthesizing grey literature, academic published articles using Google Scholar, PubMed, NTP reports 

in Bangladesh, and the WHO library database. The search terms were “TB fever”, “TB transmission”, 

“TB incidence”, “TB prevalence”, “TB notification”, “TB mortality”, “TB risk factors”, “TB 

mathematical modelling”, “TB cost-effective modelling”, and “ Bangladesh”. Numerous aspects of TB 

epidemiology in Bangladesh previously not synthesized are analysed in this description review paper. 

Diversity in TB epidemiology between Bangladesh and other high-burden countries is described. This 

chapter examines the possible causes of an apparent reduction in notified cases numbers, including 

control measures and population immunity, and whether bias in the Bangladesh NTP reporting system 

partially accounts for the reduction. The association between TB and its risk factors including health 

system factors, environmental factors, host factors, and sociological factors are also examined. 

Mathematical and cost-effective modelling approaches are also reviewed at the end of this chapter.  
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2.1 An overview of tuberculosis disease and its mode of transmission 

 

Tuberculosis (TB) is a bacterial, potentially fatal, infectious disease that causes millions of deaths 

worldwide each year [1]. TB is an airborne disease caused by bacilli of the bacteria Mycobacterium 

tuberculosis (Mtb). The bacilli generally enter the body through the lungs, spreading to other parts of 

the body through the bloodstream, the lymphatic system, or through direct extension to additional 

organs (extra-pulmonary TB) [2, 3]. The mycobacterium measures approximately 1- 4 μm long and 0.3-

0.6 μm in diameter, and grows very slowly, with cell division taking 12 to 20 hours [4]. 

 

 

Figure 2. 1 TB transmission cycle from person to person through the air. 

(https://www.cdc.gov/tb/wwebcourses/tb101/page1699.html) 
 

Following an infectious person coughing, sneezing, speaking or singing, thousands or tens of thousands 

of droplet nuclei are exhaled [5]. These minute droplet nuclei can remain suspended in the air for several 

minutes to an hour, allowing spread to other persons through inhalation [5, 6]. The spread of Mtb from 

one individual to another depends on the number of droplet nuclei inhaled and the duration of exposure. 

This in turn is dependent on many factors, such as population crowding, the prevailing climatic 

conditions, the strain of TB, and the immune status of the individual [5, 6].  

 

Once infected, the individual will first undergo a period without visible clinical symptoms, called latent 

TB infection (LTBI). The latent period is the timespan from the point of infection to the beginning of 

the state of infectiousness, which may last for weeks, months or the entire remaining life of the infected 
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individual. In fact, the lifetime risk of progression to active TB for a person with LTBI is around 5-

15%, depending on the age at infection. For those who progress from LTBI to active TB, the majority 

will do so within the first two years of initial infection [7]. Figure 2.2 shows the difference between 

latent and active TB. 

 

 

Figure 2. 2 The left side represents latent TB and the right side active TB. 

 (https://aidsinfo.nih.gov/education-materials/fact-sheets/26/90/hiv-and-tuberculosis--tb-) 
 

The World Health Organization (WHO) estimates that once infection has been activated and TB disease 

develops, a person with active but untreated TB may infect 10-15 (or more) other people per year [8]. 

Fortunately, the infected person is no longer a source of infection within 2 weeks of commencement of 

effective treatment [6]. Therefore, effective treatment not only protects TB infected persons, it also 

reduces exposure in the community and the likelihood of Mtb transmission. However, the risk is 

restored, and potentially increased, when the infected individual fails therapy, such as when the strain 

is drug-resistant (DR) TB or if the infected person does not have an adequate course of therapy.     

 

2.2 The emergence of drug resistance 

 

In recent years, antibiotic resistance to the most effective treatments (first line combination therapies) 

has emerged and spread [9]. This has led to a decline in the efficacy of antibiotics used to treat TB, with 

DR-TB patients experiencing much higher failure rates [10]. From a microbiological viewpoint, 

resistance first occurs by a genetic mutation in a micro-organism that renders a drug less effective. 

Typically, such resistance-conferring mutations exact a “fitness cost” whereby DR organisms reproduce 
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at a lower rate and are often less transmissible than their DS counterparts [11]. However, the selective 

pressure applied by antibiotic treatment permits DR mutants to become the dominant strain in a patient 

infected with TB on first-line therapy. Such selection is exacerbated by insufficient antibiotic courses 

or poor delivery of treatment to control TB outbreak. Acquisition of resistance (also referred to as 

amplification), i.e. when an individual’s position changes from DS at initial presentation to resistant at 

follow-up, is the mode by which drug resistance first emerges in a population. Well-administered first-

line treatment for DS-TB is the best way to prevent acquisition of resistance [12].  

 

Once drug-resistant organisms have emerged in a population they can proliferate via primary (direct) 

transmission from an individual with DR-TB to susceptible individuals. Primary transmission is not 

expected to contribute significantly to the overall DR-TB burden due to the reduced 

fitness/transmissibility of drug-resistant organisms. However, subsequent evolution and compensatory 

mutations can restore fitness in the absence and/or presence of antimicrobials [13]. The WHO 

recommends that timely identification of DR-TB and adequate treatment regimens with second-line 

drugs administered early in the course of the disease, believing that these are essential to stop primary 

transmission [1]. Although its causes are microbial, clinical and programmatic, DR-TB is essentially a 

man-made phenomenon.  

 

Currently, multidrug-resistant (MDR) TB is emerging as the greatest threat to TB control globally [14, 

15]. MDR-TB is defined as TB that is resistant to isoniazid and rifampicin (the two most effective and 

commonly used first line drugs) with or without resistance to additional first line drugs [15]. Cohort 

studies within programs of TB treatment estimate that approximately 1% of a treated population who 

begin with a susceptible organism will develop MDR-TB [16]. Ongoing transmission of MDR-TB 

strains in a population may also contribute to new MDR-TB. MDR-TB is an emerging threat to success 

in TB control due to the higher cost of diagnosis and treatment. Therefore, control of MDR-TB requires 

prevention of both developed drug resistance and subsequent transmission, as well as effective 

diagnosis and treatment for those cases that do emerge [17]. 

 

Unfortunately, it does not stop there: inadequate treatment of MDR-TB may create even more 

resistance, with extensively drug-resistant tuberculosis (XDR-TB) strains beginning to emerge (XDR-

TB is defined as MDR-TB with additional resistance to any fluoroquinolone and at least one of the three 

following injectable drugs: capreomycin, kanamycin, and amikacin). Although XDR-TB has been 

found in all areas of the world it is still relatively uncommon [18, 19]. However, wherever second line 

drugs are being used to treat MDR-TB, there is a risk of XDR-TB emerging. Therefore, the clinical 

significance of XDR-TB needs to be revised in light of new drugs including bedaquiline, delaminid and 

pretomanid and new information on the value of the injectable agents.  
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The emergence and spread of antibiotic resistance to the most effective treatments (first line 

combination therapies) has resulted in a decline in the efficacy of antibiotics in treating TB, with DR-

TB patients experiencing much higher failure rates [1]. There were series of studies provide the 

following principles for addressing DR-TB: 

 

1. The use of drug resistance diagnostics is critical because failure to rapidly and accurately 

diagnose DR-TB is contributing to the severity of the TB epidemic [20].  The gold standard 

drug resistance diagnostic is the use of culture in the presence of antibiotics to assess the 

resistant phenotype; however, genexpert is a rapid and cheap alternative [21, 22]. 

 

2. Treatment of MDR-TB is very complex and problematic. In regions in which MDR-TB is 

problematic, DOTS plus (treatment protocol) is recommended and includes second line anti-

tuberculosis drugs (which are more toxic) [23, 24].   

 

3. Prevention through rapid case detection, including contact tracing, and management. The most 

important component of rapid case detection is identification of symptomatic patients attending 

a health facility, either on their own initiative or through referral by another health facility, 

health worker, community volunteer, etc. [25, 26]. Patients diagnosed with any form of TB 

should always be asked whether there is anybody living in the same house who has a chronic 

cough and be encouraged to bring or send that person to the health facility for sputum 

examination.    

 

4. Infection control, which includes prompt detection of infectious patients, airborne precautions 

and treatment of people who have supposed or confirmed TB [27, 28]. Standardised infection 

control procedures in all health services are also very important for prevention and contact 

tracing of DR-TB cases. The major goals of TB infection control are (i) to strengthen 

coordination for implementing appropriate TB infection control; (ii) to reduce the generation 

of aerosols and thereby the exposure to droplet nuclei; and (iii) to reduce concentrations of 

infectious particles, and (iv) to reduce inhalation of infectious particles [1, 27]. 

 

2.3 Current global statistics of TB and its risk factors 

 

TB kills more people each year than any other infectious disease, including HIV and malaria, and it is 

one of the primary global health problems [29, 30]. In 2018, the WHO estimated there were around 

10.0 million new cases of TB, and 1.2 million died from TB disease. Most of the estimated cases in 

2018 occurred in Asia (44%) and Africa (24%) and 87% of TB deaths occurred in low- and middle-
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income countries [31]. A substantial proportion of cases occurred in the Western Pacific region (18%), 

with the Eastern Mediterranean region (8%), the European region (3%) and the Americas region (3%) 

also contributing [31]. Worldwide there is an imbalance in case notification between males (5.6 million 

new cases in 2010) and females (3.2 million new cases in 2010), which may have many causes, 

including missed cases. Childhood TB is often missed, as classical diagnosis with sputum smear is 

insensitive [32].  

 

Numerous systemic risk factors can lead to an outbreak of TB disease. The risk factors include, but are 

not limited to, health system factors, environmental factors, host related factors and sociological factors 

[33-35]. Health System factors play a direct role in managing the impact of TB on a population [36]. 

For the purposes of this study, health system factors can be divided into three parts: 1) government 

support, including funding or lack thereof; 2) quality of service delivery at the basic measurement unit 

(BMU) level; and 3) a system for accessing, managing and delivering anti-bacterial medicines for each 

of the first-line drugs (for fully susceptible disease) and second line drugs (for MDR / XDR-TB). Each 

of these factors is interconnected.   

 

Lack of government budget and service quality can increase TB disease. Prinja et al. (2015) stated that 

lack of government budget plays out strongly at the local and national levels from medicine selection, 

procurement, distribution, and prescription [37]. For drug procurement, adequate funds are essential. 

Without a reliable and efficient supply-chain management system, the allotted funds may not reach the 

intended beneficiaries. Weak institutions and poor governance are barriers to the timely supply of 

medicines to the whole country’s population [38]. Therefore, ensuring that national or regional health 

systems are improved by strengthening the medicine supply-chain system is an important part of dealing 

with or controlling TB outbreaks [39]. In turn, this will ensure that the financial resources available for 

the procurement of pharmaceutical products are utilised efficiently to optimise households’ access to 

medicines, for the government to achieve good value for money, and to accomplish transparency in the 

system [37]. 

 

Environmental factors impact the management of TB, particularly within developing countries. 

Research highlights major environmental factors to be urbanization, overcrowding and seasonality [40, 

41]. Some of the major health problems resulting from urbanization include poor nutrition and 

pollution-related health conditions. These have direct impacts on individual quality of life, while 

straining public health systems and resources. Urbanization has a major negative impact on the 

nutritional health of poor populations. Because they have limited financial resources and the cost of 

food is higher in cities, the urban poor lack nutritious diets [42]. In addition, rapid urban expansion and 

migration might bring populations into contact with pathogenic cycles established in nearby rural areas. 
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Moreover, in urban slum areas, the poor live in overcrowded and congested conditions, with prolonged 

contact and polluted air; all leading to the spread of TB [43]. 

 

Seasonality is another major factor in TB incidence [44-46]. In cold regions, the incidence of TB is 

highest during winter, speculated to be owing to: vitamin D level decrease, an increase in indoor 

activities; and seasonal change in immune function [44]. A series of studies has supported the 

association between TB and deficiency in vitamin D, which has a known role in host immune responses 

specific to TB infection [47-50]. Therefore, all three environmental factors – urbanization, 

crowdedness, and seasonality – may work synergistically to increase the likelihood of a TB disease 

outbreak. 

 

Host-related factors that lead to the spread of TB disease are nutrition status, age and comorbidity, 

including: low immunity; co-infections (e.g. HIV); and non-communicable diseases such as diabetes 

[51-54]. Malnutrition causes infection through its impact on immune system development and function. 

Malnourished children are more susceptible to infection and less likely to recover from TB [55]. Around 

168 million children under five years of age are estimated to be malnourished and 76% of these children 

live in Asia [56].  

 

A number of studies have also shown that improved nutrition status reduces the incidence of TB disease 

[57, 58]. Correction of malnutrition with nutritional supplementation can reduce suffering, cost and 

death, and increase treatment effectiveness by restoring host defences [57, 58]. Research also suggests 

that underweight patients are more likely to have clinical evidence of advanced disease and greater risk 

of side effects and deaths compared to patients with normal Body Mass Index (BMI) [59]. Another 

study implies that multiple-micronutrient (MMN) supplementation increased weight gain in TB patients 

[60]. Therefore, patients with under-nutrition should be considered a high risk group, and proper 

nutritional supplementation may be required as an adjunct to anti-TB therapy. Malnutrition is also an 

aggravating factor for progression of disease from latent TB infection and MDR-TB from conventional 

TB. Malnutrition can facilitate pathogen invasion and propagation to cause diseases, and diverse studies 

have demonstrated that malnutrition increases the risks of infection and death [61, 62].  

 

 

As mentioned above, success of treatment is lower with MDR-TB than with DS-TB, hence restoring 

natural immunity is paramount. However, second line anti-TB drugs for MDR-TB decrease appetite, 

and lead to weight loss [63]. Consequently, more effort is required to analyze and identify the critical 

factors of developing MDR-TB disease, to improve diagnostic effectiveness and to limit the side effects 

of treatment of MDR-TB, in order to prevent deaths from MDR-TB.   
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HIV is the most significant known risk factor for reactivation of latent TB to active TB. For individuals 

with TB-HIV co-infection the lifetime risk of developing active TB is around 60% (compared with the 

5 – 15% baseline figure quoted above) [64, 65]. HIV weakens the immune system particularly impairing 

macrophage and CD4+ lymphocyte function and numbers [66]. The macrophage is the key effector cell 

in reaction to TB infection, and the CD4+ cells are thought to play a major role in adaptive response to 

Mtb infection. In the presence of HIV infection, infected macrophages fail to present Mtb antigens to 

CD4+ cells and therefore intracellular Mtb is more likely to survive [67].    

 

Although less profound, the association between TB and diabetes may have been in play for many 

thousands of years, although the link was not documented until the 1950s [68]. In the early 20th century, 

it was assumed that people who developed diabetes usually died either from diabetes or TB [68, 69]. 

Later, because of the extensive use of insulin to treat diabetes and antibiotics for TB treatment, the 

relationship between these two life threatening diseases was underappreciated. Numerous 

epidemiological studies have proved that type 2 diabetes (T2D) (non-insulin dependent) is one of the 

strongest risk factors for TB vulnerability and its reactivation [70, 71]. T2D patients show 3 to 8 times 

more susceptibility to developing active TB compared with other patients [71, 72].  

 

Sociological status, often indicated by education level, economic conditions with income and religious 

beliefs are additional risk factors that can affect the incidence of TB disease [73-75]. One way in which 

sociological factors impact directly on disease incidence, including TB, is through vaccination 

decisions. Some parents may object to immunization on religious or philosophical grounds, some may 

object to what seems to be a painful assault on their child, and others may believe that the benefits of 

immunization do not justify the risks to their child. Negative beliefs about vaccination have been shown 

to be correlated with low education levels [76]. Educated mothers throughout the world, including those 

in South Asia [77], are more likely to immunize their children compared with non-educated mothers 

[78]. Therefore, if people are educated, they are often better prepared to prevent TB via immunization 

[79]. Challenges even enter the realm of religion, as some religious teachings forbid followers to 

consume ingredients that form the vaccination itself [75, 80]. These factors are culturally sensitive, 

contributing to a worrisome problem in developing countries. Furthermore, vaccines have an indirect 

impact, reducing the number of infectious people, which in turn reduces exposure in the community. 

Consequently, lack of immunization increases both the risk to children who are denied the vaccine, and 

the risk of TB disease spreading throughout the community, as a result of reduced herd immunity. TB 

impacts poor populations more because lack of health facilities and services, poor nutrition, and housing 

together contribute to the spread of TB disease, its outcome in the individual and its effect upon the 

society [81]. 
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TB exists throughout the world and its incidence is highly correlated with poverty at a national scale. 

In addition to the environmental factors already discussed, there are many potential reasons why poverty 

drives TB. For instance, access to high level care is impacted by income at a family level and also health 

system coverage at a national level, leading to late diagnosis and greatly increased TB transmission 

[82].  

 

For numerous reasons, including violence or disturbance, nutritional shortages and inconsistent 

therapeutic arrangement, refugee children are at higher risk of TB [83]. According to estimates by the 

United Nations High Commissioner for Refugees, around 45 million persons are displaced worldwide, 

of whom 15 million are refugees, with approximately half below 18 years of age [84]. This vast 

heterogeneous population experiences significant health adversities. TB infected refugee populations 

are twice as likely to experience treatment failure compared to other immigrant populations, and the 

rates of TB infection in immigrant and refugee populations are highest within 5 years after immigration 

[85, 86]. This is due to pre-departure screening detection of active TB being uncommon in newly 

arriving refugees, and the rates of latent TB infection (LTBI) exceeding 40% in some populations. 

However, children under 5 years of age are capable of getting LTBI and children with LTBI also have 

greater rates of improved active TB infection [87]. 

 

Movement of TB infected people presents a challenge to public health officials and their governments. 

Humans have long gathered for the purpose of religious and sporting events. For example, every year 

during the times of the Hajj and Umrah pilgrimages, 10 million pilgrims from 184 countries are 

estimated to travel to the Kingdom of Saudi Arabia (KSA); a large majority come from high burden TB 

and MDR-TB areas and thus many may have undiagnosed active TB, sub-clinical TB and latent TB 

infection [88]. Furthermore, during the FIFA World Cup football competition, high TB and MDR-TB 

prevalence existed among the citizens of participating countries, with the potential to spread TB 

worldwide [89]. There was widespread concern among global public health authorities that this would 

lead to spread of TB between attendees and the exportation of MDR-TB [88]. Mass gatherings and 

overcrowding of individuals at these events raise the risk of importation, spatial spread and exportation 

of TB [88, 90]. 
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Figure 2. 3 Contributing factors related to TB disease outbreaks and their impact. 

 

2.4 TB treatment and control strategies 

 

Treatment of TB is lengthy and complex, usually incorporating a combination therapy taken for 

approximately six months for DS-TB and nine to 24 months for MDR-TB [91, 92]. Bacille Calmette-

Guerin (BCG) vaccine, derived from an active attenuated strain,  is recommended as soon as 

possible after birth to avoid life threatening TB diseases such as TB meningitis and miliary TB, however 

this vaccination is not lifelong and its efficacy varies from 50 to 80% in children and is lower in adults 

[93, 94]. Many of the existing tools available for TB control are old and insufficient to address current 

TB epidemics – evidenced by the 600,000 new cases of rifampicin (RR-TB) resistant TB estimated for 

2016 [1]. TB control programs in resource-poor countries generally use a method of diagnosing the 

disease (sputum smear microscopy) that is 125 years old and detects only half the cases [95]. Several 

trials trying to reduce the treatment time for active DS-TB from six to four months have proven 

unsuccessful [96]. The nine month short-course regimen (Bangladesh regimen) for MDR-TB has been 

reported to be highly effective, with treatment success rates ranging from 84 to 88%, and better 

tolerance reported than the conventional MDR-TB regimens [1]. Furthermore, some studies have shown 

that bedaquiline (BDQ) has the potential to shorten MDR-TB treatment to less than six months when 

used in conjunction with standard anti-TB drugs [97]. Treating latent TB before it becomes active is 

another option [98]. The role of this strategy is not well defined and it is recommended in low-burden 

countries, whereas modelling studies suggest that higher burden countries are likely to benefit more 
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[99, 100]. Therefore, more effective and widely accessible tools are needed to make a greater impact 

on treatment regimens for DS and MDR-TB.    

 

Prompt treatment and cure of infectious cases of TB cuts the chain of transmission of TB infection at 

the community level [101, 102]. Therefore, rapid identification of presumptive TB cases, rapid 

diagnosis, prompt commencement of treatment and successful completion of treatment are highly 

effective ways of preventing TB [1]. Patient compliance is key to treatment success. Lack of support 

(e.g. appropriate combinations of drugs, management and support of the patient) makes treatment 

adherence problematic and a proportion of patients stop treatment before completion [103]. This 

increases their risk of developing DR-TB and increases their duration of infectiousness, thus leading to 

enhanced transmission. To prevent this, and to improve patient outcomes, strict adherence to treatment 

is a pillar of the TB control strategy [102, 104].  

 

To achieve the global WHO targets of achieving at least 70% case finding and 85% treatment success, 

numerous strategies are used to control TB outbreaks at the national and global levels. Programmatic 

management of drug-resistant TB (PMDT) is one of the most effective strategies for the control and 

prevention of DR-TB [105]. PMDT activities include proper management of contacts by ensuring that 

optimal treatment, a reliable drug supply and adequate health facilities are available [106]. Among these 

strategies, (DOTS) is an important component in the internationally recommended policy package for 

TB control. During DOTS, a qualified practitioner observes the patient ingest their medication, which 

results in a demonstrable improvement in treatment rates and patient outcomes [107]. 

 

2.5 Quantitative tools available for the control of TB 

 

Many areas of quantitative analysis can be used to improve the understanding of TB epidemiology, as 

well as the dynamics of disease spread, and explore the likely impact of interventions. These include: 

 

1. Decision theory: Decision theory can guide a set of policies or give procedures on how or what we 

should do to make the best decisions for improving TB detection during a TB epidemic [108]. 

 

2. Geographic Information System (GIS): During a TB outbreak, GIS provides tools that speed the 

collection of precise field data, which helps support comprehensive decisions [109]. 

 

3. Operational research: Operational research can examine the knowledge for several interventions, 

policies, or tools that can improve the quality, usefulness, or coverage of each program’s setting, 

especially in the areas that are experiencing high burdens of TB [110]. 
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4. Mathematical modelling: Mathematical modelling can improve our understanding of the 

epidemiology of TB as well as those components that are significant to TB diagnosis and treatment. 

Mathematical modelling tools can be used to study a variety of influencing factors including e.g. 

poverty, host-related factors and population density, and to determine their relative importance in 

governing TB epidemics [111].  

 

5. Health economics analysis: Health economic analysis can evaluate the economic effect on both 

patients and the health system considering factors such as schedule shortening for first line TB treatment 

and examining the unit cost for interventions. The results generated from the health economic analysis 

help identify interventions that are the most cost-effective [112]. 

 

Furthermore, real-time analysis of TB epidemics can support public health practitioners in re-examining 

continuing TB burdens with outbreaks and associated resource allocations, and thereby realign 

emergency plans. Electronic based communication systems including electronic signals became a 

priority to facilitate TB surveillance and outbreak investigation. These systems allow for much more 

rapid data collection,  synthesis and analysis [113]. 

 

2.6 Health economics of TB 

 

TB has disruptive financial impacts on all ages but the greatest impacts occur during the most dynamic 

years of life, from 15 to 44 years of age. The community and family impacts on the individual of TB in 

this age group are worse as TB decreases the earning ability of an individual [114, 115]. Shortfalls in 

funding for TB prevention and response is a threat to TB control at the national and global levels. 

Currently, funding for TB care and prevention extended to US$ 6.9 billion in 2017 in 118 low and 

middle-income countries compared to US$ 6.3 billion in 2016 and more than double the US$ 3.3 billion 

in 2006 [1]. In 2017, India’s TB budget substantially increased to US$ 525 million, almost double 

compared to 2016 [116]. In low-income countries, international donor (Global Fund, WHO, World 

Bank) funding exceeds national funding, and in the 25 high TB burden countries outside Brazil, the 

Russian Federation, India, China, and South Africa, national and international donor funding levels are 

similar. In 2017, an estimated total of US$ 9.2 billion was required for TB diagnosis and treatment. 

This funding included US$ 7.0 billion for DS-TB, US$ 2.0 billion for MDR-TB and the remainder for 

TB-HIV interventions. The Global Fund delivers the largest international donor funding stream for TB 

control efforts [1]. However, the financial situation for TB control efforts in Bangladesh is not good. In 

2017, US$ 86 million was estimated to be needed for TB diagnosis and treatment, comprising 7% from 

domestic sources, 51% from international sources and 43% unfunded [1].  
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2.7 TB in Bangladesh and its current situation 

 

In 2015, the WHO classified 22 high TB burden countries among them Bangladesh has the 7th largest 

TB incidence globally. Further, for the MDR-TB Bangladesh ranked 10th of the 27 high MDR-TB 

burden countries [95]. Each year in Bangladesh an estimated 70,000 people die of TB and 300,000 new 

cases are projected making, TB one of the most important public health problems in Bangladesh [117]. 

Before 2014, the case notification rates per 100,000 population were 68 and 122 for new smear positive 

(usually more infectious and have a higher mortality) and all forms of TB cases respectively, but by the 

end of 2014 the number of all types of TB notifications had increased, with a substantial increase in the 

number of extra-pulmonary cases. This increase may be due to a substantial rise in migration to and 

from endemic countries. This is a worrying hypothesis, given the high TB burden in neighboring 

countries such as India and China. 

 

In Bangladesh, the TB mortality rate is 43 per 100,000 per year, the incidence rate of all cases is 225 

per 100,000 per year and the prevalence is 411 per 100,000 [118]. By way of comparison, in Thailand 

the tuberculosis death rate is 14 per 100,000 and the incidence rate is 150 per 100,000 people [119]. 

Thus, there is a great need to reduce incidence, prevalence, and mortality rates in Bangladesh [120]. 

Health care financing in Bangladesh primarily comes from three sources, namely the public exchequer, 

pocket payments by users and foreign aid [121]. The Bangladesh government is constitutionally obliged 

to supply basic medicine requirements to all community levels. However, a large number of rural people 

in Bangladesh have no or little access to health care services because of the inadequate health facilities 

[122]. Therefore, if people are infected by TB, they do not receive proper medication from the health 

care services. This poor quality of service to the poor population will have a negative health effect that 

can lead to TB disease outbreaks [123]. Furthermore, although the BCG vaccine is very effective for 

TB patients [1], a lack of access to BCG vaccines may be a contributing health factor and lead to 

outbreaks or spread of TB [124].  

 

In Bangladesh, poverty, population density and malnutrition are common problems that create a 

favourable environment for developing TB [125]. Illiteracy and social stigmas are important factors 

that may lead to people failing to receive proper treatment [126]. Nationwide, more than five million 

people have diabetes; these people have a two to three times higher risk than other individuals of 

developing TB disease [127].   

 

In Bangladesh, under the Ministry of Health and Family Welfare, the National TB Control Program 

(NTP) of the Directorate General of Health Services (DGHS) provides nationwide TB control services. 

These services include screening, case detection through diagnosis, treatment following the appropriate 

regimen, follow up and evaluation in all areas [63]. The goals of this program are to reduce illness, 
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death and transmission of TB, and to achieve universal high quality service for all people with active 

and latent TB [125]. More than 44 partner organizations (NGOs) also support the NTP in all areas, 

including advocacy, communication, and social mobilization (ACSM) activities. The NTP adopted the 

recent WHO recommended strategies -namely the DOTS Strategy-1993, the Stop TB Strategy-2006, 

and the End TB Strategy-2015 for TB control [63, 128].  

 

Following the DOTS and End TB strategies, the NTP aims to sustain the global targets of achieving at 

least 70% case detection and 85% treatment success among new smear-positive TB cases for the whole 

country. The general progress in case finding was slow and steady until 2001 to reach case notification 

rates for new smear-positive cases of 31 per 100,000 population. From 2001 onwards, case notification 

increased to reach 46 per 100,000 in 2004 and further increased to 61 per 100,000 in 2005, 73 per 

100,000 in 2006, and in 2009, the case notification reached 74 per 100,000 population for smear-

positive cases. As a result of extra effort in special situations like smear-negative and child TB cases, 

as well as hard to reach areas with social support for poor groups, case notification reduced to 70 per 

100,000 population in 2012 but in 2013 case notification increased to 119 per 100,000 and 122 per 

100,000 population in 2014. During 2015, case notification further increased to 130 per 100,000 and in 

2016 it was 138 per 100,000 population.  

 

The NTP achieved its objectives in effective treatment, case detection and overall management through 

partnership, engaging all care providers (GO-NGOs) and making available free diagnostic and 

treatment support, particularly for DS-TB [63]. By 2003, the treatment success rate of this program 

reached the targeted 85% and has been maintained at 90% since 2005. In 2013, the program successfully 

treated 94% of notified new smear-positive cases such that by 2015 the number of all forms of TB cases 

fell to 225 per 100,000 population, with a case detection rate of approximately 58% [125].  In 2020, 

WHO estimated that 0.7% of new cases and 11% of previously treated cases are found to be positive 

for DR-TB, which has an incidence rate of 2.0 per 100,000 population [129]. Figure 2.4 shows the 

nationwide number of TB cases in Bangladesh over the year from 2000 to 2019 [129]. 

 



 
 

26 
 

 
Figure 2. 4 Nationwide number of TB case in Bangladesh from 2000 to 2019.   

In Bangladesh, several government hospitals, mainly chest disease hospitals, provide treatment to DS-

TB patients and MDR-TB patients. They also provide conventional food supplementation three times a 

day [130]. Recently, Bangladesh introduced programmatic management of MDR-TB at the community 

level to reduce the high utilization of inpatient beds that resulted from MDR-TB treatment under 

standard regimens [131]. As the effectiveness of community-based short-course MDR-TB management 

(The Bangladesh regimen) was found to be significantly higher than hospital-based management, it is 

important to identify the factors responsible for effective MDR-TB management, including food and 

nutrition, awareness, and financial support from the treatment program, programmatic strengths, and 

emotional and psychological issues [125]. Although TB control in Bangladesh has significantly 

progressed – improved case finding, availability of free diagnostic and treatment services, involvement 

of multiple partners, newer diagnostic facilities, sufficient human resources, adequate capacity and 

guidelines – more effort is required. To reduce TB incidence and prevent deaths from TB in Bangladesh, 

we need to identify the critical factors for developing TB disease, improve diagnostic effectiveness, and 

reduce adverse drug reactions [63].   

Bangladesh is a resource poor, high burden TB country, and the transmission dynamics and 

epidemiology of TB are poorly understood. The development pathway of novel TB treatment therapies 

is very slow. New treatment regimens are being developed that significantly shorten the duration of 



 
 

27 
 

therapy, improve patient outcomes, and are cheaper for patients and the health system. To date and to 

our knowledge, the transmission dynamics and epidemiology of TB in Bangladesh have not undergone 

rigorous and no mathematical model structure exists. The  mathematical model can be used to predict 

quantitatively the period of an epidemic; its total size; peak height; peak time; and impact of infection 

control interventions including nonlinear interactions that happen when multiple interventions are 

implemented. Therefore, this project can refine our understanding of TB in Bangladesh and offer 

potential strategies to reduce overall disease burden. Furthermore, this project will also include a cost-

effectiveness analysis to identify optimal TB treatment efficiency with satisfactory cost-effectiveness. 

The information that I generate from these analyses may contribute to improving the present situation 

in Bangladesh. Furthermore, it is also expected to benefit the administrators and policy makers who are 

concerned with the impact of DS and MDR-TB treatment in Bangladesh. 

 

2.8 Mathematical modelling of TB: An overview 

 

Mathematical modelling is an abstraction of reality. This kind of modelling is a powerful tool for 

infectious disease control that can be used for both prediction and for understanding infectious disease 

dynamics [132]. Many researchers have implemented mathematical modelling frameworks to gain 

insights into different types of infectious diseases [111, 133-136]. Mathematical models can also 

improve our understanding of those components that are significant and suitable for infectious disease 

diagnosis and treatment [137-141]. Furthermore, health economic models, in particular cost-

effectiveness models, are useful tools for evaluating the associated costs of an intervention incurred by 

patients, health systems and the wider community, relative to health benefits [112, 142]. 

 

From the information produced by mathematical model simulations, researchers and health workers can 

estimate different outputs such as incidence, prevalence, case notification and mortality that will help 

to develop health policies and disease monitoring plans [142]. Mathematical models can also be used 

to improve health policy and infectious disease monitoring plans by identifying thresholds which must 

be reached in order to achieve elimination. For example, analytical solutions, numerical solutions and 

stability analyses of mathematical models can identify regions in the parameter space where the various 

asymptotic states are stable or unstable, thus allowing us to predict the asymptotic (i.e. long-term) 

behaviour of the system [143]. Furthermore, sensitivity analyses of mathematical models allows us to 

discover the parameters (e.g. contact rate, progression rate, amplification rate, recovery rate, treatment 

rate, disease-induced death rate, rate of loss of immunity, etc.) that have the greatest influence on the 

model outputs (e.g. disease incidence, prevalence and mortality) [144]. Therefore, if we identify the 

parameters most responsible for the spread of disease, then respective governments can develop targeted 

policies to control any infectious disease outbreak. 
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An important threshold parameter whose analytical form can be identified through mathematical 

modelling is the basic reproduction number, R0 [145]. The basic reproduction number is the expected 

number of secondary cases generated by a single infectious case introduced into a totally susceptible 

population. If the basic reproduction number is greater than one, the number of infected individuals 

grows and an epidemic occurs. Conversely, if the basic reproduction number is less than one, the 

number of infective individuals typically tends to zero. The next generation matrix method can be used 

to calculate the basic reproduction number for compartmental transmission dynamic models (see 

below). To verify the asymptotic behaviour of the system we can use stability analysis and the direct 

Lyapunov method however, the threshold behaviour described above in terms of R0 is often a reliable 

indicator of the asymptotic dynamics [146]. 

 

Each year TB causes severe population loss in both developing and developed countries [1]. Therefore, 

novel tools have emerged for TB control in both developing and developed countries and human trials 

in the last few years after a long hiatus. Hence, it is crucial to deploy these judiciously and to examine 

ways in which any strategy will be most effective. Mathematical modelling of TB has been shown to 

be useful for understanding and mitigating this problem [147, 148]. Although models can range from 

very simple to highly complex, one of the commonest practices to improve understanding of infectious 

disease dynamics is a compartmental mathematical model [135]. One of the simplest mathematical 

models used in population-based infectious diseases modelling is the Susceptible-Exposed-Infected-

Recovered (SEIR) compartmental model.  

 

2.8.1 Model diagram and equations 

 

The compartmental modelling framework is composed of sets of interconnected state variables where 

each component of the compartmental model is considered to be homogeneous. A typical 

compartmental SEIR model is depicted in Figure 2.5, where S represents susceptible individuals, E 

represents exposed individuals who have not yet progressed to active infection, I represents individuals 

who are both infected and infectious, and R represents the removed/recovered population who were 

previously infected but successfully recovered. 
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Figure 2. 5 Flow Chart of the compartmental SEIR mathematical model showing the four states and the 
transition in and out of each state. 

Here, N = Total population, S = Susceptible population, E = Exposed population, I = Infected 
population, R = Removed/Recovered population, μ = Birth rate/ Death rate, λ = Force of infection, 
α = Progression rate to active disease, ω = Recovery rate. 

 

This model incorporates the following assumptions:  

 

 The population is fixed. This means the births of susceptible persons exactly match the deaths 

in all groups (the birth rate and the death rate are assumed to be equal denoted by μ). Any net 

loss to the susceptible group occurs because a person becomes exposed to an infectious 

individual and becomes infected. Subsequently, the exposed population may activate and move 

to the infected group. The transition from the infected to the recovered group models recovery 

from disease. Once recovered, individuals are immune to further infection. 

 
 Age, sex, social status and race do not affect any of the model parameters;  

 There is no inherited immunity; and  

 The members of the population mix homogeneously. 

 

Let us consider a fixed homogeneously mixed group of N individuals consisting at any time t of S(t) 

susceptibles, E(t) exposed, I(t) infectives and R(t) removals. Therefore, the model can be formulated 

as: 

S(t) + E(t) + I(t) + R(t) = N (Constant).                                                                                                    (2.1) 

 

At the beginning of an epidemic, the value of R(t) is zero and  S(0) = S0 > 0, E(0) > 0, I(0) > 0,  
then we have:  

S(0) + E(0) + I(0) = N.                                                                                                                                                      (2.2) 
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Individuals enter the susceptible compartment at a constant rate μ through birth and they may be infected 

with a circulating strain at a time dependent rate λ = β I(t). Here, β is the rate at which susceptible 

individual is infected per infected individual per unit time. Individuals in the different compartments 

suffer from natural death at the same constant rate μ, which is also the birth rate per person. All infected 

individuals move to the exposed infected compartment, E(t). Those with exposed infection progress to 

active infection (the I compartment) as a result of reactivation of the latent infection at rate α. A 

proportion of the infected individuals recover through treatment and natural recovery rate ω and move 

into the recovered compartment R(t).  In this case the model can be expressed by the following four 

differential equations: 

 
dS

dt
= μN − βSI − μS.                                                                                                                                            (2.3) 

dE

dt
= βSI − αE − μE.                                                                                                                                                (2.4) 

dI

dt
= αE − ωI − μI.                                                                                                                                                (2.5) 

dR

dt
= ωI − μR.                                                                                                                                                                (2.6) 

The model we have just introduced has two equilibrium points: an infection-free equilibrium for which 

I = 0; and an endemic equilibrium with I > 0. At the disease-free equilibrium, E = I = R = 0, S (0) =

S0 and  dS
 dt
= 0, which yields 

μN − μ S0 = 0  

⇒  μN = μS0  

S0 = N.  

Hence, the disease-free equilibrium is (S(0), E, I, R) = (N, 0,0,0). Here, S(0) refers to the value of 

S(t) when t = 0. 

 

2.8.2 Basic reproduction number 

 

2.8.2.1 Estimating the basic reproduction number of the pathogen 

 

The basic reproduction number is well-defined as the expected number of secondary cases created by a 

single infectious case introduced into a totally susceptible population. The disease can spread in a 

population only if the basic reproduction number is greater than one. An epidemic occurs when an 

infection spreads through and infects a significant proportion of a population. A disease-free population 

is possible when the basic reproduction number is less than one, which means that the disease naturally 

fades-out [149, 150]. 
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The system has two infected states, E and I, and two uninfected states, S and R, although there are four 

states in the system and the total population size is constant. At the infection-free steady state E = I =

R = 0, hence S = N. The only occurrence of the variable S in equation (2.4) − (2.6), either directly or 

implicitly via N, is through the term βSI. Hence the equations (2.4) − (2.5) are closed, in that it does 

not involve the derivation of S from steady state value. Also R does not appear in equations (2.4) −

(2.5), and for (E, I) we have the system. 

 
dE

dt
= βSI − αE − μE.                                                                                                                          (2.7) 

dI

dt
= αE − ωI − μI.                                                                                                                             (2.8) 

Here, the ODEs (2.7) and (2.8) are referred to as the infection subsystem, as they only describe the 

production of newly infected individuals and changes in the states of already infected individuals. By 

setting 𝐱′ = (E, I)′, where the prime denotes transpose, the infection subsystem can be written in the 

following form: 

�̇� = (T + Σ)𝐱.                                                                                                                                     (2.9) 

The matrix T corresponds to transmission (arrival of susceptibles into the infected compartments E and 

I) and the matrix Σ to transitions. Removal through death is included in the transition to keep the notation 

simple. All epidemiological events that lead to new infections are incorporated in the model via T and 

other events via Σ. If the infected states are indicated with i and j with i, j ∈ 1, 2, then the entry Tij is the 

rate at which individuals in infected state j give rise to individuals in infected state i. 

Regarding the subsystem (2.7) − (2.8) we obtain 

 

T = (
0 βS
0 0

) = (
0 βN
0 0

) and  Σ = (−α − μ 0
α −ω − μ

)  

−Σ−1 = (

1

(α+μ)
0

α

(α+μ)(ω+μ)

1

(ω+μ)

)  

Here, the element of (Σij−1) is the expected time spent in state  i for an individual currently in state j 
during its entire future life.  

Now, 1

(α+μ)
=  life time of E compartment, 0 = time spent in E compartment starting from I 

α

(α+μ)(ω+μ)
= expected life of spent in I compartment starting from E compartment and the factor  

α

(α+μ)
 = represent the probability of transitioning from compartment E to compartment I.  

1

(ω+μ)
=  time spend in I compartment starting from I. 
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2.8.2.2 Estimating the basic reproduction number using next generation matrix 
technique  

 

The next generation matrix is a method used to evaluate the basic reproduction number for a 

compartmental model of the spread of infectious diseases. Two related matrices exist, which we define 

as the next generation matrix with a large domain and small domain. The next generation matrix with 

the large domain is always the matrix with the highest dimension, incorporating all infected states in 

the model. The small domain of the next generation matrix has the lower dimension and only 

incorporates states that are infectious. A small domain matrix will exist and can be used to define the 

next generation matrix if there are fewer states of infectiousness than states at infection [149].  

 

Here, the next generation matrix (NGM) with large domain is denoted by KL. An exposed state and 

infectious state are both infected states, but the variation from exposed to infectiousness does not 

contain a new infection happening, but rather an already established infection moving to a different 

infection stage. This has led to confusion as other researchers have tried to reconcile the appealing linear 

algebra approach [149]. To make the distinction clear and remove confusion we will call the matrix 

NGM (KL). 

 

NGM, KL = −T Σ−1 = T(−Σ−1) = (
0 βN
0 0

)(

1

(α+μ)
0

α

(α+μ)(ω+μ)

1

(ω+μ)

)  

KL = (
βNα

(α+μ)(ω+μ)

βN

(ω+μ)

0 0
)  

 

2.8.2.3 Estimating the dominant eigenvalue of the matrix 𝐊𝐋 
 

The dominant eigenvalue is the basic reproduction number of the disease. It represents the average 

number of infections produced by one infected individual.  

 

Now the characteristic equation is |KL − λI| = 0, here I represents the identity matrix.  

⟹ |
βNα

(α+μ)(ω+μ)
− λ

βN

(ω+μ)

0 0 − λ
| = 0,  

⟹ λ(
βNα

(α+μ)(ω+μ)
− λ) = 0,  

λ1 = 0 and λ2 =
βNα

(α+μ)(ω+μ)
. 

Hence, the basic reproduction number is R0 =
βNα

(α+μ)(ω+μ)
. 
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Now we break down the various components that make up the basic reproduction number of the 
model.  

Here β = Transmission rate. 
α

(α+μ)
= Probability of becoming infectious once infected (i.e. the probability of transitioning from 

state E to state I).  
1

(𝜔+𝜇)
= Mean infectious period.  

 

 2.8.2.4 Endemic equilibrium 

 

Having defined the basic reproduction number, we now return to our analysis of the endemic 

equilibrium states of the system.  

To determine the endemic equilibrium we set dS
dt
= 

dE

dt
= 

dI

dt
= 

dR

dt
= 0: 

μN − βI∗S∗ − μS∗ = 0.                                                                                                                                            (2.10) 

βI∗S∗ − αE∗ − μE∗ = 0.                                                                                                                                    (2.11) 

αE∗ − ωI∗ − μI∗ = 0.                                                                                                                                         (2.12) 

ωI∗ − μR∗ = 0.                                                                                                                                                    (2.13) 

Now from equation (2.11) 

S∗I∗ =
(α+μ)

β
E∗.                                                                                                                                                   (2.14) 

Now from (2.12) 

I∗ =
α

(ω+μ)
 E∗.                                                                                                                                                       (2.15) 

Putting the value of 𝐼∗ in (2.14) we get, 

S∗ =
N

R0
.                                                                                                                                                                    (2.16) 

Now from (2.11) 

E∗ =
μN (R0−1)

(α+μ)R0
 .                                                                                                                                                       (2.17) 

From (13) 

R∗ =
ω(R0−1)

β
.                                                                                                                                                                   (2.18) 

Putting the value of S∗, E∗,  and  R∗in (2.10) we get, 

I∗ =
μ(R0−1)

β
.                                                                                                                                                              (2.19) 

Hence, the endemic equilibrium is (S∗, E∗, I∗, R∗) = ( N
R0
,
μN(R0−1)

(α+μ)R0
,
μ(R0−1)

β
,
ω(R0−1)

β
  ) 
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Figure 2. 6 Numerical simulations of the model outcomes. 

Here the dotted blue line represents the dynamics of the susceptible population (S), the black line 
represents the exposed population (E), the dotted green line represents the infected population (I) and 
the red line represents the removal population (R). 

 
In figure 2.6 we have provided a sample epidemic trajectory that is governed by the SEIR model. The 

susceptible (S), Exposed (E), Infected (I) and recovered (R) populations are considered in this model. 

In this example, the disease is highly contagious at the time of epidemic and almost all susceptibles 

move to the exposed class and then infected class. By setting a constant population (births = deaths), 

we can observe how many people will be in each class at a given period of time and how long an 

individual remains susceptible to the disease, and recovered from it. We start with everyone being 

susceptible to the disease and perturb the system by introducing one exposed person who then becomes 

infectious. The curve for the susceptible population (S) shows a very sharp decrease over time. In 

contrast, the number of exposed (E) and infected (I) populations firstly increases very dramatically and 

then decreases sharply and then remain stable during the rest of the time. Furthermore, the number of 

removal (R) population increasing rapidly and then remain stable. We justified numerical results of this 

model with analytical solutions which is same.  

 

2.8.3 Stability analysis of this system  

 

To investigate the behaviour of our model in the vicinity of the various equilibrium points, we linearize 

the system of equations (reference equation numbers) and analyze this simpler system. This type of 

stability analysis will identify regions in state space where the various asymptotic states are stable or 
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unstable and allow us to predict the asymptotic behaviour of the model. Further, the stability analysis 

of the equilibrium points will identify which conditions the disease will be eliminated or persist in the 

population based on the basic reproduction number. 

 

Now the system (2.3)-(2.6) is written in the following form:  
dS

dt
= μN − βSI − μS = f1                                                                                                                                            (2.20) 

dE

dt
= βSI − αE − μE = f2                                                                                                                                                (2.21) 

dI

dt
= αE − ωI − μI = f3                                                                                                                                                (2.22) 

dR

dt
= ωI − μR = f4                                                                                                                                                                (2.23) 

Now the variation (Jacobian) matrix of the system (2.20)-(2.23) is given by: 

 

J =

(

 
 
 
 

∂f1

∂S

∂f1

∂E
∂f2

∂S

∂f2

∂E

    

∂f1

∂I

∂f1

∂R
∂f2

∂I

∂f2

∂R
∂f3

∂S

∂f3

∂E
∂f4

∂S

∂f4

∂E

    

∂f3

∂I

∂f3

∂R
∂f4

∂I

∂f4

∂R)

 
 
 
 

= (

−βI − μ 0 −βS 0
βI −α − μ βS 0
0 α −ω − μ 0
0 0 ω −μ

)                                                (2.24) 

For the disease-free equilibrium, S0 = N, and E = I = R = 0. Now from (2.24) 

J = (

−μ 0 −βN 0
0 −α − μ βN 0
0 α −ω − μ 0
0 0 ω −μ

)  

Now, the characteristic polynomial equation is, |J − λI| = 0 

⇒ |

−μ − λ 0 −βN 0
0 −α − μ − λ βN 0
0 α −ω − μ − λ 0
0 0 ω −μ − λ

| = 0  

⇒ (−μ − λ)(−μ − λ) |
−α − μ − λ βN

α −ω − μ − λ
| = 0  

Here, we are searching for roots of the characteristic equation to discover whether the equilibrium is 

stable or unstable. If the real parts of all of the roots are negative then the equilibrium is not only stable 

but also asymptotically stable. If one of the roots is zero and the others are negative then the equilibrium 

is stable but not asymptotically stable. Further, if the real part of one of the roots is positive then the 

equilibrium is unstable.  

 

⇒ (−μ − λ)(−μ − λ) = 0 and |
−α − μ − λ βN

α −ω − μ − λ
| = 0  
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⇒ λ1 = −μ,  and  λ2 = −μ 

 

 

Rather than directly calculating the eigenvalues of the two by two matrix given above we can instead 

invoke several simple eigenvalue properties that will allow us to determine their sign. In particular, for 

a two by two matrix A, we have 

tr(A) = λ1 + λ2, and 

det(A) = λ1λ2 

where tr(A) and det (A) are the trace and determinant of the matrix A respectively. Hence, for the matrix 

A to be considered stable, we require 

tr(A) < 0,   and 

det(A) > 0. 

 

Now trace(J) < 0: − α − μ − ω − μ < 0 

⇒ (α + μ) + (ω + μ) > 0                                                                                                               (2.25) 

det(J) > 0: (α + μ)(ω + μ) − αβN > 0   

⇒ (α + μ)(ω + μ) > αβN  

⇒ 
αβN

(α+μ)(ω+μ)
< 1  

⇒ R0 < 1                                                                                                                                         (2.26) 

 

Hence, the disease-free equilibrium of the basic model is locally asymptotically stable when R0 < 1, 

which means that the disease will naturally die out in this case. 

 

For the disease endemic equilibrium, S∗ = N

R0
, E∗ =

μN(R0−1)

(α+μ)R0
, I∗ =

μ(R0−1)

β
 and R∗ = 

ω(R0−1)

β
 

Now from (2.24) 

J = (

−βI∗ − μ 0 −βS∗ 0
βI∗ −α − μ βS∗ 0
0 α −ω − μ 0
0 0 ω −μ

)  

Now the Jacobian matrix is,  J =

(

  
 

−μR0 0 −
βN

R0
0

μ(R0 − 1) −α − μ
βN

R0
0

0 α −ω − μ 0
0 0 ω −μ)

  
 

 

Now λ1 = −μ which allows us to consider the following reduced Jacobian matrix: 
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J̅ =  

(

 
 

−μR0 0 −
βN

R0

μ(R0 − 1) −α − μ
βN

R0

0 α −ω − μ)

 
 

  

To determine the stability of this matrix we use the Routh-Hurwitz criteria. Specifically, all of the 

roots of the characteristic polynomial associated with a three by three matrix A are negative if A1 >

0, A2 > 0, A3 > 0, and A1A2 > A3. 

Here, A1 = −tr(A), A2 represents the sum of the two by two principal minors of A and A3 = −det (A).  

 

For the matrix J ̅we then have −A1 = −μR0 − α − μ − ω − μ 

⇒ A1 = α + 2μ + ω + μR0  

which will always be positive for positive (plausible) parameters values for α, β, ω and μ.  

A2 = |
−α − μ

βN

R0
α −ω − μ

| + |
−μR0 −

βN

R0

0 −ω − μ
| + |

−μR0 0
μ(R0 − 1) −α − μ

|  

⇒ A2 = (α + μ)(ω + μ) −
αβN

R0
+ μR0(ω + μ) + μR0(α + μ)  

A2 = (α + μ)(ω + μ) −
αβN

R0
+ μR0(α + 2μ + ω)  

Again −A3 = ||
−μR0 0 −

βN

R0

μ(R0 − 1) −α − μ
βN

R0

0 α −ω − μ

|| 

⇒ −A3 = −μR0 ((α + μ)(ω + μ) −
αβN

R0
) −

βN

R0
(αμ(R0 − 1))  

⇒ −A3 = −μR0(α + μ)(ω + μ) + αβNμ − αβNμ +
αβNμ

R0
  

⇒ A3 =  μR0(α + μ)(ω + μ) −
αβNμ

R0
  

⇒ A3 =  μR0(α + μ)(ω + μ) − μ(α + μ)(ω + μ)  

⇒ A3 = μ(α + μ)(ω + μ)(R0 − 1)   

 

Now to satisfy the condition A1 > 0, requires that α + 2μ + ω + μR0 > 0 

A2 > 0 , requires that 

 ⇒ (α + μ)(ω + μ) −
αβN

R0
+ μR0(α + 2μ + ω) > 0 

⇒ (α + μ)(ω + μ) − (α + μ)(ω + μ) + μR0(α + 2μ + ω) > 0  

⇒ μR0(α + 2μ + ω) > 0  
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which will always be positive for positive (plausible) parameters values for α, β, ω and μ.  

 Similarly we require that A3 > 0 which implies 

⇒ μ(α + μ)(ω + μ)(R0 − 1) > 0  

⇒ μ(α + μ)(ω + μ) > 0  and  R0 > 1 

Finally, for local stability of the steady state we require A1A2 > A3, which implies 

⇒ μR0(α + 2μ + ω)(α + 2μ + ω + μR0) > μ(α + μ)(ω + μ)(R0 − 1)  

⇒ μR0(α + 2μ + ω)
2 + μ2R0

2(α + 2μ + ω) + μ(α + μ)(ω + μ) > μR0(α + μ)(ω + μ)  

which will always be positive for positive (plausible) parameters values for α, β, ω and μ, and 
provided R0 > 1.  

Hence, the system satisfies the Routh-Hurwitz criteria, meaning that if R0 > 1, the endemic equilibrium 

is stable and the disease persists in the population (in the compartmental model).   

 

Various types of TB mathematical models extend the SEIR model to consider different types of 

contributing factors, which I will now discuss.  

 

 

2.8.4 TB model extensions 

 

2.8.4.1 Heterogeneity 

 

As stated earlier, there are numerous contributing factors responsible for TB disease burden. The impact 

of demographic variables is well recognized to influence the incidence of TB disease.  Hence, quite 

reasonably, there are a number of modelling efforts that consider heterogeneity in the population 

and individual level risk of developing TB. Murphy et al. (2002) used a modified Susceptible Exposed 

Infected (SEI) model to investigate the effects of genetic susceptibility and demographic factors on TB 

epidemiology in a heterogeneous population, and compared the prevalence and incidence in India and 

the United States of America (USA) [151]. Here, the authors investigated the impact of specific 

parameters related to genetic susceptibility on the levels of TB prevalence and incidence. The findings 

of this study showed that the variance of infectiousness has a greater impact on the genetically 

susceptible population and demographic factors including closed environments and access to health 

care strongly affect TB prevalence and incidence rates. One limitation was that the study did not take 

into account host related factors (nutrition status, existing illness and low immunity), migration and an 

over-populated environment. Nutritional status is a particularly potent disease modifier in TB [152].  
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2.8.4.2 New data 

 

In low and high burden countries, TB control and eradication continues to be a challenge for public 

health policy makers and respective governments. New technological advantages and novel methods 

for case discovery, diagnosis and management are very important to include in models to investigate 

whether these should be incorporated into TB control programs and if so in what way they could 

optimally be deployed. Additionally, they need to be assessed for cost-effectiveness. This leads to 

improved understanding of TB epidemiology and the cost-effective analysis of different interventions. 

White and Abubakar (2016) developed a mathematical model of TB to understand the epidemiological 

situation and control strategies of TB as well as better manage public health intervention methods [153]. 

This model also extended the ability of collecting long term data and balanced experimental research 

with surveillance and observational studies. This study illustrated demographic and contact patterns, 

various work places, various living settings, and access to health care services for diagnosis and 

immigration that can affect transmission in a population. By combining high quality epidemiological 

data incorporating interaction tracing, detailed risk factor records and contact history, mathematical 

modelling can offer the prospect of new understandings [153]. 

 

2.8.4.3 Social contact (infections network) structure 

 

Pienaar et al. (2010) developed a mathematical model with sociological factors [154]. In this model, 

the total city population consisted of four compartments: susceptible (S); latently infected (L); 

infectious (I); and recovered (R). The transmission dynamics model differentiates between three 

different social forms of contact / exposure: contact with commuters for the period of travel, continuous 

daytime communication, and family member exposure at night time. The major finding of this study 

was that large family size is responsible for more disease transmission than small family size, and daily 

travellers on public vehicles provide the ideal situation for the transmission of TB disease. Furthermore, 

the model also projected that improved treatment and diagnosis minimized the spread of TB disease. 

 

2.8.4.4 Investigating combinations of interventions 

 

Mathematical modelling has played a significant role in giving us some understanding of which 

combination of control processes would be more effective in decreasing the burden of active TB. Kim 

et al. (2014) developed a mathematical model for TB with exogeneous reinfection and examined the 

current situation of active TB incidence in Korea [155]. In this study, the SEIR-style compartment 

model was deployed. The study showed active TB incidence can be calibrated to the observational data. 

The study showed that the case detection rate was the most important intervention for decreasing active 

TB cases. This study also observed that focus on treatment alone or case discovery alone will not 
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dramatically affect the decline in active TB incidence. In contrast, taking two or more key parameters 

simultaneously is the most effective way to decrease the burden of active TB cases. 

 

2.8.4.5 Accounting for seasonality 

 

Seasonality is a factor that can increase the outbreak of TB disease. Liu et al. (2010) developed a 

compartmental transmission dynamics TB model with seasonality to describe TB incidence rates with 

periodic properties in a mainland city of China [156]. This study showed the seasonal trend of new TB 

cases was highest in late spring to early summer, reaching the lowest point in late winter and early 

spring. This seasonal pattern may be linked to the Chinese Spring Festival because, at this time, entire 

families live in overcrowded, poorly ventilated rooms and have more frequent viral infections that can 

cause immunological vulnerability, hence, reactivation of or reinfection with Mtb. The model fitted 

very well with surveillance data according to the seasonal variation of the reported cases of active TB 

in China, and made predictions about incidence as well as prevalence.    

 

Yang et al. (2016) developed another TB model with seasonality and determined that seasonality has 

high impact on TB related incidence, prevalence and mortality especially in the winter season [157]. 

The study observed that, during the winter season, indoor activities are much more frequent than during 

the summer season, which increases the probability of susceptible persons being exposed to Mtb from 

infectious persons because of reduced ventilation indoors. Furthermore, cold weather and lack of 

sunshine are common in the winter season which may decrease human immunity and lower vitamin D 

levels which may be increase the reactivation of TB cases. In addition to Liu et al, Yang et al. found 

that if the basic reproduction number of the seasonality model was less than one then the disease free 

equilibrium was globally asymptotically stable; if it is greater than one then TB disease persists in the 

population. Understanding the transmission dynamics of TB disease and predicting the disease patterns 

which may help health policy makers to implement supplementary defensive interventions in TB 

control throughout the period of greater threat of TB infection [156, 157].  Bangladesh has seasonal 

patterns and some data available to estimate humidity, temperature and rainfall. I used this data to 

investigate the degree of correlation between weather factors and TB incidence in Bangladesh in 

Chapter 3. 

 

 

2.8.4.6 Importation travel and exportation of TB infection 

 

Liu et al. (2018) deployed a two-patch SIS model with infection through transportation. This study 

examined two different categories of incidence rate: standard incidence within each patch and mass-

action incidence through transportation [158]. The total population was divided into two compartments, 
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the susceptible population, S, and the infective population, I. The study demonstrated that if we set one 

travel rate, say m21 (the travel rate from patch 2 to patch 1) as a constant, then the infection level in the 

interior patch 1 will drop as m12 (the travel rate from patch 1 to patch 2) rises, and the infection level 

in the interior patch 2 will rise as m1 rises. An additional finding was that if the population mixed 

randomly over time, the entire population had a standard incidence rate in the interior of each patch. 

Furthermore, in the presence of travel for a given mass-action infection rate, there was a higher level of 

infection in each patch than would be predicted if no travel occurred [158]. 

 

2.8.4.7 Demographic structure 

 

Age is an important influencing factor that can increase the occurrence of TB disease. Graciani et al. 

(2015) structured an agent-based model (ABM) to examine TB in the elderly [159]. The main idea of 

this model was to investigate how public health policies may affect the age prevalence of TB in a 

population. Graciani et al’s TB model had two layers: an agent-based model and a biological elderly 

model. The first model simulated the spread of TB in a population, allowing the emergence of drug 

resistance, and the second model was a population computational model founded on cumulative changes 

in an individual’s genome with age. Therefore, the combined model permitted the spread of TB in a 

scheme in which the population ages. The findings of this study showed that the prevalence of TB 

mostly in elders, for high efficacy treatments. Further, this study also performed that the model can be 

fitted to reproduce quantitative results, such as the spread of TB, with more accuracy including actual 

infectious networks.  

 

Blaser et al. (2016) constructed a transmission dynamics TB model to observe the influence of age-

structure (up to 50 years) in TB report rates [160]. The Cape Town, South Africa study results showed 

the first peak occurred in children, due to high transmission, and the second peak described the 

comparatively fast reactivation rate in early adulthood leading to a rise in incidence among 30 to 50 

year olds. Sensitivity analysis showed age-pattern TB rates generally depend on the protection afforded 

by earlier latent infection. If there is no protective effect of previous latent infections, TB rates drop 

around the age of 25 years, disappear in early adulthood, until reappearing and persisting at high rates 

in late adulthood. Therefore, Blaser et al. recommended that TB interventions such as DOTS, Isoniazid 

Preventive Therapy (IPT), TB screening, and ART in HIV-infected TB patients must take age into 

account. IPT and rapid case discovery may be mainly significant in young adults considering the fast 

progression rates in early adulthood [160]. Kunkel et al. (2016) developed another mathematical model 

with IPT to observe the impact of IPT duration on the incidence of isoniazid-sensitive and isoniazid- 

resistant TB and found that continuous IPT on isoniazid- resistant TB incidence may erode its initial 

benefits [161]. They also found that a continuous IPT program was the most useful strategy for quickly 

dropping the burden of TB.  
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Guzzetta et al. (2011) developed an age-structured and socio-demographic individual-based time-

dependent TB mathematical model [162]. This model considered social-contact factors such as 

households, workplaces and schools, casual contacts, and distance-dependent contacts. Results showed 

inclusion of age structure captures substantial amounts of the observed reactive TB cases. The socio-

demographic structure provided a forecast of TB transmission rates of infection in household contacts, 

and the rate of relapse cases in household, school and workplace contacts. Therefore, the socio-

demographic individual-based model is an ideal choice for assessment of current control policies, 

including contact network inquiry of index cases, and simulation of different circumstances for TB 

elimination goals [162-164]. 

 

Brooks el al. (2010) developed a TB mathematical model with survivorship to discover the impact of 

age structure on the prevalence of TB, the basic reproduction number, and the effect of control 

interventions [165]. This model emphasises the differences between constant and exponentially spread 

lifespans, and implements an individual-based model to examine the variety of behaviour arising from 

accurate distributions of survivorship. The model demonstrated natural mortality, and age structure 

plays an important role for transmission dynamics of TB. Three different age characterizations of 

survivorship were explored: constant life periods, exponential spread life periods, and hazard of 

mortality that rises exponentially. The results showed survivorship intensely affects steady state 

dynamics, parameter approximation, and forecasts about the usefulness of control interventions. For 

example, the constant life period assumption results in a greater prevalence of TB disease than 

exponential life periods. 

 

TB in children is gradually being recognized as a major public health problem and a vital element of 

the total burden of TB [166]. TB transmission occurs via tiny aerosols (cough, sneeze) from someone 

with active pulmonary TB that contact a susceptible person. Children younger than around 10 years 

with TB of the lungs rarely infect other people because they have very few bacteria in their mucus 

secretions. However, young children with Mtb have a high risk of progressing to active TB. To 

determine the impact of TB in children, Dodd et al. (2016) developed a mathematical model of TB in 

children with different types of DR-TB to simulate regional, national, and global levels of DR-TB 

infection [167]. The model estimated that 850,000 children worldwide were infected with Mtb in 2014, 

58,000 with isoniazid mono-resistant Mtb, 25,000 with multidrug-resistant Mtb and 12,000 with 

extensively drug-resistant Mtb. This study estimated that South-East Asia and Africa have the highest 

number of infections, while greater proportions of drug resistance exist in the European region. South-

East Asia and the Western Pacific regions also contribute significantly to the burden of DR-TB. 

However, a potential limitation of Dodd et al’s study was that drug resistance was not assigned a fitness 

cost. Moreover, the proportion of first-line drug-resistant Mtb in treatment naive patients should be 
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reflected in children and the authors did not include any uncertainty in relation to this parameter [167]. 

In contrast, Luciani et al. (2009) claimed that drug resistance is associated with treatment fitness cost 

[168]. The acquisition of resistance to antibiotics results in a longer duration of infection and may 

increase the duration of treatment as well as imposing a transmission fitness cost [168], two forces 

acting in opposite directions. Thus more studies are needed to investigate the likelihood of MDR 

dominating in a given situation, as I addressed in Chapter 4 and Chapter 5 of this thesis. 

 

2.8.4.8 TB model with different types of interventions 

 

For the possible eradication and control of TB, mathematical modelling allows simulation of the 

potential effect of interventions, and identifies areas where additional research is needed to improve 

realism of models and accuracy of inferences [169]. Mathematical modelling can provide credible 

evidence about the value of intervention programs and guide the improvement of interventions [170]. 

Models can estimate different risk factors of TB epidemiology under the influence of novel 

interventions. One of the most effective ways of describing interventions is their impact on the effective 

reproduction ratio [170]. Significantly, better communication between modellers and experimentalists 

or field staff will be needed to improve the questions, determine which data are significant and most 

immediately wanted, and to ensure that the analytical research leads to better strategies and better 

control [99].   

 

2.8.4.8.1 Modelling prevention of TB by treatment of latent Mtb infection 

 

According to many models, isoniazid preventive therapy (IPT) is the most effective TB treatment 

strategy to reduce TB incidence; however, this is not universally accepted at an implementation level 

and has been deployed in low-burden countries rather than high burden countries. To describe the 

relation between TB incidence and IPT effectiveness as a control strategy, Ragonnet et al. (2017) 

developed a transmission dynamic TB mathematical model and examined IPT impact under several 

epidemiological situations [171]. This study showed that to prevent one case of active TB, the lowest 

number needed to treat with IPT, and IPT effect, is highest at an intermediate incidence level, of around 

800 per 100,000, and impact is reduced at both lower and higher incidence settings. The authors argued 

that TB burden is a serious issue and total disease burden should not prevent programmatic 

implementation of IPT.     

 

Whang et al. (2011) constructed a time-dependent transmission dynamic SEIR TB model in South 

Korea [172]. Numerical techniques such as least-squares fitting were used for assessing the model 

parameters. Three strategies were used to reduce the future number of exposed and infectious TB 

individuals. Three control tools: expressive isolation (the evidence that persons have the ability to 
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isolate), case discovery and case holding efforts were considered. The isolation control strategy was 

modelled as a reduction in the transmission rate, hence a reduction in susceptible persons infected from 

infectious persons. The case finding control strategy represents the prevention of disease development 

with effective treatment for exposed persons or identification of active TB cases. The case holding 

control strategy was modelled as an initiative to reduce the relapse rate following treatment, such as 

improved care of TB patients up to complete treatment. This study showed if the model used single-

control strategies, then the isolation control strategy was the most effective. Furthermore, this study 

also showed that the case holding strategy is more effective than the case finding strategy to decrease 

the number of exposed and infectious persons. 

 

2.8.4.8.2 Modelling completion of therapy rates 

 

The usefulness of the treatment policy depends on patients finishing proper treatment [1]. Incomplete 

treatment can leave patients infectious and symptomatic. Yang et al. (2010) developed two transmission 

dynamic compartmental TB models with incomplete treatment [173]. The first model incorporated 

incomplete treatment in a total population partitioned into four compartments: susceptible compartment 

(S), which indicates persons who have not yet been infected by TB; latent compartment (L), which 

means persons who have been infected but are not infectious; infectious compartment (I), which 

indicates persons are infectious but not being treated; and treatment compartment (T), which means 

persons who are being treated. When an infectious person is identified, he/she will enter the treatment 

compartment and be treated. However, in the second model, some TB susceptible persons may be 

affected by other chronic diseases, such as HIV and diabetes, which can decrease the capability of the 

immune system. Therefore, in persons without HIV and diabetes, the latent period of TB may be longer 

than that of persons with these diseases, and the latent compartment is divided into two stages. When 

an infectious individual is detected, he (she) will move to treatment compartment and be treated. After 

leaving the treatment compartment, an individual may enter infectious compartment due to the failure 

of treatment. The next generation matrix and Lyapunov function method [174] was used to determine 

the basic reproduction number and perform a stability analysis. The study showed that when the basic 

reproduction number is lower than unity, the disease eventually dies out. In contrast, when the basic 

reproduction number is greater than one, then the endemic equilibrium is unstable, which means that 

the disease persists in the population. Further, this study also revealed that reducing treatment failure is 

useful to reduce TB infection [173].  The realization of reducing treatment failure mainly depends on 

reducing the appearance of drug resistance. On the other hand, increasing the per-capita treatment rate 

has positive impact of TB control.   
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2.8.4.8.3 Models which address vaccination 

 

Statistics show that the BCG vaccine is very effective for young children to reduce the number of TB 

cases [175]. However, at an individual level BCG vaccination is only partly effective and this effect is 

thought to wane over time, but when modelled at a community level the impact is much higher. To 

evaluate the effect of vaccination, Mishra and Srivastava (2014) developed a transmission dynamic 

mathematical model to simulate the spread of TB disease in the human population of Jharkhand, India, 

for DS and MDR-TB cases with vaccination [176]. The main strategies of this model were vaccination, 

modelled by moving the susceptible population to the vaccination class, and quarantine (for MDR-TB 

only). The authors found that these two factors are interactive and synergistic for TB control. They also 

found that if the vaccination coverage rate is high then there would be a significant reduction of TB 

incidence. Other studies support the notion that BCG vaccination is very effective and is an important 

contributing factor for controlling TB worldwide because BCG vaccine develop body immunity against 

the disease  [176-178].   

 

2.8.4.8.4 Modelling increased case detection through raised awareness 

 

Okuonghae and Ikhimwin (2015) developed a realistic compartmental transmission dynamic TB model 

to investigate the impact of case detection rate [179]. According to the awareness level of the 

population, Okuonghae and Ikhimwin divided susceptible persons into two groups: the high risk group 

(low level of awareness), and low risk group (high level of awareness), and incorporated an active case 

discovery parameter. The authors stated that TB treatment alone may not significantly reduce TB 

burden at the community level but if we take two or more parameters together, such as treatment, 

awareness and active case finding, then it may be possible to reduce TB burden.    

 

2.8.4.8.5 Modelling multiple interventions 

 

Multiple interventions modelling is essential to explore more substantial and sustained changes in 

behaviours related to TB prevention, detection and treatment than a single intervention. It is an 

important way of expanding our knowledge to assess the impact of multiple interventions outcomes at 

different levels on TB patients. A 10-compartmental TB model constructed by Trauer et al. (2014) 

modelled limited vaccine effectiveness, reinfection, MDR-TB, and de novo resistance through 

treatment [180]. This study showed that the model could not be standardized to the projected incidence 

rate without allowing for reinfection, modelled as a reversion to early latency, which has a higher rate 

of progression to disease compared with late latency. This model also imposes a fitness cost on drug 

resistance and estimates the importance of the basic reproduction number, R0. Furthermore, the model 

found that the most significant influencing factor of TB disease is the detection rate and treatment 
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completion rates, whereas vaccination rate is less significant which may be possible due to the short 

term run of this model. In contrast, some studies argued that the vaccination coverage rate is very 

important to reduce TB incidence [176, 178].  

 

Moualeu-Ngangue et al. (2015) constructed a compartmental transmission dynamics TB model in 

Cameroon [181]. This model incorporated lack of access to medical care, weak diagnosis capability, 

lack of evidence about the infected individual’s location, role of traditional drugs, and considered the 

different dynamics using frequency versus density dependent transmission. For the density dependent 

transmission, the per capita contact rate between susceptible and infected persons depends on the 

population density. Therefore, transmission rates increase with population density. On the other hand, 

in frequency dependent transmission, the contact rate per person is assumed to be constant and not scale 

with density of the population [182]. Three infective subclass populations were considered: diagnosed 

infectious; undiagnosed infectious; and lost-sight individuals (active TB patients who have been 

diagnosed and started their treatment and are lost to follow-up). In developing countries throughout 

Asia and Sub-Saharan Africa, where the public health system is less developed, the undiagnosed and 

lost-sight subclasses are very significant for the burden of TB. Detailed sensitivity analysis was 

performed to identify the most important parameters for the outbreak of TB. Parameter estimation was 

performed with a subset of unknown parameters and the estimation process was repeated with the full 

set of parameters to check whether the new values of earlier unknown parameters affect values of the 

known ones. This procedure was repeated until convergence in the parameter values occurred. This 

study showed that varying parameters including treatment and diagnosis can significantly decrease the 

disease burden in the population. These parameters can be used to predict the impact of educational and 

diagnosis campaign activities that encourage TB screening. The authors recommended that this model 

be used for optimal control strategies in order to achieve the maximum decline of TB cases in the 

shortest time with minimum cost [181].   

 

Okuonghae and Omosigho (2011) developed a qualitative and quantitative approach to a transmission 

dynamics TB mathematical model in Benin City, Nigeria [183]. The major purpose of this model was 

to identify some factors that could improve the case detection rate of TB. In this model, the susceptible 

population was separated into two groups depending on awareness of TB, with S1 representing high 

risk (low level of TB-consciousness) and S2 indicating low risk (high level of TB-consciousness). 

Infected people can enter the S1 or S2 group depending on the effectiveness of the education program. 

Four types of key factors increased the case detection rate: population consciousness; active cough 

identification; cost of treatment; and treatment effectiveness. A qualitative approach to calculating the 

basic reproduction number identified how the different control strategies could lead to a reduction in 

transmission under treatment. This study showed that developing a TB awareness program and 

increasing the active cough identification rate decreased the TB burden in the population, ultimately 
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bringing down the basic reproduction number under unity. Furthermore, mutually raising the TB 

consciousness program and lowering the cost of treatment in recognized cases can also decrease the 

basic reproduction number below unity [183]. 

 

To assess the influence of vaccination and treatment on the spread of TB disease, Liu and Zhang (2011) 

developed a compartmental transmission dynamics model [184]. In this model, the population was 

subdivided into five classes: the susceptible (S) population; the vaccinated (V) population; persons 

infected with TB in the latent stage (L); persons infected with TB in the active stage (I); and treated 

persons infected with TB (T). The model showed that if the basic reproduction number is less than one, 

then the disease-free equilibrium is globally asymptotically stable, and if the basic reproduction number 

is greater than one, then there is an endemic equilibrium and the disease continues. Furthermore, this 

model also recognized that the vaccination rate, vaccine efficacy and treatment rate also influence the 

effective reproduction rate, and showed that if the vaccination rate or the effectiveness or the treatment 

rates reach a particular threshold, then the spread of TB can be managed. Therefore, when one strategy, 

such as vaccination or treatment, fails to control the disease, then combination strategies will be the 

most effective way to eliminate TB disease transmission [184-186], as I addressed Chapter 6 and  

Chapter 7 of this thesis regrading multiple interventions strategies and showing that combination 

strategies are the most effective than single strategies.  

 

2.8.5 Multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB models 

 

In recent years, the emergence of resistance to the most effective treatment (combination therapies) has 

occurred in the Asia-Pacific region, and spread throughout the region, leading to a decline in the 

efficiency of antibiotics in treating infectious disease such as TB [187]. Resistance takes the form of 

delayed clearance of bacteria (or complete failure of clearance) under multi-drug treatment. 

Unfortunately, it does not stop there: inadequate treatment of MDR-TB may create even more 

resistance, with extensively drug-resistant tuberculosis (XDR-TB) strains beginning to emerge 

(XDR-TB is defined as MDR-TB with additional resistance to any fluoroquinolone and at least one 

of the three following injectable drugs: capreomycin, kanamycin, and amikacin) [188].    

 

In 2008, Bhunu developed a three strain transmission dynamics SEIR TB model that included drug-

sensitive, multidrug-resistant and extensively drug-resistant TB [189]. The centre manifold theory [190] 

was used to recognize the local stability of the endemic equilibrium, and it displayed the existence of 

backward bifurcation, with two steady-states when the basic reproduction number was lower than unity, 

although a single endemic equilibrium exists, and it is locally asymptotically stable when the basic 

reproduction number is larger than unity. However, the study showed that first-line treatment of Mtb 

strains will support a decrease in the spread of drug sensitive TB but, if these drugs are misused, then 
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MDR-TB cases will rise. Furthermore, MDR-TB treatment also supports a decrease in the MDR-TB 

burden but, if not appropriately used, then XDR-TB cases rise. Isolation of people with XDR-TB leads 

to a reduction in XDR-TB at a population level. In addition, numerical and analytical simulations 

recommend: implementing multiple control activities simultaneously; isolation of XDR cases plus 

treatment of drug sensitive TB cases, and MDR-TB cases, leading to a decrease in the spread of TB 

disease [189]. 

 

Trauer et al. (2016) developed a model for scenario analysis of programmatic TB control in Papua New 

Guinea (PNG). This model established five possible intervention scenarios [185]. The first scenario 

reproduced a continuation of the programmatic circumstances that had improved between 2011 and 

2013. The programmatic factors used to calibrate the model to current activities were the 2013-level 

treatment completion rates, detection rates, and the modest capacity for treatment of MDR-TB. The 

second scenario involved a wide-ranging scale-up of DOTS-based programs (hence increased detection 

and successful completion rates). The third scenario incorporated the whole of the second scenario, with 

programmatic management of MDR-TB (PMDT), which included inpatient supervision during the 

intensive stage of treatment with parenteral antibiotics (hence increased capacity for MDR-TB 

treatment). The fourth scenario incorporated a modified third scenario using short course (9 month) for 

MDR-TB rather than what was conventional 22-month course. Finally, scenario five described a 

reversion of conditions to previous detection and success rates set at 2011 levels. This study showed 

that maintenance of current programmatic management strategies, overall TB incidence persisted at 555 

per 100,000 population per year but the proportion of MDR-TB cases increased from 16% to 35%. 

Furthermore, wide-ranging establishment of current programs in the province decreased incidence to 

353 per 100,000 population per year with 46% of existent cases being MDR-TB. In addition, including 

programmatic management of MDR-TB into these programs decreased incidence to 233 per 100,000 

population with 14% of existent cases being MDR-TB. Moreover, this study also showed that to reduce 

the associated economic costs, community based treatments are very important [185].   

 

Trauer et al. (2016) also developed another transmission dynamic model of TB to examine the effect of 

a short-course MDR-TB schedule in a high HIV prevalence area of Karakalpakstan, Uzbekistan, which 

had high rates of drug resistance, good availability of diagnostics, and a well-structured community 

based MDR-TB cure of around 400 patients [191]. This study found that if the treatment bottleneck is 

based on availability of places in an MDR-TB treatment program, then converting from a long-course 

to a short-course schedule increases the number of MDR-TB treatments. As a consequence, MDR-TB 

incidence is reduced from 15.2 to 9.7 cases per 100,000 population per year, and MDR-TB mortality 

from 3.0 to 1.7 deaths per 100,000 population per year. Moreover, a series of studies showed that short-

course MDR-TB treatment schedules also promises to decrease transmission of a resistant strain for 

individual patients [191-193].  
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Different types of susceptibilities play a vital role in the transmission dynamics of TB. Okuonghae 

(2013) developed a mathematical model that separates various types of susceptibility among the 

population [194]. This study identified three groups of susceptible populations: susceptible with no 

resistance (S1); susceptible with partial resistance (S2); and susceptible with whole resistance (S3). The 

assumption of this model was that S3 persons never become infected. The same strategy was also 

applied for latently infected persons, divided into three groups: latently infected persons who rapidly 

develop active TB (E1); normal developers (E2); and none or very slow developers (E3). A further 

assumption was that E3 persons will have little or no reactivation rates throughout progression to active 

TB. Furthermore, I1 represented infectious persons from the rapid development compartment E1, and 

I2 represented the infectious persons from the normal development compartments E2 and E3. T1 

indicated well-treated persons whose infections were produced by the rapid development compartment, 

and T2 indicated well-treated persons whose infections were produced from the normal or very slow 

development compartment. Assuming this model and estimating the fraction of people in each group, 

this study showed that the largest portion of susceptible persons had no or partial resistance to acquiring 

infection, and transfer into the normal development compartment. However, even in the worst case 

situation of having a high transmission rate, the disease can be controlled with effective and wide-

ranging treatment. However, this study did not include the effect of vaccination, the effect of incomplete 

treatment, latent cases treatment, and migration of infected persons [194]. In contrast, numerous studies 

showed that those factors have high impact of TB related incidence, prevalence, and mortality [151, 

176, 195]. 

 

2.8.6 Cost-effectiveness TB models 

 

Treatment of DS-TB is relatively straightforward: first-line combination therapy (isoniazid, rifampicin, 

ethambutol and pyrazinamide) taken for a minimum of six months [1]. Treatment of DR-TB is more 

lengthy and complex, e.g. treatment of MDR-TB takes approximately nine to 24 months, and 

typically incorporates a combination of both first and second line agents [1]. Several mathematical 

models measuring anti-TB drug activity are available but it is yet not clear which combination of agents 

leads to optimal DS and MDR-TB treatment efficiency with satisfactory cost-effectiveness [196-198]. 

Given the huge burden of MDR-TB and the paucity of data on combinations of regimens, there is a 

strong need for further research into drug combinations to identify novel, possibly powerful, anti-TB 

schedules and their conversion into clinical practice [199-201].  

 

Novel shortened schedules have possible benefits, such as improving consequences through increased 

compliance, reduced time to cure, and reduced costs incurred by patients and the health system during 

treatment. While a number of randomised controlled trials for novel anti-mycobacterial agents are 
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underway, these are time consuming and costly and furthermore are limited to one or two combinations 

of therapies. Clearly there is a potential role for modelling to provide insights into candidate rational 

drug combinations. Gomez et al. (2016) established an individual-based model to measure the cost-

effectiveness of a theoretical four-month schedule for first line treatment of TB and assumed non-

inferiority to present schedules of a six-month period [202]. The individual-based model was populated 

using wide-ranging, empirically collected data to assess the economic effect on both patients and health 

systems’ schedule shortening for first line TB treatment. This study found that dropping the period of 

first line treatment of TB has the possibility of considerable financial gains from the patient’s 

perspective. The possible financial gains for health facilities may also be significant but depend on the 

proper pricing of any new schedule [203]. 

 

Aljayyoussi et al. (2017) developed a cost-effectiveness intra-host TB model and established that 

the kill-time of the intracellular Mtb sub-population is the critical factor for determining the clinical 

TB treatment period [204]. The model showed that greater doses of (35 mg/kg) rifampicin will 

decrease the treatment period. Aljayyoussi et al.’s model recommended a decision-making tool for 

the identification and prioritization of new therapies, to investigate the value and potential to 

decrease the TB treatment period.     

 

In most countries, TB therapy has sub-optimal outcomes due to poor completion rates, reflective of the 

extensive duration of therapy [1]. With the rapid emergence of multidrug-resistant Mtb strains, the 

situation is further complicated. Therefore, TB control policy makers need to prioritise new drugs with 

important therapeutic activities against single or multiple drug-resistant strains of Mtb that permit a 

decrease in the period of treatment [205]. Jayaram et al. (2003) developed a model to identify reduction 

in therapy period for rifampicin [201]. This model estimated the association with bactericidal efficacy 

and rifampicin dose. This model predicted increasing rifampicin doses from 10 to 15 mg/kg reduces the 

duration of treatment by one-third to achieve a comparable concentration-time curve ratio. 

 

The incidence of DS-TB has marginally decreased worldwide but the incidence of MDR-TB has 

increased due to poor treatment regimens. Diel et al. (2015) constructed a transmission dynamic 

stochastic and cohort-based Markov model for simulating the therapy costs and effectiveness 

parameters of newly diagnosed German MDR-TB patients (background regimen with and without the 

addition of Delamanid over a 10-year period) [206]. The first outcome of the model was incremental 

cost per quality-adjusted life year (QALY) gained: this is the net cost of achieving a rise of one QALY 

compared with the next less expensive intervention. The secondary outcome incorporated the 

incremental costs per disability-adjusted life years (DALYs) averted, which is usually used by the WHO 

for assessing effectiveness in developing countries. The results of this study showed that German 

Delamanid is usually cost-effective when compared to the background regimen alone. From a societal 
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perspective, Delamanid leads to greater benefit at lower costs compared to the background regimen in 

terms of incremental cost per QALY in 71% of wholly probabilistic expectations [206].    

 

Although effective TB drug treatment prevents around 2 million deaths each year worldwide, in the 

case of MDR-TB, effective treatment in terms of response to second line drugs is complicated. Resch 

et al. (2006) constructed a dynamic state-transition model of TB to predict the health benefits and cost-

effectiveness of drug susceptibility-testing and second line drugs in lower and middle income countries 

with high levels of MDR-TB [207]. This study showed standardized schedules could be cost-effective 

when a test for MDR-TB is used before enrolling previously treated patients into second line drug 

therapy. In addition, second line drug therapy was shown to be highly cost-effective for MDR-TB 

patients in lower and middle income countries. Furthermore, the attractiveness of policies using second 

line drugs depends on the MDR-TB burden, TB incidence, and the available budget, but individualized 

schedules would be cost-effective in an extensive range of circumstances [207].    

 

During a treatment period, better supervision of DS cases can help to prevent the growth of drug 

resistance. An estimated 75% of MDR-TB cases occur in people who have been treated for TB before, 

and the spread of resistant strains within a population is the main problem [208]. Therefore, control 

of MDR-TB needs prevention of both developed drug resistance and transmission as well as effective 

diagnosis and treatment. In 2010, the WHO recommended that a healthcare intervention is extremely 

cost-effective if the cost per DALY averted is less than per capita GDP. Fitzpatrick and Floyd (2012) 

developed a cost-effectiveness model and found that in all sub regions, the cost per DALY averted for 

MDR-TB treatment could be less than per capita GDP [209]. Furthermore, the model indicated that 

outpatient models of care are more reasonable and cost-effective than models of care that depend on 

hospitalization for several months of treatment.   

 

2.9 Conclusion 

 

TB is a well - recognized bacterial infectious disease worldwide.  High level evidence through numerous 

randomized controlled trials shows that proper treatment and BCG vaccination are very effective for 

TB cure and prevention respectively. Nevertheless, TB continues to be the world’s biggest infectious 

disease killer and the incidence rate varies dramatically, disproportionately impacting on developing 

countries.  In developing countries such as Bangladesh, poverty and subsistent living lead to social and 

political obstructions that contribute to the problem. For example, people who are poor and live remote 

from major health centers are far less likely to seek early diagnosis, making them more likely to transmit 

Mtb to family and community. This contrasts with TB infected people in developed countries who have 

access to care without substantial impact on their livelihoods.  In contrast, governments of developing 

countries may not provide sufficient funds and a number of downstream problems result including 
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inadequate vaccine delivery, drug stock outages in peripheral centers, poor logistics and high levels of 

centralization of services, poor outreach, and little awareness of TB disease [210, 211]. 

 

Challenges even exist in the realm of religion, as some religious instructions outlaw followers to 

consume certain elements incorporating vaccination as well [212].  In their world view,  

“Vaccination is an artificial invention made by man to alter immune function.  The immune 

system, on the other hand, is a natural function given by God to protect us from disease.  

Trusting in manmade vaccination is like saying that we think God didn’t make us correctly and 

that we need artificial ‘boosting’ in order to survive” [212].  

These considerations are culturally sensitive, and contribute to a worrisome problem in developing 

countries in the Asia-Pacific region.  Parents sometimes refuse vaccination against TB because of their 

religious beliefs and lack of knowledge [213], but if parents are educated by religious leaders who can 

explain both the effectiveness of vaccine and its acceptability from a religious point of view, TB disease 

outbreaks will be controlled [214]. 

 

Much can be learned and applied from developed to developing countries to promote resilience and 

recovery in those affected by the disease in developing countries. In most countries, the Ministry of 

Finance (MOF) controls the national budget [215] and sometimes does not understand the needs of the 

Ministry of Health and the negative consequences of underfunding or the economic importance of 

health, and that can lead to a lack of anti-bacterial medicines, and low quality services. Therefore, a 

good relationship between the Ministry of Health and Ministry of Finance is important for assuring 

sufficient budget allocation for the health sector. Additionally, good nutrition is essential for the human 

body.  Healthy people are more alert, attentive, and healthy which protects the human body against any 

illness [216].  On the other hand, under-nutrition creates people who are quiet, withdrawn, and more 

susceptible to infection and illness.  Thus, if people’s nutrition status is improved, then the incidence of 

TB disease may decrease.  

During a TB outbreak, the host factors that influence emergence of new infections and their 

transmission have to be investigated and understood. Research based evidence must be developed to 

influence policy modification, including control plans. Mathematical modelling of TB is a way of 

incorporating understanding of health systems and practice, informed by accessible data to create 

predictions. The impacts of different policies can be estimated much more quickly than through trial in 

the field, which has in addition potential statistical error and sometimes feasibility problems and 

substantial costs. Mathematical modelling has numerous prospective tools to monitor and inform 

present eradication efforts such as incidence, prevalence, and case notification. Cost-effectiveness 

modelling considers costs against current or forecast benefits, to recommend optimum cost-effective 
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policies. Transmission dynamic mathematical and cost-effective modelling practices need to be joined 

to contribute maximum efficacy of different intervention strategies with satisfactory cost-effectiveness.  

In this thesis, I performed a time series analysis to explore the association between weather variables 

and the number of TB cases in Bangladesh. I used a generalized linear Poisson regression models to 

identify quarterly changes in TB cases in three districts of Rajshahi province, in the North-West of 

Bangladesh (chapter 3). I also developed a mathematical model of the transmission dynamics of DS 

and DR-TB in Bangladesh (chapter 4 and 5) and performed a rigorous analytical analysis of the system 

properties and solutions. Finally, I also assessed specific intervention strategies (chapter 6 and 7) to 

identify the most effective ways to control DS and MDR-TB epidemics in this region – a study that, at 

present, remains relatively neglected in the literature. 
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Abstract 

 

Tuberculosis (TB) is a potentially fatal infectious disease that continues to be a public health problem 

in Bangladesh. Each year in Bangladesh an estimated 70,000 people die of TB and 300,000 new cases 

are projected. It is important to understand the association between TB incidence and weather factors 

in Bangladesh in order to develop proper intervention programs. In this study, we examine the delayed 

effect of weather variables on TB occurrence and estimate the burden of the disease that can be 

attributed to weather factors. We used generalized linear Poisson regression models to investigate the 

association between weather factors and TB cases reported to the Bangladesh National TB control 

program between 2007 and 2012 in three known endemic districts of North-East Bangladesh. The 

associated risk of TB in the three districts increases with prolonged exposure to temperature and rainfall, 

and persisted at lag periods beyond 6 quarters. The association between humidity and TB is strong and 

immediate at low humidity, but the risk decreases with increasing lag. Using the optimum weather 

values corresponding to the lowest risk of infection, the risk of TB is highest at low temperature, low 

humidity and low rainfall. Measures of the risk attributable to weather variables revealed that weather-

TB cases attributed to humidity is higher than that of temperature and rainfall in each of the three 

districts. Our results highlight the high linearity of temporal lagged effects and magnitudes of the burden 

attributable to temperature, humidity, and rainfall on TB endemics. The results will provide important 

information to advise the Bangladesh National TB control program and act as a practical reference for 

the early warning of TB cases. 

  
Keywords: Tuberculosis, Bangladesh, Distributed lag models, Weather 
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3.1 Introduction 

 

Tuberculosis (TB) kills millions of people each year and is one of the major global health problems 

identified by the World Health Organization [1]. It is an airborne infectious disease caused by infection 

with the bacteria Mycobacterium tuberculosis (Mtb) [2].  The Mtb spreads easily from a person with 

active TB to another person when the infectious person coughs, sneezes, speaks or sings and the 

susceptible person comes into physical contact with fluid from droplets via body entrance cavities [3]. 

The incidence of TB disease is increasing and it is estimated that globally there were around 10.4 million 

new cases of TB, and 1.7 million died from the TB disease. Most of the estimated cases in 2017 occurred 

in Asia (45%) and Africa (25%) and 87% of TB deaths occurred in low- and middle- income countries 

[1]. TB is therefore a major challenge to public health that has only been exacerbated by urbanization, 

population movement and climate change [4-6]. 

 

Previous studies have shown that environmental factors exhibit important effects on the distribution of 

TB disease, vectors and host [4, 7-12]. For example, the incidence of TB has been shown to be highest 

during summer, thus, it was hypothesized that the disease may have been acquired during winter 

months. This could be attributed to reduction in vitamin D level in the winter season [5, 7, 13-15], 

winter indoor crowding activities [16, 17] and seasonal change in immune function [18, 19]. Similarly, 

air quality is affected by atmospheric pollution, where carbon monoxide promotes bacillary reactivation 

and increases the risk of TB outbreaks [20]. 

 

TB is one of the major public health problems in Bangladesh [21-23]. Many areas of quantitative 

analysis can be used to improve the understanding of infectious diseases epidemiology as well as its 

dynamics. Time series analysis has been extensively used to explore exposure-response relationships 

of diseases. For example, Onozuka et al. applied generalize linear Poisson models in combination with 

autoregressive model to investigate the effect of weekly mean temperature and humidity on the 

incidence of mycoplasma pneumonia in Japan [24], Adegboye et al. used a spatial time-series regression 

model to investigate the influence of temperature and rainfall on malaria and leishmaniosis in 

Afghanistan [25-27], and Xiao et al. applied a distributed lag non-linear model to study the effects of 

multiple meteorological variables on monthly incidence of TB in Southwest China [28]. 

 

Overall, the transmission dynamics and epidemiology of TB in Rajshahi are poorly understood. No 

available study has concurrently discussed the impact of weather factors on TB incidence and 

attributable burden of the disease in Bangladesh.  Therefore, this study will fill this gap in the literature 

by investigating the distributed lag effects of weather on TB incidence. We also aimed to identify the 
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influence of multiple weather indicators and the burden of TB attributable to weather variables in the 

North-West region of Bangladesh using consecutive surveillance data collected over 6 years.   

 

We applied distributed lag models (DLMs) to explore simultaneously the exposure-lag-response impact 

of selected weather factors (i.e. temperature, humidity and rainfall) on TB incidence. The DLM is a 

novel and flexible modelling structure for dealing with lagged relations between or among time series 

structures. It will efficiently capture and control the behaviour of study variables in the exposure range 

and time dimension. The findings in this study will contribute to a better understanding of the TB 

incidence related to weather factors including temperature, rainfall and humidity and provide more 

evidence to support the Bangladesh National TB control program (NTP) decision-making and to 

prevent and control future TB outbreaks.   

 

3.2 Methods and material 

 

3.2.1 Data sources 

 

3.2.1.1 TB case notifications 

 

Bangladesh is a TB disease endemic country in South-East Asia [1]. Control of TB in such a resource-

scare country should be informed by an in-depth epidemiological understanding of the disease. This 

study is based on reported quarterly TB cases in three districts of Rajshahi province, in the North-West 

of Bangladesh (Figure 3.1) obtained from the NTP in Bangladesh. The diagnosis of TB cases was based 

on the clinical criteria established in the NTP guide published by the Ministry of Health in Bangladesh 

[29]. At time of data collection, individuals are told of their diagnosis (of tuberculosis) and informed 

that it is a notifiable disease [29].  
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Figure 3. 1 Quarterly TB cases (black) during the study period, 2007-2012 with average (a) 
Temperature, (b) Humidity, and (c) Rainfall for the three districts (red). 
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3.2.1.2 Weather variables 

 

Weather data from 35 weather stations across Bangladesh were obtained from the National Oceanic and 

Atmospheric Administration (NOAA), National Centers for Environmental Information (NCEI) 

(Figure 3.1). However, none of the weather stations is located in the study region, that is, the location 

of the weather stations do not match the study areas (misaligned data) (Figure 3.1). Misalignment in 

spatial analysis occurs when samples taken at different spatial scales are not linked [30-32]. Therefore, 

interpolation (Kriging) of the weather data is required [33, 34]. Here we use a Bayesian Kriging method 

[32] to estimate the daily weather variables in each of the study districts within the range of known 

weather stations shown in Figure 3.1.  

The general formula for Kriging is, 

Z⃗ (S0) = ∑ λiZ(Si)
N
i=1                                                                                                                              (3.1) 

Where 

Z(Si) is the measured value at the i th location 

λi is an unknown weight for the measured value at the i th location 

S0 represents the predicted location 

N is the number of measured values 

Here, λi depends on the measured points, distance to the prediction location and the spatial relationship 

among the measured values around the prediction location.  

 

We used variogram to create covariance function to evaluate the spatial dependence [33-35].  

γh= 0.5*average values (locationi − locationj)
2
                                                                                     (3.2)                             

where i, j = 1, 2, 3, … . . N. 

The empirical semivariogram is a graph of the averaged semivariogram values of the y axis and the 

distance on the x axis and it’s provides information on the spatial autocorrelation of datasets. Three 

mathematical models- spherical, exponential and marten functions [36]  were explored to estimate γh 

used for interpolation. 

 

The Bayesian Kriging was implemented in the R package for geostatistical analysis “geoR” [37]. The 

estimated daily weather variables: mean temperature (oC); mean rainfall (mm); and mean relative 

humidity (%) were aggregated to quarterly data (See Figure S3.1).  

 

3.2.2 Statistical analysis 
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3.2.2.1 Weather -TB association 

 

The association between weather variables and the number of TB cases was investigated using 

distributed lag models (DLMs) [38, 39] via a quasi-Poisson regression model adjusting for population, 

seasonality and long-term trend.  

 

The quarterly counts of TB cases, Yt at time t may be explained in terms of past weather exposures xt−ℓ, 

up to ℓ lag.  

Yt~quasiPoisson(μt) 

log(μt) =∝ +offset(Population) + s(Time) + sj(xit−l,jβl,j)                                                          (3.3) 

where μt ≡ E(Yt), and Yt is assumed to arise from an over-dispersed Poisson distribution. Population 

was entered as a fixed effect and a smoothing function of time was used to model the trend and 

seasonality. The functions sj specify the relationship between the weather variable, xj, and the exposure-

lag-response curve, defined by the parameter vectors βl,j.  

 

The functions sj defines the relationship along the two dimensions: exposure and lag and is computed 

as the approximate integral of the exposure-lag-response function over the lag dimension, representing 

the cumulated risk over the lag period.  

Sj = ∫ f.w(xt−l, l)dl
L

l0
  

      ≈ ∑ f. w(xt−l, l)
L
l=l0

= wx,t
T                                                                                                             (3.4) 

The parameterization in the final step of the equation (3.4) is obtained through a cross-basis function 

involving a tensor product between the basis chosen for f(x) and w(l). The cross-basis function 

specified with a reference value x0 used later as a cantering point for the function f(x), which is used to 

define the counterfactual condition [40-42].  

 

3.2.2.2 Model assessment  

 

We explored several structures of exposure–lag–response function, sj(xit−l,jβl,j); linear and quadratic 

spline functions were explored for exposure-response relationship while constant, linear and quadratic 

splines were explored for lag-response relationship. To examine the lag effects, various lag models 

should be compared because few models may lead to misleading conclusions. Adding more lag 

variables may lead to a greater loss of accuracy with a minimal benefit in lag effect detection [43]. In 

exposure and lag functions, different lags (up to 6 quarters) and knot positions (equally spaced and 
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mean) were investigated. A natural cubic spline of time was used to model the trend and seasonality 

exploring 0 to 7 degrees of freedom.   

 

A collection of 64 candidate models were developed based on the number of knot positions, number of 

lags, number of degrees of freedom (df) and smoothing functions for each exposure-lag-response 

function (See Table S3.1 and S3.2 for details). Each of these choices will depend on the objectives of 

the analysis as well as the best model fit. In general, simpler models (e.g. linear) have the advantage of 

being easy to interpret and are particularly attractive in multicity studies in which one seeks to compare 

associations across cities. However, more complex models (e.g. Quadratic B-Spline) may produce 

better fits to the data and are useful in exploratory single-city studies as well as to indicate to what extent 

there are weather effects [44]. The choice of specific model may also be informed by model fit criteria 

including deviance, modified Akaike and Bayesian information criteria for models with over dispersed 

data, Quasi-AIC and Quasi-BIC [45, 46]. However, when using model-fit principles to inform model 

choice, we must keep in mind that relative performance of each of the model depends on their model 

formulation. Finally, considering the choice of a preferred model, it is also required to consider 

sensitivity of model choice not only in relation to the weather factors, but also to season and other 

specific factors [44, 47].  

 

Therefore, in this study, we carried out an extensive model search using QAIC, QBIC and visualization 

of weather-TB association. Tables S3.1 present the model description.  The models selected by QAIC 

and QBIC are complex model and contain a  high number of degrees of freedom spent to describe the 

weather-TB overall effect (more than 20 df for a 22 time series observations per districts) (Tables S3.2). 

Previous studies have suggested that information criteria tends to select under fit models when sample 

size and effect size are small [43, 48]. A simpler model providing relative risk (RR) estimates without 

bias and with smaller variance may be preferred [43, 49]. Therefore, taking these considerations into 

account and motivated by several previous studies [43-45, 47, 48, 50], we consider linear-linear 

(exposure-lag-response) models to assess the relationship between three weather variables: temperature; 

rainfall; and relative humidity, and the number of TB cases in three districts of Bangladesh. The final 

model selected described both the weather-TB and lag-TB relationships by a linear function for up to 6 

quarter lags and 7 degrees of freedom for long-term trends.  

 

3.2.2.3 Attributable risk associated with weather variables 

 

The attributable fraction (AF) and attributed number (AN) are indicators of weather-related health 

burdens that take into account weather-associated risk as well as the lags on which that risk is observed 

[51]. Results from the final model were used to derive estimates of weather-TB overall associations, 
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reported as relative risks (RRs), cumulating the risk during the lag period. The number of TB cases 

attributable to weather variables using optimum weather values (which is the weather value 

corresponding to a minimum number of TB cases) as reference was used to derived the attributable 

measures. 

 

We used both backward and forward perspective to estimate the attributable measures depending on the 

interpretation of the term, βx,l for each intensity, xt. The terms βx,l are the contributions from the 

exposure xt occurring at time t to the risk at respective periods [51, 52]. From a forward viewpoint, 

looking from current exposure to future risks, the terms βx,l are the contributions from the exposure xt 

occurring at time t to the risk at time t + l0, … . . , t + L given by the equation below: 

f − AFx,t = 1 − e
−∑ βxt,l

L
l=l0  

f − ANx,t = f − AFx,t  ∑
nt+l

L−l0+1

L
l=l0

                                                                                                          (3.5) 

Where f − AFx,t and f − ANx,t can be interpreted as the fraction and number of future cases in the period 

t + l0, … . . , t + L attributable to the single exposure x occurring at time t to x0 [40]. 

 

The backward perspective assumed that the risk at time t is attributable to a series of exposure events 

xt in the past, described as: 

 b − AFx,t = 1 − e
−∑ βxt−l,l

L
l=l0  

b − ANx,t = b − AFx,t ∙ nt                                                                                                                        (3.6) 

The terms βx,l are the contributions to the risk at time t from exposure xt−l0 , … . , xt−L experienced at  

t − l0, … . . , t − L. In this study, the attributable risk at each quarter was treated as a results of previous 

exposures up to the maximum lag, 6 quarters in the past. nt is the number of cases at time t; b − ANx,t 

and ;  b − AFx,t are interpreted as the number of cases and the related fraction at time t attributable to 

past exposures to x in the period t − l0, … . . , t − L, compared to a constant exposure x0 within the same 

period [40].  

 

3.2.2.4 Sensitivity analysis 

 

We carried out sensitivity analysis to assess whether our model parameters and attributable risk 

measures were robust. The effects of our estimates due to the choice of covariance structures for weather 

prediction were also investigated. We changed the covariance structure used in our Bayesian Kriging 

analysis from spherical, to exponential and Matern, and used the new weather predictions in our DLMs 

(See Table S3.3 and S3.4). Furthermore, we assessed the interplay between all three weather parameters 

looking at exposure to individual weather parameters and up to three-way interactions (Figure S3.2). 
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All analyses were done using the package DLM [38] in the R 3.4.2 statistical software [53]. 

 

3.3 Results 

 

3.3.1 Initial sequences of TB cases and weather factors 

 

There were 6394, 5896 and 9498 TB cases reported in the three districts considered in this study, 

Naogaon, Nawabganj and Rajshahi from 2007 to 2012. The time-series distribution of quarterly TB 

cases and average quarterly temperature, relative humidity and rainfall during the study period are 

presented in Figure 3.1. Variations of the three weather factors with time presented a recognizable cyclic 

pattern.  

 

3.3.2 Association between TB and weather factors  

 

The associations between TB and average quarterly temperature, relative humidity and rainfall from the 

final model are illustrated in Figures 3.2-3.4. The left panel of the plots displays the three-dimensional 

plots of the relationships between weather variables and TB cases along the lags, while the middle and 

the right panels display the exposure-response and lag-response associations, respectively. The TB-

temperature and TB-rainfall plots suggest that the slope of relations is steeper at the lower end of the 

temperature and rainfall scale in all the three districts. These associations are delayed and increase at 

lag periods up to 6 quarters. Significant negative associations were found between temperature/rainfall 

and the risk of TB at lag 0-6 (Figures 3.2-3.3). The association between relative humidity and TB was 

immediate at low humidity, and the risk decreases with increasing lag. The effect of relative humidity 

was significant for lag periods up to 6 quarters (Figure 3.4).  
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Figure 3. 2 Exposure-lag-response association in the three districts. Left panel: Three dimensional 
association; Middle panel: Rainfall-TB association Right panel: Lag-TB association. 



 
 

74 
 

 

 

 

 

Figure 3. 3 Exposure-lag-response association in the three districts. Left panel: Three dimensional 
association; Middle panel: Temperature-TB association Right panel: Lag-TB association. 

 



 
 

75 
 

 

 

 

 

Figure 3. 4 Exposure-lag-response association in the three districts. Left panel: Three dimensional 
association. Middle panel: Humidity-TB association. Right panel: Lag-TB association. 
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In the three districts, the predicted lag-specific effects suggested an increasing effect of temperature and 

rainfall over lag 0-6 especially at low values but an immediate effect of humidity (Figure S3.3-S3.5 

right panel).  Similarly, the multiple plot of projected effects along temperature, humidity and rainfall 

at specific lags and the corresponding lag-specific effects (Figure S3.3-S3.5 right panel) illustrates the 

variability of the effects of high and low- temperatures, humidity and rainfall on TB cases. A very strong 

and delayed association with low temperature and low rainfall was observed in the three districts and 

an immediate effect of low humidity on the TB cases. 

 

 Table 3.1 showed the relative risks (RRs) of TB cases for overall cumulative effect (lag 0-6) and at 

different lag exposures (0 to 6)  estimated at 10th, 50th and 90th percentiles of temperature, relative 

humidity, and rainfall values for each specific district. In all districts, the weather effect RRs were 

highest  at the lowest value. 
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Table 3. 1 Relative risks (with 95% eCI) of incidence at specific exposure-lag values. 

 Districts    Overall: Lag 0 – 6  Lag 0  Lag 1  Lag 2  Lag 3  Lag 4  Lag 5  Lag 6  

Temperature  Naogaon  
  

10th 
(14.1 )  

4.31 (1.71 – 
10.83)  

1.09 (0.93 – 
1.29)  

1.14 (0.98 – 
1.32)  

1.18 (1.03 – 
1.36)  

1.23 (1.08 – 
1.41)  

1.28 (1.12 – 
1.46)  

1.33 (1.16 – 
1.53)  

1.39 (1.20 – 
1.61)  

50th ( 
21.0)  

1.89 (1.26 – 
2.83)  

1.04 (0.97 – 
1.12)  

1.06 (0.97 – 
1.13)  

1.08 (1.01 – 
1.14)  

1.10 (1.03 – 
1.16)  

1.11 (1.05 – 
1.18)  

1.13 (1.07 – 
1.20)  

1.15 (1.08 – 
1.23)  

90th ( 
26.2)  

1.03 (1.01 – 
1.04)  

1.00 (0.99 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.01)  

1.00 (1.00 – 
1.01)  

1.00 (1.00 – 
1.01)  

1.00 (1.00 – 
1.01)  

1.01 (1.00 – 
1.01)  

            
Humidity  10th 

(72.3 )  
10.63 (3.45 – 

32.74)  
1.52 (1.21 – 

1.91)  
1.48 (1.21 – 

1.81)  
1.44 (1.20 – 

1.72)  
1.40 (1.19 – 

1.65)  
1.36 (1.17 – 

1.59)  
1.33 (1.14 – 

1.55)  
1.29 (1.09 – 

1.53)  
50th ( 
78.4)  

3.58 (1.95 – 
6.57)  

1.25 (1.11 – 
1.42)  

1.23 (1.11 – 
1.38)  

1.22 (1.11 – 
1.34)  

1.20 (1.10 – 
1.31)  

1.18 (1.10 – 
1.28)  

1.17 (1.07 – 
1.27)  

1.15 (1.05 – 
1.26)  

90th ( 
84.5)  

1.22 (1.11 – 
1.35)  

1.04 (1.02 – 
1.06)  

1.03 (1.02 – 
1.05)  

1.03 (1.02 – 
1.05)  

1.03 (1.02 – 
1.04)  

1.03 (1.01 – 
1.04)  

1.02 (1.01 – 
1.04)  

1.02 (1.01 – 
1.04)  

            

Rainfall  10th 
(0.87)  

7.6 (3.34 – 
17.05)  

1.19 (1.04 – 
1.37)  

1.24 (1.09 – 
1.41)  

1.29 (1.14 – 
1.45)  

1.33 (1.19 – 
1.50)  

1.39 (1.23 – 
1.56)  

1.44 (1.27 – 
1.63)  

1.49 (1.30 – 
1.71)  

50th ( 
8.01)  

4.8 (2.54 – 8.93)  1.15 (1.03 – 
1.28)  

1.18 (1.07 – 
1.30)  

1.21 (1.11 – 
1.33)  

1.25 (1.14 – 
1.37)  

1.29 (1.17 – 
1.41)  

1.32 (1.20 – 
1.46)  

1.36 (1.22 – 
1.52)  

90th 
(29.18)  

1.21 (1.12 – 
1.31)  

1.02 (1.00 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.04)  

1.03 (1.02 – 
1.04)  

1.03 (1.02 – 
1.04)  

1.04 (1.02 – 
1.05)  

1.04 (1.03 – 
1.05)  

          

Temperature  Nawabganj  10th 
(14.0)  

3.59 (2.17 – 
5.94)  

1.12 (1.02 – 
1.23)  

1.15 (1.06 – 
1.24)  

1.17 (1.10 – 
1.26)  

1.20 (1.12 – 
1.29)  

1.23 (1.14 – 
1.32)  

1.26 (1.16 – 
1.36)  

1.28 (1.18 – 
1.40)  

50th ( 
21.1)  

1.72 (1.39 – 
2.13)  

1.05 (1.01 – 
1.10)  

1.06 (1.02 – 
1.10)  

1.07 (1.04 – 
1.11)  

1.08 (1.05 – 
1.11)  

1.09 (1.06 – 
1.13)  

1.10 (1.07 – 
1.14)  

1.11 (1.18 – 
1.15)  

90th 
(26.2)  

1.01 (1.01 – 
1.02)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

            
Humidity  10th 

(72.4)  
4.87 (2.65 – 
8.95)  

1.34 (1.19 – 
1.50)  

1.31 (1.18 – 
1.45)  

1.28 (1.17 – 
1.40)  

1.25 (1.15 – 
1.37)  

1.23 (1.12 – 
1.34)  

1.20 (1.09 – 
1.33)  

1.18 (1.05 – 
1.32)  

50th 
(78.5)  

2.40 (1.71 – 
3.36)  

1.17 (1.10 – 
1.25)  

1.16 (1.10 – 
1.23)  

1.15 (1.09 – 
1.21)  

1.13 (1.08 – 
1.19)  

1.12 (1.07 – 
1.18)  

1.11 (1.05 – 
1.17)  

1.09 (1.03 – 
1.17)  

90th 
(84.8)  

1.16 (1.09 – 
1.22)  

1.03 (1.02 – 
1.04)  

1.02 (1.02 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.01 (1.00 – 
1.03)  

            

Rainfall  10th 
(0.97)  

6.03 (3.65 – 
9.96)  

1.24 (1.13 – 
1.37)  

1.26 (1.16 – 
1.37)  

1.28 (1.18 – 
1.38)  

1.29 (1.20 – 
1.39)  

1.31 (1.22 – 
1.41)  

1.33 (1.23 – 
1.43)  

1.34 (1.24 – 
1.45)  

50th 
(7.72)  

4.13 (2.78 – 
6.14)  

1.19 (1.10 – 
1.28)  

1.20 (1.12 – 
1.28)  

1.21 (1.14 – 
1.29)  

1.22 (1.14 – 
1.30)  

1.24 (1.17 – 
1.31)  

1.25 (1.18 – 
1.32)  

1.26 (1.19 – 
1.34)  

90th 
(29.82)  

1.20 (1.14 – 
1.26)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.02 (1.02 – 
1.03)  

1.03 (1.02 – 
1.03)  

1.03 (1.02 – 
1.03)  

1.03 (1.02 – 
1.04)  

1.03 (1.02 – 
1.04)  

          
Temperature  Rajshahi  10th 

(14.0)  
3.31 (1.88 – 
5.83)  

1.10 (0.99 – 
1.21)  

1.12 (1.03 – 
1.23)  

1.56 (1.06 – 
1.25)  

1.89 (1.09 – 
1.28)  

1.22 (1.12 – 
1.31)  

1.25 (1.14 – 
1.37)  

1.28 (1.16 – 
1.42)  

50th 
(21.0)  

1.67 (1.31 – 
2.14)  

1.04 (1.00 – 
1.08)  

1.05 (1.01 – 
1.09)  

1.06 (1.03 – 
1.10)  

1.07 (1.04 – 
1.11)  

1.10 (1.05 – 
1.13)  

1.10 (1.06 – 
1.15)  

1.11 (1.07 – 
1.16)  

90th 
(26.1)  

1.02 (1.01 – 
1.03)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.00)  

1.00 (1.00 – 
1.01)  

          
Humidity  10th 

(72.2)  
3.89 (1.69 – 
8.94)  

1.26 (1.09 – 
1.47)  

1.25 (1.09 – 
1.43)  

1.23 (1.09 – 
1.39)  

1.21 (1.08 – 
1.37)  

1.20 (1.06 – 
1.35)  

1.18 (1.03 – 
1.35)  

1.17 (1.00 – 
1.36)  

50th 
(78.2)  

2.18 (1.35 – 
3.51)  

1.14 (1.05 – 
1.25)  

1.14 (1.05 – 
1.23)  

1.23 (1.05 – 
1.21)  

1.12 (1.04 – 
1.20)  

1.11 (1.03 – 
1.19)  

1.10 (1.02 – 
1.19)  

1.09 (1.00 – 
1.19)  

90th 
(85.1)  

1.11 (1.04 – 
1.19)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.03)  

1.02 (1.01 – 
1.02)  

1.01 (1.00 – 
1.02)  

1.01 (1.00 – 
1.02)  

1.01 (1.00 – 
1.02)  

            

Rainfall  10th 
(1.0)  

4.62 (1.59 – 
13.45)  

1.19 (0.98 – 
1.44)  

1.20 (1.01 – 
1.43)  

1.22 (1.04 – 
1.44)  

1.24 (1.07 – 
1.45)  

1.26 (1.09 – 
1.47)  

1.29 (1.10 – 
1.51)  

1.31 (1.10 – 
1.55)  

50th 
(7.0)  

3.45 (1.45 – 
8.21)  

1.15 (0.98 – 
1.34)  

1.16 (1.01 – 
1.34)  

1.18 (1.03 – 
1.34)  

1.19 (1.05 – 
1.35)  

1.21 (1.07 – 
1.37)  

1.23 (1.08 – 
1.39)  

1.24 (1.08 – 
1.43)  

90th 
(27.3)  

1.28 (1.08 – 
1.53)  

1.03 (1.00 – 
1.06)  

1.03 (1.00 – 
1.06)  

1.03 (1.01 – 
1.06)  

1.04 (1.01 – 
1.06)  

1.04 (1.01 – 
1.07)  

1.04 (1.02 – 
1.07)  

1.04 (1.02 – 
1.07)  

 

 

In particular, Naogaon district showed the highest cumulative risk associated with humidity at the 10th 

percentile (72.3%), (RR=10.63, 95% CI 3.45 – 32.74). The risk decreases with increasing percentile: 

50th (78.4%) and 90th (84.5%), (RR: 3.58 vs 1.22). Exploring the immediate effect of humidity at lag 
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0, there was an increase risk at the 10th percentile (72.3%),  (RR = 1.52, 95% CI 1.21 – 1.91). The risk 

decrease at the 50th  and 90th percentiles (78.4% and 84.5%, respectively) but remains significant (RR 

= 1.25, 95% CI 1.11 – 1.42) vs (RR = 1.04, 95% CI 1.02 – 1.06). Similarly, we found a significant 

relationship with the 10th percentile temperature of 14.1 0C, (RR = 4.31, 95% CI 1.71 – 10.83), 50th 

percentile temperature of 21.0 0C, (RR = 1.89, 95% CI 1.89 – 2.83), and 90th percentile temperature of 

26.2 0C, (RR = 1.03, 95% CI 1.01 – 1.04) at lag 0-6. For rainfall, we found the highest relationship with 

0.87 mm, (RR=1.49, 95% CI 1.30 – 1.71), 8.01 mm, (RR=1.36, 95% CI 1.22 – 1.52), and 29.18 mm, 

(RR=1.04, 95% CI 1.03 – 1.05) at lag 6 quarterly.  

 

The overall temperature effect in Nawabganj district at the 10th percentile  (14 oC) was (RR=3.59, 95% 

CI: 2.17 – 5.94). At a specific lag, the temperature-TB association was highest at lag 6 and inversely 

related. For example at the 10th percentile temperature (14 oC), RR was 1.28, (95% CI: 1.18 – 1.40), at 

the 50th percentile, 21.1 oC, (RR=1.15, 95% CI: 1.11 – 1.28), and at the 90th percentile, 26.2 oC, 

(RR=1.00, 95% CI: 1.00 – 1.00). For humidity, we found the highest relationship at a humidilty level 

of 72.4%, (RR=1.34, 95% CI: 1.19 – 1.50) at lag 0. For rainfall, we observed an increased risk at lower 

rainfall at lag 6: 0.97 mm, (RR = 1.34, 95% CI: 1.24 – 1.45), 7.72 mm, (RR = 1.26, 95% CI: 1.19 – 

1.34), and 29.82 mm, (RR = 1.03, 95% CI: 1.02 – 1.04).  

 

Finally, Rajshahi district showed the overall highest cumulative risk associated with rainfall at the 10th 

percentile of 1.0 mm: (RR=4.62, 95% CI: 1.59 – 13.45). The risk decreases at increased percentiles: 

50th (7.0mm) and 90th (27.3mm), (RR: 3.45 vs 1.28). At a specific lag, increased risks were observed 

for the rainfall-TB association at lag 6 and at lower rainfall: 1.0 mm, (RR = 1.31, 95% CI 1.10 – 1.55), 

7.0 mm, (RR = 1.24, 95% CI 1.08 – 1.43), and 27.3 mm, (RR = 1.04, 95% CI 1.02 – 1.07). For 

temperature, highest association was observed at lag 6 and at lower temperature: 14 oC, (RR=1.28, 95% 

CI 1.16 – 1.42), 21 oC, (RR=1.11, 95% CI 1.107 – 1.16 ), and 26.1 oC, (RR=1.00, 95% CI1.00 – 1.01). 

For humidity, we observed the highest relationship at 72.2%, (RR = 1.26, 95% CI 1.09 – 1.47), 78.2%, 

(RR = 1.14, 95% CI 1.05 – 1.25), and 85.1%, (RR = 1.02, 95% CI 1.01 – 1.03) at lag 6.  

 

3.3.3 Weather related burden of TB 

 

Table 3.2 shows the estimated attributable fractions due to total, low and high weather variables in each 

district with 95% emperical confidence intervals (eCIs). Based on the backward perceptive the overall 

proportions of TB attributable to temperature in Naogaon, Nawabganj, and Rajshahi districts were 

49.0%, 44.0% and 42.3%, respectively. Similarly, the burden of TB attributable to relative humidity is 

higher than temperature with 69.8%, 56.4%, and 51.5% of TB cases attributed to relative humidity in 

Naogaon, Nawabganj, and Rajshahi districts respectively. Finally, the overall attributable risk of TB 
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cases due to rainfall is higher than that of temperature and relative humidity: 71.9% in Naogaon; 68.3% 

in Nawabganj; and 64.6% in Rajshahi districts. 

 

Table 3. 2 Attributable fraction based on exponential covariance structure 

Variables  Districts  Cases    Overall  Extreme low temperature 
(< 10th percentile)  

Extreme high temperature 
(> 90th percentile)  

Temperature  Naogaon  5,896  Forw  40.5 (20.4 – 51.4)  4.9 (2.7 – 5.8)  0.26 (0.10 – 0.42)  

Back  49.0 (22.3 – 66.4)  9.4 (2.6 – 14.9)  0.21 (0.09 – 0.32)  

Nawabganj  9,498  Forw  36.3 (26.4 – 43.6)  4.2 (3.1 – 4.8)  0.10 (0.06 – 0.14)  

Back  44.0 (29.4 – 55.8)  8.8 (5.3 – 12.0)  0.07 (0.05 – 0.10)  

Rajshahi  6,394  Forw  35.5 (22.4 – 44.4)  4.1 (2.8 – 4.9)  0.05 (0.03 – 0.07)  

Back  42.3 (24.9 – 55.5)  8.1 (4.2 – 11.7)  0.07 (0.4 – 0.1)  

        Overall  Extreme low 
rainfall (< 10th 

percentile)  

Extreme high rainfall 
(> 90th percentile)  

Humidity  Naogaon  5,896  Forw  59.8 (42.5 – 68.9)  11.5 (9.2 – 12.3)  1.4 (0.8 – 1.9)  

Back  69.8 (47.6 – 82.9)  24.2 (14.0 – 32.1)  1.5 (0.8 – 2.1)  

Nawabganj  9,498  Forw  49.7 (36.9 – 58.7)  9.8 (7.7 – 10.9)  1.3 (0.8 – 1.7)  

Back  56.4 (40.3 – 68.3)  17.3 (11.2 – 22.8)  1.3 (0.8 – 1.8)  

Rajshahi  6,394  Forw  45.7 (22.6 – 58.6)  9.3 (5.1 – 11.0)  0.8 (0.3 – 1.3)  

Back  51.5 (24.7 – 68.7)  15.2 (6.5 – 22.5)  0.9 (0.3 – 1.4)  

        Overall  Extreme low humidity  
(< 10th percentile)  

Extreme high humidity 
(> 90th percentile)  

Rainfall  Naogaon  5,896  Forw  63.5 (48.7 – 72.0)  11.1 (9.1 – 12.1)  1.1 (0.7 – 1.5)  

Back  71.9 (53.5 – 83.1)  25.0 (15.6 – 33.1)  1.3 (0.7 – 1.8)  

Nawabganj  9,498  Forw  60.9 (51.4 – 67.7)  10.9 (9.5 – 11.7)  0.7 (0.5 – 0.9)  

Back  68.3 (56.6 – 76.8)  23.1 (17.2 – 28.6)  1.3 (0.9 – 1.6)  

Rajshahi  6,394  Forw  59.3 (27.1 - 74.2)  5.1 (2.5 – 6.0)  1.4 (0.4 – 2.1)  

Back  64.6 (27.0 – 83.1)  17.9 (5.3 – 27.4)  1.9 (0.6 – 3.2)  

 

 

The attributable risks were then seperated into two components (Table 3.2); extreme low (less than the 

10th percentile); and extreme high (more than the 90th perncentile) weather values. The comparison of 

the two contributions clearly indicates that extreme low temperatures are responsible for most of the 

TB incidence with attributable proportions of 9.4%, 8.8% and 8.1%, compared to 0.21%, 0.07% and 

0.07% for extreme high temperatures in Naogaon, Nawabganj, and Rajshahi districts, respectively. 

Similarly, extreme low relative humidity is reponsible for most of the TB cases attributable to humidity 

with 24.2%, 17.3% and 15.2%, compared to 1.5%, 1.3% and 0.9% for extreme high relative humidity 

in Naogaon, Nawabganj, and Rajshahi districts, respectively. Finally, extreme low rainfall is also 

responsible for most of the TB incidence attributable to rainfall 25.0%, 23.1% and 17.9%, compared to 
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1.3%, 1.3% and 1.9% for extreme high rainfall, in Naogaon, Nawabganj, and Rajshahi districts, 

respectively.  

 

The exposure-lag-response association and the estimation of the attributable fraction may be sensitive 

to the choices of covariance model used for predicting the weather variables. Therefore, we tested the 

robustness associated with using different covariance models: Exponential, Spherical and Matern. 

Changing the covariance model to spherical or Matern yielded similar results as presented in Tables 

S3.3-S3.4.  Similarly, we estimated the attributable fraction using a forward perspective [51] and we 

compared the results with those estimated with the backward perspective. We observed slight, but not 

substantial differences in the estimated attributable fraction using both methods. This is not unexpected,  

Gasparrini et al,. 2014 [51] reported that attributable fractions computed forward are affected by a 

certain degree of negative bias associated with the averaging of future events within the lag period.  

 

We present the results from investigating the interplay between the weather parameters in Figure S3.1. 

The figure displayed the weather-TB associations expressed as logarithm of relative risk (due to large 

values) for three single and six adjusted weather parameters in the three districts. All the single weather 

parameter models indicates significant risk estimates for weather exposure except rainfall.  The risks 

associated with temperature increased after adjusting for humidity in the three districts but decreased 

subsequently when adjusted for rainfall. In the districts the effect of single-weather parameter, humidity 

on TB cases decreased after adjusting for temperature and rainfall. Rainfall showed the lowest 

association with TB among the single parameter models. After adjusting for temperature, the effect of 

rainfall increased slightly but decreases when adjusted for humidity. 

 

3.4 Discussion 

 

In this study, we quantified the lagged and cumulative effects of temperature, rainfall, and humidity on 

the risk of TB in three districts using a distributed lag model. After controlling for long-term trend, 

results showed that weather factors may play an important role in the epidemic of TB incidence. We 

found a strong association between three climate variables and TB incidence in Rajshahi province, 

Bangladesh.  Low temperature, low humidity and low rainfall are all associated with higher incidence 

of TB in this study, however, the lag differs with each weather variable. Temperature and rainfall effects 

were delayed and increases over the lag period while humidity was immediate and the risk decreases 

with longer exposure. This suggests that  temperature may govern transmission and humidity may 

govern reactivation (incubation period); previous studies have also yielded similar results [54, 55].  
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In recent years, TB has been recognized as a significant infectious disease related to climate change 

[56-58]. An increased risk of TB incidence following weather factors has been reported all over the 

world [5, 59, 60]. A study in China showed that the seasonal rate of new TB cases was highest in late 

spring to early summer, reaching the lowest point in late winter and early spring [61]. Similarly, Yang 

et al. [8] showed that weather factors were significantly associated with an increased risk of TB 

incidence [8]. A previous Cameroon study, estimated that more TB cases were reported in the rainy 

seasons, with a significant difference as compared to the other seasons [62]. Furthermore, relative low 

humidity also was thought to play an important role in increasing the magnitude of the TB outbreak 

[63]. 

 

While our study and those cited above measure association and cannot be concluded to indicate 

causality, it is interesting to consider the potential mechanisms of the association. Weather factors may 

play an important role in TB transmission by influencing mycobacterial growth or its survival. 

Alternatively, weather can impact human behaviour and human susceptibility. Cold temperature and 

lack of sunshine have been shown to decrease human immunity and lower vitamin D levels which may 

increase the reactivation of TB cases [61, 64]. Also, in cold environments with low humidity, the 

conditions in the upper airways of host populations may be favourable to Mtb due to the higher speed 

of entry [65]. 

 

It is also clear from epidemiological studies that close and prolonged contact is responsible for the 

spread of Mtb from infected persons to uninfected persons [66].  In winter and at times of low humidity, 

indoor activities are much more frequent than in the summer season, which increases crowding and 

reduces ventilation – two factors known to be associated with the transmission of Mtb [8]. Such 

conditions also increase the frequency of viral infections that can cause immunological vulnerability 

[67], hence, may render people more vulnerable to infection with Mtb.  

 

Several limitations of this study should be noted. Firstly, our time series analysis was based on quarterly 

time series observations. Measurements based on such long time intervals may be too coarse, and 

therefore the risk of bias cannot be excluded. Secondly, we could only adjust for a few important 

weather variables in the model. Many of the other important risk factors for TB were unavailable 

including: human activities; population density; and other environmental factors. Thirdly, weather 

variables based on fixed monitoring sites are not completely accurate exposure observations for each 

individual. Therefore, more accurate data and additional risk factors of TB could be adjusted in the 

models to confirm their associations and mechanism of TB cases and continuing climate change.  
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To our knowledge, this is the first study to explore the effects of weather variation (temperature, 

humidity, and rainfall) on TB at a long time scale using DLMs in Bangladesh. The lag effects of weather 

factors on TB cases observed in this study can help the NTP in Bangladesh with preparedness activities 

including forward planning, and implementing public health interventions for the prevention and 

control of TB. Each year, an estimated 70,000 people die of TB and 300,000 new cases are projected in 

Bangladesh [68]. Although this study is based on data from Rajshahi province only, the real impact of 

TB incidence in Bangladesh due to weather factors might be much greater, given the large population 

of big cities (e.g. Dhaka) at risk. 

 

In this study, we found significant interactions between weather parameters. We observed changes in 

the estimated risk of single weather variables on TB after adjusting for additional weather parameter. 

Weather parameters are often highly correlated and difficult to isolate [69]. For example, skilling found 

[70]  relative humidity changes when temperature changes because warm air can hold more water vapor 

than cool air, this may have significant impact on incidence of TB. Furthermore, humidity and rainfall 

have strong connection because evaporation cool the air and increase absolute moisture [71]. This 

implies that average relative humidity decrease through rainfall, which may increase the outbreak of 

TB cases.  

 

The assessment of weather-TB associations in the North-West region of Bangladesh has provided new 

insight into the burden of the disease that can be attributed to varying weather conditions. Our findings 

identified statistically significant associations between weather variables (temperature, humidity, and 

rainfall) and TB cases in Rajshahi province using DLMs methods. The effects of low temperature, 

humidity, and rainfall on TB were immediate and strong. These results suggest that there is an important 

link between TB and weather variables and that such knowledge could be considered in the design of 

policy to support NTP in Bangladesh for controlling TB cases.  
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Supplementary materials 

 
Table S3.1: Model specification 

 

Models Exposure-response Lag-response 

Model 1 Linear Constant 
Model 2 Quadratic B-Splinea Constant 
Model 3 Quadratic B-Splineb Constant 
Model 4 Quadratic B-Splinec Constant 
      
Model 5 Linear Linear 
Model 6 Quadratic B-Splinea Linear 
Model 7 Quadratic B-Splineb Linear 
Model 8 Quadratic B-Splinec Linear 
     
Model 9 Linear Quadratic B-Splined 
Model 10 Quadratic B-Splinea Quadratic B-Splined 
Model 11 Quadratic B-Splineb Quadratic B-Splined 
Model 12 Quadratic B-Splinec Quadratic B-Splined 
      
Model 13 Linear Quadratic B-Splinee 
Model 14 Quadratic B-Splinea Quadratic B-Splinee 
Model 15 Quadratic B-Splineb Quadratic B-Splinee 
Model 16 Quadratic B-Splinec Quadratic B-Splinee 

 
For each of the meteorological variables, Temperature, Relative humidity and Rainfall:  
aKnot is placed at median value 
bKnot is placed at 2 equally spaced distance 
cKnot is placed at 3 equally spaced distance 
For each of the lag-quarter specifications, Lag 0-2, Lag 0-3, Lag 0-4, Lag 0-5 and Lag 0-6: 
dKnot is placed at mean position with intercept 
eKnot is placed at mean position without intercept 

 

 

 

 

 



 
 

88 
 

Table S3.2: Summary of models selection criteria- QAIC and QBIC using data from the three districts. 
 

 
Weather 
variable 

 LAG 0-1 LAG 0-2 LAG 0-3 
       
 Best 

Model 
Total 

df 
QAIC 
value 

Best 
Model 

Total 
df 

QBIC 
value 

Best 
Model 

Total 
df 

QAIC 
value 

Best 
Model 

Total 
df 

QBIC 
value 

Best 
Model 

Total 
df 

QAIC 
value 

Best 
Model 

Total 
df 

QBIC 
value 

Temperature 

 2 13 1075.8 12 20 923.2 2 13 992.1 3 13 859 12 20 743.2 8 10 859.8 
 3 13 1006.7 12 20 919.8 3 13 1012.9 3 13 862.8 12 20 697.7 12 20 831.2 
 4 13 1156.2 12 20 959.4 4 13 1070.9 3 13 862 12 20 702.9 12 20 843.4 
 5 8 933.1 8 10 901.5 5 8 1012.7 3 13 859 8 10 766.1 12 20 857.9 
 6 8 998.5 12 20 872.6 6 8 944 3 13 838.2 12 20 675.5 10 12 777.1 
 7 12 1063.2 10 12 883.2 7 12 999 5 4 808.2 10 12 647.3 10 12 737.9 
 8 4 1119.1 10 12 920.2 8 4 1060.6 5 4 802.9 10 12 645.9 10 12 738.8 
 9 4 999.7 10 12 881.5 9 4 1034.7 5 4 803.9 10 12 652.1 10 12 751.8 

Rainfall 

 2 13 1031.5 13 3 870.1 2 13 960.9 2 5 848.2 13 3 800.7 13 3 869.8 
 3 5 1152.3 9 4 956.1 3 5 1151.5 2 5 832.5 9 4 774 13 3 852.2 
 4 13 1255.5 9 4 1001.8 4 13 1238.5 2 5 838.3 9 4 781.5 13 3 865.7 
 5 13 1057.4 9 4 983.6 5 13 1260.2 2 5 847.8 9 4 790.7 13 3 884.1 
 6 13 1005.5 16 15 859 6 13 937.2 2 5 857 16 15 793.2 9 4 910.4 
 7 13 1147.4 12 20 918.3 7 13 1069.9 3 13 861.8 12 20 777 13 3 919.4 
 8 13 1198.5 12 20 952.3 8 13 1135.1 2 5 863.6 12 20 790.9 9 4 933,7 
 9 5 1270.2 16 15 956.4 9 5 1175.1 3 13 866.4 16 15 797.8 9 4 952 

Humidity 

 2 13 933.1 13 3 925.2 2 13 874.6 3 13 881.7 13 3 816.5 13 3 888.6 
 3 1 867.3 9 4 920.8 3 1 966 1 1 850.2 9 4 811.1 13 3 895.5 
 4 1 971.5 9 4 965.1 4 1 1009.3 1 1 845.2 9 4 805.5 9 4 901.7 
 5 1 802.9 9 4 913 5 1 992 1 1 853.8 9 4 813.7 13 3 915.5 
 6 1 868.2 13 3 870.9 6 1 862.8 1 1 860.2 13 3 814 13 3 921.1 
 7 1 888.9 13 3 892.9 7 1 925.3 1 1 850.2 13 3 810.9 13 3 925.1 
 8 1 922 13 3 930.3 8 1 960 1 1 844.3 13 3 819.2 13 3 944.2 
 9 1 825.4 6 6 891.7 9 1 971.1 1 1 851.5 6 6 818.6 13 3 969.3 

 
Table A3.2: continued 
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Weather 
variable 

  LAG 0-4 LAG 0-5 LAG 0-6 
       

 
Best 

Model  
Total 

df 
QAIC 
value 

Best 
Model  

Total 
df 

QBIC 
value 

Best 
Model  

Total 
df 

QAIC 
value 

Best 
Model 

Total 
df 

QBIC 
value 

Best 
Model 

Total 
df 

QAIC 
value 

Best 
Model  

Total 
df 

QBIC 
value 

Temperatur
e 

 12 20 697.2 12 20 832.1 12 20 642.5 12 20 749.7 12 20 697.2 12 20 832.1 
 12 20 644.4 12 20 750.8 12 20 633.1 12 20 737.6 12 20 644.4 12 20 750.8 
 12 20 633.3 12 20 750.8 12 20 634.5 12 20 742.8 12 20 633.3 5 4 750.8 
 16 15 661.2 12 20 749.8 12 20 645.6 12 20 764 16 15 661.2 12 20 749.8 
 12 20 644.3 12 20 759.3 12 20 632 8 10 734.3 12 20 644.3 12 20 759.3 
 10 12 637.2 12 20 725.5 12 20 616 8 10 702.6 5 4 637.2 12 20 725.5 
 10 12 632.2 8 10 736.1 12 20 620.2 10 12 728 10 12 632.2 8 10 736.1 
 10 12 635.4 12 20 750 12 20 621.9 8 10 714.9 10 12 635.4 12 20 750 

Rainfall 

 13 3 784.2 13 3 851.8 13 3 771.1 12 20 838 13 3 788.4 13 3 881.1 
 9 4 753.3 9 4 830 6 6 743.3 13 3 822.2 12 20 783.5 9 4 883.3 
 9 4 759.9 13 3 844.2 6 6 754.1 13 3 834.3 12 20 699.1 11 16 826.4 
 9 4 769.1 13 3 861.9 13 3 761.8 13 3 851.4 11 16 709.5 11 16 846.9 
 16 15 763.7 13 3 875 13 3 763.3 13 3 861.2 11 16 706.4 11 16 846.4 
 16 15 771.7 2 3 893.3 12 20 720.9 2 3 882.7 5 4 714 11 16 861.9 
 16 15 777.5 2 3 895.7 12 20 742.3 2 3 892.6 11 16 722.1 11 16 880.4 
 4 5 793.4 2 3 917.2 12 20 735.2 2 3 910.4 11 16 728.5 11 16 895 

Humidity 

 12 20 788.4 13 3 881.1 12 20 753.6 11 16 907.7 12 20 642.5 12 20 697.2 
 12 20 783.5 9 4 883.3 11 16 772.1 11 16 939 12 20 633.1 12 20 644.4 
 11 16 699.1 11 16 826.4 12 20 723.2 11 16 826 12 20 634.5 12 20 633.3 
 11 16 709.5 11 16 846.9 11 16 692 10 12 814.9 10 12 645.6 16 15 661.2 
 11 16 706.4 11 16 846.4 10 12 688.6 14 9 803.5 8 10 632 12 20 644.3 
 11 16 714 11 16 861.9 11 16 685 14 9 808.2 12 20 616 5 4 637.2 
 11 16 722.1 11 16 880.4 10 12 674.3 10 12 792.6 12 20 620.2 10 12 632.2 
 11 16 728.5 11 16 895 10 12 679.4 10 12 804.7 5 4 621.9 10 12 635.4 
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Table S3.3:  Attributable fraction based on Matern covariance structure 

Variables Districts Cases  Overall Extreme low Temperature (<10th 
percentile) 

Extreme high temperature  

(> 90th percentile) 

Temperature Naogaon 5,896 Forw 40.3 (20.2 – 51.0) 4.9 (2.7 – 5.8) 0.2 (0.1 – 0.4) 

Back 48.9 (22.8 – 66.3)  9.4 (3.0 – 14.8) 0.18 (0.1 – 0.3) 

Nawabganj 9,498 Forw 37.2 (26.6 – 44.4) 4.2 (3.2 – 4.9) 0.15 (0.1 – 0.2) 

Back 44.9 (30.2 – 56.1) 8.9 (5.5 – 12.0) 0.12 (0.1 – 0.2) 

Rajshahi 6,394 Forw 34.3 (21.4 – 42.8) 4.1 (2.7 – 4.9) 0.07 (0.03 – 0.10) 

Back 41.1 (23.8 – 54.2) 8.0 (3.9 – 11.5) 0.05 (0.03 – 0.07) 

    Overall Extreme low humidity  

(< 10th percentile) 

Extreme high humidity 

(> 90th percentile) 

Humidity Naogaon 5,896 Forw 59.5 (41.5 – 68.8) 11.53 (9.1 – 12.3) 1.1 (0.6 – 1.6) 

Back 69.7 (47.0 – 82.8) 24.1 (13.9 – 32.0) 1.2 (0.6 – 1.8) 

Nawabganj 9,498 Forw 49.3 (36.1 – 58.3) 9.8 (7.6 – 10.9) 1.1 (0.7 – 1.5) 

Back 56.0 (39.7 – 67.5) 17.2 (11.2 – 22.5) 1.1 (0.7 – 1.5) 

Rajshahi 6,394 Forw 45.7 (21.9 – 59.1) 9.3 (5.2 – 11.1) 0.9 (0.4 – 1.4) 

Back 51.6 (24.4 – 69.3) 15.2 (6.1 – 22.6) 0.9 (0.4 – 1.5) 

    Overall Extreme low rainfall 

(< 10th percentile) 

Extreme high rainfall 

(> 90th percentile) 

Rainfall Naogaon 5,896 Forw 63.1 (48.5 – 71.4) 11.1 (9.0 – 12.1) 1.1 (0.7 – 1.4) 



 
 

91 
 

Back 71.8 (53.6 – 82.8) 25.1 (15.5 – 33.3) 1.1 (0.7 – 1.5) 

Nawabganj 9,498 Forw 60.6 (51.0 – 67.6) 10.8 (9.4 – 11.7) 0.7 (0.5 – 0.9) 

Back 68.0 (55.9 – 76.7) 23.0 (16.9 – 28.3) 1.3 (0.9 – 1.6) 

Rajshahi 6,394 Forw 59.3 (26.6 – 74.5) 5.1 (2.4 – 6.1) 1.4 (0.5 – 2.2) 

Back 64.5 (26.3 – 82.9) 17.9 (5.3 – 27.3) 1.95 (0.6 – 3.3) 

 

 
Table S3.4:  Attributable fraction based on spherical covariance structure 

Variables Districts Cases  Overall Extreme low temperature (< 10th 
percentile) 

Extreme high temperature (> 
90th percentile) 

Temperature Naogaon 5,896 Forw 40.5 (20.3 – 51.3) 4.9 (2.6 – 5.7) 0.11 (0.04 – 0.18) 

Back 49.0 (21.4 – 66.3) 9.4 (3.0 – 14.9) 0.12 (0.04 – 0.21) 

Nawabganj 9,498 Forw 37.6 (27.4 – 44.9) 4.2 (3.3 – 4.9) 0.08 (0.05 – 0.11) 

Back 45.2 (30.6 – 56.2) 8.9 (5.4 – 12.1) 0.10 (0.06 – 0.14) 

Rajshahi 6,394 Forw 34.4 (21.4 – 43.1) 4.1 (2.7 – 4.9) 0.09 (0.05 – 0.14) 

Back 41.1 (23.8 – 54.5) 8.0 (3.9 – 11.5) 0.07 (0.04 – 0.10) 

    Overall Extreme low humidity  

(< 10th percentile) 

Extreme high humidity  

(> 90th percentile) 

Humidity Naogaon 5,896 Forw 60.7 (43.9 – 70.1) 11.6 (9.3 – 12.4) 1.8 (1.0 – 2.50) 

Back 70.7 (47.5 – 83.1) 24.3 (14.4 – 32.3) 1.9 (1.0 – 2.8) 
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Nawabganj 9,498 Forw 50.4 (37.3 – 59.6) 9.8 (7.6 – 10.9) 1.6 (1.0 – 2.1) 

Back 56.9 (40.8 – 68.8) 17.2 (11.4 – 22.5) 1.7 (1.0 – 2.3) 

Rajshahi 6,394 Forw 45.9 (22.7 – 58.8) 9.3 (5.2 – 11.1) 1.1 (0.4 – 1.7) 

Back 51.6 (23.6 – 68.6) 15.1 (6.6 – 22.5) 1.1 (0.4 – 1.8) 

    Overall Extreme low rainfall  

(< 10th percentile) 

Extreme high rainfall 

(> 90th percentile) 

Rainfall Naogaon 5,896 Forw 62.7 (48.0 – 71.2) 11.1 (9.1 – 12.0) 1.0 (0.6 – 1.3) 

Back 71.2 (52.8 – 82.6) 24.8 (15.5 – 32.7) 1.1 (0.6 – 1.5) 

Nawabganj 9,498 Forw 60.6 (50.1 – 67.5) 10.9 (9.5 – 11.7) 0.7 (0.5 – 0.9) 

Back 68.0 (55.9 – 76.7) 23.0 (17.0 – 28.3) 1.3 (0.9 – 1.7 ) 

Rajshahi 6,394 Forw 59.4 (26.0 – 74.1) 5.1 (2.5 – 6.0) 1.4 (0.4 – 2.1) 

Back 64.6 (25.4 – 82.7) 17.9 (5.1 – 27.8) 1.9 (0.5 – 3.2) 
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Figure S3.1: Distribution of weather parameters after Bayesian Kriging. (Top panel)  First Quarter 2007. (Bottom panel) Second Quarter 2007. 

 

 



 
 

94 
 

 
Figure S3.2: Weather-TB association (log relative risks) with 95% CI for an exposure to 10th percentile weather parameters for single exposure and adjusted 
logRR for the remaining weather parameters. 
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Figure S3.3: Lag-specific effects at different temperature exposures (top panel) and temperature-
specific effects at different lags (left column in bottom panel) on TB in Naogaon District. 
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Figure S3.4: Lag-specific effects at different temperature exposures (top panel) and temperature-
specific effects at different lags (left column in bottom panel) on TB in Nawabganj District. 
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Figure S3.5: Lag-specific effects at different temperature exposures (top panel) and temperature-
specific effects at different lags (left column in bottom panel) on TB in Rajshahi District. 
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Abstract 

 

We investigate a two-strain disease model with amplification to simulate the prevalence of drug-

susceptible (s) and drug-resistant (m) disease strains. Drug resistance first emerges when drug-

susceptible strains mutate and become drug-resistant, possibly as a consequence of inadequate 

treatment, i.e. amplification. In this case, the drug-susceptible and drug-resistant strains are coupled. 

We perform a dynamical analysis of the resulting system and find that the model contains three 

equilibrium points: a disease-free equilibrium; a mono-existent disease-endemic equilibrium at which 

only the drug-resistant strain persists; and a co-existent disease-endemic equilibrium where both the 

drug-susceptible and drug-resistant strains persist. We found two basic reproduction numbers: one 

associated with the drug-susceptible strain (R0s); the other with the drug-resistant strain (R0m), and 

showed that at least one of the strains can spread in a population if max[R0s, R0m] > 1. Furthermore, 

we also showed that if  R0m > max [R0s, 1], the drug-susceptible strain dies out but the drug-resistant 

strain persists in the population (mono-existent equilibrium); however if  R0s > max [R0m, 1], then both 

the drug-susceptible and drug-resistant strains persist in the population (co-existent equilibrium). We 

conducted a local stability analysis of the system equilibrium points using the Routh-Hurwitz conditions 

and a global stability analysis using appropriate Lyapunov functions. Sensitivity analysis was used to 

identify the key model parameters that drive transmission through calculation of the partial rank 

correlation coefficients (PRCCs). We found that the contact rate of both strains had the largest influence 

on prevalence. We also investigated the impact of amplification and treatment/recovery rates of both 

strains on the equilibrium prevalence of infection; results suggest that poor quality treatment/recovery 

makes coexistence more likely and increases the relative abundance of resistant infections.  

 

Keywords: drug resistance, multi-strain, stability analysis 
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4.1 Introduction 

 

Many pathogens have several circulating strains. The presence of drug-resistant strains of a pathogen 

often follows soon after a new treatment becomes available. This can be due to sub-therapeutic drug 

levels which may efficiently kill drug-susceptible pathogens whilst allowing drug-resistant sub-

populations to grow [1]. This acquired resistance, which can result from incorrect treatment, poor 

adherence or malabsorption, is called amplification [2-4]. One of the major challenges in preventing the 

spread of infectious diseases is to control the genetic variations of pathogens through proper treatment 

regimens [5, 6].  

 

Mathematical models can improve our understanding of genetic variations of infectious pathogens as 

well as those components that are significant to infectious disease diagnosis, and treatment [7-13]. 

Mathematical models can also be used to improve health policy and infectious disease monitoring plans 

by identifying thresholds which must be reached in order to achieve elimination [13-15]. For example, 

analytical solutions, numerical solutions and stability analyses of mathematical models can identify 

regions in the parameter space where the various asymptotic states are stable or unstable, thus allowing 

us to predict the long-term behaviour of the system [13, 14, 16]. Further, sensitivity analysis of a 

mathematical model allows us to discover the parameters that have the greatest influence on the model 

outputs [14, 17].  

 

The growing threat of drug-resistant pathogen strains presents a significant challenge throughout the 

world, particularly in developing countries and those with lower socio-economic status [18]. Once drug-

resistant strains have emerged in a population, primary transmission of these strains may also contribute 

to the disease burden (in addition to amplification) [19]. Recent studies [20-24] have shown that drug-

resistant strains can in some cases possess higher virulence to transmit disease than drug-susceptible 

strains, and those individuals infected with a drug-resistant strain have the highest mortality rate, e.g. 

tuberculosis and HIV [25, 26].  

 

To examine the threat posed by genetic variations of pathogens, we present a two-strain (drug-

susceptible, and drug-resistant) Susceptible-Infected-Recovered (SIR) epidemic model with coupled 

infectious compartments and use it to investigate the emergence and spread of mutated strains of 

infectious diseases. We consider the possibility that an individual’s position changes from drug-

susceptible at initial presentation to resistant at follow-up. This is the mode by which drug resistance 

first emerges in a population and is designed to reproduce the phenotypic phenomenon of amplification. 

The model can be applied to investigate the co-existent or competitive exclusive phenomena among the 

strains. We choose the SIR model in this study in order to model the many diseases that have a protracted 

infectious period with treatment – including hepatitis C and HIV. Here the removed compartment “R” 
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is to be applied broadly to those people who are neither infectious nor susceptible, including people in 

treatment, isolation, no longer contacting others or dead. In this way, we believe that our model captures 

many of the infectious agents that are traditionally modelled by Susceptible (S) to Infected (I) models. 

 

Explicitly, in this paper we perform a rigorous analytical and numerical analysis of the proposed two- 

strain model properties and solutions from both the mathematical and biological viewpoints. For each, 

we use the next-generation matrix method to determine analytic expressions for the basic reproduction 

numbers of the drug-susceptible and drug-resistant strains and find that these are important determinants 

for regulating system dynamics.  With a focus on the early and late-time behaviour of the system, we 

outline the required conditions for disease fade-out, infection mono-existence, and co-existence.  

 

To supplement and validate the analytic analysis, we use numerical techniques to solve the model 

equations and explore the epidemic trajectory for a range of possible parameter values and initial 

conditions. The local stability of the three system equilibria is examined using the Routh-Hurwitz 

conditions and the global stability of the disease-free equilibrium and mono-existent disease-endemic 

equilibrium is examined using appropriate Lyapunov functions. Following this, we perform a sensitivity 

analysis to investigate the model parameters that have the greatest influence on disease prevalence. 

 

The remainder of this paper is constructed as follows: in section 4.2 we present the two-strain SIR 

model with differential infectivity and amplification, and verify the boundedness and positivity of 

solutions as well as the existence of several equilibria. Local and global stability analyses of the 

equilibria are presented in section 4.3. In section 4.4 we discuss a sensitivity analysis of the model 

outputs. We then provide numerical simulations to support analytic results in section 4.5. Finally, in 

section 4.6, we provide a summary of our outcomes, discuss their importance for public health policy 

and propose guidelines for future disease management efforts. 

 

 

4.2 Model description and analysis 

 

4.2.1 Model equations 

 

We developed a dynamic two-strain SIR model for the transmission of drug-susceptible and drug-

resistant infections, where the total population is divided into four subclasses: S −susceptible 

individuals; Is – individuals infected with the drug-susceptible strain; Im – individuals infected with the 

drug-resistant strain; and R – recovered individuals, who are assumed to have immunity against both 

strains. Thus the total population number N(t) at time t is  

N(t) = S(t) + Is(t) + Im(t) + R(t).                                                                                                             (4.1) 
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We also introduced the following parameters: Λ – constant recruitment rate into the susceptible class 

through birth or immigration1; μ – natural per-capita death rate across the entire population; βs (βm) – 

effective contact rate between individuals with drug-susceptible (drug-resistant) infection and 

susceptibles; ωs (ωm) – per-capita treatment/recovery rate for drug-susceptible (drug-resistant) 

infected individuals; ϕs (ϕm) – disease-related per-capita death rate for drug-susceptible (drug-

resistant) infected individuals; ρ – proportion of individuals who amplify from the drug-susceptible 

strain to the drug-resistant strain during treatment/recovery. We assumed the proportion of individuals 

who amplify – due to incomplete treatment or lack of compliance in the use of first-line drugs – move 

directly from the drug-susceptible compartment Is into the drug-resistant compartment Im. The model 

structure is illustrated in Figure 4.1. 

 

 

Figure 4. 1 Flow chart of the two-strain SIR model showing the four infection states, and the transition 
rates in and out of each state. 

(Not shown: the constant recruitment rate Λ into the susceptible compartment S). Subscripts s and m 
denote drug-susceptible and drug-resistant quantities respectively. 

 

From the aforementioned, the populations in each disease state are determined by the following 

system of nonlinear ordinary differential equations: 

Ṡ = Λ − μS − βsIsS − βmImS,                                                                                                           (4.2) 

İs = βsIsS − (ωs + ϕs + μ)Is,                                                                                                          (4.3)              

                                                      
1 Data strongly suggest that the absolute number of births globally has been approximately constant for the last 30 years and is 
predicted to remain constant for the next 30 years. Therefore, within the timescale of an SIR-type infection it is reasonable to 
assume a constant growth rate (https://population.un.org/wpp/Graphs/900). 
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İm = ρωsIs + βmImS − (ωm + ϕm + μ)Im,                                                                                    (4.4)                                                                                                    

Ṙ = (1 − ρ)ωsIs + ωmIm − μR.                                                                                                       (4.5) 

 

Given non-negative initial conditions for the system above, it is straightforward to show that each of 

the state variables remain non-negative for all t > 0. Moreover, summing equations (4.2) – (4.5) we 

find that the size of the total population, N(t), satisfies 

Ṅ(t) ≤ Λ − μN(t). 

Integrating this inequality we find 

N(t) ≤
Λ

μ
+ N(0)e−μt.         

This shows that the total population size N(t) is bounded in this case and that it naturally follows that 

each of the compartment states (S, Is, Im, R) are also bounded. 

 

Note that equations (4.2) – (4.4) are independent of the size of the recovered population R(t); therefore, 

if we only wish to track disease incidence and prevalence, we can focus our attention on the following 

reduced system (4.6) – (4.8): 

Ṡ = Λ − μS − βsIsS − βmImS,                                                                                                           (4.6) 

İs = (βsS − χs)Is,                                                                                                                               (4.7)            

İm = ρωsIs + βmImS − χmIm                                                                                                           (4.8)      

 

 where χs = ωs + ϕs + μ and χm = ωm + ϕm + μ represent the total removal rates from the 

respective infectious compartments. 

Given the positivity and boundedness of the system solutions, we find that the feasible region for 

equations (4.6) – (4.8) is given by 

D = { (S,   Is,   Im) ∈ ℝ+
3 ∶ S + Is + Im ≤

Λ

μ
}                                                                                      (4.c) 

where D is positively invariant. Therefore, in this study we consider the system of equations (4.6) – 

(4.8) in the set D. 

 

4.2.2 Basic reproduction number 

 

Here we estimate the basic reproduction number of the model (4.6) – (4.8). In an epidemic model, the 

basic reproduction number is the expected number of secondary cases created by a single infectious 

case introduced into a totally susceptible population. If the basic reproduction number is greater than 

one, the number of infected individuals grows and the infection typically shows persistent behaviour. 

Conversely, if the basic reproduction number is less than one, the number of infective individuals 
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typically tends to zero [12, 27, 28]. Here we use the next-generation matrix technique to estimate the 

basic reproduction number(s) of our system [28]. 

 

The reduced model (4.6) – (4.8) has two infected states: Is; and Im, and one uninfected state: S. At the 

infection-free steady state Is∗ = Im∗  = 0. Hence, from (4.6), in the absence of infection S∗ = Λ

μ
.  

 

Linearizing the system about the infection-free equilibrium, we find that equations (4.3) – (4.4) are 

closed, such that the linearized infection sub-model becomes 

İs = (βsS
∗ − χs)Is,                                                                                                                             (4.9)            

İm = ρωsIs + βmImS
∗ − χmIm.                                                                                                       (4.10)       

 

Here, the ODEs (4.9) and (4.10) describe the production of newly infected individuals and changes in 

the states of already infected individuals. 

 

By setting 𝐱T = (Is, Im)T, where T denotes transpose, the infection subsystem can be written in the 

following form: 

�̇� = (𝑇 + Σ)𝐱.                                                                                                                                   (4.11) 

 

The matrix 𝑇 contains the transmission component of equations (4.9) and (4.10) (i.e. the arrival of 

susceptible individuals into the infected compartments Is and Im) and the matrix Σ contains transitions 

between, and out of the infected states (i.e. recovery, amplification and death).  

 

For the subsystem (4.9) – (4.10), these components are given respectively by 

𝑇 = (
βsS

∗ 0
0 βmS

∗) and Σ = (−χs 0
ρωs −χm

). 

The next-generation matrix, K, is then given by [27] 

K = −𝑇Σ−1 = (

S∗βs

χs
0

S∗βmωsρ

χsχm

S∗βm

χm

). 

The dominant eigenvalues of K are the basic reproduction numbers for the drug-susceptible and drug-

resistant strains; they represent the average number of new infections from each strain produced by one 

infected individual. The lower triangular structure of K allows us to immediately read off the basic 

reproduction numbers for the drug-susceptible and drug-resistant strains respectively as:  

R0s =
S∗βs

χs
=
Λ βs

μχs
                                                                                                                                (4.a) 

and 

R0m =
S∗βm

χm
=
Λ βm

μχm
.                                                                                                                           (4.b) 
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Interestingly we find that the basic reproduction numbers R0s and R0m are both independent of the 

amplification rate ρ [29]. 

 

4.2.3 Strain replacement 

 

To investigate the relative magnitude of R0s and R0m, which is anticipated to strongly influence the 

system dynamics (see below), we introduce the parameters c and ϵ which we respectively define as the 

fitness cost exacted on the transmissibility of strain m relative to that of strain s, and the reduction in 

treatment rate of strain m relative to that of strain s. More specifically, we let 

βm = (1 − c)βs 

and 

ωm = (1 − ϵ)ωs. 

 

If we assume that both R0s and R0m are greater than 1, then the condition for resistant infections to 

replace sensitive infections is given by, 

R0m > R0s. 

Substituting the formulae (4.a) and (4.b) for the basic reproduction numbers gives: 

βm
ωm + ϕm + μ

>
βs

ωs + ϕs + μ
. 

Assuming that μ ≈ 0 (since it is very slow compared to the other rates) and that ϕm ≈ ϕs yields the 

condition 
(1−c)βs

(1−ϵ)ωs+ϕs
>

βs

ωs+ϕs
, 

which we can rearrange to obtain 

ϵ >
c(ωs + ϕs)

ωs
. 

The above relation shows that the resistant strain can outcompete the susceptible strain if the resistance 

level ϵ is high (which may be the case for drug-resistant individuals). Alternatively, the resistant strain 

will be fitter than the susceptible one if the fitness cost c is sufficiently low. 

 

4.2.4 System properties 

  

4.2.4.1. Existence of equilibria 

 



 
 

106 
 

It is clear from equations (4.6) – (4.8) that a disease-free equilibrium (denoted by E∗) always exists: 

 E∗ = (S∗, Is
∗,   Im

∗ ) = (
Λ

μ
,   0,   0).                                                                                                   (4.12) 

From equation (4.6) – (4.8) we can also derive the mono-existent endemic equilibrium point (denoted 

by E#) at which the drug-resistant strain persists and the drug-susceptible strain dies out: 

E# = (S#, 0, Im
# ), 

where  

S# =
S∗

R0m
=

Λ

μR0m
,  

Is
# = 0, 

Im
# =

μ(R0m−1)

βm
.                                                                                                                                  (4.13) 

Inspecting (4.13) we see that the mono-existent endemic equilibrium E# = (S#, 0, Im# ) ∈ D (i.e. exists) 

if, and only if R0m ≥ 1.  Finally, the co-existent endemic equilibrium of the system (4.6) – (4.8) 

(denoted by E†) is given by 

E† = (S†, Is
†, Im

† ), 

where 

S† =
Λ

μR0s
=

S∗

R0s
,        

Is
† =

μ (R0s−1)

βs
 Ψ,  

Im
† =

ρR0sωsμ (R0s−1)

βs χm (R0s−R0m)+ρR0sωsβm
,                                                                                                        

       =
ρωsR0s

χm(R0s−R0m)
 
μ (R0s−1)

βs
 Ψ.                                                                                                        (4.14) 

                                                                                 

The variable Ψ in equation (4.14) is defined as 

Ψ = (1 +
ρωsR0sβm

βsχm (R0s−R0m)
)
−1
= (1 +

ρωs R0m

χs (R0s−R0m)
)
−1

,                                                                      (4.d) 

and 0 < Ψ < 1 for R0s > R0m. Therefore, equation (4.14) shows that the co-existent endemic 

equilibrium E† = (S†, Is
†, Im

† ) ∈ D (i.e. exists) if, and only if R0s > max[R0m,   1]. 

  

4.3 Stability analysis 

 
Since equations (4.2) – (4.4) are independent of equation (4.5) (i.e. the evolution of S, Is and Im are 

independent of R(t)), we can focus our attention on the reduced system (4.6) – (4.8) to study the 

persistence of the infection. To investigate stability of the equilibria of equations (4.6) – (4.8), the 

following results are established: 

 
4.3.1 Infection-free equilibrium 
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Lemma 1: If R0 = max[R0s, R0m] < 1, the disease-free equilibrium E∗ of (4.6) – (4.8) is locally and 

globally asymptotically stable; if, however, R0 = max[R0s, R0m] > 1, E∗ is unstable. 

 

Proof: We consider the Jacobian of the system (4.6) – (4.8) which is given by  

J = (

−βsIs − βmIm − μ −βsS −βmS
βsIs βsS − χs 0
βmIm ρωs βmS − χm

). 

At the infection-free equilibrium point, E∗, this reduces to  

J∗ = (

−μ −βsS
∗ −βmS

∗

0 χs(R0s − 1) 0

0 ρωs χm(R0m − 1)
). 

The structure of J∗ allows us to immediately read off the three eigenvalues, λi, as 

λ1 = −μ , λ2 = χs(R0s − 1) and λ3 = χm(R0m − 1).                                                                     (4.15) 

 

It is easy to verify that all the eigenvalues (4.15) have negative real parts for R0s < 1 and  R0m < 1.  

Hence, the disease-free equilibrium E∗ of (4.6) – (4.8) is locally asymptotically stable for R0s < 1 and 

 R0m < 1. If R0s > 1 or  R0m > 1, at least one of the eigenvalues (4.15) has a positive real part and E∗ 

is unstable. 

 

Now the global stability of the disease-free equilibrium E∗ for R0s < 1 and R0m < 1 can be 

investigated. First, from equation (4.7), we have 

İs = (βsS − χs)Is, 

which can be integrated to give 

Is(t) = Is(0)e
∫ βs S(τ)dτ
t

0
−χs t                                                                                                            (4.16) 

for all t ≥ 0.  

Substituting in the upper bound S(t) ≤ Λ

μ
= S∗, which follows immediately from the definition of D 

(equation (4.c)), we obtain 

Is(t) ≤ Is(0)e
(βsS

∗−χs)t,  

         ≤ Is(0)eχs(R0s−1)t. 

It follows then that if R0s < 1 we have Is(t) → 0 as t → ∞. 

 

Hence the hyperplane Is = 0 attracts all solutions of (4.6) – (4.8) originating in D whenever R0s < 1.  

Since Is(t) → 0 as t → ∞ for R0s < 1, it follows that ρ ωsIs(t) → 0 such that equation (4.8) reduces to  

İm = βmImS − χmIm.      

Following the same strategy for Im as we used above for Is yields 

Im(t) ≤ Im(0)e
χm(R0m−1)t. 



 
 

108 
 

Similarly, if R0m < 1, Im(t) → 0 as t → ∞ and the hyperplane Im = 0 attracts all solutions of (4.6) – 

(4.8) originating in D. Finally, it is straightforward to show that if Is → 0, and Im → 0, then S → S∗.   

Therefore E∗ is globally asymptotically stable when R0 = max[R0s, R0m] < 1. 

 

4.3.2 Mono-existent endemic equilibrium 

 

Lemma 2: If the boundary equilibrium E# = (S#, 0, Im# ) of the equations (4.6)—(4.8) exists and  

R0m > max [1, R0s], E# is locally and globally asymptotically stable. 

 

Proof: We consider the Jacobian of the system (4.6)—(4.8) at the mono-existent endemic equilibrium 

point E# which is given by  

J# =

(

 
 
−βmIm

# − μ −βsS
# −βmS

#

0 −
χs(R0m − R0s)

R0m
0

βmIm
# ρωs 0 )

 
 
. 

The structure of J# allows us to immediately read off the first eigenvalue, λ1 = −χs
(R0m−R0s)

R0m
 which is 

negative whenever R0m > R0s. The remaining eigenvalues can be calculated as the roots of the 

following equation 

 (λ2 + a1λ + a2) = 0                                                                                                                       (4.17) 

where 

a1 = βmIm
# + μ = μR0m, 

a2 = βm
2 Im
# S# = μχm(R0m − 1).  

For local stability we must ensure that the Routh-Hurwitz criteria [30] are satisfied: 

a1 > 0, and 

a2 > 0,  which holds whenever R0m > 1. 

 

Thus, by the Routh-Hurwitz criteria, the boundary equilibrium E# is locally asymptotically stable 

whenever R0m > max [1, R0s]. Conversely, for E# ∈ D, it is unstable when R0m < R0s. 

 

Now we prove E#  is globally asymptotically stable if R0m > max [1, R0s]. Considering equation (4.7) 

and (4.8), we have 

 

İs = (βsS − χs)Is,                                                                                                                             (4.18)                                                                                                  

İm = ρωsIs + βmImS − χmIm.                                                                                                         (4.19)                                                                                             

Following [31], first we divide equation (4.18) and (4.19) through by Is and Im respectively to obtain 
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d log Is

dt
= βsS − χs,                                                                                                                            (4.20) 

d log Im

dt
= βmS − χm + ρωs

Is

Im
.                                                                                                         (4.21) 

Rearranging equations (4.20) and (4.21) to solve for S we get 

S =
1

βs

d log Is

dt
+
χs

βs
=

1

βm

d log Im

dt
+
χm

βm
−
ρωs

βm

Is

Im
                                                                                         (4.22) 

which immediately leads to the following inequality: 
1

βs

d log Is

dt
+
χs

βs
≤

1

βm

d log Im

dt
+
χm

βm
. 

Integrating both sides of the equation above gives 

(
Is(t)

Is(0)
)

1

βs e
χs
βs
t
≤ (

Im(t)

Im(0)
)

1

βm e
χm
βm
t  

which we can rearrange to obtain 

(
Is(t)

Is(0)
)

1
βs
≤ (

Im(t)

Im(0)
)

1
βm
e
(
χm
βm
−
χs
βs
)t
. 

Next, we use equations (4.a) and (4.b) for the basic reproduction numbers, to rewrite this inequality as 

(
Is(t)

Is(0)
)

1
βs
≤ (

Im(t)

Im(0)
)

1
βm
e
S∗(

1
R0m

−
1
R0s

)t
. 

 

Finally, since both Is(t) and Im(t) are bounded, as we take the limit as t → ∞ we find: 

lim
t→∞

(
Is(t)

Is(0)
)

1

βs ≤ lim
t→∞

(
Im(t)

Im(0)
)

1

βm e
S∗(

1

R0m
−

1

R0s
)t
→ 0 for R0m > R0s. 

Hence the hyperplane Is = 0 attracts all solutions of (4.6) – (4.8) when R0m > R0s.  

 

To complete the global stability proof, we show the endemic equilibrium E# is globally 

asymptotically stable on the hyperplane Is = 0 by constructing the following Lyapunov function [32]: 

 

V# = S − S# ln S + Im − Im
# ln Im + C  

where 

C = −(S# − S# ln S# + Im
# − Im

# ln Im
# ). 

Taking the derivative of V#(t) along system trajectories yields 

V̇# = (1 −
S#

S
) Ṡ + (1 −

Im
#

Im
) İm, 

= (1 −
S#

S
) (Λ − μS − βmImS) + (1 −

Im
#

Im
) (βmImS − χmIm), 

= Λ − μS − βmImS − Λ
S#

S
+ μS# + βmImS

# + βmImS − χmIm − βmIm
# S + χmIm

# . 

First, we substitute in the identity 
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Λ = μS# + βmIm
# S#, 

to obtain 

V̇# = μS# + βmIm
# S# − μS − μS#

S#

S
− βmIm

# S#
S#

S
+ μS# + βmImS

# − χmIm − βmIm
# S + χmIm

# , 

 = μS# (2 − S

S#
−
S#

S
) + βmIm

# S# − βmIm
# S#

S#

S
+ βmImS

# − χmIm − βmIm
# S + χmIm

# .  

 

We can simplify this expression further by substituting in the identity 

βmS
# = χm  

to get 

V̇# = μS# (2 −
S

S#
−
S#

S
) + χmIm

# − χmIm
# S#

S
+ χmIm − χmIm − χmIm

# S

S#
+ χmIm

# , 

      = μS# (2 − S

S#
−
S#

S
) + χmIm

# (2 −
S

S#
−
S#

S
), 

       = (μS# + χmIm
# ) (2 −

S

S#
−
S#

S
).  

 

Since the arithmetic mean is greater than or equal to the geometric mean, we obtain V̇# ≤ 0. 

Therefore, the mono-existent endemic equilibrium E# is globally asymptotically stable if R0m > 1. 

 

4.3.3 Co-existent endemic equilibrium 

 

We now show the stability analysis of the co-existent endemic equilibrium E† = (S†, Is
†, Im

† ). 

Lemma 3: If the endemic equilibrium E† = (S†, Is
†, Im

† ) of equations (4.6)—(4.8) exists, E† is locally 

asymptotically stable. 

 

Proof: We consider the Jacobian of the system (4.6)—(4.8) at the co-existent endemic equilibrium 

point E† which is given by  

 

J† = (

−βsIs
† − βmIm

† − μ −βsS
† −βmS

†

βsIs
† βsS

† − χs 0

βmIm
† ρωs βmS

† − χm

).  

To simplify this expression, we use the following identities 

−βsIs
† − βmIm

† − μ = −μ R0s,  

−βsS
† = −

R0s χs

S∗
  
S∗

R0s
= −χs,  

−βmS
† = −

R0m χm

S∗
 
S∗

R0s
= −χm

R0m

R0s
,  

βsIs
† = βs   

μ (R0s−1)

βs
 Ψ = μ(R0s − 1)Ψ,  
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βmIm
† = 

ρωs

χs
  

R0m

(R0s−R0m)
 μ (R0s − 1)Ψ,  

βsS
† − χs = χs (

βsS
∗

R0sχs
− 1) = χs (

R0s
R0s

− 1) = χs(1 − 1) = 0, 

βmS
† − χm = χm (

βmS
∗

χmR0s
− 1) =

χm
R0s

 (R0m − R0s) 

where in the fourth line we have substituted in the definition of Ψ given in equation (4.d). This allows 

us to rewrite the matrix J† in the following form:  

J†  =

(

  
 

−μR0s −χs −χm  
R0m
R0s

μ (R0s − 1)Ψ 0 0

 μ (R0s − 1)(1 − Ψ) ρ ωs χm
(R0m − R0s)

R0s )

  
 
. 

 

To determine the stability of this matrix we use the Routh-Hurwitz criteria, which state that the real 

parts of the roots of the characteristic polynomial associated with a three by three matrix J† are negative 

if A1 > 0, A2 > 0, A3 > 0, and A1A2 > A3, where A1 = −trace(J†), A2 represents the sum of the two 

by two principal minors of J† and A3 = −det (J†).  

 

Condition 1: For the matrix J† , we have 

A1 = −trace (J† ) = μ R0s +
χm (R0s−R0m)

R0s
. 

Hence, A1  > 0 if R0s > R0m. 

 

Condition 2: 

A2 = |

0 0

ρ ωs
χm (R0m − R0s)

R0s

| + ||
−μR0s −χm  

R0m
R0s

 μ (R0s − 1)(1 − Ψ) χm  
(R0m − R0s)

R0s

|| 

     = μχm (R0s − R0m) + μχm
R0m

R0s
(R0s − 1)(1 − Ψ) + μχs(R0s − 1)Ψ. 

Recalling that 0 < Ψ < 1 for R0s > R0m, we see that A2 > 0 is satisfied whenever R0s > 1 and 

R0s > R0m. 

 

Condition 3: 

A3 = det (J
† ),  

       = −μ (R0s − 1)Ψ |
−χs χm

R0m

R0s

ρ ωs χm
(R0m−R0s)

R0s

|,  

       = −μ (R0s − 1)Ψ [
χsχm (R0s−R0m)

R0s
+
ρ ωsχmR0m

R0s
],  
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       = −μ (R0s − 1)Ψ 
χsχm (R0s−R0m)

R0s
 [1 +

ρ ωsR0m

χs (R0s−R0m)
],  

       = −μ (R0s − 1) 
χsχm (R0s−R0m)

R0s
 
Ψ

Ψ
,  

       =  μ χsχm
R0s

(R0s − 1)(R0s − R0m) 

   

where in the fifth line we have substituted in the definition of Ψ given in equation (4.d). The condition 

A3 > 0 is true if  R0s > 1 and R0s > R0m. 

 

Finally, if we multiply the expressions for A1 and A2 it is straightforward to show that the condition 

A1A2 > A3 is satisfied when R0s > 1 and R0s > R0m. Thus, by the Routh-Hurwitz criteria, the co-

existent endemic equilibrium E† is locally asymptotically stable when R0s > 1 and R0s > R0m.  

 

4.4 Sensitivity analysis 

 

Recognizing the relative importance of the various risk factors responsible for the transmission of 

infectious diseases is essential. The progression of the drug-resistant strain and its incidence and 

prevalence must be understood in order to determine how best to decrease disease burden.  For this 

purpose, we calculated the partial rank correlation coefficients (PRCCs) – which is a global sensitivity 

analysis technique using Latin Hypercube Sampling (LHS) – of several key output variables. In each 

case we assigned a uniform distribution from 0 to 3 times the baseline value for each input parameter 

to generate a total of 100,000,000 computations of each output variable of interest. Here the model 

outputs we consider are the number of infectious individuals Is and Im and their total sum (Is + Im) at 

equilibrium. Note that PRCC values lie between -1 and +1. Positive (negative) values imply a positive 

(negative) correlation to the model parameter and outcomes. The bigger (smaller) the absolute value of 

the PRCC, the greater (lesser) the correlation of the parameter to the model outcome.  

 

Figures 4.2-4.4 display the correlation between Is, Im and (Is + Im) and the corresponding parameters 

βs, ωs, ϕs, βm, ωm, ϕm and ρ when R0s > max [R0m, 1], that is, at the co-existent endemic equilibrium. 

From Figures 4.2-4.4, it is easy to perceive that Is and (Is + Im) have a strong positive correlation with 

βs and Im has a weaker positive correlation with βs, implying that a positive change of βs will 

increase Is, (Is + Im) and Im. Parameters ωs and ϕs have a negative correlation with Is, Im and (Is +

Im). In addition βm has a negative correlation with Is and (Is + Im) but a strong positive correlation 

with Im. Parameters ωm and ϕm have a positive correlation with Is and (Is + Im) but strong negative 

correlation with Im.  
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Further, parameter ρ has a negative correlation with Is and (Is + Im) but a strong positive correlation 

with Im. Figure 4.5 represents the correlation between the equilibrium value of Im and the corresponding 

model parameters βs, ωs, ϕs, βm, ωm, ϕm and ρ when R0m > R0s and R0m > 1 (i.e. at the mono-

existent endemic equilibrium). Parameters βs, βm and ρ (small value not showing) have positive PRCC 

values, implying that a positive change in these parameters will increase Im. In contrast, ωs, ϕs, ωm and 

ϕm have negative PRCC values and, thus, increasing theses parameters will consequently decrease Im. 

 

Figure 4. 2 PRCC values depicting the sensitivities 
of the model output Is with respect to the input 
parameters βs, ωs ,  ϕs, βm,  ωm, ϕm and ρ, when 
R0s > max [R0m, 1] (i.e. co-existent endemic 
equilibrium E†). 

 

Figure 4. 3 PRCC values depicting the sensitivities 
of the model output Im with respect to the input 
parameters βs, ωs ,  ϕs, βm,  ωm, ϕm and ρ, when 
R0s > max [R0m, 1] (i.e. co-existent endemic 
equilibrium E†). 

 

 

Figure 4. 4 PRCC values depicting the sensitivities 
of the model output Is + Im with respect to the 
estimated parameters βs, ωs, ϕs, βm,  ωm, 
ϕm and ρ, R0s > max [R0m, 1] (i.e. co-existent 
endemic equilibrium E†). 

 

 

Figure 4. 5 PRCC values depicting the sensitivities 
of the model output Im with respect to the estimated 
parameters βs, ωs ,  ϕs, βm,  ωm, ϕm and ρ, when 
R0m > R0s and R0m > 1 (i.e. mono-existent 
endemic equilibrium E#). 
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4.5 Numerical simulations 

 

In this section, we carry out detailed numerical simulations (using the Matlab programming language) 

to support the analytic results and to assess the impact of amplification and the drug-susceptible 

treatment/recovery rate on equilibrium levels of total prevalence and drug-resistant prevalence. For 

illustration we have chosen baseline parameter values consistent with tuberculosis infection and 

transmission [33-35]. In accordance with the analytic results we found three equilibrium points: the 

disease-free equilibrium E∗; a mono-existent endemic equilibrium E#; and a co-existent endemic 

equilibrium E†. We used different initial conditions for both strains of all populations and found that if 

both basic reproduction numbers are less than one (i.e. max[R0s, R0m] < 1) then the disease-free 

equilibrium is locally and globally asymptotically stable. If R0m > max[R0s, 1], the drug-susceptible 

strain dies out but the drug-resistant strain persists in the population. Furthermore, if R0s >

max[R0m, 1], then both the drug-susceptible and drug-resistant strains persist in the population.  

 

 

Table 4. 1 Description of model parameters 

Parameters 

                                 
Description 

 
Estimated  value      References 
 

Λ 
 
 
μ 
 

A demographic parameter which represents the recruitment rate 
into the population 
 
Per-capita death rate 
 

1 
 
1

70
 per year                              [33] 

 

βs The effective contact rate per unit time between susceptible and 
drug-susceptible infective individuals 
 

variable                                     - - 
 

βm The effective contact rate per unit time between susceptible and 
drug-resistant infective individuals  
 

variable                                     - - 
 

ωs The per-capita rate at which the drug-susceptible infected 
population progress to the recovery stage per unit time as a 
result of treatment 
 

0.290 per year                        [34] 
   

ωm The per-capita rate at which the drug-resistant infected 
population progress to the recovery stage per unit time as a  
result of treatment  
 

0.145  per year                 Assume 
 

ρ The proportion of amplification due to treatment default on first-
line drug therapy 
 

0.035                                      [35] 
 

φs The per-capita rate at which the drug-susceptible infected 
population die from infection per unit time 
 

 0.37 over 3 years                  [35] 
 

φm The per-capita rate at which the drug-resistant infected 
population die from infection per unit time 
 

0.37 over 3 years                   [35] 
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Figure 4.6 illustrates the stability of the co-existent endemic equilibrium (i.e. when R0s >

max [R0m, 1]) by depicting system trajectories through the Is vs Im plane originating from different 

initial conditions. In this system both strains (Is and Im) persist because of the amplification pathway 

from the drug-susceptible strain to the drug-resistant strain. Figure 4.7 depicts the effect of amplification 

(ρ) on equilibrium levels of drug-susceptible prevalence and drug-resistant prevalence and shows that 

in the first region (ρ ≲ 0.6) the drug-susceptible prevalence is initially dominant but that the drug-

resistant prevalence rises with increasing ρ. Eventually, for ρ ≳ 0.6, the drug-resistant strain becomes 

dominant courtesy of the amplification pathway.  

 

Figure 4.8, and Figure 4.9 show the effect of the drug-susceptible strain treatment/recovery rate on the 

equilibrium level of total prevalence, and drug-resistant prevalence when both infection rates (βs, βm) 

are fixed. If we increase the proportion of amplification, both the total prevalence and drug-resistant 

prevalence also increase.  

 

However, Figure 4.9 shows that for high amplification, the drug-resistant prevalence increased when 

the treatment/recovery rate of the drug-susceptible strain moved from zero to around 0.25 to 0.30, then 

declined to a common point. For lower amplification values, the drug-resistant proportion only 

increased up to the common point. This point is the drug-resistant only equilibrium and occurs when 

the effective reproduction number of the drug-susceptible strain becomes lower than the basic 

reproduction number of drug-resistant strain. Numerical simulations show that for sufficiently high 

amplification, the prevalence of the drug-resistant strain will exceed that of its inherent equilibrium 

value (that is, the resistant-only equilibrium) when the drug-susceptible strain exists and is being treated. 
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Figure 4. 6 Co-existent endemic equilibrium: R0s >
max [R0m, 1]. In this case both the drug-susceptible 
infection and drug-resistant infection persist in the 
population (black dot). All remaining parameter 
values assume their baseline values given in Table 
4.1. 

 

 

Figure 4. 7  Effect of amplification (ρ) on the drug-
susceptible (Is) prevalence and drug-resistant 
prevalence (Im). All remaining parameter values 
assume their baseline values given in Table 4.1. 

 

Figure 4. 8 Effect of drug-susceptible 
treatment/recovery rate (ωs) on the equilibrium 
level of total prevalence when both infectious rates 
(βs, βm) are fixed. All remaining parameter values 
assume their baseline values given in Table 4.1. 

 

 

Figure 4. 9 Effect of drug-susceptible 
treatment/recovery rate (ωs) on the equilibrium 
level of the drug-resistant strain when both 
infectious rates (βs, βm) are fixed. All remaining 
parameter values assume their baseline values given 
in Table 4.1. 

 

 

4.6 Discussion and conclusion  

 

In this study, we formulated a two-strain SIR non-constant population model with amplification and 

investigated its dynamic behaviour. We considered amplification as the process by which an individual 

infected with a drug-susceptible strain acquires infection with a drug-resistant strain. Using the next-
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generation matrix, we obtained the basic reproduction number of each strain, namely R0s for drug-

susceptible cases and R0m for drug-resistant cases. We found that the basic reproduction numbers 

determine the equilibrium states of the system and their stability. Specifically if R0m is greater than R0s 

and unity, only the drug-resistant strain will remain, whereas if R0s is larger than R0m and unity, a 

coexistence is likely. We also found that both basic reproduction numbers are independent of the 

amplification rate, which indicates that the reproductive capacity of each strain is autonomous of the 

amplification rate between them.   

 

We also found that the drug-susceptible strain is not necessarily the most prevalent at equilibrium even 

if it has the highest basic reproduction number. This is a consequence of the fact that the drug-

susceptible strain persists purely on direct transmission whereas the drug-resistant strain prevalence is 

driven by a combination of direct transmission and amplification. These results explain in part the rise 

in drug-resistant strain prevalence when the drug-susceptible strain is treated.  

 

Lastly, we explored the effect of the drug-susceptible treatment rate on the equilibrium level of total 

prevalence and drug-resistant prevalence. We found that if we increase the drug-susceptible treatment 

rate, the total prevalence will decline. However, the response of the drug-resistant strain prevalence is 

non-monotonic, increasing for a certain period and then declining at a particular threshold point. This 

finding has important implications for choosing the proper intervention or treatment strategies. From a 

microbiological viewpoint, resistance first occurs by a genetic mutation in a micro-organism that leads 

to resistance to a treatment, modelled by reducing the treatment rate. Therefore, one could question 

whether it is prudent to risk the emergence of drug-resistant strains by increasing the treatment rate of 

the drug-susceptible strain. However, at least initially, such resistance-conferring mutations typically 

exact a “fitness cost” whereby drug-resistant organisms reproduce at a lower rate and are often less 

transmissible than their drug-susceptible counterparts [36]. Nevertheless, the selective pressure applied 

by antibiotic treatment permits drug-resistant mutants to become the dominant strain in a patient 

infected with disease on first-line therapy and allows for further mutations with selection for fitness. 

Therefore, increasing drug-susceptible treatment rates may increase the likelihood of emergence of an 

even more prolific strain which also has drug resistance.  

 

In conclusion, this study has concentrated on a two-strain coupled SIR epidemic model and performed 

a rigorous analytical analysis of the system properties and solutions, for understanding infectious 

disease genetic variation and the rising threat of antibiotic resistance or inadequate treatment.  These 

results help inform the practice of drug treatment in the setting of drug resistance and emergent strains, 

such as is occurring in tuberculosis and other bacterial pathogens. This work shows theoretically that 

treatment of drug-susceptible strains of an infectious disease can drive the emergence of the drug-
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resistant strain, even if that strain has reduced fitness, such that the reproduction number is less than 

one. Further, under these circumstances, our analysis shows that this emergence of drug resistance will 

be overcome if the treatment rate is sufficient to eliminate the drug-susceptible strain from the 

population. Hence, we recommend that for problematic drug-resistant pathogens, estimates of the 

reproduction numbers of the susceptible and resistant strains be made along with the risk of 

amplification, to ensure optimal levels of treatment be used to minimise the risk of emergence of the 

resistant strains. Future modelling studies could focus on specific pathogens (and their associated 

parameters) and whether treatment may lead to unintended threats to infection control such as an 

increase in resistant strains. 

   

Declarations of competing interest 

None 

Funding 

This work was conducted as a part of a PhD programme of the first authors and funded by the College 

of Medicine and Dentistry at the James Cook University, Australia (JCU-QLD-835481).  

 

Acknowledgements 

The authors would like to thank Dr. Elizabeth Tynan, James Cook University, for her assistance in 

preparing this article.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

119 
 

References 

 

1. Gumbo, T., et al., Redefining multidrug-resistant tuberculosis based on clinical response to 
combination therapy. Antimicrobial Agents and Chemotherapy, 2014. 58(10): p. 6111-6115. 

2. Fofana, M. O., et al., A multistrain mathematical model to investigate the role of pyrazinamide 
in the emergence of extensively drug-resistant tuberculosis. Antimicrobial Agents and 
Chemotherapy, 2017. 61(3): p. 00498-16. 

3. Sharomi, O., and  Gumel, A., Dynamical analysis of a multi-strain model of HIV in the presence 
of anti-retroviral drugs. Journal of Biological Dynamics, 2008. 2(3): p. 323-345. 

4. Aguiar, M., and  Stollenwerk, N., Mathematical models of dengue fever epidemiology: multi-
strain dynamics, immunological aspects associated to disease severity and vaccines. 
Communication in Biomathematical Sciences, 2017. 1(1): p. 1-12. 

5. May, R. M., and Nowak, A. M., Coinfection and the evolution of parasite virulence. 
Proceedings of the Royal Society of London. Series B: Biological Sciences, 1995. 261(1361): 
p. 209-215. 

6. Parton, R., Hall, E., and Wardlaw, A., Responses to Bordetella pertussis mutant strains and to 
vaccination in the coughing rat model of pertussis. Journal of Medical Microbiology, 1994. 
40(5): p. 307-312. 

7. Zwerling, A., Shrestha, S., and Dowdy, W. D., Mathematical Modelling and Tuberculosis: 
Advances in Diagnostics and Novel Therapies. Advances in Medicine, 2015. 2015: p. 10. 

8. Bacaër, N., et al., Modeling the joint epidemics of TB and HIV in a South African township. 
Journal of Mathematical Biology, 2008. 57(4): p. 557. 

9. Liu, L., Zhao, Q. X., and Zhou, Y., A Tuberculosis Model with Seasonality. Bulletin of 
Mathematical Biology, 2010. 72(4): p. 931-952. 

10. Blaser, N., et al., Tuberculosis in Cape Town: An age-structured transmission model. 
Epidemics, 2016. 14: p. 54-61. 

11. Guzzetta, G., et al., Modeling socio-demography to capture tuberculosis transmission dynamics 
in a low burden setting. Journal of Theoretical Biology, 2011. 289: p. 197-205. 

12. Childs, L. M., et al., Modelling challenges in context: Lessons from malaria, HIV, and 
tuberculosis. Epidemics, 2015. 10: p. 102-107. 

13. Jajarmi, A., et al., A new fractional HRSV model and its optimal control: a non-singular 
operator approach. Physica A: Statistical Mechanics and its Applications, 2020. 547: p. 
123860. 

14. Mustapha, U. T., et al., Fractional modeling for the spread of Hookworm infection under 
Caputo operator. Chaos, Solitons & Fractals, 2020. 137: p. 109878. 

15. Kuddus, M. A., et al., Modeling drug-resistant tuberculosis amplification rates and 
intervention strategies in Bangladesh. PLoS One, 2020. 15(7): p. e0236112. 

16. Cooke, K. L., Stability analysis for a vector disease model. The Rocky Mountain Journal of 
Mathematics, 1979. 9(1): p. 31-42. 

17. Kim, S., Aurelio,  A., and Jung, E., Mathematical model and intervention strategies for 
mitigating tuberculosis in the Philippines. Journal of Theoretical Biology, 2018. 443: p. 100-
112. 

18. Laxminarayan, R., et al., Antibiotic resistance—the need for global solutions. The Lancet 
Infectious Diseases, 2013. 13(12): p. 1057-1098. 

19. Gandhi, N. R., et al., Multidrug-resistant and extensively drug-resistant tuberculosis: a threat 
to global control of tuberculosis. The Lancet, 2010. 375(9728): p. 1830-1843. 

20. Dodd, P. J., Sismanidis, C., and  Seddon, A. J., Global burden of drug-resistant tuberculosis in 
children: a mathematical modelling study. The Lancet Infectious Diseases, 2016. 16(10): p. 
1193-1201. 

21. Mistry, N., Tolani, M., and Osrin, D., Drug-resistant tuberculosis in Mumbai, India: An agenda 
for operations research. Operations Research for Health Care, 2012. 1(2-3): p. 45-53. 

22. McBryde, E. S., et al., The risk of global epidemic replacement with drug-resistant 
Mycobacterium tuberculosis strains. International Journal of Infectious Diseases, 2017. 56: p. 
14-20. 



 
 

120 
 

23. Davies, P. D. O., Drug-resistant tuberculosis. Journal of the Royal Society of Medicine, 2001. 
94(6): p. 261-263. 

24. Stengel, R. F., Mutation and control of the human immunodeficiency virus. Mathematical 
Biosciences, 2008. 213(2): p. 93-102. 

25. Kurz, S. G., Furin, J. J., and Bark, M. C., Drug-resistant tuberculosis: challenges and progress. 
Infectious Disease Clinics, 2016. 30(2): p. 509-522. 

26. Xuan, Q., et al., High prevalence of HIV-1 transmitted drug resistance among therapy-naïve 
Burmese entering travelers at Dehong ports in Yunnan, China. BMC infectious diseases, 2018. 
18(1): p. 211. 

27. Diekmann, O., Heesterbeek, J., and Roberts, G. M., The construction of next-generation 
matrices for compartmental epidemic models. Journal of the Royal Society Interface, 2009. 
7(47): p. 873-885. 

28. Van Den Driessche, P., Reproduction numbers of infectious disease models. Infectious Disease 
Modelling, 2017. 2(3): p. 288-303. 

29. Meehan, M. T., et al., Coupled, multi-strain epidemic models of mutating pathogens. 
Mathematical Biosciences, 2018. 296: p. 82-92. 

30. DeJesus, E. X., and Kaufman, C., Routh-Hurwitz criterion in the examination of eigenvalues of 
a system of nonlinear ordinary differential equations. Physical Review A, 1987. 35(12): p. 
5288. 

31. Bremermann, H. J., and  Thieme, H., A competitive exclusion principle for pathogen virulence. 
Journal of Mathematical Biology, 1989. 27(2): p. 179-190. 

32. Korobeinikov, A., and Maini, K. P., A Lyapunov function and global properties for SIR and 
SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and 
Engineering, 2004. 1(1): p. 57-60. 

33. Yang, Y., et al., Global stability of two models with incomplete treatment for tuberculosis. 
Chaos, Solitons & Fractals, 2010. 43(1-12): p. 79-85. 

34. Ullah, S., et al., Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan. 
Mathematics and Computers in Simulation, 2019. 

35. Trauer, J. M., Denholm, T. J., and McBryde, E. S., Construction of a mathematical model for 
tuberculosis transmission in highly endemic regions of the Asia-Pacific. Journal of Theoretical 
Biology, 2014. 358: p. 74-84. 

36. Munita, J. M., and Arias, C. A., Mechanisms of antibiotic resistance. Microbiology Spectrum, 
2016. 4(2). 



 
 

121 
 

 

CHAPTER 5 
 

 

Mathematical analysis of a two-strain tuberculosis 

model in Bangladesh 
 

Statement of joint authorship 

Md Abdul Kuddus initiated the concept of the study, wrote the 
manuscript, developed the model, analysed the data, wrote code for 
model, and acted as corresponding author.  

Emma S. McBryde assisted with the development of the model, proof 
read and critically reviewed the manuscript. 

Adeshina I. Adekunle critically reviewed the manuscript. 

Lisa J. White critically reviewed the manuscript. 

Michael T. Meehan assisted with the development of the model, 
analysed the data, proof read and critically reviewed the manuscript. 
 

 

Kuddus, M. A., McBryde, E. S., Adekunle, I. A., White, J. L., Meehan, T. M. (2021). Mathematical 
analysis of a two-strain tuberculosis model in Bangladesh. Journal of Applied Mathematics and 
Computation (under review). 

 

 

 

 



 
 

122 
 

 

Abstract 

 

Tuberculosis (TB) is an airborne infectious disease that causes millions of deaths worldwide each year 

(1.7 million people died in 2017). Alarmingly, several strains of the causative agent, Mycobacterium 

tuberculosis (Mtb) – including drug-susceptible (DS) and drug-resistant (DR) variants – already 

circulate throughout most developing and developed countries, particularly in Bangladesh, with 

increasingly drug-resistant strains continuing to emerge. In this study we develop a two-strain DS and 

DR-TB transmission model and perform an analysis of the system properties and solutions. Both 

analytical and numerical results show that the prevalence of drug-resistant infection increases with 

increasing drug use through amplification. Similarly, both analytic results and numerical simulations 

suggest that if the basic reproduction numbers of both DS (R0s) and DR (R0r) TB are less than one, 

i.e. max[R0s, R0r] < 1, the disease-free equilibrium is asymptotically stable, meaning that the disease 

naturally dies out. Furthermore, if R0r > max [R0s, 1], then DS-TB dies out but DR-TB persists in the 

population, and if  R0s > max [R0r, 1] both DS-TB and DR-TB persist in the population. Further, 

sensitivity analysis of the model parameters found that the contact rate of both strains had the largest 

influence on DS and DR-TB prevalence. We also investigate the impact of amplification and treatment 

rates of both strains on the equilibrium prevalence of infection; results suggest that poor quality 

treatment makes co-existence more likely and increases the relative abundance of DR-TB infections.   

 
Keywords: Tuberculosis model; drug-resistant TB; stability and sensitivity analysis 
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5.1 Introduction 

 
Tuberculosis (TB) is a bacterial infectious disease that causes millions of deaths worldwide each year. 

In 2017, the World Health Organization (WHO) estimated there were approximately 10.4 million new 

cases of TB, and 1.7 million individuals died from TB disease [1]. Most of the estimated cases in 2017 

occurred in Asia (45%), Africa (25%), and 87% of TB deaths occurred in low- and middle-income 

countries  [1].  

 

TB is an airborne disease caused by bacilli of the bacteria Mycobacterium tuberculosis (Mtb) [2]. Once 

infected, the individual will first undergo a period without visible clinical symptoms, called latent TB 

infection (LTBI) [3]. The latent period is the timespan from the point of infection to the beginning of 

the state of infectiousness, which may last for weeks, months or the entire life of the infected individual 

[4]. The lifetime risk of progression to active TB for a person with LTBI is around 5-15%, depending 

on the age at infection; for those who do progress from LTBI to active TB, the majority will do so 

within the first two years of initial infection [4]. 

 
Currently, multidrug-resistant (MDR) TB is emerging as the greatest threat to TB control globally [1]. 

MDR-TB is defined as TB that is resistant to isoniazid and rifampicin (the two most effective and 

commonly used first line drugs), with or without resistance to additional first line drugs [1]. The higher 

costs, and the longer and more toxic regimens associated with MDR-TB treatment place substantial 

stress on health systems [5]. Inadequate treatment of DR-TB may create even more resistance to the 

drug used; this has been termed the amplification effect of short-course combination therapy [6]. 

Ongoing transmission of DR-TB strains in a population also generates new DR-TB cases [7].  

 

Mathematical modelling is an important tool to explore the dynamics of TB and can provide useful 

insights into the performance of various TB control strategies [8-10]. In the last few decades, several 

mathematicians, statisticians and biologists have developed different transmission dynamic models of 

TB. For instance, Murphy et al. (2002) used a modified Susceptible Exposed Infected (SEI) model to 

investigate the effects of genetic susceptibility and demographic factors on TB epidemiology in a 

heterogeneous population, comparing the prevalence and incidence in India and the United States of 

America (USA) [11]. Kim et al. (2014) developed a mathematical model for TB with exogenous 

reinfection, examining the current situation of active TB incidence in Korea [12]. Liu et al. (2010) 

developed a TB model with seasonality to describe TB incidence rates with periodic properties in a 

mainland city of China [13]. A 10-compartment TB model constructed by Trauer et al. (2014) modelled 

limited vaccine effectiveness, reinfection, DR-TB, and de novo resistance through treatment [14]. This 

study showed that the model could not be calibrated to the projected incidence rate without allowing 
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for reinfection, which was modelled as a reversion to early latency, which has a higher rate of 

progression to disease compared with late latency.  

 

To examine the threat of genetic variations of DS and DR-TB strains, we present a two-strain (DS and 

DR-TB) SLIRS epidemic model with coupled infectious compartments and use it to investigate the 

emergence and spread of DR-TB. We consider the possibility that an individual’s position changes from 

DS-TB at initial presentation to DR-TB at follow-up. This is the mode by which DR-TB first emerges 

in a population and is designed to reproduce the phenotypic phenomenon of acquired drug resistance, 

known as amplification. The model can be used to investigate the co-existent or competitive exclusive 

phenomena among DS and DR-TB strains. 

 

In this study we perform an analytical and numerical analysis of our novel two-strain TB model 

properties and solutions from both the mathematical and biological viewpoints. For each, we use the 

next generation matrix method to determine analytic expressions for the basic reproduction numbers of 

the DS-TB and DR-TB strains and find that these are important determinates for regulating system 

dynamics. With a focus on the early and late time behaviour of the system, we outline the required 

conditions for the stability of the infection-free state, infection mono-existence and co-existence of two- 

strain. 

 

To supplement and validate the analytical analysis, we use numerical techniques to solve the model 

equations and explore the dynamic epidemic trajectory for a range of possible parameter values and 

initial conditions. From the analytical and numerical viewpoints, the local and global stability of the 

disease-free equilibrium and mono-existent disease endemic equilibrium are examined through Routh-

Hurwitz conditions and appropriate Lyapunov functions. The co-existent disease endemic equilibrium 

is also examined numerically. Following this, we perform a sensitivity analysis to investigate the model 

parameters that have the greatest influence on DS, DR and total TB prevalence. 

 

This paper is structured as follows: Section 5.2 describes the model. Stability analysis, model calibration 

and sensitivity analysis are performed in sections 5.3, 5.4 and 5.5. In section 5.6, we provide numerical 

simulations to support analytic results. A brief discussion and concluding remarks finalize the paper. 

 
5.2 Model description  
 

5.2.1 Model equations 

 

We developed a deterministic mathematical model of the transmission of DS and DR-TB strains 

between the following mutually exclusive compartments: susceptible S(t), uninfected individuals who 
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are susceptible to TB infection; those exposed to TB that become latently infected Li(t) (where the 

subscript i = s, r refers to quantities associated with drug-susceptible, s, and drug-resistant, r, TB 

infection, representing those who are infected and have not yet developed active TB; infectives Ii(t), 

comprising individuals with active TB; the recovered R(t), who were previously infected and 

successfully treated and assumed to be temporarily immune to reinfection. The subscripts s and r are 

used to denote quantities associated with the DS strain and DR strain respectively. We assume that the 

DR strain is initially generated through inadequate and poor treatment of DS-TB and could subsequently 

be transmitted to other individuals. Individuals may also return to the susceptible compartment 

following recovery at the constant per-capita rate γ due to the loss of immunity. The total population 

size N(t), is given by   

 

N(t) = S(t) + Ls(t) + Is(t) + Lr(t) + Ir(t) + R(t).                                                                                  (5.1) 

 

Individuals in the different compartments suffer from natural death at the same constant rate μ and 

active TB cases in Ii(i = s, r) experience disease-related death at a rate ϕi(i = s, r). To ensure the 

population size remains constant, we replace all deaths as newborns in the susceptible compartment. 

Individuals in the S compartment may be infected with a circulating Mtb strain i (i = s, r)  at a time 

dependent rate λi(t) = βiIi(t) where βi is the transmission rate between infected and susceptible 

individuals. Once infected with strain Ii, individuals move to the latently infected compartment Li. A 

proportion of those with latent infections progress to active TB as a result of endogenous reactivation 

of the latent bacilli at rate αi. Individuals with drug sensitive and DR active TB Ii may eventually be 

detected and treated at rates τs and τr respectively. A proportion (1 − ρ) of the treated DS active TB 

recover to move into the recovered compartment R, and the complementary proportion ρ develop drug 

resistance due to incomplete treatment or lack of strict compliance in the use of first-line drugs (drugs 

used to treat the DS forms of TB) to move into compartment Ir. Furthermore, individuals recover 

naturally at a rate ωi, moving from Ii to R. The model flow diagram is presented in Figure 5.1.  
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Figure 5. 1 Flow chart of the TB compartmental mathematical model showing six states and the 
transitions in and out of each state in a closed population (no migration).   

Here, N = Total population, S = Susceptible population, L = Latent population, I = Infected 
population, R = Recovered population, μ = Birth rate / Death rate, β = Contact rate/Transmission rate, 
α = Progression rate, ϕ = Disease-related death rate, τ = Treatment rate, ω = Recovery rate, ρ = 
Proportion of amplification and γ = Rate of losing immunity. Subscripts s and r denote DS and DR 
quantities, respectively. 
 

From the aforementioned, the transmission of DS and DR-TB is given by the following deterministic 

system of nonlinear ordinary differential equations that describe the model: 

 
dS

dt
= μN − βsIsS − βrIrS − μS + γR + ϕsIs + ϕrIr,                                                                        (5.2)                                                     

dLs

dt
= βsIsS − αsLs − μLs,                                                                                                                 (5.3)                                                                                             

dIs

dt
= αsLs − ωsIs − μIs − τsIs − ϕsIs,                                                                                             (5.4)                                                   

dLr

dt
= βrIrS − αrLr − μLr,                                                                                                                 (5.5)                                                                                   

dIr

dt
= αrLr −ωrIr − μIr + ρτsIs − ϕrIr − τrIr,                                                                                (5.6)                                                              

dR

dt
= ωsIs + ωrIr − γR − μR + (1 − ρ)τsIs + τrIr.                                                                         (5.7)                                                                           

 
Given non-negative initial conditions for the system above, it is straightforward to show that each of 

the state variables remain non-negative for all t > 0. Moreover, summing equations (5.2) – (5.7) we 

find that the size of the total population, N(t) satisfies 
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N(t) = constant.  

Given the constant population size and positivity of solutions it naturally follows that each of the 

compartment states S, L, I, etc are bounded. Therefore, we find that the feasible region for equations 

(5.2) – (5.7) is given by 

D = { (S,   Ls, Is, Lr, Ir, R) ∈ ℝ+
6 ∶ S + Ls + Is + Lr + Ir + R = N}.                                                  (5.c) 

 

5.2.2 Basic reproduction number 

 

The model has four infected states, Ls, Is, Lr, Ir , and two uninfected states, S and R. At the infection-

free steady state, Ls∗ = Is∗ = Lr∗ = Ir∗ = R∗ = 0, hence S∗ = N. To calculate the basic reproduction 

numbers of the DS and DR-TB strains we follow [15] and focus on the linearized infection subsystem 

derived from equations (5.2) - (5.7): 
dLs

dt
= βsIsN − αsLs − μLs,                                                                                                                (5.8)                                                                              

dIs

dt
= αsLs − χsIs,                                                                                                                               (5.9)                                                                              

dLr

dt
= βrIrN − αrLr − μLr,                                                                                                               (5.10)                                                                        

dIr

dt
= αrLr − χrIr + ρτsIs,                                                                                                                (5.11)                                                                                                                                             

where, χs = ωs + ϕs + τs + μ and χm = ωr + ϕr + τr + μ are the total removal rates from the DS 

and DR active TB infection states respectively. 

 

Here, the ODEs (5.8) − (5.11)  describe the production of new infected and changes in the states of 

already infected individuals about the infection-free equilibrium. 

By setting  𝐗T = (Ls, Is, Lr, Ir)T, where T denotes transpose, we now want to write the infection 

subsystem in the form  

�̇� = (𝑇 + Σ)𝐗.                                                                                                                                  (5.12)                                                             

 

The matrix 𝑇 corresponds to transmissions and the matrix Σ to transitions. They are obtained from 

system (5.8) − (5.11) by separating the transmission events from other events. If we refer to the 

infected states with indices i and j, with i, j ∈ 1,2,3,4, then entry 𝑇𝑖𝑗 is the rate at which individuals in 

infected state j give rise to individuals in infected state i in the system. Hence, for the subsystem (5.8) −

(5.11) we obtain 

 

𝑇 = (

     0 βsN 0 0
0 0 0 0
0
0

0
0

0
0

βrN
0

 ) and Σ = (

−(αs + μ) 0 0
αs −χs 0

0
0

0
ρτs

−(αr + μ)
αr

  

0
0
0
−χr

). 

The next generation matrix, K, is given by [16] (note the essential minus sign) 
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K = −𝑇Σ−1 = 𝑇(−Σ−1) 

 

=

(

 
 
 

Nαsβs
(αs + μ)χs

Nβs
χs

0                  0

0 0 0                  0
Nαsβrρτs
(αs + μ)χsχr

0

Nβrρτs
χsχr
0

Nαrβr
(αr + μ)χr

Nβr
χr

0                 0

  

)

 
 
 

. 

The dominant eigenvalues of K are the basic reproduction numbers for DS and DR-TB; they represent 

the average number of new infections produced by one infected individual. Hence the basic 

reproduction number for DS and DR-TB are: 

R0s =
Nαsβs

(αs+μ)χs
,                                                                                                                                                             (5.a) 

and  

R0r =
Nαrβr

(αr+μ)χr
.                                                                                                                                   (5.b) 

Here, αs

(αs+μ)
 and αr

(αr+μ)
 are the probability of transitioning from the latent compartment to the infectious 

compartment of the DS and DR strains respectively. Further, 1
χs
 and 1

χr
 represent the time spent by 

infectious individuals in states Is and Ir respectively. 

 

Interestingly we find that both the basic reproduction numbers R0s and R0r are purely a function of the 

epidemiological parameters of the DS and DR-TB respectively, i.e. both are independent of the 

amplification rate ρ [17].  

 

Given these expressions (5.a) – (5.b) for the DS and DR-TB basic reproduction numbers, we can now 

investigate the relationship between the fitness cost, c, exacted on the transmissibility of DR-TB and its 

resistance to treatment, ϵ, on the relative fitness of DS and DR-TB. 

 

If we assume that both R0s and R0r are greater than 1, then the condition for resistant infections to 

replace sensitive infections is given by, 

R0r > R0s. 

Substituting the formulae (5.a) – (5.b) for the basic reproduction numbers gives: 

αrβr

(αr+μ)χr
>

αsβs

(αs+μ)χs
. 

If we consider that resistance exacts a fitness cost, c, on the transmissibility of the DR-TB, it follows 
that 

βr = (1 − c)βs. 

Further, if we assume that DR-TB has a level of resistance, ϵ, to treatment we have 
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τr = (1 − ε)τs. 

Lastly, assuming that μ ≈ 0 (since it is very slow compared to the other rates) and that ϕr = ϕs, and 

ωr = ωs yields the condition for resistant infections to replace sensitive infections, 

ε >
c(ωs+ϕs+τs)

τs
. 

The above relation shows that DR-TB can outcompete DS-TB if the resistance level ε is high, which 

may occur due to poor quality treatment. Alternatively, DR-TB will be fitter than DS-TB if the fitness 

cost c is sufficiently low. 

 

5.2.3 System properties 

 

In this section we provide the basic properties of the proposed TB model (5.2) – (5.7) equilibria.  

 

5.2.3.1 Existence of equilibria 

 

Three types of equilibrium solutions appear in this system: the disease-free equilibrium, which is 

reached when both basic reproduction numbers are less than one i.e. max[R0s, R0r] < 1; the mono-

existent endemic equilibrium, which is reached when the basic reproduction number of  DR-TB is 

greater than the basic reproduction number of DS-TB and one i.e. R0r > max[R0s, 1]; and the co-

existent endemic equilibrium, which is reached when the basic reproduction number of  DS-TB is 

greater than that of DR-TB and one i.e. R0s > max [R0r, 1]. We discuss these in order below. 

Clearly, equations (5.2) – (5.7) always have a disease-free equilibrium 

 E∗ = (S∗, Ls
∗ , Is

∗,   Lr
∗ , Ir

∗, R∗) = (N,   0,   0,   0,   0,   0).  

From equations (5.2)-(5.7) we can also derive the mono-existent endemic equilibrium point 

 E# = (S#, 0, 0,  Lr#, Ir#, R#) at which the DR strain persists and the DS strain dies out: 

S# =
N

R0r
 , 

Ls
# = 0, 

Is
# = 0, 

Ir
# =

μ

βr

(R0r−1)

𝜎
 , 

Lr
# =

χr

αr
 Ir
# ,  

R# =
(τr+ωr)

(γ+μ)
Ir
#,                                                                                                                                (5.13) 
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where σ =
(γ(1−

αr(ωr+ϕr+τr)

(αr+μ)(ωr+ϕr+τr+μ)
)+μ(1−

αrϕr
(αr+μ)χr

))

γ+μ
⇒ 0 < σ < 1. From (5.13) if R0r > 1, equations 

(5.2) – (5.7) have a unique boundary equilibrium  E# = (S#, 0, 0,  Lr#, Ir#,  R#) ∈ D. 

Next, the co-existent endemic equilibrium of the system is examined. If  

E† = (S†, Ls
†, Is

†,  Lr
†, Ir

†, R†) is any co-existent endemic equilibrium, from equations (5.2) - (5.7), 
we obtain 

S† =
N

R0s
, 

Ls
† = 

χs

αs
 Is
† , 

Lr
† =

ρτsR0r

αr
 Is
†, 

Ir
† = 

ρR0sτs

χr(R0s−R0r)
Is
†, 

R† =
1

(γ+μ)
(((1 − ρ)τs +ωs) +

ρτsR0s(ωr+τr)

χr(R0s−R0r)
) Is
†,                                                                         (5.14) 

To check if E† ∈ D, it remains to determine the sign of state variable Is
†. This is most easily done 

using the total population conservation equation: 

N = S† + Ls
† + Is

† + Lr
† + Ir

† + R†,   

Is
† = N(1 −

1

R0s
) η                                                                                                                            (5.15) 

where η = (1 + χs

αs
+
ρτsR0r

αr
+

ρR0sτs

χr(R0s−R0r)
+
(1−ρ)τs+ωs

(γ+μ)
+
(ωr+τr)

(γ+μ)
 

ρR0sτs

χr(R0s−R0r)
)
−1
> 0 for R0s > R0r. 

We then have 

sign(Is
†) = sign (1 −

1

R0s
) ⇒ R0s > 1 ⇒ Is

† > 0. 

From (5.14), for the co-existent region in which the condition Is
† > 0 is required, a necessary and 

sufficient condition for the endemic population Is
† to be non-negative is to have both R0s > 1 and R0s >

R0r. That is, if R0s > max [R0m, 1] then (5.2) – (5.7) have a co-existent endemic equilibrium E† =

(S†, Ls
†, Is

†,  Lr
†, Ir

†, R†) ∈ D.  

 

5.3 Stability analysis 

 

To investigate the stability of the equilibria of equations (5.2) – (5.7), the following results are 

established:  

5.3.1 Disease-free equilibrium 

 

Lemma 1: The disease-free equilibrium of the model is locally and globally asymptotically stable if 

max [R0s, R0r] < 1 and unstable if max[R0s, R0r] > 1. 
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Proof:  We consider the Jacobian of the system (5.2) – (5.7) which is given by 

 

J =

(

 
 
 

−(βsIs + βrIr + μ)
βsIs
0
βrIr
0
0

 
0

−(αs + μ)
αs
0
0
0

−βsS + ϕs
βsS

−(ωs + ϕs + τs + μ)
0
ρτs

(1 − ρ)τs +ωs

0
0
0

−(αr + μ)
αr
0

−βrS + ϕr
0
0
βrS

−(ωr + ϕr + τr + μ)
(ωr + τr)

γ
0
0
0
0

−(γ + μ))

 
 
 

 

 

which, at the disease-free equilibrium point, E∗, reduces to 

 

J∗ =

(

 
 
 

−μ
0
0
0
0
0

 0
−(αs + μ)

αs
0
0
0

−βsN + ϕs
βsN

−(ωs + ϕs + τs + μ)
0
ρτs

(1 − ρ)τs + ωs

0
0
0

−(αr + μ)
αr
0

−βrN + ϕr
0
0
βrN

−(ωr + ϕr + τr + μ)
(ωr + τr)

γ
0
0
0
0

−(γ + μ))

 
 
 

. 

 

The structure of J∗ allows us to immediately read off two eigenvalues, λ1 = −μ and λ2 = −(γ + μ). 

The remaining eigenvalues can be calculated from the following reduced matrix 

 

 J̅∗ = (

−(αs + μ)
αs
0
0

βsN
−(ωs + ϕs + τs + μ)

0
ρτs

0
0

−(αr + μ)
αr

0
0
βrN

−(ωr + ϕr + τr + μ)

).  

This matrix can be written in block form as 

J̅∗ = (
A B
C D

)  

where,  A = (−αs − μ βsN
αs −ωs − φs − τs − μ

) , B = (
0 0
0 0

) , C = (
0 0
0 ρτs

) and  

D = (
−αr − μ βrN
αr −ωr − ϕr − τr − μ

). 

Here the matrix A corresponds to DS-TB dynamics, the matrix D represents DR-TB dynamics, and 

matrix C gives the flow between DS and DR-TB. 

The characteristic equation of the two-by-two block matrix J̅∗ is 

det(A − λI) det((D − λI) − C(A − λI)−1B) = 0. 

Since B = (0 0
0 0

) this reduces to 

det(A − λI) det(D − λI) = 0.  
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This relation implies that we can apply the Routh-Hurwitz criteria for stability to matrices A and D 

directly, and independently. We then have 

trace (A) = −(αs + μ) + (−ωs − ϕs − τs − μ) < 0, 

and 

det(A) = (αs + μ)(ωs + ϕs + τs + μ) − αsβsN > 0, 

which we can reformulate as 

R0s < 1.                                                                                                                                            (5.16) 

Now for DR-TB cases (i.e. matrix D) 

trace (D) = −(αr + μ) + (−ωr − ϕr − τr − μ) < 0, 

and 

det(D) = (αr + μ)(ωr + ϕr + τr + μ) − αrβrN > 0, 

which can similarly be rewritten as  

R0r < 1.                                                                                                                                                                       (5.17) 

Hence, the disease-free equilibrium E∗ of (5.16) and (5.17) is locally asymptotically stable for R0s <

1 and R0r < 1. If either R0s > 1 or R0r > 1, at least one of the roots of the characteristic equation has 

a positive real part and E∗ is unstable. 

 

Now the global stability of the disease-free equilibrium E∗ for R0s < 1 and R0r < 1 can be investigated. 

To do this, we first show that the infected subpopulations Ls and Is approach zero for R0s < 1 using an 

appropriate Lyapunov function: 

 

Vs(t) = LS(t) +
(αs+μ)

αs
Is(t).      

Taking the derivative of Vs(t) along system trajectories yields 

V̇S = L̇s +
(αS+μ)

αS
İs,  

     = βsIsS − (αs + μ)Ls + (αs + μ)Ls −
χs(αs+μ)

αs
Is, 

     = βsIsS −
χs(αs+μ)

αs
Is, 

     = χs(αs+μ)
αs

 (
αsβsS

(αs+μ)χs
− 1) Is, 

     ≤ χs(αs+μ)

αs
 (R0s − 1)Is(t) 

where in the last line we have invoked the inequality S ≤ N. It follows then that if R0s < 1 we have 

Ls(t), Is(t) → 0 as t → ∞. Hence the hyperplane Ls = Is = 0 attracts all solutions of (5.2) – (5.7) 

whenever R0s < 1.  
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Since Ls(t) = Is(t) → 0 as t → ∞ for R0s < 1, it follows that ρωsIs → 0, such that equation (5.6) 

reduces to 

İr = αrLr − χrIr . 

Following the same strategy for DR-TB (Lr and Ir) as we used above for DS-TB (Ls and Is) and 

introducing the Lyapunov function  

Vr(t) = Lr(t) + Ir(t)  

yields 

V̇r(t) ≤
χr(αr+μ)

αr
 (R0r − 1)Ir(t). 

Therefore if R0r < 1 we have Lr(t), Ir(t) → 0 as t → ∞ and the hyperplane Lr = Ir = 0 attracts all 

solutions of (5.2) – (5.7). It follows then that R → 0 and S → N such that E∗ is globally asymptotically 

stable when max[R0s, R0r] < 1. 

 

Epidemiologically it can be implied that TB can be eliminated from the community when both the basic 

reproduction numbers are less than one, i.e. max [R0s, R0r] < 1. If max [R0s, R0r] < 1 then this means 

the average infected individual produces less than one new infected individual over the course of the 

infectious period and the infection dies out. 

 

5.3.2 Mono-existent endemic equilibrium 

 

Lemma 2: If the boundary equilibrium E# = (S#, 0, 0,  Lr#, Ir#, R#) of the equations (5.2)—(5.7) 

exists (i.e. R0r > max [1, R0s]) then E# is locally asymptotically stable.  

 

Proof: For simplicity, we use the condition R = N − S − Ls − Is − Lr − Ir  to eliminate the R 

equation from the full system given in (5.2) and consider the Jacobian of the system (5.2)—(5.6) at 

the mono-existent endemic equilibrium point E#, which is given by  

 

J# =

(

  
 

−(βrIr
# + μ + γ)
0
0
βrIr

#

0

 −γ
−(αs + μ)

αs
0
0

−βsS
# + ϕs − γ

βsS
#

−(ωs + ϕs + τs + μ)
0
ρτs

−γ
0
0

−(αr + μ)
αr

−βrS
# + ϕr − γ
0
0
βrS

#

−(ωr + ϕr + τr + μ))

  
 

.  

Simultaneously interchanging rows and columns of the matrix J#we obtain the equivalent Jacobian 

J# =

(

  
 

−(βrIr
# + μ + γ) 

βrIr
#

0
0
0

 
−γ

−(αr + μ)
αr
0
0

−βrS
# + ϕr − γ

βrS
#

−(ωr + ϕr + τr + μ)
0
0

−γ
0
0

−(αs + μ)
αs

−βsS
# + ϕs − γ
0
ρτs
βsS

#

−(ωs + ϕs + τs + μ))
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which can be written in block form as 

J# = (
A1 A2
A3 A4

)  

where A1 = (
−(βrIr

# + μ + γ) −γ −βrS
# + ϕr − γ

βrIr
# −(αr + μ) βrS

#

0 αr −(ωr + ϕr + τr + μ)

),   

A2 = (
−γ −βsS

# + ϕs − μ
0 0
0 ρτs

), A3 = (
0 0 0
0 0 0

), A4 = (
−(αs + μ) βsS

#

αs −(ωs + ϕs + τs + μ)
).  

The characteristic equation of J# is 

det(J# − λ I) = det (
A1 − λI A2
A3 A4 − λI

) = 0,  

⇒ det(A1 − λI) det((A4 − λI) − A3(A1 − λI)
−1A2) = 0 , 

Since A3 = (
0 0 0
0 0 0

), then we obtain 

det(A1 − λI) det(A4 − λI) = 0. 

Again this allows us to apply the Routh-Hurwitz stability conditions separately to the matrices A1 and 
A4.  

According to the Routh-Hurwitz stability conditions we obtain from matrix A1 

Condition 1:  

trace (A1) < 0, 

−(βrIr
# + μ + γ) − (αr + μ) − (ωr + ϕr + τr + μ) < 0, 

Condition 2: 

|
−(αr + μ) βrS

#

αr −(ωr + ϕr + τr + μ)
| + |

−(βrIr
# + μ + γ) −βrS

# + ϕr − γ

0 −(ωr + ϕr + τr + μ)
| +  

|
−(βrIr

# + μ + γ) −γ

βrI𝑟
# −(αr + μ)

| > 0. 

Which gives 

((αr + μ)(ωr + ϕr + τr + μ) − αrβrS
#) + (ωr + ϕr + τr + μ)(βrIr

# + μ + γ) 

+(αr + μ)(βrIr
# + μ + γ) + βrIr

#γ > 0, 

Substituting in the analytical solution for S# and the expression for R0s we find that the first bracketed 

term cancels, which yields 

(ωr + ϕr + τr + μ)(βrIr
# + μ + γ) + (αr + μ)(βrIr

# + μ + γ) + βrIr
#γ > 0. 

Condition 3: 

det(A1) < 0, 
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(−βrIr
# − μ − γ) ((αr + μ)(ωr + ϕr + τr + μ) − αrβrS

#) + γ(−(ωr + ϕr + τr + μ))βrIr
# 

+(−βrS
# + ϕr − γ) αrβrIr

# < 0, 

Once again we find that the first term cancels and the remaining terms can be rearranged to obtain (note that 

we have divided through by (αr + μ)(ωr + ϕr + τr + μ) and substituted in S# = N

R0r
  and R0r =

Nαrβr

(αr+μ)χr
 

(
γβr

(αr+μ)
+

αrβr(βrS
#+γ)

(αr+μ)(ωr+ϕr+τr+μ)
−

αrβrϕr

(αr+μ)(ωr+ϕr+τr+μ)
) Ir
# > 0. 

since Ir# =
μ

βr
 (R0r − 1)

(γ+μ)

σ
> 0.  

Recalling the definition of σ (equation (5.13)), which is positive, we see that this condition is satisfied 
whenever R0r > 1.   

and  

(
γβr

(αr+μ)
+

αrβr(βrS
#+γ)

(αr+μ)(ωr+ϕr+τr+μ)
−

αrβrϕr

(αr+μ)(ωr+ϕr+τr+μ)
) > 0, 

which gives, 

γβr

(αr+μ)
+
R0rγ

N
+
μR0rϕr

N
+
R0r(αr+μ)(ωr+τr+μ)

N
> 0.   

Now from matrix A4 

trace (A4) < 0, 

−(αs + μ) − (ωs + ϕs + τs + μ) < 0, 

(αs + μ) + (ωs + ϕs + τs + μ) > 0. 

and 

det(A4) > 0, 

(αs + μ)(ωs + ϕs + τs + μ) − αsβsS
# > 0, 

Which gives 

αsβsN

(αs+μ)(ωs+ϕs+τs+μ) R0r
< 1, 

which becomes 

R0r > R0s.   

Hence, the Routh-Hurwitz conditions are satisfied when  R0r > max [1, R0s. Therefore, the mono-existent 

endemic equilibrium E# is locally asymptotically stable if R0r > max [1, R0s], which means that DS-TB dies 

out but DR-TB persists in the population. 

 

5.4 Estimation of model parameters 
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In this section we estimate the model parameters based on the actual TB prevalence and notification 

data in Bangladesh taken from the WHO report from 2005 to 2015. In order to parameterise the TB 

model (5.2) – (5.7), we obtained some of the parameter values from the literature (Table 5.1), whilst 

others were estimated or fitted to the data (Figure 5.2 and Figure. 5.3). The best fitted parameter values 

were obtained by minimizing the squared error between the actual TB prevalence and notification data 

and the solution of the proposed model (5.2) – (5.7). The objective function used in the parameter 

estimation is as follows 

𝜃 = argmin∑ ((Isti + Irti) − datatip)
2

𝑛
𝑖=1 , and  

𝜃1̂ = argmin∑ ((τsIsti + τrIrti) − datatiq)
2

𝑛
𝑖=1 ,  

 
Figure 5. 2 Reported prevalence data (red dot) 
and the corresponding best fit (blue solid curve) 
of (Is + Ir). All remaining parameter values 
assume their baseline values given in Table 5.1. 
 

 
Figure 5. 3 Reported notification data (red dot) 
and the corresponding best fit (blue solid curve) 
of (τsIs + τrIr). All remaining parameter values 
assume their baseline values given in Table 5.1. 

 

Table 5. 1 Depiction and estimation of parameters 

Parameters                              Description Estimated  value        References 
 

N 
 
μ 
 

Population in 2015 
 
Birth/death rate  

 159,000,000                             [18] 
 
1

70
 yr−1                                     [19] 

 
βs 
 
βr 

Transmission rate for DS-TB 
 
Transmission rate for DR-TB 

Variable                                       -- 
 
Variable                                       -- 

 
αs    
 
αr                        

 
Progression rate from Ls to Is                                           
 
Progression rate from Lr to Ir                                                                                           

 
0.129                                         [20] 
 
0.129                                         [20] 
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where datatip and datatiq denotes the actual TB prevalence and notifications respectively and 

(Isti + Irti) and (τsIsti + τrIrti) are the corresponding model solutions at time ti respectively, n is the 

number of available data points. The associated state variable and parameters of the model (5.2) – (5.7) 

are tabulated in Table 5.1. We also plot our model predictions using the fitted parameter values and 

compare the results with the observed TB prevalence and notification cases in Bangladesh for the years 

2005 – 2015 (Figure 5.2 and Figure 5.3).   We consider the initial condition for the state variables 

are, S(0) = 152,699,417, Ls(0) = 6,121,094, Is(0) = 129,007,  Lr(0) = 49,440, Ir(0) = 1,042, 

and  R(0) = 0.    

 

5.5 Sensitivity analysis 

 

It is essential to recognize the relative importance of the various risk factors responsible for TB 

transmission. The progression of DR-TB and its prevalence determine how best to decrease TB burden. 

Here, we calculated the Partial Rank Correlation Coefficients (PRCCs), which is a global sensitivity 

analysis technique using Latin Hypercube Sampling (LHS). Specifically, a uniform distribution is 

assigned for each model parameter and a total of 10,000,000 random draws are taken for each. The 

model is then simulated for each of the 10,000,000 parameter sets and relevant outputs such as disease 

prevalence and incidence are recorded. Here the model outputs we considered were DS-TB (Is) , DR-

TB (Ir) and  total TB (Is + Ir) prevalence at equilibrium. Positive (negative) PRCC values refer to a 

positive (negative) correlation of the model parameter and model outcome. The bigger (smaller) the 

absolute value of the PRCC, the greater (lesser) the correlation of the parameter with the model outcome 

[23].  

 

ωs 
 
ωr 
 

Recovery rate for DS-TB 
 
Recovery rate for DR-TB 

0.2873                                       [21] 
 
0.12                                    assumed          
   

ρ Proportion of treated patients who amplify 0.035                                         [20]
   
 

ϕs Disease related death rate for DS-TB  0.37 over 3 years                      [20] 

ϕr Disease related death rate for DR-TB  0.37 over 3 years                      [20] 

τs Treatment rate for DS-TB  2 per year                                  [20] 

τr Treatment rate for DR-TB  0.5 per year                               [20] 

γ Rate of losing immunity 0.10                                           [22] 
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Figure 5.4 displays the correlation between the co-existent equilibrium value of DS-TB prevalence (Is) 

and corresponding parameters βs, αs, ωs, ϕs, τs, βr, αr, ωr, ϕr, τr, ρ and γ, when R0s > max [R0r, 1]. 

From Figure 5.4 it is easy to perceive that DS-TB prevalence (Is) has a positive correlation with 

βs, αs, βr, αr, and γ, implying that a positive change in any of these parameters will increase the DS-TB 

prevalence (Is). We also observe that the transmission rate βs has the highest impact on DS-TB 

prevalence (Is). Therefore, from a public health perspective it is very important to protect susceptible 

individuals from TB exposure by effectively reducing the contact rate between susceptible and 

infectious individuals. In contrast, parameters ωs, ϕs, τs, ωr, ϕr, τr and ρ have a negative correlation 

with DS-TB prevalence (Is), which means that increasing these parameters values will consequently 

decrease the Is prevalence. Our finding is consistent with observations, because if we implement 

different intervention strategies including screening of high-risk exposed individuals, preventing the 

failure of treatment in infectious individuals, latent TB treatment and active TB treatment then the 

recovery rate will be increased, and as a result DS-TB prevalence will be reduced. Further, amplification 

has a negative impact on DS-TB prevalence because some of the DS-TB infected individuals move to 

the DR-TB infected state due to incorrect treatment. Figure 5.5 represents the correlation between the 

DR-TB prevalence and corresponding model parameters βs, αs, ωs, ϕs, τs, βr, αr, ωr, ϕr, τr, ρ and γ 

when R0s > max [R0r, 1]. Parameters βs, αs, βr, αr, ρ and γ have positive PRCC values and parameters 

 ωs, ϕs, τs, ωr, ϕr and τr have negative PRCC values. Our finding is in line with reality, because due 

to poor quality treatment of DS-TB, the progression rate (αs) and transmission rate (βs) have a positive 

impact on DR-TB prevalence at the co-existent equilibrium.  

 

Figure 5.6 displays the correlation between total TB prevalence (Is + Ir) and corresponding parameters 

βs, αs, ωs, ϕs, τs, βr, αr, ωr, ϕr, τr, ρ and γ, when R0s > max [R0r, 1]. From Figure 5.6 it is easy to see 

that total TB prevalence has a positive correlation with βs, αs, βr, αrand γ, implying that positive 

changes in these parameters will increase the total TB prevalence. In contrast, parameters ωs, ϕs, τs, ωr 

, ϕr, τr and ρ have a negative correlation with total TB prevalence, which means increasing these 

parameters values will consequently decrease the total TB prevalence.   

 

Finally, Figure 5.7 represents the correlation between the DR-TB prevalence and corresponding model 

parameters βs, αs, ωs, ϕs, τs, βr, αr, ωr, ϕr, τr, ρ and γ when R0r > R0s and R0r > 1, i.e. at the mono-

existent endemic equilibrium. Parameters βs, αs, βr, αr, ρ and γ have positive PRCC values and 

parameters ωs, ϕs, τs ωr, ϕr and τr have negative PRCC values. Although the parameters values  

ωs, ϕs and τs are negative, they are negligible because in the mono-existent equilibrium, DS-TB dies 

out and the parameters have insignificant impact on DR-TB prevalence.  
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Figure 5. 4 PRCC values depicting the 
sensitivities of the model output Is with respect 
to the estimated parameters βs, αs ωs ,  ϕs, τs,
βr, αr, ωr, ϕr, τr and ρ, when R0s >
max [R0r, 1] (i.e. co-existent endemic 
equilibrium E†). 
 
 

 
Figure 5. 5 PRCC values depicting the 
sensitivities of the model output Ir with respect 
to the estimated parameters βs, αs ωs ,  ϕs, τs,
βr, αr, ωr, ϕr, τr and ρ, when  R0s >
R0r and R0s > 1 (i.e. co-existent endemic 
equilibrium E†). 
 

 
Figure 5. 6 PRCC values depicting the 
sensitivities of the model output Is + Ir with 
respect to the estimated parameters βs, αs ωs ,  
ϕs, τs, βr, αr, ωr, ϕr, τr and ρ, when  R0s >
max [R0r, 1] (i.e. co-existent endemic 
equilibrium E†). 
 

 
Figure 5. 7 PRCC values depicting the 
sensitivities of the model output Ir with respect 
to the estimated parameters βs, αs ωs ,  ϕs, τs,
βr, αr, ωr, ϕr, τr and ρ, when R0r >
R0s and R0r > 1 (i.e. mono-existent endemic 
equilibrium E#). 
 

 

From the explicit formula for R0s and R0r given in equation (5.a)-(5.b), analytical expressions for the 

sensitivity indices Υji can be derived following the method in [24] to each of the model parameters. For 

example, for βs we have: 

Υβs
R0s = 

∂R0s

∂βs
× 

βs

R0s
.    

Now using the parameter values in Table 5.1, we have the following results (Table 5.2). 
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Table 5. 2 Sensitivity indices to parameters for the model (5.2)-(5.7) 

     Parameter             Sensitivity index (R0s)                             Parameter                 Sensitivity index (R0r) 

βs                                   + 1.000                                                   βr                                       +1.000 
 

αs                                  +0.100                                                   αr                                        +0.100 
 

ωs                                  - 0.108                                                 ωr                                        - 0.120 
 

ϕs                                   - 0.139                                                 ϕr                                         - 0.368 
 

τs                                      -0.749                                                 τr                                          - 0.498 
 

In the sensitivity indices of R0s and R0r, the most sensitive parameters are the effective contact rates of 

DS-TB, βs and DR-TB, βr. Since Υβs
R0s = 1, and  Υβr

R0r = 1, increasing (or decreasing) the effective 

contact rates, βs and βr of DS-TB and DR-TB by 100%, increases (or decreases) the reproduction 

numbers R0s and R0r by 100%.  

 

5.6 Numerical simulations  

 

In this section, we carry out detailed numerical simulations (using the Matlab programming language) 

to support the analytic results and to assess the impact of amplification and the DS-TB treatment rate 

on equilibrium levels of total prevalence and DR prevalence. We used different initial conditions for 

both strains of all populations and obtained the stability results for the model equilibria, finding TB 

disease will eventually die out from the population when the condition max[R0s, R0r] < 1, holds. The 

condition R0r > max [R0s, 1] implies that DS-TB dies out but DR-TB persists in the population. 

Furthermore, the condition R0s > max [R0r, 1] implies that both DS-TB and DR-TB persist in the 

population.  

 

Figure 5.8 depicts system trajectories in the Is vs Ir plane with different initial conditions using 

parameter values for which the disease-free equilibrium is asymptotically stable. In this system both 

strains (Is and Ir) die out, this is because the basic reproduction numbers for the strains were both less 

than one (max [R0s, R0r] < 1). Figure 5.9 depicts system trajectories in the Is vs Ir plane with different 

initial conditions using parameter values for which the mono-existent equilibrium is asymptotically 

stable. In this system the DS-TB strain (Is) dies out but DR-TB strain (Ir) persists in the population 

(R0r > max [R0s, 1]).  
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Figure 5.10 depicts system trajectories in the Is vs Ir plane with different initial conditions using 

parameter values for which the co-existent equilibrium is asymptotically stable (R0s > max [R0r, 1]). 

In this system both strains (Is and Ir) persist; this is because the basic reproduction number R0s of DS-

TB is greater than one and there was an amplification pathway from DS-TB to DR-TB. Figure 5.11 

depicts the effect of amplification (ρ) on the equilibrium levels of DS-TB and DR-TB prevalence 

showing that in the first region (ρ ≲ 0.6), DS-TB initially dominated and DR-TB also rose but for ρ ≳

0.6, the DR strain becomes dominant courtesy of the amplification pathway.  

 

Figure 5.12 and Figure 5.13 show the effect of the DS-TB treatment rate (τs) and amplification on the 

equilibrium level of total TB and DR-TB prevalence, when both infectious rates (βs, βr) are fixed. If 

we increase the proportion of amplification, the total TB and DR-TB prevalence also increase. However, 

Figure 5.13 shows that for high amplification, DR-TB prevalence increased when the DS-TB treatment 

rate moved from zero to around 0.8 to 0.9 and then declined to a common point. For lower amplification 

values, the DR-TB proportion only increased up to the common point. This point is the DR-TB-only 

equilibrium and occurs when the effective reproduction number of DS-TB becomes lower than the basic 

reproduction ratio of DR-TB. Numerical simulations show that for sufficiently high amplification, the 

prevalence of the DR-TB will exceed that of its inherent equilibrium value (that is, the DR-only 

equilibrium) when the DS-TB is in existence and is being treated. 

 

From the above numerical analysis, it is clear that proper treatment is very important for DS-TB patients 

otherwise it will lead to the creation of new cases of DR-TB. Therefore, well-administered first-line 

treatment for DS-TB is the best way to prevent acquisition of resistance (referred to as amplification). 

Timely identification of DR-TB and adequate treatment regimens with second-line drugs administered 

are essential to prevent rises in DR-TB prevalence.  

 



 
 

142 
 

 
Figure 5. 8 Disease-free equilibrium: 
max [R0s, R0r] ≤ 1. The disease- free 
equilibrium is asymptotically stable, which 
means that the disease naturally dies out. Here 
we consider R0s = 0.4 and R0r = 0.3. 
 

 
Figure 5. 9 Mono-existent equilibrium: R0r >
max[R0s, 1]. In this case DS-TB dies out but the 
DR-TB persist in the population. Here we 
consider R0s = 0.4 and R0r = 3. 
 

 

 
Figure 5. 10 Co-existent equilibrium:  R0s >
max[R0r, 1]. In this both DS-TB and DR-TB 
persist in the population.  Here we consider R0s =
5 and R0r = 3. 
 

 
Figure 5. 11 Role of amplification. For R0r <
R0s, we have co-existence. For R0r > R0s, DS-
TB dies out but DR-TB increases with 
increasing R0r. Notice, even for R0r < R0s, the 
DR-TB prevalence can exceed the DS-TB 
prevalence. All remaining parameter values 
assume their baseline values given in Table 5.1. 
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Figure 5. 12 . Effect of DS-TB treatment rate (τs) 
on equilibrium level of total prevalence when 
both infectious rates (βs, βr) are fixed. All 
remaining parameter values assume their 
baseline values given in Table 5.1. 

 

Figure 5. 13 Effect of DS-TB treatment rate (τs) 
on equilibrium level of DR-TB prevalence when 
both infectious rates (βs, βr) are fixed. All 
remaining parameter values assume their 
baseline values given in Table 5.1. 

  

5.7 Discussion and conclusion 

 

In this paper, we formulated and analysed a novel two-strain TB model with amplification: one strain 

for DS-TB; and another for DR-TB. Here, we considered amplification as the process by which an 

individual infected with DS-TB develops infection with a resistant strain of TB, reflecting treatment 

failure for individuals on first line drug therapy. 

 

We found three equilibrium points of our proposed model; the disease-free equilibrium; the mono-

existent equilibrium, when DR-TB dominated in this system; and the co-existent equilibrium, when 

DS-TB dominated in this system. The next generation matrix method was used to calculate the basic 

reproduction number of the different TB strains, denoted by R0s for DS-TB and R0r for DR-TB. The 

value of the basic reproduction numbers, namely R0s and R0r, and biological parameters of the model, 

were estimated on the basis of available data and are tabulated in Table 5.1. Furthermore, the Routh-

Hurwitz conditions were also used to investigate the local stability of the disease-free equilibrium and 

mono-existent equilibrium. This analysis showed that stability depends on the threshold quantities, i.e. 

the basic reproduction numbers R0s and R0r. If max[R0s, R0r] < 1, the disease-free equilibrium is 

globally asymptotically stable, which means that the disease naturally dies out. If R0r > max [R0s, 1], 

DS-TB dies out but DR-TB persists in the population. If R0s > max [R0r, 1], then DS-TB and DR-TB 

both persist in the population.   

 

Our model determined that from the explicit formulae for R0s and R0r, it is clear that these basic 

reproduction numbers depend on transmission rates βs (βr), progression rates αs(αr), recovery rates 
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ωs (ωr), disease related death rates ϕs (ϕr), and treatment rates τs (τr). From the sensitivity analysis 

it is also clear that the most important parameters are transmission rates βs (βr) followed by treatment 

rates τs (τr). Therefore, to control and eradicate DS-TB and DR-TB infection, it is important to 

consider the following strategies: the first and most important strategy is to minimize the contact rates 

βs (βr) with infected individuals by decreasing the values of βs (βr); the second-most important 

strategy is to increase the treatment rates τs (τr) of infective individuals. However, in developing 

countries (e.g. Bangladesh) it is very difficult to isolate infectious individuals due to the high cost of 

long term treatment. Therefore, we propose the most feasible and optimal strategy to eliminate DS-TB 

and DR-TB in Bangladesh is to increase the treatment rates by decreasing the treatment cost so that 

poor people can obtain treatment.   
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CHAPTER 6 
 

 

Modelling drug-resistant tuberculosis amplification 

rates and intervention strategies in Bangladesh 
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Abstract 

 

Tuberculosis (TB) is the seventh leading cause of morbidity and mortality in Bangladesh. Although the 

National TB Control Program (NTP) of Bangladesh is implementing its nationwide TB control 

strategies, more specific and effective single or combination interventions are needed to control DS and 

MDR-TB. In this study, we developed a two-strain TB mathematical model with amplification and fit 

it to Bangladesh TB surveillance data to understand the transmission dynamics of DS and MDR-TB. 

Sensitivity analysis was used to identify important parameters. We evaluated the cost-effectiveness of 

varying combinations of four basic control strategies including distancing, latent case finding, case 

holding and active case finding, all within the optimal control framework. From our fitting, the model 

with different transmission rates between DS and MDR-TB best captured the Bangladesh TB reported 

case counts. The estimated basic reproduction number for DS-TB was 1.14 and for MDR-TB was 0.54, 

with an amplification rate of 0.011 per year. The sensitivity analysis also indicated that the transmission 

rates for both DS and MDR-TB had the largest influence on prevalence. To reduce the burden of TB 

(both DS and MDR), our finding suggested that a quadruple control strategy that combines distancing 

control, latent case finding, case holding and active case finding is the most cost-effective. Alternative 

strategies can be adopted to curb TB depending on availability of resources and policy makers’ 

decisions. 

 
 Keywords: MDR-TB, mathematical model, sensitivity analysis, optimal control theory and cost-

effective analysis. 
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6.1 Introduction 

 

TB is an airborne bacterial infection that causes millions of deaths worldwide each year [1]. The TB 

bacteria (Mtb) generally enter the body through the lungs, spreading to other parts of the body through 

the bloodstream, the lymphatic system, or through direct extension to additional organs (extra-

pulmonary TB) [2, 3]. Following an infectious person coughing, sneezing, speaking or singing 

thousands or tens of thousands of droplet nuclei are created [4]. These minute droplet nuclei can remain 

suspended in the air for several minutes to an hour, allowing spread to other persons through inhalation 

[4, 5].  

 
Once infected, the individual will first undergo a period without visible clinical symptoms, called latent 

TB infection (LTBI). The latent period is the timespan from the point of infection to the beginning of 

the state of infectiousness, and may last for weeks, months or the entire life of the infected individual. 

In fact, the lifetime risk of progression to active TB for a person with LTBI is around 5-15%, depending 

on the age at infection. For those who do progress from LTBI to active TB, the majority will do so 

within the first two years of initial infection [6]. 

 
In Bangladesh, TB is one of the most important public health problems. Globally, Bangladesh has the 

7th largest TB incidence in the world and it is estimated that 70,000 people die of TB and 300,000 new 

cases are generated each year [7]. Moreover, Bangladesh is ranked 10th among the 27 high MDR-TB 

burden countries. Thus, there is a great need to reduce TB incidence, prevalence, and mortality in 

Bangladesh [8].  

 
In Bangladesh, under the Ministry of Health and Family Welfare, the NTP of the Directorate General 

of Health Services (DGHS) provides nationwide TB control services. These services include screening, 

case detection through diagnosis, treatment following appropriate regimen, follow up and evaluation in 

all areas [9]. The goals of this program are to reduce illness, death and transmission of TB, and to 

achieve universal high quality service for all people with active and latent TB [10]. More than 44 partner 

organizations (NGOs) also support the NTP in all areas, including advocacy, communication, and social 

mobilization (ACSM) activities. The NTP adopted the recent WHO recommended strategies -namely 

the DOTS Strategy-1993, the Stop TB Strategy-2006, and the End TB Strategy-2015 for its TB control  

[9, 11].  

 
Mathematical modelling is one of the most important tools for understanding TB transmission dynamics 

and for predicting the epidemic trajectories [12-18]. In the last few decades, mathematicians and public 
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health professionals have developed different types of mathematical models to investigate TB disease 

dynamics in different endemic regions. For example, Kim et al. (2014) constructed a mathematical 

model for TB with exogenous reinfection and examined the current situation of active TB incidence in 

Korea, and found that case detection was the most important intervention for decreasing active TB cases 

[13]. Yang et al. (2016) developed another TB model with seasonality and determined that seasonality 

has a high impact on TB related incidence, prevalence and mortality, especially in the winter season 

[14]. Brooks et al. (2010) developed a TB mathematical model with survivorship to discover the impact 

of age structure on the prevalence of TB, the basic reproduction number, and the effect of control 

interventions [15]. Mishra and Srivastava (2014) constructed a transmission dynamic mathematical 

model to simulate the spread of TB disease in the human population of Jharkhand, India, for DS and 

MDR-TB cases with vaccination [16]. A 10-compartmental TB model constructed by Trauer et al. 

(2014) modelled limited vaccine effectiveness, reinfection, MDR-TB, and de novo resistance through 

treatment [17].  

 
In this study, we develop a two-strain TB model to describe the transmission dynamics of DS and MDR-

TB in Bangladesh. We perform a sensitivity analysis to explore the impact of model parameters. The 

model is calibrated to the TB Bangladesh data to estimate amplification rate and other key transmission 

parameters such as infection and treatment rates. Based on the calibration, four different control 

strategies or policies are considered. Several scenarios are examined to explore the optimal control 

policy for reducing the spread of DS and MDR-TB. The purpose of optimal control is to decrease the 

prevalence of DS and MDR-TB as well as to minimize the cost incurred in the implementation of control 

procedures. To the author’s best knowledge, this study is the first TB model to characterise the TB 

amplification rate in Bangladesh and use the result to identify optimal control strategies.  

 

6.2 Material and methods 

 

6.2.1 Bangladesh TB epidemiological data 

 

Bangladesh is a TB disease endemic country in South-East Asia [1]. Control of TB in such a resource-

scare country should be informed by an in-depth mathematical and epidemiological understanding of 

the disease. This study is based on the yearly reported Bangladesh DS and MDR-TB incidence data that 

was obtained from the WHO report from 2000 to 2018 [19-21]. For this data, TB incidence is separated 

into patients who had DS or MDR-TB and does not include prevalence rates for the years 2000, 2001 

and 2002. We estimated prevalence rates for these years by fitting a linear model to our prevalence data 

in GraphPad Prism [22]. 
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The Bangladesh TB data that were made available has a single distinction between DS-TB and MDR-

TB.  The DS-TB are all patients with TB strains that are fully-susceptible to all the first-line anti-TB 

drugs or have resistance to first line anti-mycobacterial agents other than rifampicin, while MDR-TB is 

regarded as at least rifampicin-resistant (on GeneXpert) and in the case of cultured isolates, is rifampicin 

and isoniazid resistant. The MDR-TB tests were conducted using GeneXpert as first line testing for 

rifampicin followed by culturing and sensitivity testing for other drugs. Extensive drug resistant (XDR) 

is a subset of MDR-TB and is not reported separately in Bangladesh. 

6.2.2 Model description  
 

We developed a deterministic transmission dynamics mathematical model of DS and MDR-TB strains 

between the following mutually exclusive compartments: susceptible individuals, S(t); those exposed 

to TB or latently infected,  L(t) , representing those that are infected and have not yet developed active 

TB; the infectious I(t), containing individuals with active TB that are infectious; the recovered 

R(t) who were previously infected and successfully recovered either naturally or through treatment. 

The subscripts s and m denote variables associated with the DS strain and MDR strain respectively. We 

assume that MDR strains were initially generated through inadequate treatment of DS-TB, i.e. 

amplification, and that these strains could subsequently be transmitted to other individuals.  

 

The total population size N(t) is assumed to be constant and well mixed: 

 

N(t) = S(t) + Ls(t) + Lm(t) + Is(t) + Im(t) + R(t).                                                                         (6.1) 

 

To ensure the population size remains constant, we replace all deaths as newborns in the susceptible 

compartment. This includes death through natural causes, which occurs in all states at the constant per-

capita rate μ, and TB-related deaths, which occur at the constant per-capita rate ϕi (i = s,m). 

Individuals may also return to the susceptible compartment following recovery at the constant per-

capita rate γ.  

 

Susceptible individuals may be infected with a circulating strain of TB at the rate λi = βiIi(t) and move 

to the corresponding latently infected compartment Li(t). Here, βi is the probability a susceptible 

individual contracts infection after contact with an infectious individuals with TB strain i (i = s,m). 

Those with latent infection progress to active TB as a result of endogenous reactivation of the latent 

bacilli at the rate αi; however, some latent individuals do not progress to the infectious class Ii(t) but 

instead undergo endogenous recovery and move directly to the recovery class R(t) at a per capital 

rate δi (i = s,m). Individuals with DS and MDR active TB,  Ii(t) may eventually be detected and 

treated at rates τs and  τm respectively. A proportion (1 − ρ)τs of the treated DS active TB individuals 
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fully recover to move into the recovered compartment R(t); whilst the complementary ρτs 

(amplification rate) develop MDR-TB due to incomplete treatment or lack of strict compliance in the 

use of first-line drugs (drugs used to treat the DS forms of TB) – and move into the compartment Im(t). 

Furthermore, individuals in the compartment Ii(t) recover naturally and move into the recovered 

class R(t) at the rate ωi. Active TB cases in Ii (i = s,m) experience disease related death at a 

rate φi(i = s,m). The model flow diagram is presented in Figure 6.1.   

 

 
Figure 6. 1 Schematic diagram of two-strain TB transmission model for Bangladesh TB setting. 

 
From the aforementioned, the DS and MDR-TB model is given by the following deterministic system 

of nonlinear ordinary differential equations: 

 
dS

dt
= μN − βsIsS − βmImS − μS + γR + φsIs + φmIm,                                                                               

dLs

dt
= βsIsS − αsLs − δsLs − μLs,                                                                                                                     

dIs

dt
= αsLs − (1 − ρ)τsIs − ρτsIs − φsIs −ωsIs − μIs,                                                                                

dLm

dt
= βmImS − αmLm − δmLm − μLm,                                                                                                          

dIm

dt
= αmLm + ρτsIs − ωmIm − φmIm − τmIm − μIm,                                                                               

dR

dt
= (1 − ρ)τsIs + τmIm + ωsIs + ωmIm + δsLs + δmLm − γR − μR.                                                  (6.2) 
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6.2.3 Model calibration and control strategies  

 

We estimated the TB model parameters from fitting different combinations of parameters in equation 

(6.2) to the actual DS and MDR-TB incidence data from Bangladesh [1, 10]. In order to parameterize 

the TB model (6.2), we obtained some of the parameter values from the literature (see Table 6.1), whilst 

others were estimated from fitting to the data. The aim is to determine the rate of amplification of MDR-

TB and its dynamics. Note that in quantifying the amplification rate, both drug-susceptible and drug-

resistant treatment rates are also determined. 

 

Hence, the models we consider are: 

 Model 1 (Drug-failure only): βs, βm = 0, τs, τm = 0 and ρ (3 parameter model). Here, we 

assumed the dynamics of MDR-TB are purely driven by drug-failure from DS-TB.  

 Model 2 (Drug-failure and equal transmission and treatment rates between DS and MDR-TB): 

βs = βm, τs = τm and ρ (3 parameter model). Here, we assumed the fitness cost of MDR-TB 

is negligible and the treatment outcome is the same for both DS and MDR-TB. 

 Model 3 (Drug-failure and unequal transmission rates between DS and MDR-TB): βs ≠

βm, τs = τm and ρ (4 parameter model). Here, we assumed the fitness cost to MDR-TB is 

significant and the treatment outcome is the same for both DS and MDR-TB. 

 Model 4 (Drug-failure and unequal treatment rates between DS and MDR-TB): βs = βm, τs ≠

 τm and ρ (4 parameter model). Here, we assumed the fitness cost to MDR-TB is negligible and 

the treatment outcome differs between DS and MDR-TB. 

 Model 5 (Drug failure and unequal transmission and treatment rates between DS and MDR-

TB): βs ≠ βm, τs ≠ τm and ρ (5 parameter model). Here, we assumed the fitness cost to MDR-

TB is significant and the treatment outcome differs between both DS and MDR-TB. 

 

With other parameters derived from the literature (see Table 6.1), the models were fitted in MATLAB 

using the multi-start algorithm with 1000 starting points [23]. The convergent results are kept and the 

confidence intervals are constructed assuming that the estimates are approximately normally 

distributed. The best model selection is done by using the associated Akaike Information Criterion 

(AIC) of the model fit [24]. Further we performed both local and global sensitivity analyses of the 

model parameters to determine the parameters that have the most influence on the equilibrium 

prevalence and basic reproduction number of TB. 

 

We further use the parameters from the best model fit from above to mitigate the spread of TB in 

Bangladesh by developing four combination strategies using these four control strategies: 
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(a)  u1(t) (the distancing control strategy) – that is the effort of preventing susceptible individuals 

from getting exposed to TB bacilli. This includes personal respiratory protection, environmental 

controls, diagnosis campaigns, and educational programs for public health. 

(b)  u2(t) (latent case finding) – which includes chemoprophylaxis treatment, high-risk exposure 

screening and other forms of latent TB treatment. WHO estimated that  treatment for LTBI can 

decrease the risk of developing active TB by at least 60% [1]. 

(c) u3(t) (case holding) – this refers to activities that ensure treatment completion to reduce relapse 

following treatment. Patients receiving treatment for either DS or MDR-TB should be 

monitored to ensure the completion of the whole course of treatment. Otherwise, TB infection 

may become resistant to existing antibiotics.  

(d) u4(t) (active case finding) – this represents the prevention of disease development with 

effective treatment for exposed persons or identification of active TB cases.  

 

The resulting optimal control problems are solved using the forward-backward sweep method [25] and 

implemented in MATLAB [23]. The outputs from this simulation are subjected to cost-effective 

analysis using the incremental cost-effectiveness ratio (ICER) to determine the intervention strategy 

that is the best value for money. 

 
Table 6. 1 Parameter description and estimates for Bangladesh TB model (6.2). 

Parameters                              Description Estimated value     References    
(range) 
 

N 
 
μ 
 

Population at year 2000 
 
Birth/Death rate  

 137,439,261                       [26] 
 
1

70
 yr−1                                 [27] 

 
βs 
 
βm 

Transmission rate for DS-TB 
 
Transmission rate for MDR-TB 

1.56 × 10−8 yr−1        data fitted     
 
5.9 × 10−9 yr−1          data fitted                  

 
αs    
 
αm                        

 
Activation rate from Ls to Is                                           
 
Activation rate from Lm to Im                                                                                           

 
0.116   yr−1                    [17, 28] 
 
0.116   yr−1                    [17, 28] 
 

ωs 
 
ωm 
 
δs 
 
δm                       

Recovery rate for DS-TB 
 
Recovery rate for MDR-TB 
 
Recovery rate from Ls to R 
 
Recovery rate from Lm to R 

0.2873  yr−1                         [29] 
 
0.12   yr−1                   assumed 
          
0.108   yr−1                estimated 
 
0.108  yr−1                 estimated 
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6.3 Results 

 

6.3.1 Bangladesh TB prevalence rates 

 

There were four TB surveillance studies conducted in Bangladesh between 1964 and 2015 [32]. Hence 

the TB prevalence rates are not available for years 2000, 2001 and 2002. To determine the TB 

prevalence rates for the missing years, we first fitted a linear model to the available TB prevalence rates 

(Figure 6.2). The slope of the linear fit was -8.51 (95 % CI: -10.40, -6.67) and the y-intercept is 481 at 

the year 1999. Using this model to predict the TB prevalence for the missing years 2000, 2001 and 

2002, we found the estimated prevalence rates per 100,000 people were 473, 464, 456. The decline in 

prevalence rate is justifiable considering that DOTS was introduced in 1993 and 100% DOTS coverage 

was reached in 2003. By 2000, the treatment success rate of the DOTS program had reached the targeted 

85% and has been maintained above 90% since 2005. In 2006, the program successfully treated 94% 

of notified new smear-positive cases and the case detection rate was about 70%. 

ρ Proportion of amplification [0 – 0.34]                  data fitted   

φs Disease-related death rate for DS-TB  0.37 over 3 years               [17] 

φm Disease-related death rate for MDR-TB  0.37 over 3 years                [17] 

τs Treatment rate for DS-TB  0.470 yr−1                  data fitted 

τm Treatment rate for MDR-TB  0.470 yr−1                  data fitted 

γ 

τ1  

τ2 

Rate of waning immunity 

Treatment rate for latent DS-TB 

Treatment rate for latent MDR-TB 

0.10  yr−1                             [30] 
 
0.2  yr−1                               [31] 
 
0.2  yr−1                               [31] 
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Figure 6. 2 Linear fit to Bangladesh TB prevalence data. 

 

 

6.3.2 TB dynamical process in Bangladesh 

 

For the two-strain TB model (6.2), the basic reproduction number is 

R0 = max (R0s, R0m),                                   (6.3) 

where R0s =
Nαsβs

(αs+δs+μ)(ωs+ϕs+τs+μ)
 and R0m =

Nαmβm

(αm+δm+μ)(ωm+ϕm+τm+μ)
. The strain-specific 

reproduction numbers R0s and R0m determine whether a specific strain will persist or die out in relation 

to the other strain. Both strains die out when both R0m < 1 and R0s < 1. However, the MDR strain will 

persist in the community even if R0m < 1 and R0s > 1  as the resistant strain is fuelled in two ways: 

transmission and amplification of the DS strain (Figure 6.3A). If R0m > 1 and R0s < 1, the DS strain 

dies out remaining the MDR strain in the community (Figure 6.3B). Similarly, the DS strain dies out if 

both strain specific basic reproduction number are greater than one and the R0m > R0s (Figure 6.3C). 

Otherwise, both are sustained (Figure 6.3D). 
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Figure 6. 3 The impacts of the strain specific basic reproduction number on the long-time dynamics of 
the TB model (6.2). 

 

With clear understanding of the dynamics of model (6.2), we fitted all the five models described in the 

model calibration section to the cumulative DS and MDR-TB incidence data in Bangladesh to estimate 

the rate of amplification and the strain specific basic reproduction numbers. According to the AIC 

metric, we found that Model 2 captures the drug-sensitive TB data better and Model 3 captures the 

drug-resistant TB data better. See Table 6.2 for the fitting results of Model 2 and 3. While Model 1 is 

a good fit for the DS-TB incidence data, it was worse for the MDR-TB incidence. Model 4 did well 

for drug-sensitive TB but failed to capture the drug-resistant TB model well, while Model 5 gave the 

same fitting results as Model 3. See the supporting information section S6.1 for the fitting results of 

Model 1 and 4. 
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Table 6. 2 Fitting results 

Parameter Est. 95% CI 

Model 2 

βs = βm 1.53 × 10−8  (1.44 × 10−8, 1.64 × 10−8)  
τs = τm 0.513 (0.491, 0.535) 
ρ 0.00005 (0, 0.008) 
ρτs 0.0003 (0, 0.00434) 
 DS MDR 

AIC 369.11  361.10 
Model 3 and Model 5 

βs 1.54 × 10−8  (1.5 × 10−8, 1.67 × 10−8)  
βm 5.9 × 10−9   (4.2 × 10−9, 7.6 × 10−9)  
τs = τm 0.470  (0.229, 0.711) 
ρ 0.024 (0.017, 0.03) 
 DS MDR 
AIC 421.74  353.38 

 

 
Figure 6. 4 A fit of model 3 to the Bangladesh TB cumulative incidence: (A) DS-TB and (B) MDR-TB. 

 
Both Models 2 and 3 can explain the dynamics of DS and MDR-TB in Bangladesh. For instance, we 

expect the same treatment rate for DS and MDR-TB and, assuming the same average number of contacts 

between DS and MDR-TB, then we also expect βs > βm due to the fitness cost associated with drug-

resistance (as postulated by Model 3) [33-35]. Similar conclusions can be reached from the estimates 

from Model 2. Model 2 (Drug-failure and equal transmission rates between DS and MDR-TB) captures 

the DS-TB better than Model 3 (Drug-failure and unequal transmission rates between DS and MDR-

TB) but since our focus is on MDR-TB, we chose model 3 which captures MDR-TB better and did not 

do worse for DS-TB (see Figure 6.4) for our further analysis. For Model 2, the estimated strain specific 

basic reproduction numbers are R0s = 1.1 and R0m = 1.34 suggesting MDR-TB will take over in the 
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long run (Figure 6.3B), and for Model 3, R0s = 1.14 and R0m = 0.54, which means that DS-TB will 

dominate and MDR-TB will persist (Figure 6.3A). For Model 3, the amplification rate was 0.011, which 

is an average of 90 days between conversions from DS-TB to MDR-TB. 

 

6.3.3 Sensitivity analysis of model parameters 

 

We found βi (the transmission rate), τi (the treatment rate) and ρ (the amplification rate) are important 

for the epidemiology of TB in Bangladesh. However, there are other key parameters that influence the 

transmission of DS and MDR-TB. The understanding of these key parameters may also provide 

alternative intervention paradigms for TB control. As demonstrated in the previous sections, the scale 

and severity of TB transmission are directly associated with the basic reproduction numbers R0s 

and R0m. Here, we estimated the sensitivity indices of the reproduction numbers R0s and R0m to the 

model parameters.  

 

The indices express how vital each parameter is to R0s and R0m, and in turn, to TB transmission 

dynamics, and allow us to identify which areas should be targeted by intervention policies. Here, we 

further computed partial rank correlation coefficients (PRCCs) which is a global sensitivity analysis 

technique using Latin Hypercube Sampling (LHS) to study the effects of other parameters that are not 

present in the basic reproduction number on the TB dynamics. Specifically, each parameter is assumed 

to be uniformly distributed and we performed 1,000,000 simulations of the TB model. Here, the model 

outputs are the both basic reproduction numbers namely R0s and R0m as well as the equilibrium DS-

TB prevalence (Is), MDR-TB prevalence (Im) and total TB prevalence (Is + Im). Positive (negative) 

PRCC values refer to a positive (negative) correlation of the model parameter and model outcome. A 

positive (negative) correlation suggest that a positive (negative) variation in the parameter will increase 

(decrease) the model outcome. The bigger (smaller) the absolute value of the PRCC, the greater (lesser) 

the correlation of the parameter with the model outcome.  

 

Figure 6.5 shows the correlation between R0s and R0m, and the corresponding model parameters. 

Parameters βs and βm have positive PRCC values, implying that a positive change of these parameters 

will increase the basic reproduction numbers R0s and R0m respectively. In contrast, parameters 

ωs, ϕs, and τs as well as ωm , ϕm , and τm have negative PRCC values, which implies that raising 

these parameters will consequently decrease R0s and R0m.  
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(A) 

 

(B) 

 
Figure 6. 5 PRCC values depicting the sensitivities of the model output: (A) R0s  with respect to the 
estimated parameters βs, αs, δs, ωs, ϕs, and τs, and (B) R0m with respect to the estimated 
parameters βm, αm,δm, ωm , ϕm, and τm. 

 

Figure 6.6 (A) shows a positive correlation between DS active TB prevalence (Is) and the model 

parameters βs, αs βm, αm and γ, for R0s > max [R0m, 1]. This implies that a positive change of these 

parameters will increase the number of people with DS active TB. In contract, parameters 

δs, ωs, ϕs, τs, δm, ωm, ϕm, τm and ρ have a negative correlation with Is. Figure 6.6 (B) represents the 

correlation between the MDR-TB prevalence (Im) and corresponding model parameters 

βs, αs, ωs, ϕs, τs, βm, αm, ωm, ϕm, τm, ρ and γ for R0s > max [R0m, 1]. The parameters βs,αs, βm, αm, 

ρ and γ  have the positive PRCC values, while the following parameters δs, ωs, ϕs, τs, δm, ωm, ϕm and 

τm have negative PRCC values. Figure 6.6 (C) represents the correlation between total TB prevalence 

(Is + Im) and the corresponding model parameters when R0s > max [R0m, 1]. We observed positive 

correlation with βs, αs, βm, αm, ρ and γ, implying an increase in the total TB prevalence with an 

increase in these parameter values. However, the parameters δs, ωs, ϕs, τs, δm, ωm, ϕm and τm have a 

negative correlation with total TB prevalence, which means increasing these parameters values will 

consequently decrease the total TB prevalence. Figure 6.6 (D) represents the correlation between the 

MDR-TB prevalence and corresponding model parameters βs, αs, ωs, ϕs, τs, βm, αm, ωm, ϕm, τm, ρ and 

γ when R0m > R0s and R0m > 1. Parameters βs, αs, βm, αm, ρ (small values not shown) and γ  have 

positive PRCC values and parameters δs, ωs, ϕs, τs, δm, ωm, ϕm and τm have negative PRCC values. 
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(A) 

 

(B) 

 

 

(C) 

 

 

(D) 

 

Figure 6. 6 PRCC values depicting the sensitivities of the model DS, MDR and total TB prevalences.   

(A) Is with respect to the estimated parameters βs, αs, ωs , δs, ϕs, τs, βm, αm, ωm, δm, ϕm,
τm and ρ, (B) Im with respect to the estimated parameters βs, αs, ωs , δs, ϕs, τs, βm, αm, ωm, 
δm, ϕm, τm and ρ, (C) (Is + Im) with respect to the estimated parameters βs, αs, ωs , δs, ϕs, τs,
βm, αm, ωm, δm, ϕm, τm and ρ, when R0s > max [R0m, 1], and (D) Im with respect to the estimated 
parameters βs, αs, ωs , δs, ϕs, τs, βm, αm, ωm, δm, ϕm, τm and ρ, when  R0m > R0s and R0m > 1. 

 

 

From the explicit formula for R0s and R0m ,the analytical expression for the sensitivity indices can be 

derived applying the method in [36] to each of the parameters, e.g. 

Υβs
R0s = 

∂R0s

∂βs
× 

βs

R0s
.                           (6.4) 

Now using the parameter values in Table 6.1 and Table 6.2, we have the following results (Table 6.3). 
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Table 6. 3 Sensitivity indices to parameters for the model (6.2) 

 Parameter             Sensitivity index (R0s)                     Parameter            Sensitivity index (R0m) 
βs                                   + 1.000                                                    βm                                        +1.000 

 
αs                                  +0. 513                                                    αm                                         +0.513 
  
 δs                                  -0.453                                                     δm                                          -0.453 
 
ωs                                  - 0.251                                                    ωm                                        - 0.123 

 
ϕs                                  - 0.324                                                    ϕm                                         - 0.379 

 
τs                                   -0.413                                                     τm                                         - 0.484 

 

In the sensitivity indices of R0s and R0m, the most sensitive parameter is the effective contact rate of 

DS-TB, βs and MDR-TB, βm. Other significant parameters are activation rates (αs and αm). The least 

sensitive parameters are the recovery rates ωs and ωm. Hence, increasing (or decreasing) the effective 

contact rates, βs and βm of DS-TB and MDR-TB by 100%, increases (or decreases) the reproduction 

numbers R0s and R0m by 100%. Similarly, increasing (or decreasing) the recovery rates ωs and ωm by 

100% decreases (or increases) R0s and R0m, by 25.1% and 12.3% respectively. 

 

6.3.4 Optimal control strategies and cost-effectiveness analysis 

 

We incorporated the earlier defined control strategies in the Bangladesh TB model (see equation (6.5) 

below) and from it derived alternative measures to reduce the burden of TB. Our goal is to maximize 

the total number of active TB cases averted (TATBA) 
dS

dt
= μN − (1 − u1(t))βsIsS − (1 − u1(t))βmImS − μS + γR + φsIs + φmIm,             

dLs

dt
= (1 − u1(t))βsIsS − (αs + (δs + u2(t)τ1) + μ)Ls,                                                                   

dIs

dt
= αsLs − (ωs + (1 + u4(t))τs + ϕs + μ)Is,   

dLm

dt
= (1 − u1(t))βmImS − (αm + (δm + u2(t)τ2) + μ)Lm,                                                                                                                                                                                      

dIm

dt
= αmLm + (ρ (1 − u3(t))) (1 + u4(t))τsIs − (ωm + τm(1 + u4(t)) + ϕm + μ)Im,                                                                                  

dR

dt
= (1 − ρ(1 − u3(t))) (1 + u4(t))τsIs + τm(1 + u4(t))Im +ωsIs + ωmIm + 

(δs + u2(t)τ1)Ls +(δm + u2(t)τ2)Lm − γR − μR.                                                         (6.5)                                                                                         

 

From equation (6.5), τ1 and τ2 are the treatment rates of the DS and MDR latent TB.  The “do-nothing-

more” control is the baseline control with zero additional cost and is used as the reference to calculate 

the total number of active TB infections averted. The objective of the optimal control strategy is to 
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minimize the cost of reducing the number of latent DS and MDR-TB (Ls and Lm), and infectious 

individuals (Is and Im). The controls range between 0 and 1, and when u1(t),  u2(t),  u3(t),  u4(t) = 0, 

that is the “do-nothing-more” control, while  u1(t),  u2(t),  u3(t),  u4(t) ≡ 1 refers to maximum effort 

of the control policy being implemented. We formulated four different control strategies with different 

alternatives and determined the cost-effective of these strategies. 

 

6.3.4.1 Single control strategy 

 

For this control strategy, we have four alternatives: 

a. u1(t), only distancing control  

b. u2(t), only latent case finding  

c. u3(t), only case holding  

d. u4(t), only active case finding. 

For each of these alternatives, the objective function is of the form: 

minimize:  J(ui) = ∫ (A1Ls + A2Is+A3Lm + A4Im +
Bi

2
ui
2)

tf
t0

dt,                                              (6.6) 

 

Here, the total cost on a finite time horizon [t0, tf] (where initial time t0 = 0, final time tf = 20 year 

period) consists of the cost induced by the DS and MDR-TB cases themselves and the cost induced by 

the efforts of the four different types of control [37, 38] strategies including distancing, latent case 

finding, case holding, and active case finding. We split the cost induced by latent DS and MDR-TB, 

∫ A1Ls(t)dt
tf
t0

 and ∫ A3Lm(t)dt
tf
t0

, proportional to the number of latently infected individuals of DS and 

MDR-TB respectively. Further, the cost induced by active DS and MDR-TB cases, ∫ A2Is(t)dt
tf
t0

 and 

∫ A4Im(t)dt
tf
t0

, proportional to the number of actively infected individuals of DS and MDR-TB 

respectively. Here, we consider the biquadratic form in the four control strategies to represent high 

expensiveness of these strategies. The cost involved in the distancing, latent case finding, case holding, 

and active case finding strategies is taken as ∫ B1

2
u1
2(t)dt, ∫

B2

2
u2
2(t)dt,

tf
t0

∫
B3

2
u3
2(t)dt,

tf
t0

 
tf
t0

and 

∫
B4

2
u4
2(t)dt

tf
t0

, respectively. It is assumed that the cost of each control strategy is nonlinear and takes a 

quadratic form, which is found to be consistent with previous works [37]. 

 

The coefficients Ai are the cost of diagnosing and treating latently infected and infectious individuals. 

Here, we consider A1 = US$18.40  per latent DS-TB case and A2 = US$119.58 per active DS-TB 
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case. Conversely, since MDR-TB treatment is far more expensive, we take A3 = US$4055 per latent 

MDR-TB case and A4 = US$3955 per active MDR-TB case [39].  

 

The coefficients Bi (i = 1,2,3,4) represent the weight constants associated to the relative costs of 

implementing the respective control strategies. The distancing programme involves education, media 

coverage, and encouraging reduction of contacts with infectious TB patients. In Bangladesh, the cost of 

telecast for 90 minutes is US$2916 and the cost per hospital bed per day is around US$19.29 [40-42]. 

There are approximately 97,800 hospital beds in Bangladesh [43] and we assume that around 432 beds 

are involved for TB transmission control protecting susceptible individuals from infected individuals. 

Thus for a year run of the distancing control programme the total cost is around B1 = US$4,103,583. 

The unit cost per diagnosis of TB is US$3804 [40] and there is an average of 1744 health workers in 

Bangladesh [44]. Hence, we have B2 = B4 = US$6,634,176. For the case holding, we assume 1000 

health workers are recruited for this purpose. The unit cost per health worker is US$3607 [40] and 

hence B3 = $3,607,000. 

 

 The supplementary materials section S6.2 shows the optimal characterization of the control problems. 

Figure 6.7 and supplementary materials section S6.2 and Figure S6.4 show the optimal solutions of the 

single control strategy. For each of these alternatives, the application of each control leads to a reduction 

in TB prevalence. However, we used cost-effectiveness analysis to determine the most cost-effective 

strategy to use in the control of TB in Bangladesh. This is performed by associating the differences 

among the costs and outcomes of each intervention; obtained by estimating the incremental cost-

effective ratio (ICER) which is defined as the extra cost per additional intervention outcome. 

Incrementally, when analyzing two or more competing intervention policies, one intervention is 

associated with the next less effective option. The ICER numerator is given by the difference in 

intervention costs, active TB cases averted costs and averted productivity losses if applicable, between 

each scenario and baseline. The ICER denominator is the total number of active TB cases averted.The 

ICER is obtained by the following formula: 

 

ICERi =
TCi

TATBAi
                                                                                                                                             (6.7) 

where,  i = list of control strategies     

 

 

 

 

 



 
 

164 
 

Table 6. 4 Incremental cost-effective ratio of single control strategy 

Single Control  Total Cost (TC) TATBA ICER 

Distancing  US$1.40 × 109  3.09 × 106    4.52 × 102  

Latent case finding US$1.92 × 109   2.25 × 106     8.56 × 102   

Case holding US$3.22 × 109  1.47 × 101  2.19 × 108  

Active case finding US$2.86 × 109  6.77 × 105  4.22 × 103  

 

From Table 6.4, the distancing strategy is less expensive and more effective than other alternatives. 

Hence, it is the preferable single control strategy. Alternatively, latent case finding is another good 

choice. 

(A) 

 

(B) 

 
Figure 6. 7 The single optimal control strategy: (A) The optimal distancing control strategy. (B) The 
benefits of using only distancing control strategy. 

 

6.3.4.2 Dual control strategy 

 

In the dual implementation scenario we have six alternative strategies: 

a. u1(t) and u2(t): distancing and latent case finding 

b. u1(t) and u3(t): distancing and case holding 

c. u1(t) and u4(t): distancing and active case finding 

d. u2(t) and u3(t), latent case finding and case holding 

e. u2(t) and u4(t), latent case finding and active case finding 

f. u3(t) and u4(t), case holding and active case finding 

The objective functional in this case is: 
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minimize: J(ui, uj) = ∫ (A1Ls + A2Is+A3Lm + A4Im +
Bi

2
ui
2 +

Bj

2
uj
2)

tf
t0

dt,      (6.8) 

where the parameters in equation (6.8) are as defined above. Each of the strategies resulted in decreasing 

the number of infected people at different levels of control (Figure 6.8 and supplementary materials 

section S6.2, Figure S6.5). The cost-effective analysis shows that a combination of the distancing and 

latent case finding is the best dual strategy (see Table 6.5).  

 
Table 6. 5 Incremental cost-effective ratio of coupled control strategy 

Dual Control  Total Cost (TC)           TATBA             ICER 

Distancing and latent case finding 

Distancing and case holding  

Distancing and active case finding  

Latent case finding and case holding 

Latent and active case finding 

Case holding and active case finding 

       US$1.22 × 109 

       US$1.40 × 109  

       US$1.40 × 109 

       US$1.92 × 109 

       US$1.82 × 109 

       US$2.85 × 109      

      3.40 × 106 

      3.09 × 106  

      3.08 × 106 

      2.25 × 106       

      2.42 × 106  

      6.77 × 105   

     3.59 × 102         

     4.52 × 102  

     4.53 × 102              

       8.55 × 102 

       7.54 × 102        

       4.21 × 103  

 

 

(A) 

 

(B) 

 
Figure 6. 8 The double optimal control strategy: (A) The Distancing and latent case finding control 
strategy. (B) The benefits of using distancing and latent case finding control strategy. 

 

  
 

6.3.4.3 Triple control strategy 

 

For the combination of three different control practices, we have four alternative strategies: 
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a. u1(t), u2(t) and u4(t): distancing, latent case finding and active case finding 

b. u1(t), u2(t) and u3(t): distancing, latent case finding and case holding 

c. u1(t), u3(t) and u4(t): distancing, case holding and active case finding 

d. u2(t), u3(t) and u4(t): latent case finding, case holding and active case finding 

Hence, the objective functional is 

minimize: J(ui, uj, uk) = ∫ (A1Ls + A2Is+A3Lm + A4Im +
Bi

2
ui
2 +

Bj

2
uj
2 +

Bk

2
uk
2)

tf
t0

dt,                   (6.9) 

As expected, each of the strategies resulted in decreasing the number of infected people at different 

levels of cost (Figure 6.9 and supplementary materials section S6.2, Figure S6.6), and we used cost-

effectiveness analysis to determine which of these strategies is the most cost-effective (Table 6.6). The 

combination of distancing, latent case finding and case holding is the best triple control strategy. 

Alternatively, distancing, latent case finding and active case finding also provides cost-effective results. 

 

Table 6. 6 Incremental cost-effectiveness ratio of each triple control strategy 

Triple Control  Total Cost (TC) TATBA ICER 

u1(t), u2(t) and u3(t) US$1.22 × 109  3.40 × 106   3.58 × 102   

u1(t), u2(t) and u4(t) US$1.22 × 109   3.39 × 106     3.58 × 102   

u1(t), u3(t) and u4(t) US$1.40 × 109  3.08 × 106  4.53 × 102   

u2(t), u3(t) and u4(t) US$1.82 × 109  2.42 × 106  7.53 × 102   

 

 

 

(A) 

 

(B) 

 
Figure 6. 9 The triple optimal control strategy: (A) The Distancing, latent case finding and case holding 
control strategy. (B) The benefits of using distancing, latent case finding and case holding control 
strategy. 
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6.3.4.4. Quadruple control strategy 

 

In this case, all the four controls are used. The objective function is: 

minimize: J(u1, u2, u3, u4) = ∫ (A1Ls + A2Is+ A3Lm + A4Im +
B1

2
u1
2 +

B2

2
u2
2 +

B3

2
u3
2 +

B4

2
u4
2)

tf
t0

dt.                                                                                                    

(6.10) 

Figure 6.10 shows the optimal controls and the benefits of this intervention method. The number of 

individuals with DS and MDR-TB reduces to zero in less than 12 years of rolling out this policy. This 

outcome is similar to the triple control strategy but comes at a cost of US$5.87 × 108  with a total of 

4.46 × 106  infections averted within 20 years. We compared all the control strategies with each other 

to determine which is the most cost-effective (Table 6.7). The quadruple control strategy (distancing, 

latent case finding, case holding and active case finding) is the best strategy. However, depending on 

availability of funding, other strategies in Table 6.7 can be considered. 

(A) 

 

(B) 

 

Figure 6. 10 (A) The optimal quadruple control strategy; and (B) its effect on TB prevalence in 
Bangladesh. 

 

Table 6. 7 Selecting best control strategy 

Best control strategy                 Total Cost (TC)            TATBA                     ICER 

u1(t), u2(t), u3(t) and u4(t)         US$5.87 × 108             4.46 × 106               1.32 × 102   

u1(t), u2(t) and u4(t)         US$1.22 × 109              3.39 × 106                 3.58 × 102   

u1 and u2(t)         US$1.22 × 109             3.40 × 106               3.59 × 102   

u1(t)          US$1.40 × 109             3.09 × 106               4.52 × 102   
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6.3.4.5 Sensitivity analysis of our best optimal control strategies 

 

We performed a sensitivity analysis on the weighted costs associated with each control from our 

selected best strategies to determine how variability in the weighted costs affects our objective 

functional and the optimal control adopted. For the single control strategies, the distancing control u1(t) 

is the best strategy for this class. Hence, we vary B1 from 1 to 107 with an equidistant step resulting 

into 1000 variates of B1. In general, if the weighted cost is smaller, the relative unit cost of using control 

is cheaper and the control is fully utilized for all the intervention period (Figure 6.11). Otherwise, the 

increase weighted cost penalizes the control and it’s proportionally applied to adjust for high cost. The 

corresponding state variables are shown in Figure 6.12. 

 

 

 

Figure 6. 11 Effects of varying the weighted cost (B1) on the distancing control (u1) (left Figure) and 
the objective functional (right Figure). 
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Figure 6. 12 The corresponding state variables associated with varying the weighted cost (B1) while 
applying the distancing control (u1). The state variables with and without controls are plotted by 
gray/blue dotted and black lines respectively. 

 

For the double control strategies, the combination of distancing u1(t) and latent case finding u2(t) is 

the best strategy for this class. Figures 6.13, 6.14, 6.15, 6.16, 6.17 and 6.18 show the combination of 

optimal control strategies including distancing and latent case finding and their effects on the state 

variables. In Figure 6.13, we considered three threshold values for B2: B2 = 105, 106 and 107, and 

varied the weighted cost B1. This increase in B2 shows little effect on the distancing control u1(t) 

(Figure 6.13) but strong effect on the latent case finding control u2(t) (Figure 6.14). In a similar way, 

when we fixed the weighted cost B1, both controls change, with reductions in the amount of control 

required at higher cost (see Figure 6.16 and 6.17). As expected higher weighted cost increases the cost 

of implementation of the controls (see the right lower quadrant of Figure 6.13 and 6.16), and the effects 

on the state variables are shown in Figure 6.15 and 6.18. 
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Figure 6. 13 Combination of distancing control (u1) and latent case finding control (u2) strategy, and 
considering distancing control (u1) strategy as a function of time and weighted cost (B1). The weighted 
cost (B2) is set to the threshold values B2=105=106=107. 

 

 

Figure 6. 14 Combination of distancing control (u1) and latent case finding control (u2) strategy, and 
considering latent case finding control (u2) strategy as a function of time and weighted cost (B1). The 
weighted cost (B2) determined by three threshold values B2=105=106=107. 
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Figure 6. 15 The corresponding state variables of the combination of distancing control (u1) and latent 
case finding control (u2) strategy and considering the weighted cost  B1 is varied and  B2=105=106=107. 
The state variables with and without controls are plotted by grays/blue dotted and black lines 
respectively. 
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Figure 6. 16 Combination of distancing control (u1) and latent case finding control (u2) strategy, and 
considering latent case finding (u2) strategy as a function of time and weighted cost (B2). The weighted 
cost (B1) determined by three threshold values B1=105=106=107. 
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Figure 6. 17 Combination of distancing control (u1) and latent case finding (u2) control strategy, and 
considering distancing control (u1) strategy as a function of time and weighted cost (B2). The weighted 
cost (B1) determined by three threshold values B1=105=106=107. 

 



 
 

174 
 

 

Figure 6. 18 The corresponding state variables of the combination of distancing control (u1) and latent 
case finding control (u2) strategy and considering the weighted cost  B2 is varied and  B1=105=106=107. 
The state variables with and without controls are plotted by grays/blue dotted and black lines 
respectively.  

 

 

We further performed similar sensitivity of the weighted costs on both triple and quadruple control 

strategies (see section S 6.3 of the supplementary materials). 
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6.4 Discussion and conclusion 

 

TB (DS and MDR) is one of the most pressing public health problems in Bangladesh [1]. Overall, the 

transmission dynamics and epidemiology of TB (DS and MDR) in Bangladesh are poorly understood. 

Bangladesh’s government initiated various intervention programs to eliminate DS and MDR-TB in the 

last decades. Although DS and MDR-TB control in Bangladesh has significantly progressed – improved 

case finding, availability of free diagnostic and treatment services, the involvement of multiple partners, 

newer diagnostic facilities, sufficient human resources, adequate capacity, and guidelines – more effort 

is required. To reduce DS and MDR-TB incidence, prevalence and prevent deaths from DS and MDR-

TB in Bangladesh, we need to identify the critical factors for developing TB (DS and MDR) disease, 

improve treatment effectiveness, and reduce failure of treatment in infectious individuals.  

 
In this paper, we presented a two-strain TB compartmental model with amplification to understand the 

transmission dynamics of DS and MDR-TB in Bangladesh. We derived the basic reproduction number 

of each TB strain, and evaluated the role of the strain-specific reproduction number on the dynamics of 

DS and MDR-TB. We proposed five different TB models and applied them to DS and MDR-TB 

incidence data in Bangladesh. The model with unequal transmission DS and MDR-TB transmission 

rates and same treatment rate captured the MDR-TB dynamics the best. With these parameters 

estimated, we calculated the basic reproduction number of TB in Bangladesh and found it to be greater 

than one. However, the uncertainty around the parameter estimates could bring the basic reproduction 

number to below one. This is reflective of the effective reproduction number indicating whether control 

measures are effective or not. Nonetheless, the estimate helps to identify interventions that may be 

effective via sensitivity analysis of the associate parameters and suggests further intervention that can 

be achieved via optimal control strategies. Both were carried out in the study with transmission rates 

influencing the TB dynamics more than any other variable. 

 
We adopted optimal control analysis via Pontryagin’s Maximal principle [45] and formulated the 

optimal strategies for controlling the DS and MDR-TB epidemic in Bangladesh. Four different control 

strategies were considered (single, dual, triple and quadruple) from combinations of distancing, latent 

case finding, case holding and active case finding controls and were examined to measure their cost-

effectiveness. 

 
Among the four single-controls, the distancing control strategy is the most cost-effective. Latent case 

finding control appears to be more effective than active case finding. The least effective is the case 

holding control. Therefore, when only one control strategy is used, our results suggest that the 
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Bangladesh government should improve distancing control interventions, reducing contact between 

infectious and susceptible people.  

 
Within the six-dual-control strategies, combinations with distancing control performed best, and adding 

latent case finding control is the most cost-effective and more rapidly reduces DS and MDR-TB 

compared to other dual control strategies. The active case finding control is more feasible than the case 

holding control in light of not only reducing the number of DS and MDR-TB cases but also reducing 

control implementation duration. In view of the difficulty of implementing distancing measures which 

involves a high social cost, pharmaceutical control which includes latent case finding, active case 

finding and case holding should also be considered. We found that latent case finding and active case 

finding control as a dual control strategy is more cost-effective than the other dual pharmaceutical 

control strategies and rapidly reduces DS and MDR-TB. Therefore, if two control strategies are 

considered, we recommended that distancing control should be included. If distancing control is 

implemented successfully, the Bangladesh government can achieve the WHO TB elimination goal with 

fewer pharmaceutical control processes. However, if distancing is infeasible, combined latent and active 

therapy is also worthwhile.  

 
Considering the triple control strategy structure, distancing with latent case finding and case holding 

control is the most cost-effective. If distancing control is difficult to implement, it is suggested that 

pharmaceutical controls including latent case finding, case holding and active case finding can be used. 

From the analysis of all the control strategies, we found that the most cost-effective control is the 

quadruple control strategy, followed by the double control strategy, triple control and single control. 

 

Optimal control strategies has been applied in other endemic settings to minimize the number of TB 

cases and the intervention implementation costs. Previous studies show that for the single control 

strategy, distancing control is the best strategy and for the double control strategy, distancing and latent 

case finding control is the best strategy to decrease the number of TB cases and intervention costs [37, 

46], which is similar to our results. However, our study shows that for the four triple-control strategies, 

distancing, latent case finding and case holding is the best option, which is similar to [46] but dissimilar 

to [37]. We can speculate as to why active case finding becomes less important in the triple control 

strategy compared with the double control strategy. It may be because case numbers decline, making 

the strategy more costly for every active case found. 

 
Our principal finding in this study is that the quadruple control strategy, which includes distancing, 

latent case finding, case holding and active case finding control together is the most impactful and cost-

effective approach for decreasing the spread of DS and MDR-TB in Bangladesh. Our findings also 
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suggests that to focus on a single control strategy will not dramatically affect the decline in DS and 

MDR-TB in Bangladesh, whereas to combine two or more control strategies simultaneously will  

decrease the burden of DS and MDR-TB in Bangladesh, which is found to be consistent with previous 

works [13, 37, 38, 47]. 

 
In Bangladesh, infectious disease surveillance does not detect all cases of tuberculosis, hence our 

estimates may be biased by underreporting. Therefore, more accurate data should be put in place to 

address concerns related to DS and MDR-TB. Accurate data leads to better estimation and conclusions 

based on these data become more robust. Hence, policy-makers need to consider the possibility of 

under-reporting bias when analyzing our findings.  
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Supplementary materials 

  

Section S6.1: Model Fit 

The fitting results of other parameter variation are shown in the table and Figures below. 

Table S6.1 Model 1 (drug-failure only): βs, βm = 0, τs, τm = 0 and ρ (3 parameter model). 

Parameter Est. CI 

βs 1.545 × 10−8  (1.481 × 10−8, 2.431 × 10−8)  
τs 0.520 (0.272, 0.400)  
ρ 0.28 (0.239, 0.4) 
ρτs 0.146 (0.079, 1.46) 
 DS MDR 

AIC 382.54  439.61 
 

 
Figure S6.1. A fit of model 1 to the Bangladesh TB cumulative incidence: (A) drug- susceptible 
(DS) TB and (B) multidrug-resistant (MDR) TB. 
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Figure S6.2. A fit of model 2 to the Bangladesh TB cumulative incidence: (A) drug- susceptible 
(DS) TB and (B) multidrug-resistant (MDR) TB. 

 

Table S6.2. Model 4 (drug failure and different treatment outcome between DS and MDR): βs =
βm, τs ≠ τm and ρ (4 parameter model).  

Parameter Est. CI 

βs = βm 1.55 × 10−8  (1.50 × 10−8, 1.60 × 10−8)  
τs 0.494  (0.266, 0.724)  
τm 0.025 (0, 0.301) 
ρ 0.075  (0.067, 0.082) 
ρτs 0.0019  (0, 0.0013) 
 DS MDR 

AIC 378.79 425.66 
 

Figure S6.3. A fit of model 4 to the Bangladesh TB cumulative incidence: (A) drug- susceptible (DS) 
TB and (B) multidrug-resistant (MDR) TB. 
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Section S 6.2: Optimal control analysis 

We use Pontryagin’s Maximum Principle on our model (6.5). The aim is to reduce the number of DS 

and MDR-TB cases and corresponding costs. Pontryagin’s Maximum Principle changes into problem 

that minimize pointwise a Hamiltonian H, with respect to the control. The Hamiltonian is given as 

H = Ls + Is + Lm + Im +
B1
2
u1
2(t) +

B2
2
u2
2(t) +

B3
2
u3
2(t)  +

B4
2
u4
2(t) 

 +λ1(μN − (1 − u1(t))βsIsS − (1 − u1(t))βmImS − μS + γR + φsIs + φmIm) 

+λ2((1 − u1(t))βsIsS − (αs + (δs + u2(t)τ1) + μ)Ls)  

+λ3(αsLs − (ωs + (1 + u4(t))τs + ϕs + μ)Is)  

+λ4((1 − u1(t))βmImS − (αm + (δm + u2(t)τ2) + μ)Lm)  

+λ5(αmLm + (ρ (1 − u3(t)))(1 + u4(t))τsIs − (ωm + τm(1 + u4(t)) + ϕm + μ)Im) 

+λ6 ((1 − ρ(1 − u3(t))) (1 + u4(t))τsIs + τm(1 + u4(t))Im + ωsIs + ωmIm + (δs +

u2(t)τ1)Ls  + (δm + u2(t)τ2)Lm − γR − μR  ). 

 

Now using Pontryagin’s maximum principle, we obtain the following theorem. 

 

Theorem: There exist optimal controls u1∗(t), u2∗(t), u3∗(t), and u4∗(t) minimizing the objective function 

Ω = {(u1, u2, u3, u4)| a ≤ ui(t) ≤ b, uiϵℒ
2(0, 20), i = 1,2,3,4}. 

Given these optimal solutions, there exist adjoint variables, λ1, λ2, λ3, λ4, λ5, and λ6 which satisfy, 

 
dλ1

dt
= λ1((1 − u1)βsIs + (1 − u1)βmIm + μ) − λ2(1 − u1)βsIs − λ4(1 − u1)βmIm, 

dλ2

dt
= −1 + λ2{αs + (δs + u2τ1) + μ} − λ3αs − λ6 (δs + u2τ1),  

dλ3
dt
= −1 + λ1((1 − u1)βsS − ϕs) − λ2(1 − u1)βsS + λ3(ωs + ϕs + τs(1 + u4) + μ) 

−λ5ρ(1 − u3)(1 + u4)τs − λ6 ((1 − ρ(1 − u3))(1 + u4)τs + ωs), 

dλ4

dt
= −1 + λ4{αm + (δm + u2τ2) + μ} − λ5αm − λ6(δm + u2τ2), 

dλ5
dt
= −1 + λ1{(1 − u1)βmS − ϕm} − λ4(1 − u1)βmS + λ5(ωm + ϕm + τm(1 + u4) + μ) 

−λ6(ωm + τm(1 + u4)), 
dλ6

dt
= λ6(γ + μ) − λ1γ. 

 

with transversality conditions λi = 0, for i = 1, 2, 3, 4, 5, 6. 

Furthermore, 
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u1
∗(t) = min(b,   max (a,   

1

B1
((λ2 − λ1)βsIsS + (λ4 − λ1)βmImS))), 

u2
∗(t) = min(b,   max (a,   

1

B2
((λ2 − λ6)τ1Ls + (λ4 − λ6)τ2Lm))), 

u3
∗(t) = min(b,   max (a,   m1 +

m1

m2
(m3 + (λ5 − λ6)τmIm + (λ5 − λ6)m1ρτsIs))), 

u4
∗(t) = min(b,   max (a,   

1

m2
(m3 + (λ5 − λ6)τmIm + (λ5 − λ6)m1ρτsIs))), 

Where, 

m1 =
(λ5−λ6)ρτsIs

B3
 , m2 = B4 − (λ5 − λ6)ρτsIsm1, and m3 = (λ3 − ρλ5 − λ6 + ρλ6)τsIs. 

 

Proof: The existence of optimal controls u1∗(t), u2∗(t), u3∗(t) and u4∗(t) such that  

J(u1
∗(t),   u2

∗(t),   u3
∗(t),   u4

∗(𝑡)) =  J(u1, u2, u3, u4)Ω
min  with state system (4) is given by the convexity 

of the objective functional integrand. By Pontryagin’s Maximum Principle, the adjoint equations and 

transversality conditions are obtained. Differentiation of Hamiltonian H with respect to the state 

variables gives the following system, 

 
dλ1

dt
= −

∂H

∂S
,  

dλ2

dt
= −

∂H

∂Ls
,  

dλ3

dt
= −

∂H

∂Is
,  

dλ4

dt
= −

∂H

∂Lm
,  

dλ5

dt
= −

∂H

∂Im
,  

dλ6

dt
= −

∂H

∂R
,  

with λi = 0, for i = 1, 2, 3, 4, 5, 6. 

 

Optimal controls u1∗(t), u2∗(t), u3∗(t) and u4∗(t) are derived by the following optimality conditions 
∂H

∂u1
= B1u1 + λ1βsIsS + λ1βmImS − λ2βsIsS − λ4βmImS = 0, 

∂H

∂u2
= B2u2 − λ2τ1Ls − λ4τ2Lm + λ6τ1Ls + λ6τ2Lm = 0, 

∂H

∂u3
= B3u3 − λ5 ρ (1 + u4)τsIs + λ6ρ (1 + u4)τsIs = 0, 

∂H

∂u4
= B4u4 − λ3τsIs + λ5ρ (1 − u3)τsIs − λ5τmIm + λ6(1 − ρ(1 − u3))(1 + u4)τsIs + λ6τmIm =

0, 
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at u1∗(t), u2∗(t), u3∗(t) and u4∗(t) on the set Ω. On this set 

 

u1
∗(t) =

(λ2−λ1)βsIsS+(λ4−λ1) βmImS

B1
, 

u2
∗(t) =

(λ2−λ6)τ1Ls+(λ4−λ6)τ2Lm

B2
, 

u3
∗(t) =

(λ5−λ6) ρ (1+u4)τsIs

B3
, 

u4
∗(t) =

(λ3−ρ (1−u3)λ5−(1−ρ(1−u3))λ6)τsIs+(λ5−λ6)τmIm

B4
. 

 
The Figures below shows the optimal solutions of our control strategies. 
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(E) 

 

(F) 

 

Figure S6.4. The single optimal control strategy: (A) The optimal latent case finding control. (B) 
The corresponding benefits of the latent case finding. (C) The optimal case holding strategy. (D) 
The corresponding effects of using the case holding strategy. (E) The optimal active case finding 
strategy. (F) The benefits of optimal active case finding. 
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(I) 

 

 

(J) 

 

Figure S6.5. The double optimal control strategy: (A) The optimal distancing and case holding 
strategies. (B) The corresponding benefits of the distancing and case holding. (C) The optimal 
distancing and active case finding strategies. (D) The corresponding effects of using the distancing 
and active case finding. (E) The optimal latent case finding and case holding strategies.  (F) The 
benefits of optimal latent case finding and case holding. (G) The optimal latent and active case 
finding strategies.  (H) The benefits of optimal latent and active case finding. (I) The optimal case 
holding and active case finding strategies.  (J) The benefits of optimal case holding and active case 
finding. 
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(A) 

 

(B) 

 

 

(C) 

 

 

 

(D) 

 

 

(E) 

 

(F) 

 

Figure S6.6. The tripled optimal control strategy: (A) The optimal distancing, latent and active case 
finding control strategy. (B) The corresponding benefits of the distancing, latent case finding and case 
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holding. (C) The optimal distancing, case holding and active case finding strategy. (D) The 
corresponding effects of using the distancing, case holding and active case finding. (E) The optimal 
latent case finding, case holding and active case finding strategy. (F) The benefits of optimal latent case 
finding, case holding and active case finding. 
 
 

Section S6.3  

 

Figure S6.7 (A). Combination of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering distancing control (u1) strategy as a function of time and weighted 
cost (B1). The weighted cost (B2 and B3) determined by three threshold values B2 = B3 = 105 =
106 = 107. 
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Figure S6.7 (B). Combination of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering latent case finding control (u2) strategy as a function of time and 
weighted cost (B1). The weighted cost (B2 and B3) determined by three threshold values B2 = B3 =
105 = 106 = 107. 
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Figure S6.7 (C). Combination of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering case holding control (u2) strategy as a function of time and weighted 
cost (B1). The weighted cost (B2 and B3) determined by three threshold values B2 = B3 = 105 =
106 = 107. 
 
 

 

Figure S6.7 (D). The corresponding state variables of the combination of distancing control (u1), latent 
case finding (u2) and case holding (u3) control strategy and considering the weighted cost  B1 is varied 
and   B2 = B3 = 105 = 106 = 107. The state variables with and without controls are plotted by grays 
and black lines respectively. 
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Figure S6.8 (A). Combination of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering latent case finding control (u2) strategy as a function of time and 
weighted cost (B2). The weighted cost (B1 and B3) determined by three threshold values B1 =
B3 = 10

5 = 106 = 107. 
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Figure S6.8 (B). Effects of combining of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering distancing control (u1) strategy as a function of time and weighted 
cost (B2). The weighted cost (B1 and B3) determined by three threshold values B1 = B3 = 105 =
106 = 107. 
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Figure S6.8 (C). Combination of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering case holding control (u3) strategy as a function of time and weighted 
cost (B2). The weighted cost (B1 and B3) determined by three threshold values B1 = B3 = 105 =
106 = 107. 

 

Figure S6.8 (D). The corresponding state variables of the combination of distancing control (u1), 
latent case finding (u2) and case holding (u3) control strategy and considering the weighted cost B2 
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is varied and  B1 = B3 = 105 = 106 = 107. The state variables with and without controls are plotted 
by grays and black lines respectively. 

 

 

Figure S6.9 (A). Combination of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering case holding control (u3) strategy as a function of time and weighted 
cost (B3). The weighted cost (B1 and B2) determined by three threshold values B1 = B2 = 105 =
106 = 107. 
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Figure S6.9 (B). Combination of distancing (u1), latent case finding (u2) and case holding (u3) 
strategy, and considering distancing control (u1) strategy as a function of time and weighted cost (B3). 
The weighted cost (B1 and B2) determined by three threshold values B1 = B2 = 105 = 106 = 107. 
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Figure S6.9 (C). Combination of distancing (u1), latent case finding (u2) and case holding 
(u3)strategy, and considering latent case finding control (u2) strategy as a function of time and 
weighted cost (B3). The weighted cost (B1 and B2) determined by three threshold values B1 = B2 =
105 = 106 = 107. 
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Figure S6.9 (D). The corresponding state variables of the combination of distancing control (u1), latent 
case finding (u2) and case holding (u3) control strategy when the weighted cost B3 is varied and 
 B1 = B2 = 10

5 = 106 = 107. The state variables with and without controls are plotted by grays and 
black lines respectively. 
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Figure S6.10 (A). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering distancing control (u1) strategy as a function of 
time and weighted cost (B1). The weighted costs (B2, B3 and B4) determined by three threshold 
values B2 = B3 = B4 = 105 = 106 = 107. 
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Figure S6.10 (B). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering latent case finding control (u2) strategy as a function of 
time and weighted cost (B1). The weighted costs (B2, B3 and B4) determined by three threshold 
values B2 = B3 = B4 = 105 = 106 = 107. 
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Figure S6.10 (C). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering case holding control (u3) strategy as a function of time 
and weighted cost (B1). The weighted costs (B2, B3 and B4) determined by three threshold 
values B2 = B3 = B4 = 105 = 106 = 107. 
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Figure S6.10 (D). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering active case finding control (u4) strategy as a 
function of time and weighted cost (B1). The weighted costs (B2, B3 and B4) determined by three 
threshold values B2 = B3 = B4 = 105 = 106 = 107. 
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Figure S6.10 (E). The corresponding state variables of the combination of distancing control (u1), latent 
case finding (u2), case holding (u3) and active case finding (u4) control strategy when the weighted 
cost B1 is varied and  B2 = B3 = B4 = 105 = 106 = 107. The state variables with and without controls 
are plotted by grays and black lines respectively. 
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Figure S6.11 (A). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering latent case finding control (u2) strategy as a 
function of time and weighted cost (B2). The weighted costs (B1, B3 and B4) determined by three 
threshold values B1 = B3 = B4 = 105 = 106 = 107.  
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Figure S6.11 (B). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering distancing control (u1) strategy as a function of time and 
weighted cost (B2). The weighted costs (B1, B3 and B4) determined by three threshold values B1 =
B3 = B4 = 10

5 = 106 = 107.  
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Figure S6.11 (C). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering case holding control (u3) strategy as a function of time 
and weighted cost (B2). The weighted costs (B1, B3 and B4) determined by three threshold 
values B1 = B3 = B4 = 105 = 106 = 107.  
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Figure S6.11 (D). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering active case finding control (u4) strategy as a 
function of time and weighted cost (B2). The weighted costs (B1, B3 and B4) determined by three 
threshold values B1 = B3 = B4 = 105 = 106 = 107.  
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Figure S6.11 (E). The corresponding state variables of the combination of distancing control (u1), latent 
case finding (u2), case holding (u3) and active case finding (u4) control strategy when the weighted 
cost B2 is varied and  B1 = B3 = B4 = 105 = 106 = 107. The state variables with and without controls 
are plotted by grays and black lines respectively. 
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Figure S6.12 (A). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering case holding control (u3) strategy as a function of 
time and weighted cost (B3). The weighted costs (B1, B2 and B4) determined by three threshold 
values B1 = B2 = B4 = 105 = 106 = 107.  
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Figure S6.12 (B). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering distancing control (u1) strategy as a function of time and 
weighted cost (B3). The weighted costs (B1, B2 and B4) determined by three threshold values B1 =
B2 = B4 = 10

5 = 106 = 107.  
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Figure S6.12 (C). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering latent case finding control (u2) strategy as a function of 
time and weighted cost (B3). The weighted costs (B1, B2 and B4) determined by three threshold 
values B1 = B2 = B4 = 105 = 106 = 107.  
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Figure S6.12 (D). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering active case finding control (u4) strategy as a 
function of time and weighted cost (B3). The weighted costs (B1, B2 and B4) determined by three 
threshold values B1 = B2 = B4 = 105 = 106 = 107.  
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Figure S6.12 (E). The corresponding state variables of the combination of distancing control (u1), latent 
case finding (u2), case holding (u3) and active case finding (u4) control strategy when the weighted 
cost B3 is varied and  B1 = B2 = B4 = 105 = 106 = 107. The state variables with and without controls 
are plotted by grays and black lines respectively. 
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Figure S6.13 (A). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering active case finding control (u1) strategy as a 
function of time and weighted cost (B4). The weighted costs (B1, B2 and B3) determined by three 
threshold values B1 = B2 = B3 = 105 = 106 = 107.  
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Figure S6.13 (B). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering distancing control (u1) strategy as a function of time and 
weighted cost (B4). The weighted costs (B1, B2 and B3) determined by three threshold values B1 =
B2 = B3 = 10

5 = 106 = 107.  
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Figure S6.13 (C). Combination of distancing (u1), latent case finding (u2), case holding (u3) and active 
case finding control strategy, and considering latent case finding control (u2) strategy as a function of 
time and weighted cost (B4). The weighted costs (B1, B2 and B3) determined by three threshold 
values B1 = B2 = B3 = 105 = 106 = 107.  
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Figure S6.13 (D). Combination of distancing (u1), latent case finding (u2), case holding (u3) and 
active case finding control strategy, and considering case holding control (u3) strategy as a function of 
time and weighted cost (B4). The weighted costs (B1, B2 and B3) determined by three threshold 
values B1 = B2 = B3 = 105 = 106 = 107.  
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Figure S6.13 (E). The corresponding state variables of the combination of distancing control (u1), latent 
case finding (u2), case holding (u3) and active case finding (u4) control strategy when the weighted 
cost B4 is varied and  B1 = B2 = B3 = 105 = 106 = 107. The state variables with and without controls 
are plotted by grays and black lines respectively. 
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Abstract 

 

Tuberculosis (TB) is a major public health problem in Bangladesh. Although the National TB control 

program (NTP) of Bangladesh is implementing a comprehensive expansion of TB control strategies, 

logistical challenges exist, and there is significant uncertainty concerning the disease burden. 

Mathematical modelling of TB is considered one of the most effective ways to understand the dynamics 

of infection transmission and allows quantification of parameters in different settings, including 

Bangladesh. In this study, we present a two-strain mathematical modelling framework to explore the 

dynamics of drug-susceptible (DS) and multidrug-resistant (MDR) TB in Bangladesh. We calibrated 

the model using DS and MDR-TB annual incidence data from Bangladesh from years 2001 to 2015. 

Further, we performed a sensitivity analysis of the model parameters and found that the contact rate of 

both strains had the largest influence on the basic reproduction numbers R0s and R0m of DS and MDR-

TB, respectively. Increasingly powerful intervention strategies were developed, with realistic impact 

and coverage determined with the help of local staff. We simulated for the period from 2020 to 2035. 

Here, we projected the DS and MDR-TB burden (as measured by the number of incident cases and 

mortality) under a range of intervention scenarios to determine which of these scenario is the most 

effective at reducing burden. Of the single-intervention strategies, enhanced case detection is the most 

effective and prompt in reducing DS and MDR-TB incidence and mortality in Bangladesh and that with 

GeneXpert testing was also highly effective in decreasing the burden of MDR-TB. Our findings also 

suggest combining additional interventions simultaneously leads to greater effectiveness, particularly 

for MDR-TB, which we estimate requires a modest investment to substantially reduce, whereas DS-TB 

requires a strong sustained investment. 

 

Keywords: Tuberculosis, mathematical model, sensitivity and scenario analysis 
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7.1 Introduction 

 
Tuberculosis (TB) kills more people each year than any other infectious disease, including HIV and 

malaria, making it one of the primary global health problems [1]. In 2019, the WHO estimated there 

were approximately 10.0 million new cases of TB, and 1.2 million died from TB disease. Most of the 

estimated cases in 2019 occurred in Asia (44%) and Africa (24%) and 87% of tuberculosis deaths 

occurred in low and middle-income countries [1]. A significant proportion of cases occurred in the 

Western Pacific region (18%), with the Eastern Mediterranean region (8%), the European region (3%) 

and the Americas region (3%) also contributing small proportions [1]. Worldwide there is an imbalance 

in case notification between males (5.6 million new cases in 2010) and females (3.2 million new cases 

in 2010), which may have many causes, including missed cases. Childhood TB is often missed, as 

classical diagnosis with sputum smear is insensitive [2].  

 

In recent years, antibiotic resistance to the most effective treatments (first-line combination therapies) 

has emerged and spread. This has led to a decline in the efficacy of antibiotics used to treat TB, with 

drug-resistant (DR) TB patients experiencing much higher failure rates. The treatment regime for DR 

patients is more expensive than it is for DS patients and the diagnosis for DR patients is difficult – 

especially in low- and middle-income countries. As a result, the DR- TB mortality rate is much higher 

than that of DS-TB [3].  

 

There are two ways DR-TB can develop: one is called amplification; and the other is primary 

transmission. Amplification develops mainly through naturally-occurring mutations and inappropriate 

treatment [4]. Once preliminary resistance has been established, acquisition of further resistance to 

supplementary drugs becomes more likely as treatment with standard regimens may be suboptimal.  

 

Primary transmission is when an individual with DR-TB directly infects a susceptible individual. 

Primary transmission was initially not expected to contribute significantly to the overall DR-TB burden 

due to the reduced fitness/transmissibility of DR organisms [5]. However, subsequent evolution and 

compensatory mutations can restore fitness in the absence or presence of antimicrobials [6]. The WHO 

recommends that timely identification of DR-TB and adequate treatment regimens with second-line 

drugs administered early in the course of the disease are essential to stop primary transmission [1].  
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Currently, multidrug-resistant (MDR) TB is emerging as the greatest threat to TB control globally [1]. 

MDR-TB is defined as TB that is resistant to both isoniazid and rifampicin (the two most effective and 

commonly used first-line drugs) with or without resistance to additional first-line drugs. Cohort studies 

within programs of TB treatment estimate that approximately 1% of a treated population who begin 

with a susceptible organism will develop MDR-TB [7]. Once these new MDR-TB cases have emerged 

in the community, they are capable of spreading the infection through primary transmission, further 

contributing to the growing pool of MDR cases. Therefore, control of MDR-TB requires the prevention 

of both acquired drug resistance and subsequent transmission as well as effective diagnosis and 

treatment for those cases that do emerge [8]. 

 

The highest burden of TB is not surprisingly in regions where health systems are weak. In 2015, the 

WHO recognised 22 high burden countries according to their actual number of TB cases [9]. Among 

these is Bangladesh, a country where poverty, high population densities, and malnutrition are 

commonplace, creating a favorable environment for TB outbreaks. Furthermore, TB treatment 

compliance is poor in Bangladesh – presumably as a result of the extensive period of therapy – leading 

to a rise in the number of  TB cases [10]. Each year it is estimated that 70,000 people die of TB and 

300,000 new cases appear in Bangladesh [2]. Prior to 2014, the case notification rates per 100,000 

population were 68 and 122 for new smear-positive cases (i.e. cases that are usually more infectious 

and have a higher mortality) and all forms of TB cases respectively, but by the end of 2014 the number 

of all types of TB cases had increased, with a substantial increase in the number of extra-pulmonary 

cases due to better case detection [10]. 

 

In Bangladesh, the NTP aims to sustain the global targets of achieving at least 70% case detection and 

85% treatment success among new smear-positive TB cases for the whole country. The overall progress 

in case finding was slow and steady until 2016 reaching a case notification rate 138 per 100,000 

population. The NTP achieved its objectives in effective treatment, case detection and overall 

management through partnership with other public and private health care providers, engaging all care 

providers (GO-NGOs) and making available free diagnostic and treatment support, particularly for DS-

TB [11]. By 2003, the treatment success rate of this program reached the targeted 85% and has been 

maintained at 90% since 2005. In 2013, the program successfully treated 94% of notified new smear-

positive cases and the case detection rate was about 58% [12]. 

 

Mathematical models can improve our understanding of the epidemiology of TB as well as those 

components that are significant to TB diagnosis, treatment, and control [13-18]. Mathematical models 

are also useful for simulating different interventions and “what if” scenarios that would otherwise be 

infeasible in clinical trials due to ethical/logistical/practical concerns. These tools inspire researchers to 
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eliminate trial and error methods and direct them towards rational, evidence-based decisions [19-24]. 

For example, Okuonghae and Ikhimwin (2015) developed a realistic compartmental transmission 

dynamic TB model [25]. According to the awareness level of the population, Okuonghae and Ikhimwin 

model divided susceptible persons into two groups; the high risk group (low level of awareness), and 

low risk group (high level of awareness), and incorporated an active case finding parameter. This study 

showed that TB treatment alone may not significantly reduce TB burden at the community level but if 

we take two or more interventions together, such as treatment, awareness and active case finding, then 

it may be possible to reduce TB burden. Kim et al. (2014) developed a mathematical model for TB with 

exogeneous reinfection and examined the current situation of active TB incidence in Korea [22]. The 

results showed that case detection was the most important intervention for decreasing active TB cases 

and demonstrated that treatment or case discovery alone will not dramatically affect the decline in active 

TB incidence. Okuonghae and Omosigho (2011) developed a qualitative and quantitative approach to 

a transmission dynamic TB mathematical model in Benin City, Nigeria [26].  This study showed that 

developing a TB awareness program and also increasing the active cough identification rate decreased 

the TB burden in the population, ultimately bringing down the basic reproduction number under unity. 

Furthermore, mutually raising the TB consciousness program and the raising or lowering of the cost of 

treatment in recognized cases can also decrease the basic reproduction number below unity [26].  

 

In a previous TB modelling study [27] we investigated the cost-effectiveness of time-varying 

combinations of different intervention strategies including distancing (which contains individual 

respiratory protection, environmental protection, diagnosis campaigns, and public awareness through 

education curricula), latent case finding (this contains chemoprophylaxis treatment, screening for high-

risk exposure and additional procedures of latent TB treatment), case holding (this includes to actions 

that guarantee treatment completion  to decrease relapse following treatment), and active case finding 

(this refers the prevention of disease progress with effective treatment for exposed individuals or 

identification of active TB cases) using an optimal control framework. This study found that for the 

single intervention strategy, the distancing control strategy is the most cost-effective for reducing the 

number of DS and MDR-TB cases in Bangladesh. However, the main finding of this study was that the 

combination of all intervention strategies is the most cost-effective.   

 

In this paper we examine less-idealized strategies developed in partnership with the Bangladeshi 

National TB program. Specifically, we project the future outcomes of four specific intervention 

strategies: increased case detection proportion, improved drug-susceptibility testing and increased DS 

and MDR-TB treatment success, to assess the effect of these responses on our proposed TB model 

during the period from 2020 to 2035. Here, we additionally considered important parameters including 



 
 

224 
 

the drug-susceptibility testing rate and reproductive fitness cost of MDR-TB that are not considered in 

the previous study [27]. 

 

Finally, in this study we considered a two-strain TB model to describe the transmission dynamics of 

DS and MDR-TB in Bangladesh. The model is calibrated to the Bangladesh demographic and DS and 

MDR-TB annual incidence data from years 2001 to 2015 to estimate the key transmission and fitness 

cost parameters. Multiple intervention strategies were considered to explore the impact of each on its 

own and when combined on DS and MDR-TB incidence and mortality. This study depicts Bangladesh-

specific elimination policies and describes the results of different levels of investment in future on TB 

control: business as usual, modest investment (low and higher), strong investment for five years and 

sustained investment.   

 

This paper is structured as follows: Section 7.2 describes the model. Model calibration and sensitivity 

analysis are performed in Sections 7.3 and 7.4, respectively. In Section 7.5, we investigate four different 

types of intervention scenarios. A brief discussion and concluding remarks finalize the paper. 

 

7.2 Model description 

 

We developed a deterministic mathematical model of the transmission of DS and MDR-TB strains 

between the following mutually exclusive compartments: susceptibles S(t), uninfected individuals who 

are susceptible to TB infection; those exposed to TB and latently infected L(t), representing those who 

are infected and have not yet developed active TB; infectives I(t), comprising individuals with active 

TB who are infectious; the recovered R(t), who were previously infected and successfully cleared the 

infection through treatment or natural recovery. We use the subscripts s and m to denote DS-TB and 

MDR-TB quantities respectively.  

 

The total population size, N(t), is given by   

 

N(t) = S(t) + Ls(t) + Is(t) + Lm(t) + Im(t) + R(t) = N.                                                                                   (7.1) 

 

N is assumed to be constant and individuals mix randomly. 

 

To assure the population size remains constant, we replace all deaths as newborns in the susceptible 

compartment. This involves death through natural causes, which occurs in all states at the constant per-

capita rate μ, and TB-related deaths, which happen at the same constant per-capita rate ϕ for individuals 

in the Is and Im compartments. Individuals may also return to the susceptible compartment following 
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recovery at the constant per-capita rate ω. Individuals enter the susceptible compartment at a constant 

rate μ through birth, where they may be infected with a circulating MTB strain at a time-dependent rate 

λi(t) = βIi(t) [27]. Here, β is the probability of a susceptible individual being infected with MTB strain 

i (i = s,m) by an untreated infectious individual per day [27]. A proportion βIs(t)S(t)  and 

(1 − c)βIm(t)S(t) of the MTB susceptible individuals move to the latently infected compartment Ls(t) 

and Lm(t) respectively. Here, c represents the MDR-TB fitness cost. We assumed that MDR-TB is 

initially generated through the inadequate treatment of DS-TB and could subsequently be transmitted 

to other individuals. 

 

A proportion of latently infected individual’s progress to active TB as a result of endogenous 

reactivation of the latent bacilli at rates α. Moreover, since latently infected individuals have acquired 

partial immunity which reduces the risk of subsequent infection, a proportion also move to the 

susceptible compartment S(t) at the constant per-capita rates ηi (i = s,m). This rate can be accelerated 

by treatment of latent TB. Some infectious TB cases will undergo spontaneous recovery at a rate γ, 

while others will die from TB-related causes at a rate, φ. The remaining individuals with drug-sensitive 

and MDR active TB Ii(t) will eventually be detected and treated at rates δ and  τi(i =

s,m) respectively. A proportion δτs of the treated DS active TB recover to move into the recovered 

compartment R(t), and a proportion of amplification (ρ) develops multi-drug resistance due to 

incomplete treatment or lack of strict compliance in the use of first-line drugs (drugs used to treat the 

DS forms of TB) to move into compartment Im(t).  

 

To confirm MDR-TB drug-susceptibility testing (κ) is required, therefore a proportion  δκτm  of MDR 

active TB cases recover to move to the recovered compartment R(t). Furthermore, a proportion 

γs and γm of individuals in compartments Is(t) and Im(t) naturally recover into R(t). A per-capita 

rate ω from the recovered compartment R(t) move into the completely susceptible compartment S(t) 

due to the loss of immunity. The model flow diagram is presented in Figure 7.1.   
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Figure 7. 1 Schematic diagram of TB model for Bangladesh TB setting. 

 

From the aforementioned, the system dynamics are governed by the following deterministic set of 

nonlinear ordinary differential equations: 

 

dS

dt
= μN − β IsS − (1 − c)β ImS − μS + ωR + ϕ Is + ϕ Im + ηsLs + ηmLm,        

dLs

dt
= β IsS − α Ls − μLs − ηsLs,                                                                                        

dIs

dt
= α Ls − γsIs − μIs − δτsIs − ϕ Is − (1 − τs)δρIs,                                               

dLm

dt
= (1 − c)β ImS − α Lm − μLm − ηmLm,                                                                 

dIm

dt
= α Lm − γ mIm − μIm + (1 − τs)δρIs − ϕ Im − δκτmIm,                                 

dR

dt
= γsIs + γmIm + δτsIs + δκτmIm − ωR − μR.                                                        

   

           (7.2) 

 
7.2.1 Basic reproduction numbers 

 

The basic reproduction number is well defined as the expected number of secondary cases created by a 

single infectious case introduced into a totally susceptible population. A disease can spread in a 

population only if the basic reproduction number is greater than one. An epidemic occurs when an 



 
 

227 
 

infection spreads through and infects a significant proportion of a population. A disease-free population 

is possible when the basic reproduction number is less than one, which means that the disease naturally 

fades-out [28, 29]. Here, we used the next-generation matrix method [30] to estimate the basic 

reproduction numbers in our proposed model. The model has four infected states: Ls, Is, Lm, Im, and two 

uninfected states: S and R. At the infection-free steady state Ls0 = Is0 = Lm0 = Im0 = R0 = 0, hence S0 =

N.  Since the total population size is constant, the only occurrence of the variable S in 

equations (Ls, Is, Lm, Im), are either directly or implicitly via N. To calculate the basic reproduction 

numbers of the DS and MDR-TB strains we follow [31] and focus on the linearized infection subsystem 

derived from equations (7.2): 

                                  

dLs

dt
= β IsS − ψsLs,                               

dIs

dt
= αLs − χsIs,                                    

dLm

dt
= (1 − c)β ImS − ψmIm,             

dIm

dt
= α Lm − χmIm + (1 − τs)δρIs 

                                                                                           (7.3) 

where ψs = α + μ + ηs, ψm = α + μ + ηm, χs = γs + μ + δτs + ϕ + (1 − τs)δρ and 

 χm = γm + μ + δκτm + ϕ. 

 

We refer to the ODEs (7.3) as the infection subsystem, as it only describes the production of new 

infected individuals and changes in the states of existing infected individuals. If we set 𝐗 =

(Ls, Is, Lm, Im)
T, where T denotes transpose, we now want to write the infection subsystem in the form  

 

�̇� = (𝑇 + Σ)𝐗.                                                                                                                                    (7.4)         

                                                  

The matrix 𝑇 corresponds to transmissions and the matrix Σ to transitions. They are obtained from 

system (7.3) by separating the transmission events from other events: if we refer to the infected states 

with indices i and j, with i, j ∈ 1,2,3,4, then entry 𝑇𝑖𝑗 is the rate at which individuals in infected state j 

give rise to individuals in infected state i in the system. For the subsystem (7.3) we obtain 

 

 

𝑇 = (

     0 βN 0 0
0 0 0 0
0
0

0
0

0
0

(1 − c)βN
0

 ) and Σ = (

−ψs 0 0
α −χs 0

0
0

0
(1 − τs)δρ

−ψm
α

  

0
0
0
−χm

). 

 

Hence, the Next-Generation Matrix K is four-dimensional, and given by (note the essential minus sign) 
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K = −𝑇Σ−1 = 𝑇(−Σ−1), 

 

=

(

 
 
 

Nαβ

ψsχs

Nβ

χs
0                  0

0 0 0                  0
Nδρ (c − 1)(τs − 1)

ψsχsχm
0

Nβδρ(c − 1)(τs − 1)

χsχm
0

−Nαβ(c − 1)

ψmχm

−Nβ(c − 1)

χm
0                 0

  

)

 
 
 

, 

  = (
A B
C D

)     

where A = (
Nαβ

ψsχs

Nβ

χs

0 0
) , B = (

0 0
0 0

) , C = (
Nδρ (c−1)(τs−1)

ψsχsχm

Nβδρ(c−1)(τs−1)

χsχm

0 0
) and 

 D = (
−Nαβ(c−1)

ψmχm

−Nβ(c−1)

χm

0 0
). 

Now  

det(K) = det(A)det (D − CA−1B), 

           = det(A)det (D).  

The dominant eigenvalue of this matrix is equal to the basic reproduction number. In this system we 

have two dominant eigenvalues, one is for DS-TB and another is for MDR-TB, where 

 

R0s =
Nαβ

ψsχs
=

N αβ

(α+μ+ηs)(γs+μ+δτs+ϕ+(1−τs)δρ)
                                                                                    (7.a) 

and  

R0m =
Nαβ(1−c)

ψmχm
=

N αβ(1−c)

(α+μ+ηm)(γm+μ+δκτm+ϕ)
.                                                                                    (7.b) 

 

The strain-specific reproduction numbers R0s and R0m regulate whether a particular strain will persist 

or fade out from the population in relation to the other strain. Figure 7.2 (A) shows that TB disease will 

eventually die out from the population when the condition max[R0s, R0m] < 1 holds. The condition 

R0m > max[R0s, 1] implies that DS-TB dies out but MDR-TB persists in the population (see Figure 

7.2 (B)). Finally, the condition R0s > max[R0m, 1] implies that both DS-TB and MDR-TB persist in 

the population (see Figure 7.2 (C)). 
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Figure 7. 2 The effects of the strain-specific basic reproduction number on the dynamics of model (7.2). 

 

7.3 Estimation of model parameters 

 

In this section, we estimated the model parameters based on DS and MDR-TB annual incidence data 

taken from the World Health Organization (WHO) report from 2001 to 2015. In order to fully 

parameterise the TB model (7.2), we obtained some of the parameter values from the literature (Table 

7.1), and the rest of the model parameters were estimated using the least-squares fitting method which 

provides a better fit of the model solution to the annual DS and MDR-TB incidence data (Figure 7.3). 

The objective function used in the parameter estimation is as follows 

θ̂ = argmin∑ (∫ (αLs(t
′))dt′

ti+1

ti
− datatip)

2
n
i=1 , and  

θ1̂ = argmin∑ (∫ ((1 − τs)δρIs(t
′) + αLm(t

′))dt′
ti+1

ti
− datatiq)

2
n
i=1 ,  

(A) 

 

(B) 

 

(C) 
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(A1) 

 

(A2) 

 
Figure 7. 3 Reported Bangladesh TB annual incidence data as estimated The WHO (red dots) and the 
corresponding best fit (blue solid curve): (left) drug-susceptible (DS) TB and (right) multidrug-resistant 
(MDR) TB. 

 
 
where datatip and datatiqdenote the DS and MDR-TB annual incidence data respectively and 

∫ (αLs(t
′))dt′

ti+1

ti
 and ∫ ((1 − τs)δρIs(t

′) + αLm(t
′))dt′

ti+1

ti
 are the corresponding model solution at 

time ti respectively, while n is the number of available actual data points. The associated parameters of 

the model (7.2) are tabulated in Table 7.1.   We assume the initial condition for the state variables 

are, N(0) = 159,000,000, Is(0) = 205,899, Ls(0) =
βIs(0)N(0)

(α+ηs+μ)
= 759,908, Im(0) =  Lm(0) =

1,100, (1−c)β Im(0)N(0)
(α+ηm+μ)

= 2,273, R(0) = 0 and S(0) = N(O) − Ls(0) − Is(0) − Lm(0) − Im(0) −

R(0).     

 

 

Table 7. 1 List of parameters, symbols, plausible values, units and references. 

Parameters Name Symbol Value Units References 

Bangladesh population in 2015 N 159,000,000  [12] 
Bangladesh birth / death rate µ 1

70
 year−1 [32] 

Transmission rate β 9.424 × 10−8 year−1 fitted 
MDR-TB fitness cost c 0.45  fitted 
Progression rate from L to I α 0.40 year−1 [33] 
Natural recovery rate for DS-TB γs 0.233 year−1 [34] 
Natural recovery rate for MDR-TB γm 0.233 year−1 [34] 
TB related death rate  ϕ 0.39 year−1 [34] 
Treatment rate for DS-TB τs 0.94 year−1 [35] 
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Treatment rate for MDR-TB τm 0.78 year−1 [35] 
Proportion of amplification ρ 0.07  [36] 
Rate of losing immunity ω 0.10 year−1 [18] 
Progression rate from Ls to S ηs 3.65 year−1 [33] 
Progression rate from Lm to S ηm 3.65 year−1 [33] 
Detection rate δ 0.87 year−1 Default fitted to ensure 

proportion detected fits with 
WHO reported rates 

Drug-susceptibility testing rate κ 0.18 year−1 [35] 
 

 

Calculation of the detection rate (𝜹): 

 

We use the case detection proportion reported by [37] to inform δ. This measure is often referred to as 

the “case detection rate” (CDR) by WHO although it is actually a proportion. For the model presented 

in Figure 7.2, the CDR is given by 

CDR =
δ

γs+ϕ+μ+δ
  

which we can rearrange to obtain 

δ =
CDR

(1−CDR)
 (γs + ϕ + μ) =

0.578558011 

(1−0.578558011 )
 (0.233 + 0.39 +

1

70
) = 0.87, 

where CDR = Number of detected I

Number of I
=
209438

362000
 = 0.578558011[37]. 

 

7.4 Sensitivity analysis 

 

Sensitivity analysis is used to measure the degree of adequacy of our proposed model and determine 

which parameters impact on the model outputs [38, 39]. Here, we considered the partial rank correlation 

coefficient (PRCC), a global sensitivity analysis metric to explore the influence of model parameters 

on the model outcomes [39, 40]. To calculate the PRCC values, we employed the Latin Hypercube 

Sampling (LHS) technique (a stratified sampling without replacement technique which allows for an 

efficient analysis of parameter variation). Specifically, a uniform distribution is allocated from 0 to 3 

times the baseline value for each model parameter and sampling is performed individually. A total of 

1,000,000 simulations are implemented with sampled parameter values. In this analysis, the model 

outcomes we considered are the basic reproduction numbers R0s and R0m.  

 

Figure 7.4 and Figure 7.5 depict the correlation between the basic reproduction numbers, namely R0s 

and R0m, and the corresponding model parameters. Parameters β and α have positive PRCC values, 

implying that a positive change in these parameters (i.e. increasing transmission and progression rates) 
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will increase the basic reproduction numbers R0s and R0m. In contrast, parameters ϕ, δ, γs, τs, ρ and 

ηs have negative PRCC values with R0s, which implies that raising these parameters will consequently 

decrease R0s. Further, parameters ϕ, δ, γm, κ, τm, ηm and c have negative PRCC values with R0m, 

which implies that increasing these parameters will consequently decrease R0m. We observed that the 

effect of the transmission rate β has the largest influence on both R0s and R0m. Therefore, to control 

and eradicate DS and MDR-TB infection, it is important to minimize the transmission rate β.  

 
Figure 7. 4 PRCC values depicting the sensitivity of the drug-susceptible basic reproduction number 
R0s with respect to the parameters β, α, ϕ, δ, γs, τs, ρ and ηs. 
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Figure 7. 5 PRCC values depicting the sensitivity of the drug-resistant basic reproduction number R0m 
with respect to the parameters β, α, ϕ, δ, γm, τm,κ, ηm and c. 

 

From the explicit formulae for R0s and R0m given in equations (7.a)-(7.b), analytical expressions for 

the sensitivity indices to each of the parameters can be derived following the method in [41]. For 

example, for the parameter β we have: 

Υβ
R0s = 

∂R0s

∂β
×

β

R0s
.    

Now using the parameter values in Table 7.1, we have the following results (Table 7.2). 

Table 7. 2 Sensitivity indices to parameters for the model (7.2). 

Parameter Sensitivity index (R0s)                                                       Parameter Sensitivity index (R0m) 

β +1.000 β +1.000 

α +0.902 α +0.902 

ϕ -0.267 ϕ -0.514 

δ -0.647 δ -0.161 

γs -0.160 γm -0.307 

τs -0.521 τm -0.161 

ρ -0.003 κ -0.161 

ηs -0.898 ηm -0.898 

  c -0.818 
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In the sensitivity indices of R0s and R0m, the most sensitive parameter is the effective contact rate (β). 

Other significant parameters are the activation rate (α), and progression rates (ηs and ηm), followed 

by fitness cost (c). The least sensitive parameter is the amplification rate (ρ). Increasing (or decreasing) 

the effective contact rate, β of DS-TB and MDR-TB by 100%, increases (or decreases) the reproduction 

numbers R0s and R0m by 100%. Similarly, increasing (or decreasing) the amplification rate (ρ) of DS-

TB by 100% decreases (or increases) R0s, by 0.3%.  

 

7.5 Scenario development and analysis 

 

In this section, we developed multiple potential intervention scenarios in consultation with staff at the 

National TB Control Program (NTP) in Bangladesh. The inputs parameters in this study, over a 15-year 

time frame, included: detection proportion, DS and MDR-TB treatment rates, drug-susceptibility testing 

rate. Here, the detection proportion is improved through a combination of case finding strategies and 

improved knowledge of standard operating procedures for TB diagnosis and treatment commencement. 

Case finding is considered as identification of symptomatic patients attending a health facility, either of 

their own initiative or referred by another health facility, health worker, and community volunteer. 

These activities are assumed to progressively increase the detection proportion from baseline (58%) to 

90%.  

 

Further, DS and MDR-TB treatment rates are improved through infectious TB patients immediately 

seeking medical care and going to the health care facilities to undergo treatment. Programmatic 

management of drug-resistant TB (PMDT) is one of the most effective strategies for the control and 

prevention of DR-TB [42]. PMDT activities include proper management of contacts by ensuring that 

optimal treatment, a reliable drug supply and adequate health facilities are available [43]. Directly 

observed treatment, short-course (DOTS) is an important component in the internationally 

recommended policy package for TB control. During DOTS, a qualified practitioner observes the 

patient ingest their medication, which results in a demonstrable improvement in treatment rates and 

patient outcomes [35]. Accordingly, we assumed the DS and MDR-TB treatment rates progressively 

increased from (94% and 78%) to 100% and 95% successfully treated, respectively.  

 

The efficient control of DS-TB and MDR-TB depends on rapid diagnosis, adequate and early initiation 

of treatment with the proper regimen, appropriate contact tracing, addressing adverse drug reaction and 

infection control measures in both facilities and communities. For diagnosis of MDR-TB, drug 

susceptibility testing plays a vital role which is also recommended by global policy makers through the 
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WHO’s End TB Strategy. In Bangladesh, around 18% of facilities are covered with drug-susceptibility 

testing by Gene Xpert [35]. Therefore, we assumed the drug-susceptibility testing rate, which includes 

the criteria for resistance, progressively increasing from baseline (18%) to 100% successfully tested.  

Each category of intervention could involve several potential specific activities. For example, DS and 

MDR-TB treatments could include training of doctors, nurse and pharmacists on TB guidelines, 

monitoring and managing of supplies of high quality drugs. For each of these alternatives, the 

application of each separate intervention leads to a reduction in DS and MDR-TB incidence and 

mortality.  

 

Here, we analyzed multiple potential intervention scenarios including four-single, and their 

combination (baseline, modest investment 1, modest investment 2, strong investment 5 years then revert 

to baseline, and strong sustained investment) to assess the effect of these responses on DS and MDR-

TB incidence and mortality during the time period from 2020 to 2035. These scenarios are detailed in 

Table 7.3 and 7.4. We parameterized these proposed responses to our model structure to assess the 

effect of these responses during the time period 2020 – 2035.  

 

Single intervention strategy simulates a continuation from the baseline values of each intervention to 

the high expected quantity of the programmatic situation during the time period 2020-2035. During this 

time, we simulated four separate intervention strategies: increasing the detection proportion (from 

baseline of 58% incrementally up to 90%); increasing both the DS and MDR-TB treatment rates (from 

baselines of 94% to 100% and from baseline of 78% to 95% respectively); and improving the drug-

susceptibility testing rate (from 18% to 100%). We implement these as single interventions and compare 

them with baseline (see Table 7.3 and Figures 7.6 and 7.7) to explore the impact of each intervention 

on DS and MDR-TB incidence and mortality. 

 

Results from the first tier of single intervention strategies are presented in Table 7.3, Figure 7.6 and 

Figure 7.7. From this tier, we observed that amongst the four single interventions considered increasing 

the detection proportion is more effective than any other single intervention at reducing DS and MDR-

TB incidence and mortality (see Table 7.3 and Figures 7.6 (A1 and A2) and Figure 7.7 (A1 and A2)) in 

Bangladesh. Alternatively, the DS-TB treatment rate is another option for reducing DS-TB but has 

adverse impact on MDR-TB. Similarly, increasing the drug-susceptibility testing rate is additional 

choice for reducing MDR-TB. 
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(A1) 

 
 

(A2) 

 
 

(B1)  

 

(B2) 

 
(C1) 

 
 

(C2) 
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(D1) 

 

(D2) 

 

Figure 7. 6 Impact of the four single intervention strategies on TB burden. 
Left-hand side DS-TB annual incidence and right-hand side MDR-TB annual incidence: (A1 & A2) 
varying detection rate, (B1 & B2) varying DS-TB treatment rate, (C1 & C2) varying MDR-TB treatment 
rate, and (D1 & D2) varying Drug-susceptibility testing rate. 
 
 

(A1) 

 
 

(A2) 

 

 
(B1) 

 

 
(B2) 
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(C1) 

 
 

(C2) 

 
 

(D1) 

 

(D2) 

 
 

Figure 7. 7  Impact of the four single intervention strategies on TB mortality. 
 Left-hand side DS-TB annual mortality and right-hand side MDR-TB annual mortality: (A1 & A2) 
varying detection rate, (B1 & B2) varying DS-TB treatment rate, (C1 & C2) varying MDR-TB treatment 
rate, and (D1 & D2) varying Drug-susceptibility testing rate. 
 

 

Table 7. 3 Hypothetical single intervention strategy implemented in our proposed model of DS and 
MDR-TB control in Bangladesh, for the period 2020 – 2035. 

Parameters  Parameter 
values  

Estimated 
DS-  

TB annual 
incident 
cases  

Reduction 
from 

baseline  

Estimated  
MDR-TB  

annual 
incident 

cases  

Reduction 
from 

baseline  

Estimated 
DS- TB 
annual 

mortality  

Reduction 
from baseline  

Estimated  
MDR-TB  

annual 
mortality  

Reduction 
from baseline  

Proportion 
detected per 
year (CDR)  

Baseline  
(58%)  

   

7.35 × 106  0.00 × 106  1.26 × 106  0.00 × 106  3.15 × 106  0.00 × 106  0.65 × 106  0.00 × 106  

70%  3.73 × 106  3.62 × 106  0.49 × 106  0.77 × 106  1.30 × 106  1.85 × 106  0.24 × 106  0.41 × 106  
80%  0.34 × 106  7.01 × 106  0.08 × 106  1.18 × 106  0.92 × 104  3.14 × 106  0.04 × 106  0.61 × 106  
90%  0.15 × 102  7.35 × 106  0.37 × 103  1.26 × 106  0.30 × 101  3.15 × 106  0.16 × 103  0.65 × 106  
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DS-TB  
treatment success 
proportion  

Baseline  
(94%)  

7.35 × 106  0.00 × 106  1.261608 × 
106   

0.00 × 106  3.15 × 106  0.00 × 106  0.656690 × 
106  

0.00 × 106  

96%  7.25 × 106  0.10 × 106  1.261610 
× 106  

−0.02 × 
102  

3.09 × 106  0.06 × 106  0.646691 × 
106  

−0.1 × 101  

98%  7.16 × 106  0.19 × 106  1.261612 
× 106  

−0.04 × 
102  

3.03 × 106  0.12 × 106  0.646692 × 
106  

−0.2 × 101  

100%  7.06 × 106  0.29 × 106  1.261614 
× 106  

−0.06 × 
102  

2.96 × 106  0.19 × 106  0.646693 × 
106  

−0.3 × 101  

               

MDR-TB  
treatment success 
proportion  

Baseline  
(78%)  

7.35 × 106  0.00 × 106  1.26 × 106  0.00 × 106  3.15 × 106  0.00 × 106  0.65 × 106  0.00 × 106  

85%  7.36 × 106  −0.01 × 
106  

1.13 × 106  0.13 × 106  3.16 × 106  −0.01 × 106  0.57 × 106  0.08 × 106  

90%  7.37 × 106  −0.02 × 
106  

1.04 × 106  0.22 × 106  3.17 × 106  −0.02 × 106  0.53 × 106  0.12 × 106  

95%  7.38 × 106  −0.03 × 
106  

0.95 × 106  0.31 × 106  3.17 × 106  −0.02 × 106  0.48 × 106  0.17 × 106  

                    

Proportion of 
frontline tests that 
have Drug- 
susceptibility testing    

Baseline  
(18%)  

7.35 × 106  0.00 × 106  1.26 × 106  0.00 × 106  3.15 × 106  0.00 × 106  0.65 × 106  0.00 × 106  

50%  7.49 × 106  −0.14 × 
106  

0.11 × 106  1.15 × 106  3.21 × 106  −0.06 × 106  0.05 × 106  0.60 × 106  

70%  7.54 × 106  −0.19 × 
106  

0.02 × 106  1.24 × 106  3.24 × 106  −0.09 × 106  0.94 × 104  0.64 × 106  

100%  7.58 × 106  −0.23 × 
106  

0.17 × 104  1.25 × 106  3.26 × 106  −0.11 × 106  0.73 × 103  0.65 × 106  

 

 

We next considered the combination of all four single-intervention strategies implemented 

simultaneously. Table 7.4, Figure 7.8 and Figure 7.9 present the outcomes for 5 combination strategies 

of incremental strength:  

 

Baseline control strategy consists of a combination of baseline values of the four potential interventions 

including detection proportion (58%), DS and MBD-TB treatment rates (94% and 78%), and drug-

susceptible testing rate (18%). The analysis shows that DS and MDR-TB are likely to increase with the 

current baseline control strategy.  

 

Modest investment 1 intervention strategy which includes combination of detection proportion, DS and 

MBD-TB treatment rates, drug-susceptible testing rate from 58%, 94%, 78%, and 18% (baseline) to 

70%, 96%, 85% and 50% respectively. As expected, the strategy resulted in decreasing the number of 

DS and MDR-TB incidence and mortality in Bangladesh. Here, we observed that modest investment 1 

strategy is most effective than the baseline strategy which reduce massive number of DS and MDR-TB 

incidence and mortality in Bangladesh (see Table 7.4, Figure 7.8, and Figure 7.9). Modest investment 

2 strategy represents combination of four potential interventions from baseline to 80%, 98%, 90% and 

70% respectively. Result from this strategy shows that it is most successful than the modest investment 

1 in light of not only reducing the number of DS and MDR-TB cases but also reducing the mortality.  
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The strategy strong investment 5 years and then revert to baseline strategy includes extensive expansion 

of detection proportion, DS and MBD-TB treatment rates, drug-susceptible testing rate from baseline  

to 90%, 100%, 95% and 100% respectively for 5 years and then revert to baseline.  The analysis shows 

that strong investment for 5 years then revert to baseline strategy is highly effective for MDR with 

minimal rebound after reverting to baseline, as shown in Figures 7.8 and 7.9. For DS-TB however, there 

is substantial rebound, but the strategy continues to out-perform the next best strategy (modest 

investment 2) up until 2035, as shown in Figures 7.8 and 7.9. 

 

Finally, strong sustained investment strategy incorporates extensive expansion of detection proportion, 

DS and MBD-TB treatment rates, drug-susceptible testing rate from baseline to 90%, 100%, 95% and 

100% respectively over 15 years period. The analysis shows that the strong sustained investment 

strategy is the most impactful intervention strategy, which reach the End TB targets reduces DS and 

MDR-TB cases by 90% and TB related death by 95% in Bangladesh. However, depending on funding 

availability, other scenarios in Table 7.4 can be considered.  

 

 
(A) 
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(B) 

 
 
Figure 7. 8  Combination intervention strategy and its effect on (A) DS-TB and (B) MDR-TB annual 
incidence cases in Bangladesh. 

 

 

(A) 
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(B)  

 
 
Figure 7. 9 Combination intervention strategy and its effect on (A) DS-TB and (B) MDR-TB annual 
mortality in Bangladesh. 

 
 
Table 7. 4 Hypothetical combination intervention strategy implemented in our proposed model of DS 
and MDR-TB control in Bangladesh, for the period 2020 – 2035.  

Scenarios  Parameters 
changed  

Parameter 
values  

Estimated 
DSTB 
annual 
incident 
cases  

Reduction 
from 
baseline  

Estimated  
MDR-TB  
annual 
incident 
cases  

Reduction 
from 
baseline  

Estimated 
DSTB 
annual 
mortality 

Reduction 
from 
baseline  

Estimated  
MDR-TB  
annual mortality  

Reduction 
from baseline  

Baseline  Proportion 
detected  

58%  7.35 × 106  0.00 × 106  1.26 × 106  0.00 × 106  3.15 × 106  0.00 × 106  0.65 × 106  0.00 × 106  

DS-TB success   94%  
MDR-TB  
success  

78%  

Genexpert use  18%  
Modest 
investment 
1  

Proportion 
detected  

70%  3.89 × 106  3.46 × 106  0.03 × 105  1.25 × 106  1.34 × 106  1.81 × 106  0.01 × 105  0.64 × 106  

DS-TB success   96%  
MDR-TB  
success  

85%  

Genexpert use  50%  
Modest  
investment 
2  
  
  
  

Proportion 
detected  

80%  0.34 × 106  7.01 × 106  0.003 × 
101  

1.26 × 106  0.09 × 106  3.06 × 106  0.001 × 101  0.65 × 106  
  
  
  

DS-TB success  98%  
MDR-TB  
success  

90%  

Genexpert use  70%  
Strong 
investment 
5 years 
then revert 
to baseline  

Proportion 
detected  

90%  0.26 × 106  7.09 × 106  0.002 × 
101  

1.26 × 106  0.08 × 106  3.07 × 106  0.000 × 101  0.65 × 106  

DS-TB success   100%  
MDR-TB  
success  

95%  

Genexpert use  100%  
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Strong 
sustained 
investment  

Proportion 
detected  

90%  0.69 × 101  7.35 × 106  0.000 × 
101  

1.26 × 106  0.15 × 101  3.15 × 106  0.000 × 101  0.65 × 106  

DS-TB success   100%  
MDR-TB  
success  

95%  

Genexpert use  100%  
 
 
 
 

7.6 Discussion and conclusion 

 

Bangladesh is a resource poor, high burden TB country, and the transmission dynamics and 

epidemiology of TB are poorly understood. Recently, Bangladesh introduced programmatic 

management of MDR-TB at the community level to reduce the high utilization of inpatient beds that 

resulted from MDR-TB treatment under standard regimens [44]. As the effectiveness of the community-

based short-course MDR-TB management Bangladesh regimen was found to be significantly higher 

than hospital-based management, it is important to identify the factors responsible for effective MDR-

TB management, public awareness through education, and financial support from the treatment 

program, and programmatic strengths [12]. Although TB control in Bangladesh has significantly 

progressed – improved case finding, availability of free diagnostic and treatment services, involvement 

of multiple partners, newer diagnostic facilities, sufficient human resources, adequate capacity and 

guidelines – more effort is required. 

 

In this paper, we presented a two-strain TB model with amplification: one strain for DS-TB; and another 

for MDR-TB. Here, we considered amplification as the process by which an individual infected with a 

DS-TB develops MDR-TB. We derived the basic reproduction number of each TB strain, and found 

that both basic reproduction numbers play an important role in the dynamics of DS and MDR-TB 

outbreaks. We fitted our model using DS and MDR-TB annual incidence data from the WHO 

Bangladesh reports. Sensitivity analyses were performed to determine the relative importance of several 

parameters used in our model. Our analysis led to the observations that, of the modifiable parameters, 

the treatment of latent TB parameter had the negative correlation with the basic reproduction numbers 

of DS and MDR-TB dynamics. This correlates with case detection (allowing increased treatment) 

having the greatest impact of the interventions and strongly suggests that investments in public health 

responses that focus on case detection should be the foundation of improved TB control. 

 

As a single-intervention, increasing the detection proportion was found to be the most effective strategy 

for reducing the incidence and mortality of DS and MDR-TB in Bangladesh compared to other single-

intervention strategies, which is consistent with previous studies [25, 26]. For DS-TB the second most 

effective intervention was improve treatment success rate, which reduces both mortality of the treated 
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individual and transmission.[1]. For MDR-TB, drug-susceptibility testing is the second most important 

intervention as it has a multiplicative effect with case detection in leading to proper implementation of 

effective second-line treatment [45].   

 

Traditional wisdom is that more treatment of drug-susceptible TB will translate to better outcomes for 

DS and MDR-TB. However, one condition in our study is that increased treatment does not mean 

improved treatment, so our model predicts that the risk of MDR acquisition for a given treatment course 

remains the same. If the MDR strain has reasonable fitness, such that the basic reproduction number is 

greater than one (R0 > 1), reducing the DS strain will increase the ecological niche for the resistant 

strain. Further, even if the MDR strain is not as fit as the DS strain, if treatment does not achieve and 

R_effective less than one for the DS strain, the MDR strain will increase through treatment with 

amplification. On the other hand, if R0 is less than one for the MDR strain, then if treatment of DS-TB 

achieves and R_effective less than one, treatment (DOTS) for DS-TB will also eliminate MDR-TB.  

  

We acknowledged the importance of comprehensive countrywide programmatic improvements to TB 

control in Bangladesh. Without such extensive approaches, further rises in the overall disease burden 

are expected, and the problem of drug resistance may possibly expand.  Five scenarios all incorporating 

improved case notification, treatment success rates and drug susceptibility testing were examined to 

measure the effectiveness of these strategies.   

 

From the analysis of implementing combination intervention strategies simultaneously, we found that 

a modest investment (detection proportion 70%, DS-TB treatment success 96%, MDR-TB treatment 

success 85%, drug-susceptibility testing 50%)  is sufficient to substantially reduce MDR TB, whereas 

a strong sustained investment strategy (detection proportion 90%, DS-TB treatment 100%, MDR-TB 

treatment 95%, drug-susceptibility testing 100%) is required to substantially reduce DS-TB. For MDR-

TB, implementing multiple interventions simultaneously is the more effective than single intervention 

strategies, whereas for DS-TB which already has a very high treatment success rate in Bangladesh, case 

detection remains the key intervention. 

 

Our strategies describe a variety of potential responses, extending from inaction to extremely ambitious 

multifactorial strategies. Despite the challenges faced in delivering effective programmatic TB control 

in Bangladesh, we believe it is essential to consider such responses because previous programs have 

demonstrated substantial public health gains in resource-limited settings such as Bangladesh [1]. 

Although the extensive approaches are not presently recommended by the World Health Organization 

or Bangladesh National TB Control Program, our modelling suggests that the high burden of DS and 

MDR-TB in Bangladesh is likely to increase with the existing, DOTS-based programmatic response. 
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CHAPTER 8 

 
Discussion and future directions 
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8.1 Discussion of main findings 

 

The research presented in this thesis encompasses our knowledge of TB epidemiology as well as those 

components that are significant for TB outbreaks in Bangladesh. This enables us to gain a better 

understanding of TB transmission and risk factors, and fill the gap of knowledge from prior studies. 

 

Although TB has been endemic in Bangladesh since the first recorded epidemic in 1965, little has been 

published on its transmission dynamics and epidemiology; also, no mathematical model structure exists 

that has been specifically tailored to Bangladesh. The narrative review in Chapter 2 discussed TB’s 

emergence and establishment as endemic, and the risk factors for transmission, including health system 

factors, environmental factors, host factors, and sociological factors. An extensive literature search was 

performed to understand the relative influence of weather variables on the incidence of TB, indicating 

that projected changes in weather variables increase or decrease the potential for TB epidemics and 

therefore, must be considered in predicting the impact of future changes in weather variables on TB 

transmission. The literature review also demonstrated the extent of uncertainty about the optimal 

method for structuring TB models, and highlighted the wide variation in approaches to assembling and 

parameterizing compartments to simulate some of the most fundamental aspects of TB epidemiology, 

thereby clearly reflecting the lack of understanding of these processes at the mathematical, biological, 

clinical and epidemiological levels.  

 

In addressing structural uncertainty, the original approach to model construction relied primarily on a 

review of published literature, both previously published models and epidemiological data. Although 

the first iteration of the model was constructed within the timeframe and with programmatic 

applications in mind, the fundamental structure was retained throughout this research. The model has 

increased markedly in complexity, with elaborations undertaken primarily in order to permit simulation 

of interventions acting on sub-populations of compartments included within the original two-strain six 

compartment model. However, both simple and complex structure models have advantages and 

disadvantages. Complex models may have the potential to more accurately simulate reality and so have 

greater predictive power. Complex models also require more parameters to be estimated and greater 

programming coding skill to minimize the risk of errors. Simple models conversely have the advantage 

of being understood by a broader readership. A simple model with definite conclusions has the potential 

to make a strong and clear point to readers, and allow for analytical expressions to visualize the impact 

of parameters on model outputs. Thus, chapter 2 offered a comprehensive understanding of the simple 

and complex TB models as well as history and epidemiology of TB in developed and developing 

countries, particularly in Bangladesh, laying down the foundations for the modelling which follows.  
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In chapter 3, a generalized linear Poisson regression model was used to investigate the association 

between weather factors and the number of TB cases reported to the Bangladesh NTP between 2007 

and 2012 in three known endemic districts of Rajshahi, Bangladesh. The model was implemented using 

a frequentist approach with the aim of identifying weather variables, including temperature, humidity 

and rainfall, which significantly influence TB transmission in Rajshahi. A wide range of diagnostic tests 

were performed to confirm the goodness of fit of the model. The model revealed that the number of TB 

cases is strongly associated with temperature, humidity and rainfall in Rajshahi province, Bangladesh. 

Low temperature, low humidity and low rainfall are all associated with higher TB incidence. 

Temperature and rainfall effects were delayed and increased over the lag period while humidity was 

immediate and the risk decreased with longer exposure. This suggests that temperature may govern 

transmission, and humidity may govern reactivation (incubation period). The significant positive 

influence of temperature, humidity and rainfall on TB incidence in Rajshahi province found in our data 

analysis in this thesis is consistent with the findings of other studies [1-3]. 

 

In chapter 4, I developed a two-strain disease model with amplification to simulate the prevalence of 

Drug-susceptible (DS) and Drug-resistant (DR) disease strains. Here, I performed a dynamic analysis 

of the resulting system and found that the model contained three equilibrium points: a disease-free 

equilibrium; a mono-existent equilibrium with respect to the DR strain; and a co-existent equilibrium, 

where both the DS and DR strains persisted. I found two basic reproduction numbers: one associated 

with the DS strain and the other, the DR strain, and found that they both played an important role in the 

outbreak of disease. Global sensitivity analysis was performed, finding that the contact rate of both 

strains had the largest influence on disease prevalence. I also investigated the impact of the 

amplification and treatment rates of both strains and found that poor quality treatment (drug) makes 

coexistence more likely and increases the relative abundance of resistant infections. 

 

The two-strain TB model developed in Chapter 5, and extended in Chapters 6 and 7 combined 

prevalence, notification, DS, MDR and total TB incidence data to create models accounting for TB 

transmission dynamics over time. 

 

In chapter 5, I developed a parsimonious mathematical model of TB epidemiology dynamics, 

particularly the prolonged latency period and possibility of fast and slow progression to active TB. The 

model was then extended to incorporate two-circulating TB strains: a DS-TB strain and a DR-TB strain. 

I then incorporated the amplification pathway from DS-TB to DR-TB, and investigated the role of 

amplification in the Bangladesh TB model. Amplification develops mainly through the choice of 

naturally occurring mutations selected by inappropriate treatment. When preliminary resistance has 

established, acquisition of resistance to supplementary drugs is more likely, making treatment with 

usual regimens suboptimal [4]. Therefore, in this mathematical model, I considered the emergence of 
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DR-TB in response to inappropriate and poorly administered treatment, and then assessed the 

relationship between the rate of amplification and the rate of treatment of DS-TB.  

 

Following this analysis, I also performed a rigorous analytical analysis of the system properties and 

solutions to predict both the early- and late-time behaviour of the model. After deriving the basic 

reproduction numbers for DS-TB (R0s) and DR-TB (R0r) using the next generation matrix technique, 

I investigated the impact of their relative magnitudes on the infected populations of both DS-TB and 

DR-TB. DS-TB and DR-TB can spread in a population only if max[R0s, R0r] > 1 (epidemic), but are 

maintained in a population without the need for external inputs when max[R0s, R0r] = 1 (endemic). A 

disease-free population will result when both basic reproduction numbers are max[R0s, R0r] < 1 , 

which means that the disease naturally dies out. Furthermore, if  R0r > max[R0s, 1], then DS-TB dies 

out but DR-TB persists in the population, and if  R0s > max[R0r, 1], then both DS-TB and DR-TB 

persist in the population. Therefore, in order to control transmission, the period of infectiousness needs 

to be reduced until max[R0s, R0r] < 1. I also performed a sensitivity analysis of the model outcomes 

and parameters, and found that the contact rate of both strains had the largest influence on DS and DR-

TB prevalence. The information that I generated from this Chapter can be used to advise the Bangladesh 

NTP of the programmatic effect of treatment regimens.   

 

In Chapter 6, I extended the previous two-strain TB model structure and allowed latently infected people 

to move directly to the recovered classes due to prophylactic treatment. In this model, I integrated four 

different types of control strategies: distancing, latent case finding, case holding and active case finding, 

and their economical cost into the mathematical framework of my transmission dynamic TB model. 

The economical compartment assessed the financial consequences of different interventions and 

explored their impact on the spatial spread of DS and MDR-TB in Bangladesh. Furthermore, I 

established a relationship between different intervention packages combining currently recommended 

and other available interventions to predict how the spread of DS and MDR-TB can be avoided or 

delayed.  

 

The economical compartment also evaluated the economic effect on both patients and the health system 

considering factors such as schedule shortening for first line TB treatment and examining the unit cost 

for interventions. The evaluation found that shorter treatment duration would result in financial gains 

from a patient perspective, and the possible financial gains for health facilities may also be significant 

but would be framework-specific, and dependent on the proper pricing of any new schedule. The finding 

suggests that among the four-single intervention strategies, the distancing control strategy is the most 

cost-effective. Within the six-dual control strategies with distancing control, the latent case finding 

control strategy is the most cost-effective, and more rapidly reduces DS and MDR-TB compared to 
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other dual control strategies. I observed that why active case finding becomes less important with 

distancing compared with latent case finding because case numbers decline, making the strategy more 

costly for every active case found. Considering the triple control strategy structure, distancing with 

latent case finding and case holding control is the most cost-effective. From the analysis of all the 

control strategies, I found that the most cost-effective control is the quadruple control strategy which 

includes distancing, latent case finding, case holding and active case finding, triple control strategy is 

similar to dual control strategy and followed by single control. Results also suggest that focusing on a 

single control strategy does not dramatically affect the decline in DS and MDR-TB in Bangladesh 

instead, combining two or more control strategies simultaneously is the most effective way to decrease 

the burden of DS and MDR-TB in Bangladesh, which is consistent with previous works [5-8]. 

 

In Chapter 7, I extended the two-strain TB model from the previous model structure.  I allowed the flow 

from the latently infected people to move to the susceptible compartment due to the loss of immunity. 

I calibrated the model with DS and MDR-TB annual incidence data to estimate the model parameters’ 

value. I considered four specific intervention scenarios: enhancing the detection proportion, drug-

susceptibility testing rate, and the DS and MDR-TB treatment rates and their combination, to assess the 

effect of these responses on my TB model during the period from 2020 to 2035. To explore the impact 

of each intervention of TB incidence and mortality in Bangladesh, four-single intervention strategies, 

increasing an individual’s intervention from baseline to comprehensive expansion of high expected 

value. The finding suggests that the detection proportion is the most important intervention for 

decreasing DS and MDR-TB incidence and mortality in Bangladesh. However, focussing on DS and 

MDR-TB treatment rates alone will not dramatically affect the decline in DS and MDR-TB incidence 

and mortality in Bangladesh. Taking more key parameters simultaneously is the most effective way to 

reduce the burden of DS and MDR-TB incidence and mortality in Bangladesh. 

 

However, scenarios illustrated a family of possible outcomes, increasing from inaction to remarkably 

ambitious multifactorial approaches. Although there are difficulties in delivering practical 

programmatic TB control in Bangladesh, we consider it imperative to recognize such approaches. This 

is because extreme impacts from mere public health interventions have earlier been shown in resource-

limited contexts in Bangladesh when performed at a community level, and because it will help in future 

ambitious programs. Although the widespread strategies are not immediately recommended by the 

WHO or Bangladesh NTP, and improvements in achievement and cure rates have not been perceived, 

this modelling implies that the high burden of DS and MDR-TB incidence and mortality in Bangladesh 

likely to increase with the current, DOTS based programmatic response. 
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8.2 Limitations 

 

Several limitations of this thesis should be noticed. Data quality is one of the greatest limitations in 

analysing TB epidemiology in Bangladesh. In Chapter 3, time series analysis was based on quarterly 

time series sequences. I used quarterly data in discussing cross correlations between times series 

sequences; however, measurements based on such long time intervals may be too coarse, and therefore 

the risk of bias cannot be precluded. Further, I could only adjust for a few important weather variables 

in the model. Many other important risk factors for TB were unavailable, including human activities 

and other environmental factors. Weather variables based on fixed monitoring sites do not completely 

gauge the true weather exposure of every individual. Therefore, more accurate data and additional TB 

risk factors could be included in the models to confirm their associations and mechanism of TB cases 

and continuing climate change. However, the assessment of weather-TB associations in the North-West 

region of Bangladesh provides new insight into the burden of the disease that can be attributed to 

varying weather conditions. 

 

The two-strain SIR model presented in Chapter 4 is not based on a data series and has not been 

validated against other models. It is therefore a theoretical model with the infectious agent unspecified, 

with the aim to simulate the prevalence of DS and DR disease strains and the emergence of drug 

resistance as a result of inadequate treatment. Future studies may compare models with real data to 

explore the dynamics of DS and DR strains due to the poor quality treatment to validate the model. 

Furthermore, studies may use the general findings of the model and specify the model to additional 

infectious diseases (viral or bacterial) in future. 

 

In Chapters 5, 6 and 7, I used TB surveillance data, including prevalence, notification and incidence 

data, to estimate the model parameters. In Bangladesh, infectious disease surveillance is not fully 

recognized, lack of specificity of the TB symptoms, and limited access to health facilities, leads to 

under-reporting and misclassification of TB cases, and the risk of bias cannot be precluded. Therefore, 

more accurate data should be collected to address concerns related to TB. As our proposed intervention 

is data dependent, policy-makers need to adjust for data in adopting our proposed intervention. The 

seasonality component is not further incorporated into the mathematical models, in some cases, it may 

give a better fit to the data.  Further, in Chapters 5, 6 and 7, I also considered the population is constant 

and mixes homogeneously. That means the only way a person can leave the susceptible compartment 

is to become infected and not all infected become infectious, some recover back to susceptible class 

and then the only way a person can leave the infectious compartment is to recover and die from TB 

once a person has recovered the person received immunity and death. Additionally, I also assumed that 

all populations were equally susceptible and the death rate was equal for each population compartment.  
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8.3 Significance and implications 

 

This project analyzed TB epidemiological surveillance data from the Bangladesh NTP and WHO, and 

investigated spatiotemporal trends in TB prevalence, notification, incidence and factors driving these 

trends. I modelled TB elimination strategies by the Bangladesh NTP and predicted their efficacy, and 

also determined the optimal combinations of interventions for particular scenarios. This work was done 

in close collaboration with the NTP and has the potential to directly inform the design of TB elimination 

strategies for Bangladesh. Furthermore, this work provides a better understanding of the changing 

epidemiology of DS-TB and emerging MDR-TB epidemics, and supports future policy and planning of 

TB control efforts in Bangladesh. Finally, the flexible modelling (both transmission and economic) 

framework developed here could be adaptable to other settings that experience high burdens of DS and 

MDR-TB. 

 

8.4 Future directions 

 

More research is needed to explain the relationship between weather variables and the number of TB 

cases in Bangladesh. As mentioned earlier, only a few important weather variables were adjusted for in 

the time series analysis in the model. To capture the environmental changes in the coming years, other 

important variables, including human activity, population density and coverage of protective measures 

will need to be considered to improve the performance of predictive models. Linking more variables 

would be an important advance towards the development of an early warning system for NTP in 

Bangladesh. 

 

In this thesis, I also developed a flexible mathematical model of TB transmission dynamics, including 

many of the important features of TB epidemiology: DS-TB and acquisition of MDR-TB, through the 

two possible mechanisms of amplification and primary transmission. The model incorporated important 

drivers for resistance, such as antibiotic pressure, poor use of antibiotics, weak health systems with poor 

follow-up, and increased risk of resistance developed following incomplete antibiotic courses. In the 

future, this model will be extended by incorporating two additional modules: one for pharmacokinetic 

pharmacodynamic (PKPD) information and another for information on strain diversity with respect to 

anti-mycobacterial resistance; the latter will be informed by publications based on drug resistance 

mutations and phenotype/genotype mutations.  

 

Experimental PKPD models include in vitro and in vivo animal models. Measurement of the impact of 

a single or combinations of drugs on resistance emergence has accelerated recently with an in vitro 

model of drug delivery, the hollow glass fibre models (HFMs). The HFMs can predict the rate of 
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emergent resistant isolates with monotherapy or dual therapy under different population 

pharmacokinetic profiles. Inputs into the models are (i) the concentration of drug mimicking expected 

at the site of the TB infection under a range of different population pharmacokinetic profiles, and (ii) 

conditions at the site in terms of acidity and hypoxia mimicking abscess and different stages of TB 

infection.  Outputs of the HFM are log kill time curves and rates of emergence of phenotypic DR-TB 

isolates. These allow careful titration to expose Mtb to the actual concentration that can be delivered in 

vitro to assess the probability of the development of resistance, including mono/multi/pan-resistance. 

Outputs from the PKPD model can be fed into the transmission dynamic model in terms of the 

likelihood of the emergence of a novel strain of Mtb. How this strain adapts in terms of fitness cost, 

sequential resistance and transmission can be further modelled by considering the multiple strain model.        

 

The multiple strain model will include the diversity and evolution of TB and hence the subsequent 

disease dynamics that result through antibiotic selection pressure. This diversity will be parameterized 

through published data on frequency of resistance acquisition in clinical studies, fitness cost and 

compensatory mutations for each of the anti-mycobacterial agents being considered in the model.  This 

novel model will make a tool with three interacting models. The TB triple tool is a creative approach to 

the global challenge of emerging drug resistance because it will combine three different scientific 

streams into one composite model to great effect. The result is an in ‘silico’ prediction of the efficacy 

and durability of combinations of antibiotics, specified to populations across the globe. The results will 

be generalizable to global TB epidemiology, and beyond that the methods used will have potential 

significance for other infectious agents and infection-antibiotic combinations. 

 

8.5 Conclusion 

 

This thesis developed practical approaches to a better understanding of the changing epidemiology of 

TB dynamics in Bangladesh using geographic, demographic, and TB surveillance data. The presented 

framework is a marked development on earlier strategies for the modelling of TB transmission in 

Bangladesh. The framework highlights that estimation of the weather variables impacting TB 

transmission needs consideration of not only coarse aggregated weather patterns, including mean 

temperature, humidity, and rainfall, but also short and long scale variability in weather. In the 

mathematical modelling framework, this study carried out an analytical and numerical comparison of 

various TB model architectures to explore the impact of various assumptions on the transmission 

dynamics of DS and MDR-TB in Bangladesh. The study also assessed the consequences of different 

interventions and optimal elimination strategies and explored their interactions with spatial spread of 

DS and MDR-TB in Bangladesh. The results of this thesis will contribute to the evidence base available 

to the NTP in Bangladesh to plan for DS and MDR-TB elimination strategically and efficiently under 

the threat of drug resistance. 
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