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Abstract 13 

It is becoming evident that holistic perspectives towards cancer are crucial in deciphering the 14 

overwhelming complexity of tumors. Single-layer analysis of genome-wide data has greatly 15 

contributed to our understanding of cellular systems and their perturbations. However, fundamental 16 

gaps in our knowledge persist and hamper the design of effective interventions. It is becoming more 17 

apparent than ever, that cancer should not only be viewed as a disease of the genome, but as a 18 

disease of the cellular system. Integrative multi-layer approaches are emerging as vigorous assets 19 

in our endeavors to achieve systemic views on cancer biology. Herein, we provide a comprehensive 20 

review of the approaches, methods, and technologies that can serve to achieve systemic 21 

perspectives of cancer. We start with genome-wide single-layer approaches of omics analyses of 22 

cellular systems and move on to multi-layer integrative approaches in which in-depth descriptions 23 

of proteogenomics and network-based data analysis are provided. Proteogenomics is a remarkable 24 

example of how the integration of multiple levels of information can reduce our blind spots and 25 

increase the accuracy and reliability of our interpretations and network-based data analysis is a 26 

major approach for data interpretation and a robust scaffold for data integration and modeling. 27 

Overall, this review aims to increase cross-field awareness of the approaches and challenges 28 

regarding the omics-based study of cancer and to facilitate the necessary shift towards holistic 29 

approaches.  30 

Keywords: Systems biology, Transcriptomics, Proteomics, Metabolomics, Proteogenomics, 31 

Biological networks 32 

Key points: 33 

• Systemic perception of cancer is essential for the design of effective interventions 34 
• High-throughput technologies are the main arteries of systemic studies of cancer  35 
• Emerging data integration approaches are rapidly altering current paradigms of oncology 36 
• Vertical integration of omics data is capable of addressing multifaceted challenges 37 
• Network-based data analysis is a major asset in data integration and interpretation  38 

  39 
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1 Introduction 40 

According to the world health organization, an estimated number of 10 million patients worldwide 41 

succumbed to different types of cancer in 2020 alone. Despite considerable advancements in 42 

diagnostics and novel therapeutic approaches following the distilled outcomes of millions of 43 

cancer-related studies, many clinical trials do not result in major success [1–3]. This, among other 44 

reasons (e.g. implementation issues and technical limitations), can be attributed to the lack of a 45 

systemic view towards cancer and its underlying mechanisms. Indeed, the results of the recent 46 

WINTHER trial demonstrate the utility of multi-omics approaches for the improvement of cancer 47 

therapy recommendations [4]. A deeper and holistic perspective of the underlying systemic 48 

perturbations during tumor initiation and progression is a prerequisite for designing more targeted 49 

a.k.a. personalized interventions. 50 

In cancer investigations, we are facing aberrations in extremely complex systems with enigmatic 51 

interplays between altered pathways and extensive multilevel cross-talk. The heterogeneity of 52 

subpopulations of malignant cells further contributes to the obscurity of this picture. Contrasting 53 

with conventional reductionist approaches, the field of systems biology has emerged and laid 54 

foundations for holistic investigation of biological units and mathematical modeling of molecular 55 

and cellular interplays for comprehensible exploration of biological systems [5] (refer to Figure 1 56 

for a timeline of some of the major contributions to the field of systems biology). Fueled by 57 

genome-wide technologies and bioinformatics advancements, systems biology is establishing itself 58 

as the only reasonable approach for dissecting the complexity of tumors, identifying core 59 

components of these perturbed systems, and recognizing the vulnerabilities of specific tumors for 60 

effective patient stratification and precise interventions. 61 

Achieving a holistic picture of cancer demands cooperation between multiple areas of research, 62 

magnification of the links between layers of information, and robust approaches for effective 63 

integration of the heterogeneous data. Hence, there is an increasing need for the research 64 
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community to move beyond single-layer omics analysis of cancer and take advantage of the value 65 

added by integrating multiple omics layers. Here, we review current approaches, methods, and 66 

technologies that can serve to achieve a systemic perspective of cancer. We start with genome-wide 67 

single-layer approaches and move on to multi-layer integrative approaches with a focus on a 68 

systems biology perspective throughout the work. In each section, an overview of the importance 69 

of each respective approach in cancer research is presented. Then, a general framework, based on 70 

the current best practices of the field or novel and promising methods, is provided. In that context, 71 

we highlight methods that require minimal computational skill and discuss outstanding challenges 72 

and future perspectives. It should be noted that while the approaches and technologies discussed in 73 

this review are presented in the context of cancer research, many of them are also applicable to 74 

fields other than oncology. The review is concluded with multiple representative examples of what 75 

these approaches have already contributed to the field of oncology. Overall, we aim to increase 76 

cross-field awareness of the approaches and challenges regarding the omics-based study of cancer 77 

for both research and medical communities in order to facilitate the necessary shift towards more 78 

holistic approaches. 79 

2 Single-layer approaches 80 

High-throughput technologies capable of generating comprehensive data that encompass all the 81 

molecular components at a particular level are the main arteries of systems-level studies in cancer. 82 

Genomics, transcriptomics, proteomics, and metabolomics are the four major approaches currently 83 

implemented using various technologies and comprehensive data analysis methods (Figure 2). 84 

These approaches and related technologies as well as analysis pipelines are discussed in further 85 

sections. Importantly, single-layer data analysis has greatly enhanced our understanding of cellular 86 

mechanisms and their perturbations and fundamentally contributed to our knowledge of biological 87 

systems. However, the purposive study of biological systems requires multi-level approaches that 88 

integrate the generated data from different single-layer approaches to achieve a holistic view of 89 
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cells under normal and disturbed conditions [6] (for a list of relevant researches and their 90 

contributions to the field of systems oncology refer to Supplementary Table S1). 91 

2.1 Genomics: Elucidating the genomic landscape of tumors 92 

The process of tumorigenesis begins (and usually progresses) with the occurrence of specific 93 

somatic driver mutations i.e. mutations that confer survival and proliferative advantages to a 94 

specific cell lineage [7]. These mutations are accompanied by a higher number of passenger 95 

mutations that do not directly contribute to tumorigenesis and cancer progression. Moreover, 96 

germline mutations can contribute to cancer predisposition [8]. The main complexity of cancer, 97 

however, arises from the lack of a consensus genomic landscape across different cancer types and 98 

even among patients stratified under certain criteria. Case-specific combinations of genomic 99 

alterations result in a wide variety of perturbations to the cellular system with the overall similar 100 

result of tumorigenesis and cancer progression. Indeed, attempts to discover mutational patterns 101 

also known as “mutational signatures” across and within tumor types have significantly contributed 102 

to our understanding of the etiology of cancer and led to the identification of cellular processes 103 

causative for specific cancer types that can serve as targets for therapeutic interventions [9–11]. 104 

Hence, it is evident that achieving an appropriate and encompassing perspective towards this 105 

complex disorder necessitates the implementation of genomics technologies.  106 

Whole-exome sequencing (WES) is currently the most widely applied technology both in research 107 

projects [12,13] and in second-tier clinical diagnosis (implemented when gene panels are unable to 108 

pinpoint the cause of the defect) [14]. WES was developed to specifically capture and sequence all 109 

exonic regions of the genome. However, in the last decade we have learned that large parts of the 110 

human genome that were previously referred to as “junk DNA” are biologically active, i.e. 111 

translated into functional non-coding RNA [15]. Point mutations and structural variations in 112 

noncoding regions can also be cancer drivers, although less frequently compared to coding regions 113 

[16]. These findings, and the downwards trend in costs for sequencing, have already ignited the 114 
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transition from using WES to whole-genome sequencing (WGS) technologies. WGS has the 115 

advantage that it can also identify mutations in intergenic regulatory regions and mitochondrial 116 

DNA, mutations in promoters, structural variations, and viral infections, all of which are associated 117 

with different types of cancer. Moreover, the detection of copy number alterations is more effective 118 

with WGS [17]. Interestingly, WGS has been shown to be more effective than WES even when 119 

targeting coding regions [14].   120 

Overall, current genomic technologies provide a potent vantage point for studying cancer etiology 121 

[10], biomarker discovery [18], the prediction of patients’ drug response [19], and more. Recent 122 

years have witnessed the emergence of multiple international efforts such as the Pan-Cancer 123 

Analysis of Whole-Genomes (PCAWG) [16] where a considerable number of samples across 124 

different tumor types have been sequenced and analyzed. Such efforts provide unprecedented 125 

opportunities for the identification of mutational patterns across tumor types and the development 126 

of diagnostic and therapeutic approaches that are applicable to a wide range of patients.    127 

2.1.1 Experimental workflow and data analysis pipeline  128 

The genomics workflow generally starts with random fragmentation of the purified DNA by 129 

sonication or enzymatic digestion. Next, these fragments are enriched for target regions (genes of 130 

interest for gene panels or exonic regions when performing WES) [20]. The WGS workflow does 131 

not include this step. The acquired fragments are then ligated by oligonucleotide adapters that are 132 

complementary to the anchors on the flow cell [21]. This is commonly followed by a size selection 133 

step where ligated fragments with suitable sizes are purified [22]. Size selection can increase the 134 

sensitivity of circulating tumor DNA detection [23]. Nevertheless, selecting for specific size ranges 135 

might result in information loss and therefore, may be skipped depending on the goal of the study. 136 

Depending on the utilized method, a PCR amplification step might be required. However, 137 

considering that this step is prone to produce biased results, the utilization of a PCR-free method 138 

as a cost-efficient and more effective approach is highly recommended [24,25]. The next step is the 139 
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sequencing of the prepared library. Illumina short-read technologies are currently the dominant 140 

sequencing platforms (for a comprehensive review of different sequencing technologies refer to 141 

[26]). The NovaSeq 6000 sequencing platform is the most recent Illumina whole-genome 142 

sequencing technology. With overall results of similar quality for NovaSeq 6000 in comparison to 143 

the older Illumina whole-genome sequencing platform (HiSeq X Ten) and considering the 144 

substantial reduction in experiment costs [27], NovaSeq 6000 can be considered as the current state-145 

of-the-art technology for whole-genome sequencing.   146 

WGS data pre-processing begins with demultiplexing the sequencing reads using Illumina’s 147 

Consensus Assessment of Sequence And Variation (CASAVA) software. Then, the raw reads are 148 

aligned against the human reference genome using an aligner tool, some of the most popular of 149 

which are BWAmem [28], Bowtie2 [29], and Novoalign 150 

(www.novocraft.com/products/novoalign/). Since duplicate reads can occur during sequence 151 

amplification and sequencing procedure, a duplicate marking step using tools such as Picard 152 

(broadinstitute.github.io/picard), Sambamba [30], or SAMBLASTER [31] is required. 153 

In the next step, variant calling is performed. The most popular variant callers for somatic variant 154 

identification that have been specifically developed for the analysis of tumor samples include 155 

Mutect2 [32], VarScan [33], Strelka2 [34], and SomaticSniper [35]. A comparative study 156 

evaluating the somatic single nucleotide variant calling performance of these tools [36] reported a 157 

poor consensus among the results of variant callers. Mutect2 was identified as the best performing 158 

tool, followed closely by Strelka. Combining the high-confidence results of these methods is also 159 

a recommended approach. The study by Cai et al. [36] reported that while this approach increases 160 

the specificity of the variant calling, it results in a massive reduction of sensitivity. Thus, a 161 

combinatory approach should be opted for if higher reliability is desired while if achieving 162 

encompassing results is the goal of the study, utilizing Mutect2 or Strelka is a reasonable approach. 163 

In addition, the results of a study comparing the somatic variant calling performance of Mutect2 164 

and Strelka2 [37] suggest that while these tools have similar overall performance, Mutect2 performs 165 
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better when dealing with lower mutation frequencies while Strelka2 is the better choice in the 166 

opposite scenario. Germline variant calling requires a different type of algorithm because the study 167 

is confined to the sequencing of normal genome [17]. This is most commonly performed using the 168 

Genome Analysis Toolkit (GATK) HaplotypeCaller (software.broadinstitute.org/gatk/). Studies 169 

indicate inconsistency among the results of different combinations of aligners and variant callers 170 

and hence, considering the intersection of the results of different pipelines is recommended to 171 

reduce false-positives [24,38]. However, a recent study suggests that some popular pipelines can 172 

produce results comparable to that of a combination of pipelines [39]. 173 

The detected variants are next subjected to annotation procedures. Annotations of previously 174 

reported alterations can be obtained from data repositories such as COSMIC [40], ClinVar [41], 175 

and OMIM [42]. The impact of novel variants with unknown significance can be predicted in silico 176 

using bioinformatics tools such as MutationTaster [43], SIFT [44], Polyphen [45], and VEP [46]. 177 

This is common practice in clinical diagnosis to predict the impact of novel variants before co-178 

segregation and functional confirmation [47]. Moreover, there are algorithms such as CHASM [48] 179 

and PrimateAI [49] that are specifically developed to predict functional effects of mutations in the 180 

cancer context and distinguish driver mutations from passengers. The results of a recent 181 

comprehensive comparative study [50] that assessed 33 algorithms for their performance in 182 

predicting functional effects of mutations in cancer reported that cancer-specific algorithms 183 

significantly outperformed algorithms developed for general purposes. Furthermore, this study 184 

identified CHASM [48], CTAT-cancer [51], DEOGEN2 [52], and PrimateAI [49] as consistently 185 

well-performing algorithms. Notably, it was also proposed that incorporation of pathway and 186 

network information of the mutated genes in the prediction algorithm contributed to the outstanding 187 

performance of DEOGEN2 and thus, this should be considered in future algorithm developments. 188 

Anyhow, insignificant variants are filtered out in this step while significant variants are reported 189 

for downstream analysis and interpretation [53]. 190 
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It is important to mention that there are numerous pipelines using different combinations of tools 191 

and computational approaches that attempt to address different challenges encountered in the 192 

various steps of this generalized workflow [27,54]. There are also convenient and comprehensive 193 

tools that facilitate the entire computational procedure, requiring minimal computational expertise. 194 

An example is the recently developed portable workflow named Sarek [55].   195 

2.1.2 Challenges and perspectives  196 

The variant allele frequency (VAF) is used to determine whether variants are heterozygous (variants 197 

with ~50% frequency) or homozygous (variants with ~100% frequency). In the cancer context, 198 

however, VAF analysis is not as precise because intratumoral heterogeneity and impurity of tumor 199 

DNA cause confusing deviations from expected VAFs [21,27,56]. The result of these ambiguities 200 

is the inability to acquire a picture of intratumoral heterogeneity that is representative of the actual 201 

biological phenomenon. Increasing the sequencing depth towards 100x coverage can ameliorate 202 

this inconvenience [24]. However, in some cases, achieving a fully representative picture of 203 

intratumoral heterogeneity requires impractical coverages of at least one order of magnitude higher 204 

than this [57]. A promising approach to tackle this problem, among others, is single-cell sequencing. 205 

Single-cell technologies provide researchers with a more accurate and less complex picture of the 206 

perturbed system both in the genomics and transcriptomics context [58]. However, single-cell 207 

technologies are still under development and a number of critical challenges both in wet lab [59] 208 

and dry lab [60] processes remain to be addressed. 209 

The potential of tumor-specific somatic mutation profiling in guiding the administration of 210 

therapeutic interventions with precision is enormous [61]. This attracted a lot of attention towards 211 

the assessment of mutational landscapes of individuals through minimally invasive approaches such 212 

as cell-free DNA (cfDNA) sequencing. Circulating tumor DNA (ctDNA), presumably derived from 213 

necrotic and apoptotic tumor cells, comprise a portion of cfDNA in cancer patients, distinguishing 214 

them from healthy individuals [62]. Although the clinical efficacy of cfDNA monitoring in the 215 
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cancer context is yet to be validated through large-scale clinical trials, potential applications of 216 

cfDNA screening make it an attractive subject for researchers. These potential applications include 217 

postsurgical monitoring for stratification of patients for adjuvant therapy, systemic monitoring of 218 

the heterogeneity of the subclones in a metastatic tumor (as opposed to a single-site needle biopsy) 219 

for early detection of resistance to therapeutic agents, and early detection of neoplasms in 220 

asymptomatic individuals which can result in more effective interventions [63]. A major challenge 221 

for ctDNA analysis is that ctDNA VAFs are usually significantly below the detectable threshold of 222 

conventional high-throughput technologies. Ultrasensitive high-throughput technologies dedicated 223 

to ctDNA analysis such as iDES-enhanced CAPP-Seq have been introduced to ameliorate this 224 

shortcoming [64]. However, various challenges persist. These include increased risk of false-225 

positives due to clonal hematopoiesis of indeterminate potential (CHIP) or other diseases and 226 

introduction of errors during library preparation (e.g. cfDNA degradation, contamination with 227 

normal cell lysates, etc.) and sequencing. Therefore, accurate identification of somatic mutations 228 

from cfDNA samples remains a daunting task [65]. Digital PCR approaches for ctDNA monitoring 229 

with higher sensitivities and lower costs address some of the challenges associated with high-230 

throughput methods but require a priori knowledge of the targets and are particularly low in 231 

throughput [65]. Altogether, despite the remaining challenges, the analysis of ctDNA as a 232 

complement or surrogate to solid tissue specimens remains a valuable option, especially in cases 233 

where solid tumor samples are not accessible or sampling is associated with high risks. 234 

Despite the tremendous progress made in recent years, there are still many unresolved questions in 235 

cancer genomics. The fact that no driver mutation could be identified for 5% of tumor samples [16] 236 

underscores that despite the extensive study of tumor driver genes and mutations, there are still 237 

shortcomings in our knowledge bases and/or models of cancer-initiating perturbations. Indeed, after 238 

decades of intensive research in cancer biology, the fundamentals of this complex dysfunction are 239 

still ambiguous in some areas. For example, the extent to which additional genomic/epigenomic  240 

alterations fuel the transition of a benign tumor to a malignant state is still a matter of debate [66]. 241 
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Furthermore, the study of the genetic risk modifiers despite their potential to enhance our 242 

understanding of cancer is limited due to their small effect size [20]. Another important challenge 243 

is pinpointing the genomics alterations in high-complexity regions such as centromeres. Long-read 244 

sequencing technologies hold the promise of adequately addressing this problem [67]. However, 245 

certain drawbacks such as the high rate of errors in sequencing need to be tackled before these 246 

technologies would be able to effectively benefit the field.    247 

2.2 Transcriptomics: Approaches to decipher the post-transcriptional complexity of 248 

tumors 249 

The central dogma of biology describes the transition of information to function [68], from a semi-250 

static genome to the highly dynamic cell. Going from genome to proteome the complexity increases 251 

as additional regulatory layers are introduced, from epigenetic [69] to post-transcriptional [70] and 252 

epi-transcriptomic regulations [71], to post-translational modifications [72]. Hence, efforts to 253 

understand the complex mechanisms of the cellular system and its perturbations exclusively from 254 

a genomic viewpoint would be futile. A widely appreciated approach to enhance our understanding 255 

of this complexity is studying the transcriptome [73].  256 

The qualitative and quantitative analysis of transcriptomic information can yield insights into the 257 

post-transcriptional dynamics resulting from genetic events, epigenetic regulation, as well as 258 

regulation within the transcriptome, and provide means to predict the proteomics landscape. In 259 

cancer, deviations from normal transcriptomes undergo clonal evolution which in turn results in 260 

converged gene expression patterns referred to as the tumor gene signatures [74] that can be utilized 261 

in cancer subtyping [75], biomarker discovery [76], etc. The most broadly utilized functional study 262 

of the transcriptome is the comparison of expression profiles under different conditions (e.g. normal 263 

vs cancer) known as differential gene expression (DGE) analysis [77] e.g. by means of RNA-264 

sequencing. Differential analysis of mRNA profiles can provide valuable information about 265 

perturbed signaling cascades and malfunctioning members of the cell system that gave rise to the 266 
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phenotype under investigation [78]. The study of alternative splicing and novel splicing events 267 

[79,80], variant calling [81,82], and fusion transcript detection [83] are some of the other 268 

applications of RNA-sequencing with particular importance in cancer. 269 

mRNAs however, do not constitute the only RNA entities with relevance to cancer [84]. It is now 270 

evident that a great portion of non-coding DNA is translated to functional non-coding RNAs 271 

(ncRNAs) that are involved in almost all the aspects of cellular processes [85]. There are two 272 

general categories of ncRNA: small non-coding RNAs (sncRNAs) that are less than 200 nucleotides 273 

in length and long non-coding RNAs (lncRNAs; >200 nucleotides) [86]. sncRNAs are further 274 

categorized into a number of RNA types including microRNAs (miRNAs), small nuclear RNAs, 275 

and piwi-interacting RNAs. MiRNAs are probably the most widely studied form of ncRNAs 276 

[87,88]. With their recognized role as important regulators of many cellular processes, miRNAs are 277 

firmly established as essential players in tumorigenesis and cancer progression and have been 278 

widely studied as potential biomarkers and therapeutic targets [89–92]. The role of lncRNAs in 279 

cancer, however, is a more recent emerging view [93,94]. LncRNAs exert a variety of biological 280 

functions through interaction with a plethora of different types of macromolecules. LncRNAs roles 281 

in gene expression regulation through interactions with chromatin, protein complex assembly or 282 

disassembly, and their interplay with mRNAs have been widely studied [95]. Several lines of 283 

evidence attribute a role to lncRNAs in the regulation of virtually all of the cancer hallmarks 284 

[96,97]. The vast number of tissue- and cell-specific lncRNAs along with their importance in the 285 

regulation of cellular functions underscores their potential for annotated biomarker discovery in 286 

cancer diagnosis, prognosis, and treatment [98] as well as their potential employment as therapeutic 287 

targets [99]. 288 

2.2.1 Experimental workflow and data analysis pipeline  289 

Illumina short-read sequencing is currently the dominant platform for transcriptomics studies [100]. 290 

The process starts with RNA extraction and target RNA enrichment to remove unwanted rRNAs or 291 
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specifically select for poly-adenylated RNAs through oligo-dT incorporation [101]. However, since 292 

other RNA types might be of interest, rRNA depletion can provide more encompassing results 293 

[102].  In any case, in the next step, the extracted RNA is subjected to fragmentation in order to 294 

become compatible with the short-read sequencing technologies. This is usually done through 295 

enzymatic digestion or by using divalent cation-containing solutions [102]. Next, reverse 296 

transcription is performed. The second strand of the synthesized cDNA is usually tagged with the 297 

incorporation of dUTPs. After the adaptor ligation, the tagged cDNAs are subjected to digestion in 298 

order to achieve a strand-specific library [103]. The remaining strands are amplified through PCR 299 

and are finally sequenced. The required sequencing depth (total number of reads) is determined by 300 

the goal of the study and the nature and condition of the sample [104]. While 15 million reads are 301 

considered a saturation point for gene expression profiling [77], a minimum of 70 million reads are 302 

required for the accurate quantification of alternative splicing events [105]. This general framework 303 

can be modified based on the experimental goals and the RNA type under investigation [106]. The 304 

use of single-end or paired-end sequencing or enriching for unique reads restricted to the 3′ end for 305 

each transcript in order to analyze DGE are examples of such modifications [102]. Another example 306 

is to take advantage of unique molecular identifiers (UMIs) to account for the misrepresentation of 307 

biological expression differences due to PCR amplification [107]. 308 

The next steps are quality control and pre-processing of the acquired reads [104]. To perform DGE 309 

analysis, the level of expression for each gene should be measured from RNA-seq reads. For that 310 

purpose, the acquired reads are mapped to an annotated genome or transcriptome using tools such 311 

as STAR [108], BWA [109], and TopHat2 [110]. Gene expression is then quantified based on the 312 

number of reads that have been aligned to each gene using tools such as HTseq-count [111]. 313 

Alternatives include methods such as Sailfish [112], Salmon [113], and Kallisto [114], which 314 

implement k-mer counts, quasi-mapping, and pseudo mapping, respectively. After batch effect 315 

correction [115,116] and data normalization [117], the last step is the actual differential gene 316 

expression analysis. While almost all of the popular methods for transcript quantification have been 317 
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shown to perform equally well [118], the utilized tool to assess differential gene/transcript 318 

expression is an influencing factor in this process. Multiple tools (e.g. NOIseq [119], limma+voom 319 

[120], and DESeq2 [121]) are known to perform a high-quality DGE analysis and are accepted as 320 

standard tools for DGE assessment [122]. Moreover, the usage of a combination of these tools has 321 

been suggested as an effective approach [118]. Quality control in multiple steps of the process 322 

(RNA quality, raw reads, alignment, and quantification) is also highly recommended [123]. 323 

Comprehensive quality control tools such as the NGS QC toolkit [124], RSeQC [125], and 324 

Qualimap2 [126] are widely applied to fulfill this purpose. 325 

Multiple tools and web services such as IDEAMEX [127] facilitate an integrated DGE analysis for 326 

researchers with a minimal computational background. BP4RNAseq [128] is another user-friendly 327 

tool that has been recently introduced and can be utilized for a highly facilitated gene expression 328 

quantification. There are also multiple tools and pipelines that are not restricted to DGE analysis 329 

and can be implemented for a variety of RNA-seq data analysis purposes. RNACocktail [129] is a 330 

comprehensive RNA-seq analysis pipeline incorporating a variety of powerful tools for a variety 331 

of purposes including RNA variant-calling, RNA editing, and RNA fusion detection. 332 

RNA-sequencing is at the forefront of single-cell sequencing technologies [130,131]. Sensitive full-333 

length transcript sequencing platforms such as MATQ-seq [132] with the ability to capture and 334 

sequence ncRNAs herald the arrival of a new level of sequencing capacity. The general workflow 335 

for single-cell sequencing is similar to the bulk RNA-sequencing workflow described above [133]. 336 

It is indeed possible to perform most of the computational processing steps with the bulk RNA-337 

sequencing methods. However, low levels of starting material coupled with additional technical 338 

requirements (such as cell-specific barcoding to be able to demultiplex the resulting data from 339 

multiplexed sequencing) and other challenges (such as the possibility of capturing damaged, dead, 340 

or multiple cells) necessitate the development of computational methods tuned for single-cell 341 

analysis [134,135] (see Table 1 for a list of single-cell RNA-sequencing tools). It should be noted 342 

that large-scale comparative studies are required for the assessment of the utility of these tools in 343 
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comparison with one another and with the tools designed for bulk-RNA sequencing analysis. 344 

Indeed, bulk-RNA sequencing analysis tools have been shown to be capable of producing satisfying 345 

and in some cases, superior results compared to that of the tools specifically designed for single-346 

cell RNA-seq [136]. 347 

2.2.2 Challenges and perspectives  348 

A current challenge in RNA-sequencing is that the reconstruction of full-length RNA molecules 349 

from short reads is error-prone [104]. This results in incorrect assignment of reads and 350 

misrepresentation of isoform abundances and also makes isoform discovery a challenging task. 351 

Long-read technologies, as well as synthetic long-read methods, hold the promise of solving this 352 

inconvenience [100]. However, various challenges remain to be addressed. Long-read technologies 353 

are particularly low in throughput. This problem in turn would result in a reduced experiment size 354 

and low sensitivity of differential expression [100]. Hence, using a long-read technology is not 355 

currently recommended for DGE analysis, particularly when the study involves low expression 356 

levels. The high error rates and additional costs are prohibitive elements regarding long-read 357 

technologies. Moreover, the rigorous requirement to avoid RNA degradation and shearing during 358 

sample handling makes the achievement of high-quality samples laborious. However, the 359 

combination of short-read with long-read sequencing methods enhances the quality and accuracy 360 

of transcript isoform expression analysis. For instance, by combining these technologies and using 361 

algorithms for hybrid assembly of short and long reads (hybridSPAdes; [137]) enhanced results for 362 

de novo transcriptome assembly (e.g. with rnaSPAdes; [138]) can be achieved.  363 

2.3 Proteomics: Studying the frontline of phenotype manifestation 364 

Virtually all the regulatory mechanisms governing the central dogma of biology eventually serve 365 

to determine the set of expressed proteins, their expression levels, and the manner in which they 366 

function; the deviations of which from normal status can result in a malfunctioning system and give 367 

rise to various disorders such as cancer [139]. Proteins can be considered as frontline agents of 368 
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phenotype manifestation and hence, studying proteome level regulatory mechanisms, such as post-369 

translational modifications (PTMs), the inherent properties of proteins (e.g. their 3D structures), 370 

and protein-protein interaction (PPI) networks is essential if representative views of the normal and 371 

perturbed cellular system are to be achieved. Moreover, the validity of inferring protein abundance 372 

from mRNA expression has been questioned due to the lack of consistently strong correlations 373 

between mRNA and protein abundance [140], suggesting that the direct assessment of protein 374 

abundance is a more reliable source. 375 

All of the categorized hallmarks of cancer are either directly regulated by proteins or are highly 376 

affected by them [141]. Proteins function in protein assemblies and highly complex networks. In 377 

this context, malfunction in any member of these networks can potentially result in the disruption 378 

of the activity of other members of the same network. Therefore, an important goal of proteomics 379 

studies, in addition to assessing genome-wide protein expression under various conditions, is to 380 

achieve comprehensive and functional models of all the physical protein interactions both in normal 381 

and perturbed conditions [142]. Equally important is the study of PTMs. With more than 450 types 382 

of PTMs, these modifications regulate protein expression levels and almost all cellular processes, 383 

such as immune response, apoptosis, tumorigenesis, and cancer progression [143–146]. Exploration 384 

of these and other aspects of cell biology from omics data of other levels is either impractical or 385 

impossible. Collectively, current proteomics technologies and approaches provide researchers with 386 

powerful assets in the quest of achieving a functional view of the cellular system and addressing 387 

fundamental questions regarding the biology of cancer as well as discovering biomarkers and 388 

actionable therapeutic targets [147,148].   389 

2.3.1 Experimental workflow and data analysis pipeline 390 

Multiple methods have been developed to assess the proteomic landscape of cells and tissues. 391 

Targeted and top-down proteomics [149,150] are two of the established branches of such methods 392 

with dedicated software tools and platforms [151–153]. However, data-dependent bottom-up or 393 
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“shotgun” proteomics through liquid chromatography-tandem mass spectrometry (LC-MS/MS) is 394 

currently the de facto standard approach for genome-wide proteomics analysis [154]. The workflow 395 

for shotgun proteomics is variable and context-dependent. A general workflow based on the current 396 

best practices can be presented as follows: after the lysis of the samples, the disulfide bridges of the 397 

extracted proteins are disrupted through reduction and alkylation of the cysteine residues. Next, the 398 

proteins are subjected to enzymatic digestion through the addition of proteinases (most commonly 399 

Lys-C followed by trypsin). One- or two-dimensional chromatography is next applied, the latter is 400 

recommended to increase the dynamic range (i.e. to provide the possibility for low-abundance 401 

proteins to be identified) [155]. Currently, the most effective approach is to subject the samples to 402 

basic reversed-phase chromatography followed by acidic reversed-phase chromatography as the 403 

second dimension [156]. There is also the choice between label-free and isobaric labeling (using 404 

iTRAQ [157] or tandem mass tags (TMTs, [158])). Isobaric labeling approaches are recommended 405 

due to the provided capacity for multiplexation and the reduction of errors from manual sample 406 

handling as well as higher precision in quantification, especially when PTMs are the target of the 407 

study [155]. The wet lab procedure is concluded by the acquisition of MS spectra from MS/MS. 408 

Orbitrap-based MS/MS is the current standard. It is also possible to add a third stage (MS3) by 409 

combining Orbitrap and Ion Trap methods and it has been shown to be effective when facing highly 410 

complex samples [159]. For comprehensive and step-by-step workflows for the wet lab procedure 411 

refer to [155] and [159]. 412 

Although methods exist for de novo identification of peptide sequences [160], current approaches 413 

still suffer from high error rates. The preferred method is to first prepare a database of all the known 414 

protein sequences (comprehensive databases such as Uniprot [161] can be exploited for this 415 

purpose) and subject them to in silico digestion according to the properties of the proteinase 416 

enzymes that were utilized during sample preparation. The resulting in silico produced peptides are 417 

then assigned theoretical spectra and the experimentally acquired spectra are searched against this 418 

database. Each match is scored based on the similarity and the highest-scoring match reveals the 419 
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identity of each peptide with a certain false discovery rate (FDR). A stringent FDR of 1% is 420 

recommended [162]. The recommended approach to control for this FDR is the target-decoy search 421 

strategy [163]: a parallel database of incorrect peptides is constructed (usually through reversion of 422 

the peptide sequences of the main database). Matches to this database are obviously false positives 423 

and hence, can reveal the FDR based on the utilized filters. Using this method, one can tune the 424 

applied filters to achieve a suitable FDR. The identified peptides are then assigned to their 425 

respective proteins. Peptides with less than 7 residues are usually non-unique and are prone to 426 

erroneous protein assignment and thus, are recommended to be excluded [162]. 427 

Proteomics data needs to be preprocessed (including normalization, filtering, etc.) before they can 428 

be interpreted in a biological context. After preprocessing, the data can be manipulated to yield 429 

functional information through a variety of approaches. Differential expression analysis is a 430 

common approach with subsequent context-specific analyses such as expression signature 431 

discovery and co-expression network analysis.  432 

The general workflow provided here can also be modified in order to customize the study for the 433 

analysis of PTMs [164], PPIs, and subcellular localization [142]. For the analysis of PPIs, target 434 

protein complexes should be isolated from the cell lysate. Co-immunoprecipitation (Co-IP) is a 435 

common approach for this purpose [165]. Co-IP involves the attachment of specific antibodies to 436 

bait proteins (proteins whose interacting partners are under investigation). These antibody-protein 437 

complexes are captured by agarose beads attached to A/G proteins and are “pulled-down” by means 438 

of centrifugation. Proteins in tight interaction with the bait proteins are also precipitated in this step 439 

and the unbound components of the lysate are discarded. The captured proteins can then be 440 

subjected to MS to identify PPIs. Tandem affinity purification (TAP) is a similar approach with 441 

enhanced purification that involves tagging the bait protein at its N-terminus by a TAP tag (usually 442 

a calmodulin-binding domain followed by a highly specific protease cleavage site followed by an 443 

IgG-binding fragment) prior to two steps of purification by centrifugation [166]. The major problem 444 

associated with these approaches is their restriction to identifying highly stable PPIs. For the 445 
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identification of more transient interactions in complex biological samples, another method termed 446 

crosslinking-MS (XL-MS) which also has the advantage of providing spatial information is favored 447 

[167]. This method is based on covalently binding residues in two proteins through two reactive 448 

groups (usually amine- groups due to the prevalence of lysin residues in protein structures) that are 449 

connected via a spacer with a finite distance. This limited distance confers a spatial constraint on 450 

the residues that can be linked; making the crosslinking possible only between proteins in close 451 

proximity (i.e. interacting proteins). As for the PTMs, the mass shift in the peptides due to these 452 

modifications is identifiable by LC-MS. However, an additional enrichment step for the peptides 453 

with the modification under investigation is required [168]. Various strategies for this enrichment 454 

including implementation of immunoaffinity precipitation (using antibodies highly precise for 455 

specific types of modification) and chromatography-based approaches (e.g. immobilized metal ion 456 

affinity chromatography, metal oxide affinity chromatography, etc.) have been devised. The most 457 

suitable approach, however, is dependent on the type of modification under study and the specific 458 

physical/chemical properties it confers to the peptides (refer to [169] and [168]). 459 

MaxQuant [170] is a popular comprehensive platform that along with Perseus [171] facilitates the 460 

entire procedure of shotgun proteomics data analysis. Moreover, dedicated platforms for 461 

computational analysis of PTMs and PPIs exist [172,173]. In addition, a recently developed 462 

comprehensive toolkit named “Philosopher” [174] demonstrates a movement towards making these 463 

computationally sophisticated methods accessible to a broader community. 464 

The prospective results of the “discovery” shotgun proteomics can be channeled into “hypothesis-465 

driven” targeted proteomics for validation in order to extract actionable and clinically relevant 466 

directions from the plethora of information resulted from shotgun proteomics [175]. Targeted 467 

proteomics approaches are higher in sensitivity and dynamic range and tackle the problem of 468 

irreproducibility associated with shotgun proteomics which is due to the stochastic nature of 469 

precursor ion selection in shotgun approaches. Targeted proteomics is developed based on prior 470 

knowledge about the proteins of interest and the selection of signature peptides that specifically 471 
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represent those proteins. Selected reaction monitoring (SRM) is a widely-used targeted approach. 472 

A triple quadrupole instrument is used to filter the target peptides based on their predetermined 473 

mass-to-charge ratio which combined with their elution time can be sufficiently specific. The 474 

filtered peptides are subsequently fragmented using collision-induced dissociation and the resulting 475 

fragment ions are once more filtered for specific fragments based on a predetermined mass-to-476 

charge ratio. This process is repeated for multiple different fragment ions of each filtered peptide 477 

and hence, peptides are identified and quantified utilizing MS spectra [176]. Parallel reaction 478 

monitoring (PRM) is a similar approach which through the implementation of an orbitrap or time-479 

of-flight instrument removes the second filtering step by analyzing all the fragment ions 480 

simultaneously and provides more accurate results [176]. 481 

2.3.2 Challenges and perspectives 482 

In spite of the remarkable progress made in proteomics methods in the last decade [147], drawbacks 483 

such as the cofragmentation problem [177] still exist and experiment design approaches, as well as 484 

computational strategies, are being constantly revised to compensate for these [178]. Overall, 485 

reduction in costs and a further increase in the sensitivity of mass spectrometers can be considered 486 

as major factors that can enhance the efficiency and accessibility of proteomics analyses [179]. 487 

Specific to targeted proteomics, a major drawback of SRM and PRM approaches is that the analysis 488 

is restricted to the preselected target proteins. Recent advances in data-independent acquisition 489 

methods (particularly SWATH-MS) circumvent the need for repeated measurements for each target 490 

protein by allowing posterior querying of the data for the desired peptides while providing 491 

multiplexing capacities comparable to shotgun proteomics [180]. However, data-independent 492 

acquisition methods lack the sensitivity of SRM and PRM and are therefore inferior to these 493 

approaches when dealing with very low-abundant proteins. In addition, SWATH-MS is still facing 494 

challenges regarding ease of data analysis [180]. 495 
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From the clinical perspective, minimally invasive sample collection is critical. Body fluids (e.g. 496 

blood, saliva, urine, tears, etc.) are readily available rich sources of biomolecules (e.g. over 12,000 497 

proteins only in plasma) with altering compositions during tumor development which can be used 498 

as tumor and/or stage-specific biomarkers [181]. Proteomics approaches were generally successful 499 

in discovering such biomarkers [182,183]. A major pitfall associated with body fluid biomarker 500 

discovery, however, is the massive dynamic range: a handful of enormously abundant proteins 501 

mask the presence of lowly abundant molecules of interest. Strategies such as immunodepletion of 502 

high-abundance proteins have been devised, which nevertheless face the caveat of information loss 503 

due to unspecific bindings to affinity ligands [184]. Nonetheless, the achievements of multiple 504 

efforts in recent years underline the possible widespread utilization of these sample types in clinical 505 

practice in the future [185,186]. 506 

Single-cell proteomics is a promising prospective approach which is still in its infancy. For single-507 

cell technologies to become a feasible practice in proteomics, advances in both technological and 508 

computational aspects are required [187]. Considerable increase in MS sensitivity and the 509 

development of specialized tools for the analysis of such data are prerequisites of making single-510 

cell proteomics practical. Nevertheless, various multidisciplinary efforts are already turning the 511 

dream of single-cell proteomics into reality [188]. 512 

2.4 Metabolomics: Exploring the survival strategies of cancer cells 513 

During cancer initiation and progression, cellular systems are reprogrammed to grow and 514 

proliferate at exceptionally high rates and to acquire an enhanced capacity for survival under 515 

extreme conditions [141]. Clearly, a considerable portion of this reprogramming is dedicated to 516 

shaping an altered form of metabolism that is able to meet the massive energy needs and to provide 517 

required anabolic precursors for these highly demanding self-centered systems. Indeed, almost 518 

every aspect of cellular metabolism is affected during cancer progression [189] and since the 519 

metabolic status of a sample can be considered as the ultimate downstream manifestation of the 520 
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effects of both intrinsic (e.g. genetic) and extrinsic (i.e. environment) factors on the biological 521 

system [190], valuable insights can be gathered from the study of the metabolome. 522 

Two core metabolites with altered metabolic pathways in cancer are glucose and glutamine [191]. 523 

Excessive glucose fermentation, overexpression of the rate-limiting enzymes of the glycolysis 524 

branch pathways, constitutive glucose influx, as well as an increased expression rate of glutamine 525 

synthesis are examples of such alterations that cancer cells exploit to provide themselves with 526 

modified sources of energy and a large collection of biosynthetic precursors [189]. In addition, 527 

cancer cells develop scavenging strategies in order to survive under the commonly encountered 528 

nutrient-poor microenvironment. These strategies include autophagy [192], consumption of 529 

extracellular proteins through macropinocytosis and subsequent lysosomal degradation of these 530 

molecules [193], entosis [194], and phagocytosis [195], as well as induction of fatty acid release 531 

from neighboring cells [196]. Cancer cells also highly influence the condition of their 532 

microenvironment. The high rate of glucose fermentation results in the accumulation of 533 

considerably high levels of extracellular lactate and H+ which in turn contribute to angiogenesis, 534 

immune response suppression, and tumor invasiveness [189]. Since the survival of cancerous cells 535 

is highly dependent on this altered metabolic status, the metabolome is an active area of research 536 

for the discovery of cancer biomarkers as well as the identification of potential therapeutic targets 537 

[197,198]. 538 

The contribution of metabolites to the initiation of signaling cascades and their effect on the 539 

epigenetic landscape as well as PTMs are other topics of investigation. Through these 540 

investigations, the role of metabolites not only as molecules with altered behavior downstream of 541 

cancer initiation and progression but also as etiological agents (i.e. oncometabolites) that contribute 542 

to system perturbations is being rapidly established [199]. Further studies of the metabolome in this 543 

context have the potential to shed light on novel aspects of cancer biology. 544 



 
23 

2.4.1 Experimental workflow and data analysis pipeline 545 

Due to the inherent chemical homogeneity of the polymers of genome, transcriptome, and 546 

proteome, it is possible for a single platform to capture a holistic snapshot of each respective layer. 547 

However, this does not hold in metabolomics owing to the chemical heterogeneity of different 548 

classes of metabolites [200]. Proton nuclear magnetic resonance (1H NMR) and MS-based methods 549 

are the most common approaches for metabolomics data acquisition; all of which are associated 550 

with various advantages and disadvantages [190]. 551 

NMR is highly reproducible, conveniently quantifiable, requires minimal sample preparation, and 552 

unlike MS-based approaches is nondestructive [190,201,202]. Moreover, it is considered the gold 553 

standard method for the elucidation of the metabolite structures [203]. Nevertheless, NMR suffers 554 

from low sensitivity and it is only capable of detecting 20-50 metabolites per sample which is an 555 

inadequate number for systems-level analyses [190]. MS-based approaches, on the other hand, 556 

possess the advantage of high sensitivity and are widely adopted for untargeted and system-level 557 

metabolomics analyses due to their capability to detect 100-1000 metabolites per sample [200,203]. 558 

Gas chromatography-MS (GC-MS) and LC-MS (or LC-MS/MS) are the most commonly used 559 

methods for MS-based metabolomics [204]. GC-MS is cost-effective and has the advantage of a 560 

virtually automated metabolite identification process. However, it is only applicable to volatile and 561 

thermally stable metabolites or those that can be adapted for the process with chemical 562 

derivatization [203]. This limits the versatility of GC-MS. In addition, the derivatization process 563 

can introduce artifacts and might result in erroneous quantification because of incomplete 564 

derivatization [205]. Unlike GC-MS, LC-MS does not require derivatization and with the ability to 565 

capture molecules in a wider weight range, it is highly versatile and efficient [190,203,204,206]. 566 

While these advantages make LC-MS the most widely applied method in the field, researchers are 567 

encouraged to opt for a combination of these approaches to achieve a more comprehensive 568 

representation of the metabolic status of the sample [201]. The workflows for all of the above-569 

mentioned approaches are somewhat similar, with nuances and differences in the steps and applied 570 
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algorithms. However, due to the extensive utility of the LC-MS and LC-MS/MS, these approaches 571 

are the main focus of this section.  572 

Unlike NMR, MS-based analysis needs a sample preparation step consisting of protein precipitation 573 

and liquid-phase extraction [207]. The higher susceptibility of the metabolome to alter under 574 

different conditions in comparison to the other omics layers [208] means that careful experimental 575 

design is a requirement to minimize confounding factors. The instruments with high mass-resolving 576 

power such as LTQ-Orbitrap and Q-TOF are instruments of choice for systems-level metabolomics. 577 

Electrospray ionization (ESI) is the most widely applied ionizing method in order to make the 578 

metabolites detectable in LC-MS metabolomics [204,209]. Of note, the validation of the results of 579 

untargeted studies through targeted approaches can increase the reliability of the acquired data 580 

[206]. 581 

The general computational workflow consists of preprocessing, peak detection or annotation, post-582 

processing, and statistical analysis of the resulting data [210]: After the data is obtained, it should 583 

be subjected to the preprocessing procedure in order to enhance comparability and management 584 

[190]. Preprocessing usually starts with peak picking which is the process of detecting the actual 585 

informative regions of spectra and removing the background noise. For MS-derived data, a 586 

deconvolution step is required to reduce redundancy. Another requirement is the alignment of 587 

matching peaks between different samples [211,212]. A practical and popular approach for peak 588 

annotation (i.e. the assignment of the observed peaks to actual metabolites) is to search the data 589 

against the existing spectral libraries in a process similar to what has been described in the 590 

proteomics section. The desired information for metabolites is acquired by inquiring metabolome 591 

databases such as the Human Metabolome Database (HMDB) [213], METLIN [214], and 592 

MassBank [215]. It is also possible to implement a target-decoy strategy to control for the FDR. 593 

An innovative approach regarding the construction of a decoy database for metabolome studies has 594 

been proposed by Wang et al. [216] which is performed by violating the octet rule through the 595 

addition of extra hydrogen atoms to the molecular structures. A post-processing procedure is 596 
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performed prior to downstream analysis and interpretation of the data. Post-processing includes 597 

data filtering, imputation to account for the missing data, and normalization [210]. Data filtering is 598 

an important step in order to remove uninformative data while avoiding the loss of biologically 599 

meaningful information [217]. Recently, Schiffman et al. proposed a data-adaptive pipeline for data 600 

filtering procedure [218]. A variety of normalization methods both sample-based and metabolite-601 

based exist. Among these, Variance Stabilization Normalization (VSN), which accounts for 602 

sample-to-sample variations and metabolite-to-metabolite variances, has proven to be a suitable 603 

and versatile method [219]. However, a recent study recognized 21 different normalization 604 

strategies based on the combination of sample-based and metabolite-based methods as consistently 605 

well-performing [220]. For an in-depth review of the computational process of the metabolomics 606 

studies we refer the readers to [221]. 607 

There are multiple robust tools for each step of the computational workflow (refer to [222] and 608 

[210] for comprehensive lists of available tools). Metabolomics researchers also enjoy the benefits 609 

of existing versatile and comprehensive workflows that cover multiple steps or even the entirety of 610 

the metabolomics computational aspects. Examples of highly popular such workflows are XCMS 611 

online [223], Galaxy-M [224], and MetaboAnalyst [225]. For a complete step-by-step guide to how 612 

to use MetaboAnalyst, we refer the readers to [226]. Moreover, novel approaches and platforms are 613 

being rapidly produced. MetaX [227] and JumpM [228] are examples of such novel and potent 614 

approaches.  615 

2.4.2 Challenges and perspectives 616 

The Metabolomics field is rapidly growing with the emergence of innovative technologies such as 617 

iKnife [229]. iKnife is able to perform in situ MS analysis with applications such as discrimination 618 

between normal and malignant tissues with 100% accuracy [230]. Single-cell metabolomics still 619 

struggles with challenges such as low throughput and sensitivity as well as computational 620 

inefficiencies. Nevertheless, efforts are being made to address such shortcomings [231]. The study 621 
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of the metabolome is not restricted to the methods discussed in this section. There are also 622 

alternative approaches such as isotope tracing fluxomics with the goal of delineation of the 623 

distribution of the metabolites in the samples of interest, and matrix-assisted laser desorption 624 

ionization-based MS imaging (MALDI-MSI) [232]. Moreover, the diverse advantages of NMR 625 

technologies attracted efforts for its synchronization for the current needs of metabolomics studies 626 

[233]. These alternative technologies, while providing the research community with improved 627 

analytical capacity, bring about their own challenges and inconveniences. Future years are expected 628 

to witness increased sensitivity of analytical platforms, improvement of interoperability among 629 

computational tools [210], as well as elevated specificity of metabolite biomarkers of cancer and 630 

enhancement of pharmacometabolomics (i.e. prediction of drug response through metabolomics) 631 

[234]. 632 

3 Multi-layer approaches  633 

Although isolated analysis of each of the individual omics layers has substantially contributed to 634 

our understanding of a diverse range of biological phenomena, this type of analysis has an 635 

inherently limited capacity for characterizing the integrated nature of biological units. When 636 

studying the cellular system, its complexity with intertwined and highly convoluted networks of 637 

interactions and regulations necessitates a multifaceted approach where different layers of data, 638 

generated either through single-layer omics approaches or other means of data acquisition (e.g. 639 

studies of molecular interactions, imaging, etc.), are simultaneously analyzed in an integrated 640 

manner [235]. Cancer is a systemic disease and thus, achieving an accurate picture of this 641 

perturbation requires homogenization of all the different types of single-layer data through 642 

integrative approaches. This is indeed the goal of large-scale efforts such as the Cancer Genome 643 

Atlas (TCGA; [13]) which by providing publicly available multi-layer data from various tumor 644 

types, empower researchers across the globe with an unprecedented capacity for systems-level 645 

analysis of cancer (Figure 3).  646 
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Integrative approaches have three main advantages. (1) With observations validated across multiple 647 

layers of information, they allow for more reliable and representative interpretations, (2) they can 648 

substantially contribute to the delineation of the interplay among molecular levels and shed light 649 

on the hierarchy of causation, and (3) they reduce our blind spots by circumventing our limitations 650 

through combined utilization of the technological and computational power in each level. 651 

Notably, omics data is not the only possible source of information that can be purposefully 652 

integrated in cancer studies; other types of data such as histopathological information can provide 653 

an extended panorama of tumor biology. Reportedly, the integration of histopathological features 654 

with molecular data outperforms predictions based on omics data or histopathological information 655 

in isolation in various types of cancer [236]. In one such study, an integrative, machine learning-656 

based analysis of histopathological, molecular, and clinical data of 538 lung adenocarcinoma 657 

patients from TCGA cohorts resulted in an integrated model with more accurate prognostic power 658 

for survival outcomes of stage I lung adenocarcinoma patients [237]. 659 

The heterogeneity of the generated data across different layers is a major challenge in integrative 660 

studies [238]. However, the undeniable advantages of data integration have prompted numerous 661 

efforts to overcome its challenges. See [239] and [240] for comprehensive explorations of 662 

integrative methods, databases, and tools. In addition, Supplementary Table S2 describes some of 663 

the prominent tools and methods for the integration of multi-modal data and their comparative 664 

performance. Here, we provide an in-depth description of proteogenomics and network-based data 665 

analysis. The former is a remarkable example of how the integration of multiple levels of 666 

information can reduce our blind spots and increase the accuracy and reliability of our 667 

interpretations and the latter is a major approach for data interpretation and a robust scaffold for 668 

data integration and modeling. 669 

3.1 Proteogenomics: vertical integration of genomics, transcriptomics, and proteomics data 670 



 
28 

 

Since genomic alterations are regarded as the molecular cause of tumorigenesis [7], the emergence 671 

of next-generation sequencing (NGS) technologies held the promise to greatly accelerate the 672 

identification of pathogenic alterations and thereby facilitate the design of highly effective 673 

therapeutic interventions and indeed, a variety of candidate treatments such as personalized 674 

immunotherapy, cancer vaccines, and gene therapy are being introduced [241]. However, not all of 675 

the patients stratified based on their genomic data benefit equally from the applied therapeutic 676 

interventions and the levels of response within each group of patients are diverse [242]. This has 677 

been attributed to the fact that most of the currently used treatments target specific proteins rather 678 

than genomic alterations and a great number of confounding elements are out of grasp due to the 679 

lack of proteomic information [243]. 680 

Despite recent attempts to predict specific types of PTMs [244], genomics data analysis cannot 681 

account for the numerous protein-level adaptation events in the cellular environment [243]. On the 682 

other hand, there is a considerable load of somatic mutations in cancer cells which in turn give rise 683 

to previously unidentified peptide sequences. Since proteomic analysis relies on previously 684 

identified protein sequences (to avoid false peptide sequences in de novo sequencing experiments), 685 

single-layer analysis of proteomic data is highly limiting in the cancer context. These and other 686 

challenges, which will be discussed here, can be addressed through vertical integration of genomics, 687 

transcriptomics, and proteomics data which is collectively termed proteogenomics (Figure 4) 688 

[245,246]. 689 

3.1.1 Experimental workflow and data analysis pipeline 690 

The backbone of proteogenomics studies is the construction of customized protein sequence 691 

databases [245]. As previously stated in the proteomics section, the identification of peptides in 692 

samples subjected to shotgun proteomics experiments is achieved by matching the spectra against 693 

a protein sequence database [247]. However, public protein databases (e.g. UniProt and PDB) do 694 

not contain previously unidentified protein sequences such as novel altered proteins which are 695 
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frequently encountered in tumor-derived samples [248]. To overcome this obstacle, NGS data 696 

acquired from the same sample (e.g. via WES, WGS, and RNA-seq) can be exploited to construct 697 

a customized protein sequence database that contains all the hypothetical protein sequences that 698 

can be inferred from the genomics or transcriptomics data and then, match the MS/MS spectra 699 

against this sample-specific database [249,250].   700 

The complexity of the expression system in eukaryotes makes the matching of the proteomics 701 

spectra against a customized database predicted from genomics data computationally ineffective 702 

and error-prone because the size of such databases will exceed any acceptable threshold [251]. 703 

However, customized databases from transcriptomics data are more effective and accurate since 704 

they consider only expressed transcripts. To construct a customized protein database from 705 

transcriptomics data, raw nucleotide sequences should be assembled into full-length transcripts. 706 

There are two approaches for full-length transcript assembly: genome-guided and de novo 707 

transcriptome assembly. Genome-guided approaches are routinely used for cancer studies. 708 

However, coupling these approaches with de novo transcriptome assembly approaches is advised 709 

[252]. De novo transcriptome assembly methods have the advantage of being capable of identifying 710 

novel transcripts that can’t be identified through reference-guided methods either due to errors in 711 

the reference genome or because they are completely missing (i.e. tumor viruses) [253]. A recent 712 

comparative study [252] suggested that the performance of the various existing de novo assembly 713 

tools is dependent on the study design and the species under study. In the cancer context, where we 714 

are usually dealing with human samples, Trinity [254], Trans-ABySS [255], SOAPdenovo-Trans 715 

[256], and SPAdes [257] are generally well-performing tools [252]. Merging the results obtained 716 

from multiple assembly tools with posterior quality control evaluation is currently considered best 717 

practice. Notably, long-read sequencing technologies have the potential to circumvent challenges 718 

of de novo transcriptome assembly. With PacBio and Nanopore technologies, read lengths of >10 719 

kb are routinely achieved, capturing full-length transcripts.  720 



 
30 

 

Multiple tools are available for customized database construction including Galaxy-p [258], 721 

QUILTS [249], customProDB [259], and PGA [260]. Importantly, the PGA pipeline is not limited 722 

to MS/MS data searching. It incorporates database construction steps that can be done using a 723 

genome-guided approach or via a de novo transcriptome assembly approach and also includes post-724 

processing steps including FDR calculation, protein inference, and spectrum annotation. In 725 

addition, the capacities of Galaxy-p for custom workflow construction prompted the development 726 

of comprehensive workflows [261] that encompass the entire computational process of 727 

proteogenomics. For a list of available tools and resources for proteogenomics studies refer to Table 728 

2. 729 

The process of matching MS/MS spectra against a customized database is achieved by utilizing 730 

database search engines such as X!Tandem, MS-GF+ [262], and Comet [263]. Among these, the 731 

widely used X!Tandem software has been shown to have the highest false-negative rate and hence, 732 

it is not recommended to exclusively use this engine [264]. Since effective quality control methods 733 

for novel peptide identification can be utilized downstream of the matching process, a high level of 734 

false-positive can be tolerated. Hence, the best approach in this step is to combine the results of 735 

multiple search engines to gain a more comprehensive collection of putative novel peptides. Novel 736 

peptides that have been identified through the matching step can then be further validated. 737 

PepQuery [265] is a freely available tool that can be applied as an optional quality control step and 738 

can significantly reduce false positives. The definitive validation of identified novel peptides, 739 

however, can be achieved through targeted proteomics assays [243]. 740 

3.1.2 Applications 741 

There is a variety of molecular events that can potentially give rise to a wide range of protein 742 

alterations such as chimeric proteins or single amino-acid variants in cancerous cells. However, not 743 

all of these events result in expressed proteins and even if expressed, the resulting proteins might 744 

be unstable and subjects to early degradation. Proteogenomics is an ideal approach for protein level 745 
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validation of the stable expression of these molecular events [246]. Moreover, protein-level analysis 746 

of current gene models and their somatic variations by means of proteogenomics enables the 747 

validation or correction of previous predictions of the sequence, structure, and ultimately the 748 

function of the respective proteins [246,266]. Additionally, deregulation of alternative splicing in 749 

cancer under the influence of perturbed splicing factors and altered signaling cascades is a known 750 

phenomenon [267,268]. Alternatively spliced isoforms can not only serve as tumor-specific 751 

biomarkers but can also provide stage-specific signatures and putative therapeutic targets [80]. 752 

Empowered with the capacities of both transcriptomics and proteomics, proteogenomics proves to 753 

be a competent approach for studying oncogenic splice variants and specific pipelines towards this 754 

purpose have already been developed [269]. 755 

PTMs are known to play essential roles in the biology of cancer cells [143,144]. Genomic 756 

alterations in cancer can have profound effects on protein modifications (e.g. through the addition 757 

or disruption of modification sites or alteration of PTM regulator proteins) and in turn on the 758 

signaling cascades and regulatory networks of cancer cells [251,270]. Since PTMs cannot be 759 

accurately predicted from genomics data, proteogenomics can become the tool of choice for 760 

exploring the effects of aberrations in the genome on the downstream PTM alterations [271]. In 761 

addition, it is now widely accepted that quantitative mRNA expression data is not an ideal indicator 762 

of protein expression levels and the extent to which they biologically correlate is a matter of debate 763 

[272]. Since protein expression levels are of importance both for functional inferences and 764 

therapeutic interventions, accurate measurement of protein expression levels is crucial [243]. 765 

Proteogenomics studies can not only provide us with protein expression data, but they also have 766 

the potential to deepen our understanding of the biology of this difference in expression levels.  767 

The host immune system is known to be effective in the elimination of cancer cells [273]. For the 768 

host immune system to be able to confront cancer cells, neoantigens, which are predominantly 769 

results of the processing of altered proteins by the antigen processing pathways, should be presented 770 

as human leukocyte antigen (HLA) ligands at the cell surface and be identified by T-cell 771 
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surveillance [268,274]. the process of immune response to cancer cells is being studied with the 772 

goal of designing therapeutic interventions known as cancer vaccinations that attempt to elicit the 773 

T-cell immune response against cancer cells [275–277]. Proteogenomics can greatly accelerate the 774 

pace of neoantigen discovery and by providing candidate clonal neoantigens result in a more 775 

efficient vaccination process [278,279]. Moreover, proteogenomics studies can help delineate the 776 

underlying mechanisms of immune system evasion by cancer cells [280].  777 

The above-mentioned applications can be used to filter more important genomic alterations, 778 

distinguish between driver and passenger mutations [281], and make for more efficient biomarker 779 

discovery [282–284]. A recent study [266] showcased the massive potential of proteogenomics 780 

studies from unraveling uncharted aspects of cancer biology to opening new avenues towards 781 

precision oncology. From PTM analysis of proteins to prioritization of somatic copy-number 782 

alterations, they exploited the full potential of current proteogenomics technologies. Importantly, 783 

they demonstrated that proteogenomics studies can result in more efficient unified multi-omics 784 

cancer subtypes that can serve to acquire an enhanced ability for prognosis, diagnosis, and precision 785 

interventions.  786 

3.1.3 Challenges and perspectives  787 

A long-standing challenge in the field of proteogenomics is the appropriate FDR estimation for 788 

matched peptides after database search [246]. As discussed in the proteomics section, a widely used 789 

approach is the target-decoy search strategy [163]. Since assuming the same FDR for both novel 790 

and previously identified peptide sequences is an underestimation of the FDR value for novel 791 

peptides, the efficacy of this method in proteogenomics studies has been questioned and substitute 792 

approaches such as separate FDR estimations for novel and previously identified peptides have 793 

been suggested by Nesvizhskii et al. [246]. Wen et al. [264], however, in a comparative study of 794 

FDR estimation methods utilized the prediction of retention time for peptides in comparison with 795 

the actual observed values as an evaluation metric for different quality control strategies and 796 
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identified global FDR estimation by target-decoy search (in order to attain a high level of 797 

sensitivity) with a posterior filtering step to restrict false positives (using PepQuery) as the best 798 

approach for neoantigen discovery. 799 

Although targeted MS-based assays hold great promise for the clinical translation of the discovered 800 

biomarkers through proteogenomics studies, there are still challenges that should be addressed 801 

[243]. Targeted multiple reaction monitoring assays can be used not only to validate the results of 802 

proteogenomics analyses but can also provide clinicians with a cost-effective multiplexed platform 803 

that can analyze a high number of target proteins from a variety of sample types (e.g. urine, 804 

secretions, etc.) with satisfying sensitivity and specificity. However, there is still room for 805 

improvement since the sensitivity is not enough for dilute samples and single-cell analysis [285].  806 

Recent advancements in proteomics technologies [286,287] and clinically valuable demonstrations 807 

such as the possibility of a micro-scaled proteogenomics study of tissues as small as 25 µg [288] 808 

are setting the stage for the emergence of a more precise and cost/time effective landscape for 809 

proteogenomics. Moreover, single-cell proteogenomics is evolving and has the potential to 810 

considerably increase our understanding of intratumoral heterogeneity [289–291]. It is expected 811 

that a greater number of researchers join this field in the years to come. However, the high number 812 

of existing tools that provide complementary results and should be utilized in combination with one 813 

another in multiple steps of the study [264,284,292] is probably a prohibitive element in attracting 814 

new researchers to the field. Other prohibitive elements are the required computational expertise 815 

and the lack of unified and comprehensive databases with user-friendly interfaces that are 816 

specifically tuned for proteogenomics studies. Although efforts have been made to provide 817 

comprehensive workflows for different study goals [293,294], international collaborations are 818 

required to overcome existing challenges and provide gold standard workflows for proteogenomics 819 

studies.  820 
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3.2 Network-based data integration  821 

A huge amount of information regarding the interactions among molecules and biological pathways 822 

is stored in public data repositories such as STRING [295], BioGRID [296], InnateDB [297], 823 

KEGG [298], Reactome [299], VMH [300], WikiPathways [301], etc. These data are generated 824 

either from in vivo and in vitro experiments or from in silico predictions [302] and are essential in 825 

providing a system-based context for omics data. Biological systems in the form of interaction 826 

networks and pathways can serve as frameworks on which omics-driven data can be integrated, 827 

analyzed, and interpreted [303,304].  828 

Combining the prior knowledge of interactions in the form of networks and pathways with genome-829 

wide data generated through single-layer omics approaches is used to overcome issues in the 830 

interpretation of omics data by providing a larger context. On the one hand, omics data on their 831 

own are merely a representation of existing molecules and their abundances at a particular point in 832 

time. Extracting patterns and understanding the underlying mechanisms of a condition from an 833 

omics dataset in isolation is challenging [305]. On the other hand, molecular interaction networks 834 

and pathways, although highly informative, do not account for the dynamics of the cell in different 835 

states and phases. The integration of interaction networks and pathways with omics datasets 836 

facilitates pattern detection and allows the study of the dynamic nature of the cell [306]. This is of 837 

particular importance for understanding the mechanisms of complex multistage diseases such as 838 

cancer. This integrative approach has been shown to be superior to the isolated analysis of either 839 

networks or omics data [307]. 840 

An important advantage of this integrative approach is the provided capacity for topological 841 

analysis of the identified significant molecules (e.g. downstream/upstream position in a given 842 

pathway, centrality parameters [308], etc.). It is widely accepted that the upstream position of a 843 

molecule in a pathway can be considered as a predictive measure for biological significance [309]. 844 

In addition, the centrality of a node in a given network, measured by various parameters (e.g. 845 
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degree, betweenness, etc.), is a validated implication for distinct importance. Indeed, aberrations in 846 

central nodes have been shown to play vital roles in tumor development [310]. Thus, alterations in 847 

structure or function (e.g. differential expression/abundance) of a given molecule under certain 848 

conditions combined with its topological features can help prioritize candidate molecules (e.g. 849 

possible driver molecules) for further studies [306]. Identification of patterns that are unlikely to 850 

occur randomly is another important theme in network biology. These patterns include motifs and 851 

modules. Motifs are recurring small subgraphs whose interactions form the overall behavior of the 852 

complex network. Alterations in these motifs are central to cancer biology and the search for core 853 

motifs in cancer-related pathways is valuable for biomarker, therapeutic target, and subtype 854 

discovery [311]. Modules are larger subgraphs that are highly connected internally and are involved 855 

in specific processes. Modules are extensively investigated for the identification of cancer driver 856 

pathways and genes and are explained in more detail in further sections. 857 

Guilt-by-association is another concept widely used for biological inference of topological 858 

properties of molecular networks in cancer biology [312]. This notion posits that molecules in 859 

topological proximity of each other are potentially functionally related. This is utilized in multiple 860 

ways in cancer investigations. For example, proteins of unknown significance in close topological 861 

proximity of known drivers of cancer can be investigated as candidate infrequently mutated proteins 862 

of functional importance in cancer. Alternatively, proximity as a proxy for overlap in function can 863 

be exploited to avoid utilization of redundant molecules for survival analysis, leading to higher 864 

efficacy of prognostic biomarkers [312]. 865 

Biomarkers and gene signatures identified from network-based approaches have been shown to be 866 

more reproducible [313]. In addition, network-based approaches allow the study of perturbations 867 

in specific interactions among molecules (e.g. allosteric regulations, post-translational processing, 868 

etc.) [307,314]. Deviation of these interactions from normal status is an essential factor in 869 

tumorigenesis and cancer progression [141]. Collectively, network-based analysis of cancer has 870 

been successfully implemented in cancer driver pathway identification, driver gene discovery, 871 
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somatic mutation prioritization, biomarker and therapeutic target discovery, cancer subtyping, and 872 

patient stratification [312]. 873 

The first step of the network-based analysis of omics data is to construct a context-specific 874 

subnetwork from generic data repositories of molecular interactions and pathways [311,315]. These 875 

subnetworks represent the parts of the system that are being studied and are constructed based on 876 

the experimentally acquired omics datasets. Depending on the goal of the study, different types of 877 

networks can be constructed including gene-gene and gene-protein interaction networks, signaling 878 

pathways, or a combination of these for a more comprehensive analysis. The most widely used 879 

networks are PPI networks [316] and genome-scale metabolic models [317]. The constructed 880 

subnetworks can then be amended with the results of a pathway enrichment analysis or can be 881 

mined for active module identification (Figure 5). These steps along with the visualization 882 

approaches are discussed in more detail below. 883 

3.2.1 Subnetwork construction  884 

Generic databases of biological interactions and pathways are still far from complete [318,319]. 885 

However, the goal of these repositories is to capture the entire repertoire of molecular and/or 886 

cellular interactions. Meanwhile, depending on the significant molecules identified in the omics 887 

dataset under analysis, only a minor subset of these interactions is relevant. Hence, the first step for 888 

network-based analysis of datasets is to construct a context-specific subnetwork. In addition to the 889 

significant molecules, identified via omics data analysis, subnetworks commonly incorporate all 890 

the known molecules that are in direct interaction with them [315]. These extra nodes provide new 891 

perspectives for a more comprehensive and accurate network interpretation.  892 

Network-based approaches can greatly facilitate multi-omics data integration and analysis [303]. 893 

Multiple levels of omics data produced from different single-layer techniques can be layered upon 894 

a single network to achieve a more holistic view of the perturbed system [307]. Alternatively, it is 895 

possible to construct multiple networks from different levels of omics data. The comparison of 896 
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these networks can provide a deeper and more accurate view of the system under investigation and 897 

result in more reliable conclusions [320]. Several algorithms such as AMARETTO [321] and 898 

iOmicsPASS [322] facilitate network-based data integration. Interestingly, AMARETTO is able to 899 

integrate phenotypic information such as radiography data with multi-omics data. This practical 900 

approach has been shown to be effective in identifying candidate cancer driver genes [314].  901 

3.2.2 Module identification  902 

The constructed subnetworks are usually very complex and often referred to as hairballs. While 903 

almost impossible to manually identify functional patterns in these subnetworks, graph mining 904 

algorithms can be applied to identify functional units of the large subnetwork known as modules 905 

[323]. Modules can be regarded as sets of densely connected nodes with an overall limited 906 

connection to the rest of the network [324,325]. An important property of biological systems is that 907 

molecules with similar functions closely interact with one another and tend to cluster together in 908 

biological networks [325]. Hence, each module can be assigned a specific biological function. If a 909 

subnetwork is constructed based on differential expression/abundance of molecules under a certain 910 

condition, modules in this subnetwork are expected to represent perturbed parts of the system that 911 

gave rise to the condition under investigation. 912 

Since the disruption of certain pathways (e.g. apoptosis, proliferation, etc.) is common to almost all 913 

cancer types [141], it is logical to consider that genes that harbor driver mutations should at least 914 

to some extent cluster together in modules [326,327]. It is expected that modules containing genes 915 

that are known to be involved in tumorigenesis and cancer progression can be utilized to predict 916 

novel cancer driver genes. Moreover, module identification can facilitate the identification of co-917 

occurring cancer driver mutations [328].  918 

The analysis of network modules facilitates the discovery of common disease mechanisms, disease 919 

subtypes, or the mechanics of response to drugs [329]. Interestingly, biological networks are often 920 

hierarchically organized, where for example a group of small, interconnected modules can be 921 
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clustered together to form larger modules. Researchers can use these hierarchies to adjust the 922 

magnification of the analysis for a more biologically relevant interpretation [330]. Methods such as 923 

hierarchical Hotnet are specifically developed for cancer studies to identify these module 924 

hierarchies and predict cancer driver genes [331]. 925 

Commonly used methods for module identification [332–334] first score nodes and edges based on 926 

criteria such as differential expression and experimentally validated PPIs, respectively. Then, a 927 

scoring system based on the aggregated scores of all the members of a hypothetical module is 928 

formulated. An algorithm is used to identify optimal modules (those with the highest scores). In the 929 

final step, the identified modules are queried for their statistical significance in relation to the 930 

investigated hypothesis [329]. 931 

Multiple classes of algorithms have been implemented for module identification, including 932 

diffusion-based algorithms and algorithms based on the prize-collecting Steiner tree problem [312]. 933 

Briefly, diffusion algorithms consider significant molecules as sources of a phenomenon such as 934 

heat diffusion that spreads through the edges of the network until equilibrium is achieved. Here, the 935 

goal is to find regions of the network with the most influence over them (i.e. hot regions) as these 936 

regions represent highly active modules. Prize-collecting Steiner tree algorithms seek to find 937 

modules optimized to contain the highest number of prizes (significant nodes) while minimizing 938 

the number of edges. Some algorithms [335] also exploit specific properties of tumors such as 939 

mutual exclusivity (i.e. activation/inactivation of a second driver molecule functionally related to 940 

an already perturbed molecule is obsolete and rarely observed in a single tumor). 941 

jActiveModules [332] is a widely used plug-in for network visualization software Cytoscape [336]. 942 

It can be used for module identification and can determine whether modules are common in 943 

multiple states. jActiveModules scores all the nodes in a network based on the p-values from a 944 

differential gene expression analysis and has a scoring function to determine the statistical 945 

significance of any given module. First, it assigns an active or inactive state to each node in a 946 



 
39 

subnetwork (with a 0.5 probability). Then, for a defined number of iterations, it selects a random 947 

node, toggles its state (active/inactive), and recomputes the module’s score. If the aggregated score 948 

of the module has increased, it keeps the node in its new state. Otherwise, it keeps or changes its 949 

state with a defined probability. The process continues until a local optimum is achieved. The 950 

identified module might not be the module with the global maximum score, but regardless it is of 951 

biological interest. 952 

Approaches for module identification are not limited to what has just been described. For example, 953 

in [337], the authors proposed a novel module identification pipeline. In this method, gene-gene 954 

correlation networks are constructed from omics data from two conditions under comparison. Then, 955 

the networks are separately integrated with a priori knowledge of interactions to identify modules. 956 

Thereafter, enriched modules (e.g. those significantly associated with upregulated genes in a certain 957 

condition) can be identified and potentially be used for predictive or diagnostic purposes. A few 958 

outstanding challenges regarding the existing methods and the overall approach should be 959 

considered. There is a lack of a strong correlation between mRNA and protein abundance [338]. 960 

As a consequence, utilizing the mRNA profile on its own as the source for subnetwork construction 961 

would result in an inaccurate representation of the actual system. iOmicsPASS [322] is a recently 962 

developed algorithm that takes this issue into account by integrating transcriptomics and proteomics 963 

data. iOmicsPass predicts phenotypic groups based on the joint expression pattern of the nodes 964 

within densely connected modules. The algorithm has been shown to be effective for predictive 965 

module identification especially when dealing with smaller datasets. Another major problem is that 966 

it is possible for a single molecule to be shared among multiple biological modules. Current 967 

methods, however, are not computationally effective in identifying overlapping modules [327]. 968 

Furthermore, despite a considerable rate of development of novel methods, there is a lack of 969 

standard benchmarks for validation and comparison of suggested methods [329]. In addition, it 970 

should be noted that the assumption that disease-related molecules cluster together in interaction 971 

networks does not always hold for a complex condition such as cancer [327].   972 
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3.2.3 Pathway enrichment analysis 973 

Pathway enrichment analysis is a common approach for identifying disrupted molecular processes 974 

and pathways underlying a certain condition [339]. The central idea is to identify common pathways 975 

that a set of molecules (e.g. differentially expressed genes) is associated with. This reduces the 976 

contextual complexity of the system and simplifies the interpretation of omics datasets by taking 977 

advantage of prior knowledge about biological processes [340].  978 

Three generations of pathway enrichment methods have been developed [340]. The first generation 979 

was termed over-representation analysis (ORA). In this generation of methods, a list of significantly 980 

differentially expressed molecules, based on p-value and/or fold change filters, is compared against 981 

previously compiled functional lists of molecular processes to identify over-represented pathways. 982 

DAVID [341] and WebGestalt [342] are among the widely used tools that exploit ORA algorithms. 983 

A major drawback of ORA is that by defining filters, we risk the omission of important molecules 984 

[343]. Moreover, ORA algorithms treat all the molecules that passed the defined filters as equally 985 

significant [304].  986 

The second generation of pathway enrichment methods is known as functional class scoring (FCS). 987 

Instead of using predefined filters, FCS algorithms require an input list of all the evaluated 988 

molecules, along with  values corresponding to their level of differential expression (e.g. fold-989 

change or p-value) [340]. In these methods, all the input molecules are statistically ranked and the 990 

overrepresentation of pathways is analyzed with the impact of each molecule in consideration [304]. 991 

A pitfall in this approach is that the analysis can become biased towards a few molecules that have 992 

been identified as very significant. Gene set enrichment analysis (GSEA) [344] is a widely used 993 

algorithm belonging to the second generation of pathway enrichment analysis methods. Genetrail 994 

[345] is a popular and freely accessible web service that provides users with both ORA and FCS 995 

algorithms for pathway enrichment analysis. 996 
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The most recent generation of pathway enrichment methods was developed with the goal to 997 

maximize the utilization of prior biological knowledge [346]. This generation of pathway 998 

enrichment algorithms incorporates the topological features of nodes in biological networks (e.g. 999 

upstream or downstream position in the pathway, degree and betweenness) as additional weighting 1000 

factors in the enrichment process [309,315]. In addition, in topology-based methods, the analysis 1001 

is not limited to input molecules but other molecules with close connections to input molecules can 1002 

be incorporated to identify relevant pathways. Studies indicate that topology-based methods 1003 

outperform conventional methods (ORA and FCS) both in genomics and metabolomics enrichment 1004 

analyses [324,347]. This generation of algorithms provides better capacity for the analysis of 1005 

molecular interactions and understanding the underlying mechanisms of a condition. In general, 1006 

there is no single best-performing tool for topology-based enrichment analysis. However, a recent 1007 

comparative study [324] identified DEGraph [348] as the superior method among the nine 1008 

algorithms investigated. 1009 

Overall, some major challenges remain for pathway enrichment analysis. In a recent study [347] 1010 

Nguyen and co-authors found that all of the tested pathway enrichment methods with the exception 1011 

of GSEA are prone to report false positives. GSEA on the other hand, suffers from low sensitivity. 1012 

Furthermore, the Fisher’s exact test, while a highly utilized method, performed poorly in this study 1013 

and produced a significant number of false-positive results. Hence, highly popular platforms such 1014 

as DAVID, which use this method, should be treated with extra care. 1015 

Most comparative studies focus on gene expression data and the results of these studies are not 1016 

necessarily applicable to other data types (for a list of methods and tools utilized in enrichment 1017 

analyses and their comparative performance derived from comparative studies refer to 1018 

Supplementary Table S3). Considering the importance of other layers of information in cancer 1019 

studies, this should be considered in future developments. One tool that already supports other 1020 

layers of information, including genomics, transcriptomics, proteomics, miRNAomics, 1021 

epigenomics, etc. is GeneTrail [345]. In addition, although studies indicate the superiority of 1022 
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topology-based enrichment methods, it is still not sufficiently recognized. It would be ideal if 1023 

popular and user-friendly portals of enrichment analysis would incorporate topology-based 1024 

approaches in order to make these methods accessible to a wider range of researchers. 1025 

The current lack of gold standard methods for pathway enrichment analysis coupled with the 1026 

plethora of existing approaches makes the selection of a suitable method a challenging task. This is 1027 

especially burdensome for researchers with limited computational expertise. With that being said, 1028 

there are a number of user-friendly web-based platforms such as MetaboAnalyst [225] and 1029 

Metascape [349] that offer users a comprehensive pipeline for pathway enrichment analysis. 1030 

Metascape (https://metascape.org/) takes advantage of multiple databases as its resource for 1031 

systems-level analysis of datasets. It provides powerful computational abilities with a simplified 1032 

and user-friendly interface designed for researchers with minimal computational expertise. Since 1033 

outdated data can severely impact the quality of analysis results [350], an important feature of 1034 

Metascape is the monthly data synchronization with the updated information in data repositories. 1035 

The workflow of Metascape can also be modified by users with more advanced computational skills 1036 

to meet the requirements of individual studies. Moreover, it can be utilized for cross-omics 1037 

comparisons of multiple gene lists and integrated analyses. Similar to DAVID, the resulting 1038 

enriched terms in Metascape are clustered and non-redundant. The results can also be exported to 1039 

Cytoscape for further analysis. 1040 

3.2.4 Network visualization  1041 

Through visualization, large amounts of data can be made more accessible for convenient pattern 1042 

detection and interpretation [351]. Whether it is in the form of processed networks or categorized 1043 

and functional tables, the goal of the visualization process is to reduce the overwhelming 1044 

complexity of large datasets and make them more readily interpretable. Many tools such as 1045 

Cytoscape [336], PaintOmics [352], and Omicsnet [353] are developed with the objective of 1046 

https://metascape.org/


 
43 

simplifying the visualization process and offering users a wide array of options to modify how their 1047 

data is represented. 1048 

Cytoscape is a widely used freely accessible platform that provides users with an interactive 1049 

interface and powerful tools for network visualization and analysis. Cytoscape’s feature set can be 1050 

expanded by adding plug-ins developed by the community for specific computational tasks. 1051 

Omicsnet [353] is a recently developed web-based visualization tool (www.omicsnet.ca/) that 1052 

provides users with a 3D structure for visualization and analysis of large networks. It can 1053 

incorporate multiple heterogeneous datasets in a single subnetwork. Moreover, by taking advantage 1054 

of various structural layouts such as spherical and multi-layer layouts, it facilitates network analysis 1055 

and reduces the overwhelming complexity of large networks. In addition, it provides users with a 1056 

variety of functional and topological analysis tools including module identification and pathway 1057 

enrichment analysis. 1058 

3.2.5 Challenges and perspectives  1059 

Although there are numerous methods and tools developed to tackle the variety of problems 1060 

associated with the network-based analysis of omics data, this approach to data analysis is still in 1061 

its infancy. Whether it is a matter of reliability of the analysis or a matter of providing equilibrium 1062 

between the amount of lost data and precision, a number of challenges remain for the community 1063 

to address.  1064 

The quality of network analysis results can only be as good as the quality of the input data. Besides 1065 

the quality of omics data, a major challenge in this field is incomplete or inaccurate information in 1066 

network and pathway databases which has been shown to greatly affect the analysis process [350]. 1067 

Hence, efforts to validate and expand the information in these databases are of essential importance. 1068 

In addition, analysis tools need to regularly update their knowledge base to keep up with the 1069 

expansion pace of the source databases. Moreover, limited overlap among interactome databases 1070 

means that they should be used in combination for more comprehensive results [347]. 1071 

http://www.omicsnet.ca/
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A simple widespread approach for subnetwork construction is the inference of relevant nodes based 1072 

on significantly differentially expressed/abundant mRNAs or proteins. However, two caveats 1073 

should be considered when opting for such approaches. First, since there is evidence against a 1074 

strong correlation between mRNA and protein levels [272] the accuracy of utilizing mRNA 1075 

expression levels for subnetwork construction is questionable. Second, phenomena such as somatic 1076 

mutations, PTMs, and alterations in cellular localization can functionally affect PPIs. These 1077 

alterations might be overlooked when PPI subnetworks are constructed solely based on mRNA 1078 

expression or protein abundance. When this is coupled with inaccuracies and incompleteness of 1079 

current PPI databases, it becomes clear that constructed subnetworks based on differential mRNA 1080 

expression or protein abundance do not necessarily provide accurate representations of the altered 1081 

cellular interaction networks. Integrative approaches can ameliorate this flaw to a great extent. For 1082 

instance, using integrative analysis approaches prior to subnetwork construction, one can establish 1083 

a list of candidate significant molecules (e.g. genes with both somatic mutation and differential 1084 

expression, overexpressed genes with hypomethylation, etc.) and subsequently create a subnetwork 1085 

by mapping these molecules to the human interactome [354]. Alternatives include more 1086 

sophisticated methods where a list of candidate molecules is not determined a priori. For example, 1087 

in the very recently introduced EMOGI method specifically developed for cancer data exploration 1088 

[355], novel candidate cancer genes are predicted through a machine-learning approach that uses a 1089 

generic PPI network with a multi-omics feature vector for each node along with lists of high-1090 

confidence cancer/non-cancer genes as input. However, only a limited number of user-friendly tools 1091 

allow for a network-based multi-omics data analysis. Moreover, current tools that provide the 1092 

capacity for this type of analysis are not comprehensive with regards to the types of integration they 1093 

can carry out. 1094 

Recently, efforts have been made to systematically compare the plethora of existing methods. These 1095 

studies analyzed current popular methods from different perspectives, deducing different existing 1096 
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challenges in the field, from the lack of a uniform distribution of p-values under the null condition 1097 

for enrichment analyses to the absence of a perfect method for all the study goals [324,347]. 1098 

An exciting future awaits the network-biology approaches. Single-cell multi-omics technologies 1099 

provide a highly potent data source for the construction of multilayered networks providing holistic 1100 

views of individual cellular systems. Moreover, it opens a great opportunity for understanding 1101 

intratumoral heterogeneity [356]. From the enhanced capability to unravel the complex underlying 1102 

mechanisms of cancer to drug repurposing [357] and precision medicine [358], network-based 1103 

approaches facilitate the translation of raw biological data of single-layer omics experiments to 1104 

practical knowledge and possible interventions. 1105 

3.3 Successful implementations of integrative approaches in cancer research 1106 

With significant growth during the last decade, high-throughput technologies prompted many 1107 

studies with results of clinical relevance. The search for molecular markers predictive of the 1108 

response to specific types of treatment is a hot topic in precision oncology and many studies provide 1109 

encouraging results. For instance, in a study by Taber et al. [359], sequential analysis of genomics, 1110 

transcriptomics, and proteomics data resulted in the identification of a subgroup of muscle-invasive 1111 

bladder cancer patients with high genomic instability and non-basal/squamous expression subtype 1112 

that were highly responsive to cisplatin-based chemotherapy while patients with low genomic 1113 

instability and basal/squamous expression subtype showed poor response. In another study, 1114 

proteogenomics analysis of HPV-negative head and neck squamous cell carcinoma shed light upon 1115 

multiple clinically significant aspects of this malignancy [360]. In addition to providing insights 1116 

into the underlying biology of this type of cancer, they identified multiple potentially druggable 1117 

targets. Interestingly, this study proposed that amplification of EGFR does not necessarily correlate 1118 

with the prevalence of EGFR ligands, suggesting that the investigation of EGFR ligand abundance 1119 

is a more appropriate strategy for prediction of response to treatments with anti-EGFR monoclonal 1120 

antibodies. 1121 
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The interplay between molecules is best explored through network analysis. In a remarkable pan-1122 

cancer network-based integration of genomics and transcriptomics data of 9,738 samples from 20 1123 

TCGA cohorts, Paull et al. [361] identified 407 master regulator (MR) proteins responsible for 1124 

channeling the functional effects of the plethora of genomic aberrations to specific gene expression 1125 

signatures across tumor types. These proteins were categorized into 24 MR modules, each involved 1126 

in the regulation of specific hallmarks of cancer. They proposed that based on the status of these 24 1127 

modules (activated/inactivated) in each individual, patient-tailored combinations of drugs that 1128 

specifically target these modules can be administered with precision. 1129 

In addition, although in its infancy, single-cell multi-omics is an emerging mighty technology. 1130 

Perhaps, the most profound contribution of single-cell technologies is that they allow us to dissect 1131 

intratumoral heterogeneity at individual cell resolution and explore common cancer type- or 1132 

subtype-specific patterns of heterogeneity among cellular clusters. The delineation of these patterns 1133 

can enhance our understanding of how tumors with specific origins exhibit certain properties (e.g. 1134 

metastasis, drug resistance, etc.), yielding insights into their assailable aspects and providing new 1135 

means for patient stratification [362]. Single-cell multi-omics has the capacity to uncover 1136 

intratumoral heterogeneity across layers of molecular information and provide us with a systems-1137 

level understanding of this phenomenon. Indeed, an integrative study of mRNA and protein levels 1138 

at single-cell resolution evaluating the effect of BMP4 (a proposed therapeutic agent for 1139 

glioblastoma [363]) on early-passage glioblastoma cultures [364] identified extensive heterogeneity 1140 

in how subpopulations of cells respond to BMP4 treatment. Utilizing the mRNA and protein 1141 

information in complement, they concluded that while all of the treated cells activated the BMP4 1142 

pathway, a subset of cells escapes proliferation suppressive effects of BMP4 treatment through a 1143 

TNC protein-dependent mechanism. Together, such studies illustrate the massive potential of 1144 

integrative approaches in deepening our understanding of tumor biology and directing clinical 1145 

efforts towards precise patient stratification and treatment. 1146 
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4 Conclusion  1147 

Current omics technologies and computational advancements provide unprecedented capacity to 1148 

study cancer etiology and underlying mechanisms, discover clinically applicable diagnostic and 1149 

predictive biomarkers, identify therapeutic targets, and develop therapeutic interventions. Despite 1150 

significant progress in the field, various uncharted territories remain to be explored. The fact that 1151 

no driver mutation could be identified for 5% of the cancers [365] or the unknown exact basis for 1152 

metastasis [66] highlight the existence of fundamental gaps in our knowledge. Until these 1153 

fundamental shortcomings in our knowledge persist, our inability to design highly effective 1154 

therapeutic interventions is not surprising. With the enhancement of our knowledge during the last 1155 

decades, it is becoming evident that cancer should no longer be viewed as a disease of the genome 1156 

but should rather be regarded as a disease of the cellular system. Rapid advances in technologies 1157 

and methodologies are paving the road for more effective study of cellular systems and their 1158 

perturbations. However, the dispersion of the plethora of bioinformatics tools, the lack of 1159 

benchmarked gold standard methods, and the required computational skills are major prohibitive 1160 

elements. There is an ever-growing need for user-friendly workflows that have been adjusted for 1161 

specific study goals. The extension of current comprehensive platforms such as Galaxy [366] that 1162 

allow for designing and utilizing readymade workflows for a very wide range of omics experiments 1163 

will result in further facilitation of data analysis processes. 1164 
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Figure 1. A timeline of some of the major contributions to the field of systems biology 2294 

Figure 2. General workflows for different omics studies. The wet lab and computational 2295 
procedures are distinguished by different background colors. 2296 

Figure 3. Integrative study of biological phenomena. The first fundamental decision for modern 2297 
large-scale studies is the choice between hypothesis-driven or data-driven study design. While both 2298 
types of study designs are applicable, complementary approaches are recommended since 2299 
hypothesis-driven studies are vulnerable to bias while data-driven studies are highly prone to false-2300 
positives [367]. The extracted omics data can be subjected to integration through multiple 2301 
approaches. The resulting functional data will improve our knowledge base and can serve as a 2302 
starting point for future studies. Already emerging pipelines demonstrate the clinical utility of the 2303 
integrative approaches [368]. The integration approaches provided in this figure are based on the 2304 
categorization in [240]. Sequential analysis: the integration of datasets subsequent to independent 2305 
analysis. Latent variable analysis: Partitioning of samples into functional groups through 2306 
unsupervised clustering for example by implementation of an expectation-maximization algorithm. 2307 
Penalized likelihood analysis: outcome prediction through penalized regression. Pairwise 2308 
correlation analysis: association estimation for related molecule pairs across datasets. Gene set 2309 
analysis: homogenization of multiple datasets by replacing every molecule with its respective gene 2310 
and subsequent enrichment of the resulting datasets. Network analysis: using prior knowledge of 2311 
molecular interactions to provide an environment for integration. Bayesian analysis: Utilization of 2312 
the information in an omics layer as the prior information for the analysis of another through 2313 
Bayesian approaches.  2314 

Figure 4. General workflow for the integration of genomics and tandem mass spectrometry data in 2315 
proteogenomics. The MS/MS spectra of the sample are searched against the theoretical spectra 2316 
inferred from the NGS data (most commonly RNA-seq) obtained from the same sample. The 2317 
identified novel peptides should be validated (using PepQuery). The resulting data can be utilized 2318 
for the study of post-translational modifications, identification of neo-antigens and biomarkers, and 2319 
mutation prioritization in the downstream interpretation. Network-based analysis of these data can 2320 
provide a critical vantage point for functional study of system perturbations. 2321 

Figure 5. General workflow for the network-based analysis of omics data. The constructed sub-2322 
networks from the integration of the omics-driven data and prior knowledge of molecular 2323 
interactions can be subjected to module identification or enrichment analysis. The identified 2324 
modules can also be enriched to yield functional information. Note that it is possible to enrich the 2325 
omics data independent of the subnetwork construction process. An example of downstream 2326 
interpretation is to demonstrate multi-omics data in multi-layered networks for computational 2327 
and/or visual pattern detection. Going from either raw omics data or interactome databases to 2328 
subnetwork modules and enriched data, the complexity decreases, and the data is constantly 2329 
narrowed down to yield functional information. ORA, over-representation analysis; FCS, 2330 
functional class scoring. 2331 
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