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Abstract

It is becoming evident that holistic perspectives towards cancer are crucial in deciphering the
overwhelming complexity of tumors. Single-layer analysis of genome-wide data has greatly
contributed to our understanding of cellular systems and their perturbations. However, fundamental
gaps in our knowledge persist and hamper the design of effective interventions. It is becoming more
apparent than ever, that cancer should not only be viewed as a disease of the genome, but as a
disease of the cellular system. Integrative multi-layer approaches are emerging as vigorous assets
in our endeavors to achieve systemic views on cancer biology. Herein, we provide a comprehensive
review of the approaches, methods, and technologies that can serve to achieve systemic
perspectives of cancer. We start with genome-wide single-layer approaches of omics analyses of
cellular systems and move on to multi-layer integrative approaches in which in-depth descriptions
of proteogenomics and network-based data analysis are provided. Proteogenomics is a remarkable
example of how the integration of multiple levels of information can reduce our blind spots and
increase the accuracy and reliability of our interpretations and network-based data analysis is a
major approach for data interpretation and a robust scaffold for data integration and modeling.
Overall, this review aims to increase cross-field awareness of the approaches and challenges
regarding the omics-based study of cancer and to facilitate the necessary shift towards holistic

approaches.

Keywords: Systems biology, Transcriptomics, Proteomics, Metabolomics, Proteogenomics,

Biological networks

Key points:

e Systemic perception of cancer is essential for the design of effective interventions

e High-throughput technologies are the main arteries of systemic studies of cancer

e Emerging data integration approaches are rapidly altering current paradigms of oncology
e Vertical integration of omics data is capable of addressing multifaceted challenges

e Network-based data analysis is a major asset in data integration and interpretation
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1 Introduction

According to the world health organization, an estimated number of 10 million patients worldwide
succumbed to different types of cancer in 2020 alone. Despite considerable advancements in
diagnostics and novel therapeutic approaches following the distilled outcomes of millions of
cancer-related studies, many clinical trials do not result in major success [1-3]. This, among other
reasons (e.g. implementation issues and technical limitations), can be attributed to the lack of a
systemic view towards cancer and its underlying mechanisms. Indeed, the results of the recent
WINTHER trial demonstrate the utility of multi-omics approaches for the improvement of cancer
therapy recommendations [4]. A deeper and holistic perspective of the underlying systemic
perturbations during tumor initiation and progression is a prerequisite for designing more targeted

a.k.a. personalized interventions.

In cancer investigations, we are facing aberrations in extremely complex systems with enigmatic
interplays between altered pathways and extensive multilevel cross-talk. The heterogeneity of
subpopulations of malignant cells further contributes to the obscurity of this picture. Contrasting
with conventional reductionist approaches, the field of systems biology has emerged and laid
foundations for holistic investigation of biological units and mathematical modeling of molecular
and cellular interplays for comprehensible exploration of biological systems [5] (refer to Figure 1
for a timeline of some of the major contributions to the field of systems biology). Fueled by
genome-wide technologies and bioinformatics advancements, systems biology is establishing itself
as the only reasonable approach for dissecting the complexity of tumors, identifying core
components of these perturbed systems, and recognizing the vulnerabilities of specific tumors for

effective patient stratification and precise interventions.

Achieving a holistic picture of cancer demands cooperation between multiple areas of research,
magnification of the links between layers of information, and robust approaches for effective

integration of the heterogeneous data. Hence, there is an increasing need for the research
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community to move beyond single-layer omics analysis of cancer and take advantage of the value
added by integrating multiple omics layers. Here, we review current approaches, methods, and
technologies that can serve to achieve a systemic perspective of cancer. We start with genome-wide
single-layer approaches and move on to multi-layer integrative approaches with a focus on a
systems biology perspective throughout the work. In each section, an overview of the importance
of each respective approach in cancer research is presented. Then, a general framework, based on
the current best practices of the field or novel and promising methods, is provided. In that context,
we highlight methods that require minimal computational skill and discuss outstanding challenges
and future perspectives. It should be noted that while the approaches and technologies discussed in
this review are presented in the context of cancer research, many of them are also applicable to
fields other than oncology. The review is concluded with multiple representative examples of what
these approaches have already contributed to the field of oncology. Overall, we aim to increase
cross-field awareness of the approaches and challenges regarding the omics-based study of cancer
for both research and medical communities in order to facilitate the necessary shift towards more

holistic approaches.

2 Single-layer approaches

High-throughput technologies capable of generating comprehensive data that encompass all the
molecular components at a particular level are the main arteries of systems-level studies in cancer.
Genomics, transcriptomics, proteomics, and metabolomics are the four major approaches currently
implemented using various technologies and comprehensive data analysis methods (Figure 2).
These approaches and related technologies as well as analysis pipelines are discussed in further
sections. Importantly, single-layer data analysis has greatly enhanced our understanding of cellular
mechanisms and their perturbations and fundamentally contributed to our knowledge of biological
systems. However, the purposive study of biological systems requires multi-level approaches that

integrate the generated data from different single-layer approaches to achieve a holistic view of
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cells under normal and disturbed conditions [6] (for a list of relevant researches and their

contributions to the field of systems oncology refer to Supplementary Table S1).

2.1 Genomics: Elucidating the genomic landscape of tumors

The process of tumorigenesis begins (and usually progresses) with the occurrence of specific
somatic driver mutations i.e. mutations that confer survival and proliferative advantages to a
specific cell lineage [7]. These mutations are accompanied by a higher number of passenger
mutations that do not directly contribute to tumorigenesis and cancer progression. Moreover,
germline mutations can contribute to cancer predisposition [8]. The main complexity of cancer,
however, arises from the lack of a consensus genomic landscape across different cancer types and
even among patients stratified under certain criteria. Case-specific combinations of genomic
alterations result in a wide variety of perturbations to the cellular system with the overall similar
result of tumorigenesis and cancer progression. Indeed, attempts to discover mutational patterns
also known as “mutational signatures” across and within tumor types have significantly contributed
to our understanding of the etiology of cancer and led to the identification of cellular processes
causative for specific cancer types that can serve as targets for therapeutic interventions [9—11].
Hence, it is evident that achieving an appropriate and encompassing perspective towards this

complex disorder necessitates the implementation of genomics technologies.

Whole-exome sequencing (WES) is currently the most widely applied technology both in research
projects [12,13] and in second-tier clinical diagnosis (implemented when gene panels are unable to
pinpoint the cause of the defect) [14]. WES was developed to specifically capture and sequence all
exonic regions of the genome. However, in the last decade we have learned that large parts of the
human genome that were previously referred to as “junk DNA” are biologically active, i.e.
translated into functional non-coding RNA [15]. Point mutations and structural variations in
noncoding regions can also be cancer drivers, although less frequently compared to coding regions

[16]. These findings, and the downwards trend in costs for sequencing, have already ignited the
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transition from using WES to whole-genome sequencing (WGS) technologies. WGS has the
advantage that it can also identify mutations in intergenic regulatory regions and mitochondrial
DNA, mutations in promoters, structural variations, and viral infections, all of which are associated
with different types of cancer. Moreover, the detection of copy number alterations is more effective
with WGS [17]. Interestingly, WGS has been shown to be more effective than WES even when

targeting coding regions [14].

Overall, current genomic technologies provide a potent vantage point for studying cancer etiology
[10], biomarker discovery [18], the prediction of patients’ drug response [19], and more. Recent
years have witnessed the emergence of multiple international efforts such as the Pan-Cancer
Analysis of Whole-Genomes (PCAWG) [16] where a considerable number of samples across
different tumor types have been sequenced and analyzed. Such efforts provide unprecedented
opportunities for the identification of mutational patterns across tumor types and the development

of diagnostic and therapeutic approaches that are applicable to a wide range of patients.

2.1.1 Experimental workflow and data analysis pipeline

The genomics workflow generally starts with random fragmentation of the purified DNA by
sonication or enzymatic digestion. Next, these fragments are enriched for target regions (genes of
interest for gene panels or exonic regions when performing WES) [20]. The WGS workflow does
not include this step. The acquired fragments are then ligated by oligonucleotide adapters that are
complementary to the anchors on the flow cell [21]. This is commonly followed by a size selection
step where ligated fragments with suitable sizes are purified [22]. Size selection can increase the
sensitivity of circulating tumor DNA detection [23]. Nevertheless, selecting for specific size ranges
might result in information loss and therefore, may be skipped depending on the goal of the study.
Depending on the utilized method, a PCR amplification step might be required. However,
considering that this step is prone to produce biased results, the utilization of a PCR-free method

as a cost-efficient and more effective approach is highly recommended [24,25]. The next step is the
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sequencing of the prepared library. Illumina short-read technologies are currently the dominant
sequencing platforms (for a comprehensive review of different sequencing technologies refer to
[26]). The NovaSeq 6000 sequencing platform is the most recent Illumina whole-genome
sequencing technology. With overall results of similar quality for NovaSeq 6000 in comparison to
the older Illumina whole-genome sequencing platform (HiSeq X Ten) and considering the
substantial reduction in experiment costs [27], NovaSeq 6000 can be considered as the current state-

of-the-art technology for whole-genome sequencing.

WGS data pre-processing begins with demultiplexing the sequencing reads using Illumina’s
Consensus Assessment of Sequence And Variation (CASAVA) software. Then, the raw reads are
aligned against the human reference genome using an aligner tool, some of the most popular of
which are BWAmem [28], Bowtie2 [29], and Novoalign
(www.novocraft.com/products/novoalign/). Since duplicate reads can occur during sequence
amplification and sequencing procedure, a duplicate marking step using tools such as Picard

(broadinstitute.github.io/picard), Sambamba [30], or SAMBLASTER [31] is required.

In the next step, variant calling is performed. The most popular variant callers for somatic variant
identification that have been specifically developed for the analysis of tumor samples include
Mutect2 [32], VarScan [33], Strelka? [34], and SomaticSniper [35]. A comparative study
evaluating the somatic single nucleotide variant calling performance of these tools [36] reported a
poor consensus among the results of variant callers. Mutect2 was identified as the best performing
tool, followed closely by Strelka. Combining the high-confidence results of these methods is also
a recommended approach. The study by Cai et al. [36] reported that while this approach increases
the specificity of the variant calling, it results in a massive reduction of sensitivity. Thus, a
combinatory approach should be opted for if higher reliability is desired while if achieving
encompassing results is the goal of the study, utilizing Mutect2 or Strelka is a reasonable approach.
In addition, the results of a study comparing the somatic variant calling performance of Mutect2

and Strelka2 [37] suggest that while these tools have similar overall performance, Mutect2 performs
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better when dealing with lower mutation frequencies while Strelka2 is the better choice in the
opposite scenario. Germline variant calling requires a different type of algorithm because the study
is confined to the sequencing of normal genome [17]. This is most commonly performed using the
Genome Analysis Toolkit (GATK) HaplotypeCaller (software.broadinstitute.org/gatk/). Studies
indicate inconsistency among the results of different combinations of aligners and variant callers
and hence, considering the intersection of the results of different pipelines is recommended to
reduce false-positives [24,38]. However, a recent study suggests that some popular pipelines can

produce results comparable to that of a combination of pipelines [39].

The detected variants are next subjected to annotation procedures. Annotations of previously
reported alterations can be obtained from data repositories such as COSMIC [40], ClinVar [41],
and OMIM [42]. The impact of novel variants with unknown significance can be predicted in silico
using bioinformatics tools such as MutationTaster [43], SIFT [44], Polyphen [45], and VEP [46].
This is common practice in clinical diagnosis to predict the impact of novel variants before co-
segregation and functional confirmation [47]. Moreover, there are algorithms such as CHASM [48]
and PrimateAl [49] that are specifically developed to predict functional effects of mutations in the
cancer context and distinguish driver mutations from passengers. The results of a recent
comprehensive comparative study [50] that assessed 33 algorithms for their performance in
predicting functional effects of mutations in cancer reported that cancer-specific algorithms
significantly outperformed algorithms developed for general purposes. Furthermore, this study
identified CHASM [48], CTAT-cancer [51], DEOGEN2 [52], and PrimateAl [49] as consistently
well-performing algorithms. Notably, it was also proposed that incorporation of pathway and
network information of the mutated genes in the prediction algorithm contributed to the outstanding
performance of DEOGEN?2 and thus, this should be considered in future algorithm developments.
Anyhow, insignificant variants are filtered out in this step while significant variants are reported

for downstream analysis and interpretation [53].
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It is important to mention that there are numerous pipelines using different combinations of tools
and computational approaches that attempt to address different challenges encountered in the
various steps of this generalized workflow [27,54]. There are also convenient and comprehensive
tools that facilitate the entire computational procedure, requiring minimal computational expertise.

An example is the recently developed portable workflow named Sarek [55].

2.1.2 Challenges and perspectives

The variant allele frequency (VAF) is used to determine whether variants are heterozygous (variants
with ~50% frequency) or homozygous (variants with ~100% frequency). In the cancer context,
however, VAF analysis is not as precise because intratumoral heterogeneity and impurity of tumor
DNA cause confusing deviations from expected VAFs [21,27,56]. The result of these ambiguities
is the inability to acquire a picture of intratumoral heterogeneity that is representative of the actual
biological phenomenon. Increasing the sequencing depth towards 100x coverage can ameliorate
this inconvenience [24]. However, in some cases, achieving a fully representative picture of
intratumoral heterogeneity requires impractical coverages of at least one order of magnitude higher
than this [57]. A promising approach to tackle this problem, among others, is single-cell sequencing.
Single-cell technologies provide researchers with a more accurate and less complex picture of the
perturbed system both in the genomics and transcriptomics context [58]. However, single-cell
technologies are still under development and a number of critical challenges both in wet lab [59]

and dry lab [60] processes remain to be addressed.

The potential of tumor-specific somatic mutation profiling in guiding the administration of
therapeutic interventions with precision is enormous [61]. This attracted a lot of attention towards
the assessment of mutational landscapes of individuals through minimally invasive approaches such
as cell-free DNA (cfDNA) sequencing. Circulating tumor DNA (ctDNA), presumably derived from
necrotic and apoptotic tumor cells, comprise a portion of cfDNA in cancer patients, distinguishing

them from healthy individuals [62]. Although the clinical efficacy of cfDNA monitoring in the
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cancer context is yet to be validated through large-scale clinical trials, potential applications of
cfDNA screening make it an attractive subject for researchers. These potential applications include
postsurgical monitoring for stratification of patients for adjuvant therapy, systemic monitoring of
the heterogeneity of the subclones in a metastatic tumor (as opposed to a single-site needle biopsy)
for early detection of resistance to therapeutic agents, and early detection of neoplasms in
asymptomatic individuals which can result in more effective interventions [63]. A major challenge
for ctDNA analysis is that ctDNA VAFs are usually significantly below the detectable threshold of
conventional high-throughput technologies. Ultrasensitive high-throughput technologies dedicated
to ctDNA analysis such as iDES-enhanced CAPP-Seq have been introduced to ameliorate this
shortcoming [64]. However, various challenges persist. These include increased risk of false-
positives due to clonal hematopoiesis of indeterminate potential (CHIP) or other diseases and
introduction of errors during library preparation (e.g. cfDNA degradation, contamination with
normal cell lysates, etc.) and sequencing. Therefore, accurate identification of somatic mutations
from cfDNA samples remains a daunting task [65]. Digital PCR approaches for ctDNA monitoring
with higher sensitivities and lower costs address some of the challenges associated with high-
throughput methods but require a priori knowledge of the targets and are particularly low in
throughput [65]. Altogether, despite the remaining challenges, the analysis of ctDNA as a
complement or surrogate to solid tissue specimens remains a valuable option, especially in cases

where solid tumor samples are not accessible or sampling is associated with high risks.

Despite the tremendous progress made in recent years, there are still many unresolved questions in
cancer genomics. The fact that no driver mutation could be identified for 5% of tumor samples [16]
underscores that despite the extensive study of tumor driver genes and mutations, there are still
shortcomings in our knowledge bases and/or models of cancer-initiating perturbations. Indeed, after
decades of intensive research in cancer biology, the fundamentals of this complex dysfunction are
still ambiguous in some areas. For example, the extent to which additional genomic/epigenomic

alterations fuel the transition of a benign tumor to a malignant state is still a matter of debate [66].
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Furthermore, the study of the genetic risk modifiers despite their potential to enhance our
understanding of cancer is limited due to their small effect size [20]. Another important challenge
is pinpointing the genomics alterations in high-complexity regions such as centromeres. Long-read
sequencing technologies hold the promise of adequately addressing this problem [67]. However,
certain drawbacks such as the high rate of errors in sequencing need to be tackled before these

technologies would be able to effectively benefit the field.

2.2 Transcriptomics: Approaches to decipher the post-transcriptional complexity of

tumors

The central dogma of biology describes the transition of information to function [68], from a semi-
static genome to the highly dynamic cell. Going from genome to proteome the complexity increases
as additional regulatory layers are introduced, from epigenetic [69] to post-transcriptional [70] and
epi-transcriptomic regulations [71], to post-translational modifications [72]. Hence, efforts to
understand the complex mechanisms of the cellular system and its perturbations exclusively from
a genomic viewpoint would be futile. A widely appreciated approach to enhance our understanding

of this complexity is studying the transcriptome [73].

The qualitative and quantitative analysis of transcriptomic information can yield insights into the
post-transcriptional dynamics resulting from genetic events, epigenetic regulation, as well as
regulation within the transcriptome, and provide means to predict the proteomics landscape. In
cancer, deviations from normal transcriptomes undergo clonal evolution which in turn results in
converged gene expression patterns referred to as the tumor gene signatures [ 74] that can be utilized
in cancer subtyping [75], biomarker discovery [76], etc. The most broadly utilized functional study
of the transcriptome is the comparison of expression profiles under different conditions (e.g. normal
vs cancer) known as differential gene expression (DGE) analysis [77] e.g. by means of RNA-
sequencing. Differential analysis of mRNA profiles can provide valuable information about

perturbed signaling cascades and malfunctioning members of the cell system that gave rise to the
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phenotype under investigation [78]. The study of alternative splicing and novel splicing events
[79,80], variant calling [81,82], and fusion transcript detection [83] are some of the other

applications of RNA-sequencing with particular importance in cancer.

mRNAs however, do not constitute the only RNA entities with relevance to cancer [84]. It is now
evident that a great portion of non-coding DNA is translated to functional non-coding RNAs
(ncRNAs) that are involved in almost all the aspects of cellular processes [85]. There are two
general categories of ncRNA: small non-coding RNAs (sncRNAs) that are less than 200 nucleotides
in length and long non-coding RNAs (IncRNAs; >200 nucleotides) [86]. sncRNAs are further
categorized into a number of RNA types including microRNAs (miRNAs), small nuclear RNAs,
and piwi-interacting RNAs. MiRNAs are probably the most widely studied form of ncRNAs
[87,88]. With their recognized role as important regulators of many cellular processes, miRNAs are
firmly established as essential players in tumorigenesis and cancer progression and have been
widely studied as potential biomarkers and therapeutic targets [89-92]. The role of IncRNAs in
cancer, however, is a more recent emerging view [93,94]. LncRNAs exert a variety of biological
functions through interaction with a plethora of different types of macromolecules. LncRNAs roles
in gene expression regulation through interactions with chromatin, protein complex assembly or
disassembly, and their interplay with mRNAs have been widely studied [95]. Several lines of
evidence attribute a role to IncRNAs in the regulation of virtually all of the cancer hallmarks
[96,97]. The vast number of tissue- and cell-specific IncRNAs along with their importance in the
regulation of cellular functions underscores their potential for annotated biomarker discovery in
cancer diagnosis, prognosis, and treatment [98] as well as their potential employment as therapeutic

targets [99].

2.2.1 Experimental workflow and data analysis pipeline

[llumina short-read sequencing is currently the dominant platform for transcriptomics studies [100].

The process starts with RNA extraction and target RNA enrichment to remove unwanted rRNAs or
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specifically select for poly-adenylated RN As through oligo-dT incorporation [101]. However, since
other RNA types might be of interest, rRNA depletion can provide more encompassing results
[102]. In any case, in the next step, the extracted RNA is subjected to fragmentation in order to
become compatible with the short-read sequencing technologies. This is usually done through
enzymatic digestion or by using divalent cation-containing solutions [102]. Next, reverse
transcription is performed. The second strand of the synthesized cDNA is usually tagged with the
incorporation of dUTPs. After the adaptor ligation, the tagged cDNAs are subjected to digestion in
order to achieve a strand-specific library [103]. The remaining strands are amplified through PCR
and are finally sequenced. The required sequencing depth (total number of reads) is determined by
the goal of the study and the nature and condition of the sample [104]. While 15 million reads are
considered a saturation point for gene expression profiling [77], a minimum of 70 million reads are
required for the accurate quantification of alternative splicing events [105]. This general framework
can be modified based on the experimental goals and the RNA type under investigation [106]. The
use of single-end or paired-end sequencing or enriching for unique reads restricted to the 3" end for
each transcript in order to analyze DGE are examples of such modifications [102]. Another example
is to take advantage of unique molecular identifiers (UMIs) to account for the misrepresentation of

biological expression differences due to PCR amplification [107].

The next steps are quality control and pre-processing of the acquired reads [104]. To perform DGE
analysis, the level of expression for each gene should be measured from RNA-seq reads. For that
purpose, the acquired reads are mapped to an annotated genome or transcriptome using tools such
as STAR [108], BWA [109], and TopHat2 [110]. Gene expression is then quantified based on the
number of reads that have been aligned to each gene using tools such as HTseq-count [111].
Alternatives include methods such as Sailfish [112], Salmon [113], and Kallisto [114], which
implement k-mer counts, quasi-mapping, and pseudo mapping, respectively. After batch effect
correction [115,116] and data normalization [117], the last step is the actual differential gene

expression analysis. While almost all of the popular methods for transcript quantification have been
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shown to perform equally well [118], the utilized tool to assess differential gene/transcript
expression is an influencing factor in this process. Multiple tools (e.g. NOIseq [119], imma+voom
[120], and DESeq2 [121]) are known to perform a high-quality DGE analysis and are accepted as
standard tools for DGE assessment [122]. Moreover, the usage of a combination of these tools has
been suggested as an effective approach [118]. Quality control in multiple steps of the process
(RNA quality, raw reads, alignment, and quantification) is also highly recommended [123].
Comprehensive quality control tools such as the NGS QC toolkit [124], RSeQC [125], and

Qualimap?2 [126] are widely applied to fulfill this purpose.

Multiple tools and web services such as IDEAMEX [127] facilitate an integrated DGE analysis for
researchers with a minimal computational background. BP4RNAseq [128] is another user-friendly
tool that has been recently introduced and can be utilized for a highly facilitated gene expression
quantification. There are also multiple tools and pipelines that are not restricted to DGE analysis
and can be implemented for a variety of RNA-seq data analysis purposes. RNACocktail [129] is a
comprehensive RNA-seq analysis pipeline incorporating a variety of powerful tools for a variety

of purposes including RNA variant-calling, RNA editing, and RNA fusion detection.

RNA-sequencing is at the forefront of single-cell sequencing technologies [130,131]. Sensitive full-
length transcript sequencing platforms such as MATQ-seq [132] with the ability to capture and
sequence ncRNAs herald the arrival of a new level of sequencing capacity. The general workflow
for single-cell sequencing is similar to the bulk RNA-sequencing workflow described above [133].
It is indeed possible to perform most of the computational processing steps with the bulk RNA-
sequencing methods. However, low levels of starting material coupled with additional technical
requirements (such as cell-specific barcoding to be able to demultiplex the resulting data from
multiplexed sequencing) and other challenges (such as the possibility of capturing damaged, dead,
or multiple cells) necessitate the development of computational methods tuned for single-cell
analysis [134,135] (see Table 1 for a list of single-cell RNA-sequencing tools). It should be noted

that large-scale comparative studies are required for the assessment of the utility of these tools in
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comparison with one another and with the tools designed for bulk-RNA sequencing analysis.
Indeed, bulk-RNA sequencing analysis tools have been shown to be capable of producing satisfying
and in some cases, superior results compared to that of the tools specifically designed for single-

cell RNA-seq [136].

2.2.2 Challenges and perspectives

A current challenge in RNA-sequencing is that the reconstruction of full-length RNA molecules
from short reads is error-prone [104]. This results in incorrect assignment of reads and
misrepresentation of isoform abundances and also makes isoform discovery a challenging task.
Long-read technologies, as well as synthetic long-read methods, hold the promise of solving this
inconvenience [ 100]. However, various challenges remain to be addressed. Long-read technologies
are particularly low in throughput. This problem in turn would result in a reduced experiment size
and low sensitivity of differential expression [100]. Hence, using a long-read technology is not
currently recommended for DGE analysis, particularly when the study involves low expression
levels. The high error rates and additional costs are prohibitive elements regarding long-read
technologies. Moreover, the rigorous requirement to avoid RNA degradation and shearing during
sample handling makes the achievement of high-quality samples laborious. However, the
combination of short-read with long-read sequencing methods enhances the quality and accuracy
of transcript isoform expression analysis. For instance, by combining these technologies and using
algorithms for hybrid assembly of short and long reads (hybridSPAdes; [137]) enhanced results for

de novo transcriptome assembly (e.g. with rnaSPAdes; [138]) can be achieved.

2.3 Proteomics: Studying the frontline of phenotype manifestation

Virtually all the regulatory mechanisms governing the central dogma of biology eventually serve
to determine the set of expressed proteins, their expression levels, and the manner in which they
function; the deviations of which from normal status can result in a malfunctioning system and give

rise to various disorders such as cancer [139]. Proteins can be considered as frontline agents of
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phenotype manifestation and hence, studying proteome level regulatory mechanisms, such as post-
translational modifications (PTMs), the inherent properties of proteins (e.g. their 3D structures),
and protein-protein interaction (PPI) networks is essential if representative views of the normal and
perturbed cellular system are to be achieved. Moreover, the validity of inferring protein abundance
from mRNA expression has been questioned due to the lack of consistently strong correlations
between mRNA and protein abundance [140], suggesting that the direct assessment of protein

abundance is a more reliable source.

All of the categorized hallmarks of cancer are either directly regulated by proteins or are highly
affected by them [141]. Proteins function in protein assemblies and highly complex networks. In
this context, malfunction in any member of these networks can potentially result in the disruption
of the activity of other members of the same network. Therefore, an important goal of proteomics
studies, in addition to assessing genome-wide protein expression under various conditions, is to
achieve comprehensive and functional models of all the physical protein interactions both in normal
and perturbed conditions [142]. Equally important is the study of PTMs. With more than 450 types
of PTMs, these modifications regulate protein expression levels and almost all cellular processes,
such as immune response, apoptosis, tumorigenesis, and cancer progression [ 143—146]. Exploration
of these and other aspects of cell biology from omics data of other levels is either impractical or
impossible. Collectively, current proteomics technologies and approaches provide researchers with
powerful assets in the quest of achieving a functional view of the cellular system and addressing
fundamental questions regarding the biology of cancer as well as discovering biomarkers and

actionable therapeutic targets [147,148].

2.3.1 Experimental workflow and data analysis pipeline

Multiple methods have been developed to assess the proteomic landscape of cells and tissues.
Targeted and top-down proteomics [149,150] are two of the established branches of such methods

with dedicated software tools and platforms [151-153]. However, data-dependent bottom-up or
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“shotgun” proteomics through liquid chromatography-tandem mass spectrometry (LC-MS/MS) is
currently the de facto standard approach for genome-wide proteomics analysis [154]. The workflow
for shotgun proteomics is variable and context-dependent. A general workflow based on the current
best practices can be presented as follows: after the lysis of the samples, the disulfide bridges of the
extracted proteins are disrupted through reduction and alkylation of the cysteine residues. Next, the
proteins are subjected to enzymatic digestion through the addition of proteinases (most commonly
Lys-C followed by trypsin). One- or two-dimensional chromatography is next applied, the latter is
recommended to increase the dynamic range (i.e. to provide the possibility for low-abundance
proteins to be identified) [155]. Currently, the most effective approach is to subject the samples to
basic reversed-phase chromatography followed by acidic reversed-phase chromatography as the
second dimension [156]. There is also the choice between label-free and isobaric labeling (using
iTRAQ [157] or tandem mass tags (TMTs, [158])). Isobaric labeling approaches are recommended
due to the provided capacity for multiplexation and the reduction of errors from manual sample
handling as well as higher precision in quantification, especially when PTMs are the target of the
study [155]. The wet lab procedure is concluded by the acquisition of MS spectra from MS/MS.
Orbitrap-based MS/MS is the current standard. It is also possible to add a third stage (MS3) by
combining Orbitrap and Ion Trap methods and it has been shown to be effective when facing highly
complex samples [159]. For comprehensive and step-by-step workflows for the wet lab procedure

refer to [155] and [159].

Although methods exist for de novo identification of peptide sequences [160], current approaches
still suffer from high error rates. The preferred method is to first prepare a database of all the known
protein sequences (comprehensive databases such as Uniprot [161] can be exploited for this
purpose) and subject them to in silico digestion according to the properties of the proteinase
enzymes that were utilized during sample preparation. The resulting in silico produced peptides are
then assigned theoretical spectra and the experimentally acquired spectra are searched against this

database. Each match is scored based on the similarity and the highest-scoring match reveals the
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identity of each peptide with a certain false discovery rate (FDR). A stringent FDR of 1% is
recommended [162]. The recommended approach to control for this FDR is the target-decoy search
strategy [163]: a parallel database of incorrect peptides is constructed (usually through reversion of
the peptide sequences of the main database). Matches to this database are obviously false positives
and hence, can reveal the FDR based on the utilized filters. Using this method, one can tune the
applied filters to achieve a suitable FDR. The identified peptides are then assigned to their
respective proteins. Peptides with less than 7 residues are usually non-unique and are prone to

erroneous protein assignment and thus, are recommended to be excluded [162].

Proteomics data needs to be preprocessed (including normalization, filtering, etc.) before they can
be interpreted in a biological context. After preprocessing, the data can be manipulated to yield
functional information through a variety of approaches. Differential expression analysis is a
common approach with subsequent context-specific analyses such as expression signature

discovery and co-expression network analysis.

The general workflow provided here can also be modified in order to customize the study for the
analysis of PTMs [164], PPIs, and subcellular localization [142]. For the analysis of PPIs, target
protein complexes should be isolated from the cell lysate. Co-immunoprecipitation (Co-IP) is a
common approach for this purpose [165]. Co-IP involves the attachment of specific antibodies to
bait proteins (proteins whose interacting partners are under investigation). These antibody-protein
complexes are captured by agarose beads attached to A/G proteins and are “pulled-down” by means
of centrifugation. Proteins in tight interaction with the bait proteins are also precipitated in this step
and the unbound components of the lysate are discarded. The captured proteins can then be
subjected to MS to identify PPIs. Tandem affinity purification (TAP) is a similar approach with
enhanced purification that involves tagging the bait protein at its N-terminus by a TAP tag (usually
a calmodulin-binding domain followed by a highly specific protease cleavage site followed by an
IgG-binding fragment) prior to two steps of purification by centrifugation [ 166]. The major problem

associated with these approaches is their restriction to identifying highly stable PPIs. For the
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identification of more transient interactions in complex biological samples, another method termed
crosslinking-MS (XL-MS) which also has the advantage of providing spatial information is favored
[167]. This method is based on covalently binding residues in two proteins through two reactive
groups (usually amine- groups due to the prevalence of lysin residues in protein structures) that are
connected via a spacer with a finite distance. This limited distance confers a spatial constraint on
the residues that can be linked; making the crosslinking possible only between proteins in close
proximity (i.e. interacting proteins). As for the PTMs, the mass shift in the peptides due to these
modifications is identifiable by LC-MS. However, an additional enrichment step for the peptides
with the modification under investigation is required [168]. Various strategies for this enrichment
including implementation of immunoaffinity precipitation (using antibodies highly precise for
specific types of modification) and chromatography-based approaches (e.g. immobilized metal ion
affinity chromatography, metal oxide affinity chromatography, etc.) have been devised. The most
suitable approach, however, is dependent on the type of modification under study and the specific

physical/chemical properties it confers to the peptides (refer to [169] and [168]).

MaxQuant [170] is a popular comprehensive platform that along with Perseus [171] facilitates the
entire procedure of shotgun proteomics data analysis. Moreover, dedicated platforms for
computational analysis of PTMs and PPIs exist [172,173]. In addition, a recently developed
comprehensive toolkit named “Philosopher” [174] demonstrates a movement towards making these

computationally sophisticated methods accessible to a broader community.

The prospective results of the “discovery” shotgun proteomics can be channeled into “hypothesis-
driven” targeted proteomics for validation in order to extract actionable and clinically relevant
directions from the plethora of information resulted from shotgun proteomics [175]. Targeted
proteomics approaches are higher in sensitivity and dynamic range and tackle the problem of
irreproducibility associated with shotgun proteomics which is due to the stochastic nature of
precursor ion selection in shotgun approaches. Targeted proteomics is developed based on prior

knowledge about the proteins of interest and the selection of signature peptides that specifically
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represent those proteins. Selected reaction monitoring (SRM) is a widely-used targeted approach.
A triple quadrupole instrument is used to filter the target peptides based on their predetermined
mass-to-charge ratio which combined with their elution time can be sufficiently specific. The
filtered peptides are subsequently fragmented using collision-induced dissociation and the resulting
fragment ions are once more filtered for specific fragments based on a predetermined mass-to-
charge ratio. This process is repeated for multiple different fragment ions of each filtered peptide
and hence, peptides are identified and quantified utilizing MS spectra [176]. Parallel reaction
monitoring (PRM) is a similar approach which through the implementation of an orbitrap or time-
of-flight instrument removes the second filtering step by analyzing all the fragment ions

simultaneously and provides more accurate results [176].

2.3.2 Challenges and perspectives

In spite of the remarkable progress made in proteomics methods in the last decade [147], drawbacks
such as the cofragmentation problem [177] still exist and experiment design approaches, as well as
computational strategies, are being constantly revised to compensate for these [178]. Overall,
reduction in costs and a further increase in the sensitivity of mass spectrometers can be considered
as major factors that can enhance the efficiency and accessibility of proteomics analyses [179].
Specific to targeted proteomics, a major drawback of SRM and PRM approaches is that the analysis
is restricted to the preselected target proteins. Recent advances in data-independent acquisition
methods (particularly SWATH-MS) circumvent the need for repeated measurements for each target
protein by allowing posterior querying of the data for the desired peptides while providing
multiplexing capacities comparable to shotgun proteomics [180]. However, data-independent
acquisition methods lack the sensitivity of SRM and PRM and are therefore inferior to these
approaches when dealing with very low-abundant proteins. In addition, SWATH-MS is still facing

challenges regarding ease of data analysis [180].
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From the clinical perspective, minimally invasive sample collection is critical. Body fluids (e.g.
blood, saliva, urine, tears, etc.) are readily available rich sources of biomolecules (e.g. over 12,000
proteins only in plasma) with altering compositions during tumor development which can be used
as tumor and/or stage-specific biomarkers [181]. Proteomics approaches were generally successful
in discovering such biomarkers [182,183]. A major pitfall associated with body fluid biomarker
discovery, however, is the massive dynamic range: a handful of enormously abundant proteins
mask the presence of lowly abundant molecules of interest. Strategies such as immunodepletion of
high-abundance proteins have been devised, which nevertheless face the caveat of information loss
due to unspecific bindings to affinity ligands [184]. Nonetheless, the achievements of multiple
efforts in recent years underline the possible widespread utilization of these sample types in clinical

practice in the future [185,186].

Single-cell proteomics is a promising prospective approach which is still in its infancy. For single-
cell technologies to become a feasible practice in proteomics, advances in both technological and
computational aspects are required [187]. Considerable increase in MS sensitivity and the
development of specialized tools for the analysis of such data are prerequisites of making single-
cell proteomics practical. Nevertheless, various multidisciplinary efforts are already turning the

dream of single-cell proteomics into reality [188].

2.4 Metabolomics: Exploring the survival strategies of cancer cells

During cancer initiation and progression, cellular systems are reprogrammed to grow and
proliferate at exceptionally high rates and to acquire an enhanced capacity for survival under
extreme conditions [141]. Clearly, a considerable portion of this reprogramming is dedicated to
shaping an altered form of metabolism that is able to meet the massive energy needs and to provide
required anabolic precursors for these highly demanding self-centered systems. Indeed, almost
every aspect of cellular metabolism is affected during cancer progression [189] and since the

metabolic status of a sample can be considered as the ultimate downstream manifestation of the
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effects of both intrinsic (e.g. genetic) and extrinsic (i.e. environment) factors on the biological

system [190], valuable insights can be gathered from the study of the metabolome.

Two core metabolites with altered metabolic pathways in cancer are glucose and glutamine [191].
Excessive glucose fermentation, overexpression of the rate-limiting enzymes of the glycolysis
branch pathways, constitutive glucose influx, as well as an increased expression rate of glutamine
synthesis are examples of such alterations that cancer cells exploit to provide themselves with
modified sources of energy and a large collection of biosynthetic precursors [189]. In addition,
cancer cells develop scavenging strategies in order to survive under the commonly encountered
nutrient-poor microenvironment. These strategies include autophagy [192], consumption of
extracellular proteins through macropinocytosis and subsequent lysosomal degradation of these
molecules [193], entosis [194], and phagocytosis [195], as well as induction of fatty acid release
from neighboring cells [196]. Cancer cells also highly influence the condition of their
microenvironment. The high rate of glucose fermentation results in the accumulation of
considerably high levels of extracellular lactate and H" which in turn contribute to angiogenesis,
immune response suppression, and tumor invasiveness [189]. Since the survival of cancerous cells
is highly dependent on this altered metabolic status, the metabolome is an active area of research
for the discovery of cancer biomarkers as well as the identification of potential therapeutic targets

[197,198].

The contribution of metabolites to the initiation of signaling cascades and their effect on the
epigenetic landscape as well as PTMs are other topics of investigation. Through these
investigations, the role of metabolites not only as molecules with altered behavior downstream of
cancer initiation and progression but also as etiological agents (i.e. oncometabolites) that contribute
to system perturbations is being rapidly established [199]. Further studies of the metabolome in this

context have the potential to shed light on novel aspects of cancer biology.

22



545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

2.4.1 Experimental workflow and data analysis pipeline

Due to the inherent chemical homogeneity of the polymers of genome, transcriptome, and
proteome, it is possible for a single platform to capture a holistic snapshot of each respective layer.
However, this does not hold in metabolomics owing to the chemical heterogeneity of different
classes of metabolites [200]. Proton nuclear magnetic resonance (1H NMR) and MS-based methods
are the most common approaches for metabolomics data acquisition; all of which are associated

with various advantages and disadvantages [190].

NMR is highly reproducible, conveniently quantifiable, requires minimal sample preparation, and
unlike MS-based approaches is nondestructive [190,201,202]. Moreover, it is considered the gold
standard method for the elucidation of the metabolite structures [203]. Nevertheless, NMR suffers
from low sensitivity and it is only capable of detecting 20-50 metabolites per sample which is an
inadequate number for systems-level analyses [190]. MS-based approaches, on the other hand,
possess the advantage of high sensitivity and are widely adopted for untargeted and system-level
metabolomics analyses due to their capability to detect 100-1000 metabolites per sample [200,203].
Gas chromatography-MS (GC-MS) and LC-MS (or LC-MS/MS) are the most commonly used
methods for MS-based metabolomics [204]. GC-MS is cost-effective and has the advantage of a
virtually automated metabolite identification process. However, it is only applicable to volatile and
thermally stable metabolites or those that can be adapted for the process with chemical
derivatization [203]. This limits the versatility of GC-MS. In addition, the derivatization process
can introduce artifacts and might result in erroneous quantification because of incomplete
derivatization [205]. Unlike GC-MS, LC-MS does not require derivatization and with the ability to
capture molecules in a wider weight range, it is highly versatile and efficient [190,203,204,206].
While these advantages make LC-MS the most widely applied method in the field, researchers are
encouraged to opt for a combination of these approaches to achieve a more comprehensive
representation of the metabolic status of the sample [201]. The workflows for all of the above-

mentioned approaches are somewhat similar, with nuances and differences in the steps and applied
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algorithms. However, due to the extensive utility of the LC-MS and LC-MS/MS, these approaches

are the main focus of this section.

Unlike NMR, MS-based analysis needs a sample preparation step consisting of protein precipitation
and liquid-phase extraction [207]. The higher susceptibility of the metabolome to alter under
different conditions in comparison to the other omics layers [208] means that careful experimental
design is a requirement to minimize confounding factors. The instruments with high mass-resolving
power such as LTQ-Orbitrap and Q-TOF are instruments of choice for systems-level metabolomics.
Electrospray ionization (ESI) is the most widely applied ionizing method in order to make the
metabolites detectable in LC-MS metabolomics [204,209]. Of note, the validation of the results of
untargeted studies through targeted approaches can increase the reliability of the acquired data

[206].

The general computational workflow consists of preprocessing, peak detection or annotation, post-
processing, and statistical analysis of the resulting data [210]: After the data is obtained, it should
be subjected to the preprocessing procedure in order to enhance comparability and management
[190]. Preprocessing usually starts with peak picking which is the process of detecting the actual
informative regions of spectra and removing the background noise. For MS-derived data, a
deconvolution step is required to reduce redundancy. Another requirement is the alignment of
matching peaks between different samples [211,212]. A practical and popular approach for peak
annotation (i.e. the assignment of the observed peaks to actual metabolites) is to search the data
against the existing spectral libraries in a process similar to what has been described in the
proteomics section. The desired information for metabolites is acquired by inquiring metabolome
databases such as the Human Metabolome Database (HMDB) [213], METLIN [214], and
MassBank [215]. It is also possible to implement a target-decoy strategy to control for the FDR.
An innovative approach regarding the construction of a decoy database for metabolome studies has
been proposed by Wang et al. [216] which is performed by violating the octet rule through the

addition of extra hydrogen atoms to the molecular structures. A post-processing procedure is
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performed prior to downstream analysis and interpretation of the data. Post-processing includes
data filtering, imputation to account for the missing data, and normalization [210]. Data filtering is
an important step in order to remove uninformative data while avoiding the loss of biologically
meaningful information [217]. Recently, Schiffman et al. proposed a data-adaptive pipeline for data
filtering procedure [218]. A variety of normalization methods both sample-based and metabolite-
based exist. Among these, Variance Stabilization Normalization (VSN), which accounts for
sample-to-sample variations and metabolite-to-metabolite variances, has proven to be a suitable
and versatile method [219]. However, a recent study recognized 21 different normalization
strategies based on the combination of sample-based and metabolite-based methods as consistently
well-performing [220]. For an in-depth review of the computational process of the metabolomics

studies we refer the readers to [221].

There are multiple robust tools for each step of the computational workflow (refer to [222] and
[210] for comprehensive lists of available tools). Metabolomics researchers also enjoy the benefits
of existing versatile and comprehensive workflows that cover multiple steps or even the entirety of
the metabolomics computational aspects. Examples of highly popular such workflows are XCMS
online [223], Galaxy-M [224], and MetaboAnalyst [225]. For a complete step-by-step guide to how
to use MetaboAnalyst, we refer the readers to [226]. Moreover, novel approaches and platforms are
being rapidly produced. MetaX [227] and JumpM [228] are examples of such novel and potent

approaches.

2.4.2 Challenges and perspectives

The Metabolomics field is rapidly growing with the emergence of innovative technologies such as
iKnife [229]. iKnife is able to perform in situ MS analysis with applications such as discrimination
between normal and malignant tissues with 100% accuracy [230]. Single-cell metabolomics still
struggles with challenges such as low throughput and sensitivity as well as computational

inefficiencies. Nevertheless, efforts are being made to address such shortcomings [231]. The study
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of the metabolome is not restricted to the methods discussed in this section. There are also
alternative approaches such as isotope tracing fluxomics with the goal of delineation of the
distribution of the metabolites in the samples of interest, and matrix-assisted laser desorption
ionization-based MS imaging (MALDI-MSI) [232]. Moreover, the diverse advantages of NMR
technologies attracted efforts for its synchronization for the current needs of metabolomics studies
[233]. These alternative technologies, while providing the research community with improved
analytical capacity, bring about their own challenges and inconveniences. Future years are expected
to witness increased sensitivity of analytical platforms, improvement of interoperability among
computational tools [210], as well as elevated specificity of metabolite biomarkers of cancer and
enhancement of pharmacometabolomics (i.e. prediction of drug response through metabolomics)

[234].

3 Multi-layer approaches

Although isolated analysis of each of the individual omics layers has substantially contributed to
our understanding of a diverse range of biological phenomena, this type of analysis has an
inherently limited capacity for characterizing the integrated nature of biological units. When
studying the cellular system, its complexity with intertwined and highly convoluted networks of
interactions and regulations necessitates a multifaceted approach where different layers of data,
generated either through single-layer omics approaches or other means of data acquisition (e.g.
studies of molecular interactions, imaging, etc.), are simultaneously analyzed in an integrated
manner [235]. Cancer is a systemic disease and thus, achieving an accurate picture of this
perturbation requires homogenization of all the different types of single-layer data through
integrative approaches. This is indeed the goal of large-scale efforts such as the Cancer Genome
Atlas (TCGA; [13]) which by providing publicly available multi-layer data from various tumor
types, empower researchers across the globe with an unprecedented capacity for systems-level

analysis of cancer (Figure 3).
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Integrative approaches have three main advantages. (1) With observations validated across multiple
layers of information, they allow for more reliable and representative interpretations, (2) they can
substantially contribute to the delineation of the interplay among molecular levels and shed light
on the hierarchy of causation, and (3) they reduce our blind spots by circumventing our limitations

through combined utilization of the technological and computational power in each level.

Notably, omics data is not the only possible source of information that can be purposefully
integrated in cancer studies; other types of data such as histopathological information can provide
an extended panorama of tumor biology. Reportedly, the integration of histopathological features
with molecular data outperforms predictions based on omics data or histopathological information
in isolation in various types of cancer [236]. In one such study, an integrative, machine learning-
based analysis of histopathological, molecular, and clinical data of 538 lung adenocarcinoma
patients from TCGA cohorts resulted in an integrated model with more accurate prognostic power

for survival outcomes of stage I lung adenocarcinoma patients [237].

The heterogeneity of the generated data across different layers is a major challenge in integrative
studies [238]. However, the undeniable advantages of data integration have prompted numerous
efforts to overcome its challenges. See [239] and [240] for comprehensive explorations of
integrative methods, databases, and tools. In addition, Supplementary Table S2 describes some of
the prominent tools and methods for the integration of multi-modal data and their comparative
performance. Here, we provide an in-depth description of proteogenomics and network-based data
analysis. The former is a remarkable example of how the integration of multiple levels of
information can reduce our blind spots and increase the accuracy and reliability of our
interpretations and the latter is a major approach for data interpretation and a robust scaffold for

data integration and modeling.

3.1 Proteogenomics: vertical integration of genomics, transcriptomics, and proteomics data
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Since genomic alterations are regarded as the molecular cause of tumorigenesis [7], the emergence
of next-generation sequencing (NGS) technologies held the promise to greatly accelerate the
identification of pathogenic alterations and thereby facilitate the design of highly effective
therapeutic interventions and indeed, a variety of candidate treatments such as personalized
immunotherapy, cancer vaccines, and gene therapy are being introduced [241]. However, not all of
the patients stratified based on their genomic data benefit equally from the applied therapeutic
interventions and the levels of response within each group of patients are diverse [242]. This has
been attributed to the fact that most of the currently used treatments target specific proteins rather
than genomic alterations and a great number of confounding elements are out of grasp due to the

lack of proteomic information [243].

Despite recent attempts to predict specific types of PTMs [244], genomics data analysis cannot
account for the numerous protein-level adaptation events in the cellular environment [243]. On the
other hand, there is a considerable load of somatic mutations in cancer cells which in turn give rise
to previously unidentified peptide sequences. Since proteomic analysis relies on previously
identified protein sequences (to avoid false peptide sequences in de novo sequencing experiments),
single-layer analysis of proteomic data is highly limiting in the cancer context. These and other
challenges, which will be discussed here, can be addressed through vertical integration of genomics,
transcriptomics, and proteomics data which is collectively termed proteogenomics (Figure 4)

[245,246].

3.1.1 Experimental workflow and data analysis pipeline

The backbone of proteogenomics studies is the construction of customized protein sequence
databases [245]. As previously stated in the proteomics section, the identification of peptides in
samples subjected to shotgun proteomics experiments is achieved by matching the spectra against
a protein sequence database [247]. However, public protein databases (e.g. UniProt and PDB) do

not contain previously unidentified protein sequences such as novel altered proteins which are
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frequently encountered in tumor-derived samples [248]. To overcome this obstacle, NGS data
acquired from the same sample (e.g. via WES, WGS, and RNA-seq) can be exploited to construct
a customized protein sequence database that contains all the hypothetical protein sequences that
can be inferred from the genomics or transcriptomics data and then, match the MS/MS spectra

against this sample-specific database [249,250].

The complexity of the expression system in eukaryotes makes the matching of the proteomics
spectra against a customized database predicted from genomics data computationally ineffective
and error-prone because the size of such databases will exceed any acceptable threshold [251].
However, customized databases from transcriptomics data are more effective and accurate since
they consider only expressed transcripts. To construct a customized protein database from
transcriptomics data, raw nucleotide sequences should be assembled into full-length transcripts.
There are two approaches for full-length transcript assembly: genome-guided and de novo
transcriptome assembly. Genome-guided approaches are routinely used for cancer studies.
However, coupling these approaches with de novo transcriptome assembly approaches is advised
[252]. De novo transcriptome assembly methods have the advantage of being capable of identifying
novel transcripts that can’t be identified through reference-guided methods either due to errors in
the reference genome or because they are completely missing (i.e. tumor viruses) [253]. A recent
comparative study [252] suggested that the performance of the various existing de novo assembly
tools is dependent on the study design and the species under study. In the cancer context, where we
are usually dealing with human samples, Trinity [254], Trans-ABySS [255], SOAPdenovo-Trans
[256], and SPAdes [257] are generally well-performing tools [252]. Merging the results obtained
from multiple assembly tools with posterior quality control evaluation is currently considered best
practice. Notably, long-read sequencing technologies have the potential to circumvent challenges
of de novo transcriptome assembly. With PacBio and Nanopore technologies, read lengths of >10

kb are routinely achieved, capturing full-length transcripts.
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Multiple tools are available for customized database construction including Galaxy-p [258],
QUILTS [249], customProDB [259], and PGA [260]. Importantly, the PGA pipeline is not limited
to MS/MS data searching. It incorporates database construction steps that can be done using a
genome-guided approach or via a de novo transcriptome assembly approach and also includes post-
processing steps including FDR calculation, protein inference, and spectrum annotation. In
addition, the capacities of Galaxy-p for custom workflow construction prompted the development
of comprehensive workflows [261] that encompass the entire computational process of
proteogenomics. For a list of available tools and resources for proteogenomics studies refer to Table

2.

The process of matching MS/MS spectra against a customized database is achieved by utilizing
database search engines such as X!Tandem, MS-GF+ [262], and Comet [263]. Among these, the
widely used X!Tandem software has been shown to have the highest false-negative rate and hence,
it is not recommended to exclusively use this engine [264]. Since effective quality control methods
for novel peptide identification can be utilized downstream of the matching process, a high level of
false-positive can be tolerated. Hence, the best approach in this step is to combine the results of
multiple search engines to gain a more comprehensive collection of putative novel peptides. Novel
peptides that have been identified through the matching step can then be further validated.
PepQuery [265] is a freely available tool that can be applied as an optional quality control step and
can significantly reduce false positives. The definitive validation of identified novel peptides,

however, can be achieved through targeted proteomics assays [243].

3.1.2 Applications

There is a variety of molecular events that can potentially give rise to a wide range of protein
alterations such as chimeric proteins or single amino-acid variants in cancerous cells. However, not
all of these events result in expressed proteins and even if expressed, the resulting proteins might

be unstable and subjects to early degradation. Proteogenomics is an ideal approach for protein level
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validation of the stable expression of these molecular events [246]. Moreover, protein-level analysis
of current gene models and their somatic variations by means of proteogenomics enables the
validation or correction of previous predictions of the sequence, structure, and ultimately the
function of the respective proteins [246,266]. Additionally, deregulation of alternative splicing in
cancer under the influence of perturbed splicing factors and altered signaling cascades is a known
phenomenon [267,268]. Alternatively spliced isoforms can not only serve as tumor-specific
biomarkers but can also provide stage-specific signatures and putative therapeutic targets [80].
Empowered with the capacities of both transcriptomics and proteomics, proteogenomics proves to
be a competent approach for studying oncogenic splice variants and specific pipelines towards this

purpose have already been developed [269].

PTMs are known to play essential roles in the biology of cancer cells [143,144]. Genomic
alterations in cancer can have profound effects on protein modifications (e.g. through the addition
or disruption of modification sites or alteration of PTM regulator proteins) and in turn on the
signaling cascades and regulatory networks of cancer cells [251,270]. Since PTMs cannot be
accurately predicted from genomics data, proteogenomics can become the tool of choice for
exploring the effects of aberrations in the genome on the downstream PTM alterations [271]. In
addition, it is now widely accepted that quantitative mRNA expression data is not an ideal indicator
of protein expression levels and the extent to which they biologically correlate is a matter of debate
[272]. Since protein expression levels are of importance both for functional inferences and
therapeutic interventions, accurate measurement of protein expression levels is crucial [243].
Proteogenomics studies can not only provide us with protein expression data, but they also have

the potential to deepen our understanding of the biology of this difference in expression levels.

The host immune system is known to be effective in the elimination of cancer cells [273]. For the
host immune system to be able to confront cancer cells, neoantigens, which are predominantly
results of the processing of altered proteins by the antigen processing pathways, should be presented

as human leukocyte antigen (HLA) ligands at the cell surface and be identified by T-cell
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surveillance [268,274]. the process of immune response to cancer cells is being studied with the
goal of designing therapeutic interventions known as cancer vaccinations that attempt to elicit the
T-cell immune response against cancer cells [275-277]. Proteogenomics can greatly accelerate the
pace of neoantigen discovery and by providing candidate clonal neoantigens result in a more
efficient vaccination process [278,279]. Moreover, proteogenomics studies can help delineate the

underlying mechanisms of immune system evasion by cancer cells [280].

The above-mentioned applications can be used to filter more important genomic alterations,
distinguish between driver and passenger mutations [281], and make for more efficient biomarker
discovery [282-284]. A recent study [266] showcased the massive potential of proteogenomics
studies from unraveling uncharted aspects of cancer biology to opening new avenues towards
precision oncology. From PTM analysis of proteins to prioritization of somatic copy-number
alterations, they exploited the full potential of current proteogenomics technologies. Importantly,
they demonstrated that proteogenomics studies can result in more efficient unified multi-omics
cancer subtypes that can serve to acquire an enhanced ability for prognosis, diagnosis, and precision

interventions.

3.1.3 Challenges and perspectives

A long-standing challenge in the field of proteogenomics is the appropriate FDR estimation for
matched peptides after database search [246]. As discussed in the proteomics section, a widely used
approach is the target-decoy search strategy [163]. Since assuming the same FDR for both novel
and previously identified peptide sequences is an underestimation of the FDR value for novel
peptides, the efficacy of this method in proteogenomics studies has been questioned and substitute
approaches such as separate FDR estimations for novel and previously identified peptides have
been suggested by Nesvizhskii et al. [246]. Wen et al. [264], however, in a comparative study of
FDR estimation methods utilized the prediction of retention time for peptides in comparison with

the actual observed values as an evaluation metric for different quality control strategies and
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identified global FDR estimation by target-decoy search (in order to attain a high level of
sensitivity) with a posterior filtering step to restrict false positives (using PepQuery) as the best

approach for neoantigen discovery.

Although targeted MS-based assays hold great promise for the clinical translation of the discovered
biomarkers through proteogenomics studies, there are still challenges that should be addressed
[243]. Targeted multiple reaction monitoring assays can be used not only to validate the results of
proteogenomics analyses but can also provide clinicians with a cost-effective multiplexed platform
that can analyze a high number of target proteins from a variety of sample types (e.g. urine,
secretions, etc.) with satisfying sensitivity and specificity. However, there is still room for

improvement since the sensitivity is not enough for dilute samples and single-cell analysis [285].

Recent advancements in proteomics technologies [286,287] and clinically valuable demonstrations
such as the possibility of a micro-scaled proteogenomics study of tissues as small as 25 pg [288]
are setting the stage for the emergence of a more precise and cost/time effective landscape for
proteogenomics. Moreover, single-cell proteogenomics is evolving and has the potential to
considerably increase our understanding of intratumoral heterogeneity [289-291]. It is expected
that a greater number of researchers join this field in the years to come. However, the high number
of existing tools that provide complementary results and should be utilized in combination with one
another in multiple steps of the study [264,284,292] is probably a prohibitive element in attracting
new researchers to the field. Other prohibitive elements are the required computational expertise
and the lack of unified and comprehensive databases with user-friendly interfaces that are
specifically tuned for proteogenomics studies. Although efforts have been made to provide
comprehensive workflows for different study goals [293,294], international collaborations are
required to overcome existing challenges and provide gold standard workflows for proteogenomics

studies.
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3.2 Network-based data integration

A huge amount of information regarding the interactions among molecules and biological pathways
is stored in public data repositories such as STRING [295], BioGRID [296], InnateDB [297],
KEGG [298], Reactome [299], VMH [300], WikiPathways [301], etc. These data are generated
either from in vivo and in vitro experiments or from in silico predictions [302] and are essential in
providing a system-based context for omics data. Biological systems in the form of interaction
networks and pathways can serve as frameworks on which omics-driven data can be integrated,

analyzed, and interpreted [303,304].

Combining the prior knowledge of interactions in the form of networks and pathways with genome-
wide data generated through single-layer omics approaches is used to overcome issues in the
interpretation of omics data by providing a larger context. On the one hand, omics data on their
own are merely a representation of existing molecules and their abundances at a particular point in
time. Extracting patterns and understanding the underlying mechanisms of a condition from an
omics dataset in isolation is challenging [305]. On the other hand, molecular interaction networks
and pathways, although highly informative, do not account for the dynamics of the cell in different
states and phases. The integration of interaction networks and pathways with omics datasets
facilitates pattern detection and allows the study of the dynamic nature of the cell [306]. This is of
particular importance for understanding the mechanisms of complex multistage diseases such as
cancer. This integrative approach has been shown to be superior to the isolated analysis of either

networks or omics data [307].

An important advantage of this integrative approach is the provided capacity for topological
analysis of the identified significant molecules (e.g. downstream/upstream position in a given
pathway, centrality parameters [308], etc.). It is widely accepted that the upstream position of a
molecule in a pathway can be considered as a predictive measure for biological significance [309].

In addition, the centrality of a node in a given network, measured by various parameters (e.g.
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degree, betweenness, etc.), is a validated implication for distinct importance. Indeed, aberrations in
central nodes have been shown to play vital roles in tumor development [310]. Thus, alterations in
structure or function (e.g. differential expression/abundance) of a given molecule under certain
conditions combined with its topological features can help prioritize candidate molecules (e.g.
possible driver molecules) for further studies [306]. Identification of patterns that are unlikely to
occur randomly is another important theme in network biology. These patterns include motifs and
modules. Motifs are recurring small subgraphs whose interactions form the overall behavior of the
complex network. Alterations in these motifs are central to cancer biology and the search for core
motifs in cancer-related pathways is valuable for biomarker, therapeutic target, and subtype
discovery [311]. Modules are larger subgraphs that are highly connected internally and are involved
in specific processes. Modules are extensively investigated for the identification of cancer driver

pathways and genes and are explained in more detail in further sections.

Guilt-by-association is another concept widely used for biological inference of topological
properties of molecular networks in cancer biology [312]. This notion posits that molecules in
topological proximity of each other are potentially functionally related. This is utilized in multiple
ways in cancer investigations. For example, proteins of unknown significance in close topological
proximity of known drivers of cancer can be investigated as candidate infrequently mutated proteins
of functional importance in cancer. Alternatively, proximity as a proxy for overlap in function can
be exploited to avoid utilization of redundant molecules for survival analysis, leading to higher

efficacy of prognostic biomarkers [312].

Biomarkers and gene signatures identified from network-based approaches have been shown to be
more reproducible [313]. In addition, network-based approaches allow the study of perturbations
in specific interactions among molecules (e.g. allosteric regulations, post-translational processing,
etc.) [307,314]. Deviation of these interactions from normal status is an essential factor in
tumorigenesis and cancer progression [141]. Collectively, network-based analysis of cancer has

been successfully implemented in cancer driver pathway identification, driver gene discovery,
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somatic mutation prioritization, biomarker and therapeutic target discovery, cancer subtyping, and

patient stratification [312].

The first step of the network-based analysis of omics data is to construct a context-specific
subnetwork from generic data repositories of molecular interactions and pathways [311,315]. These
subnetworks represent the parts of the system that are being studied and are constructed based on
the experimentally acquired omics datasets. Depending on the goal of the study, different types of
networks can be constructed including gene-gene and gene-protein interaction networks, signaling
pathways, or a combination of these for a more comprehensive analysis. The most widely used
networks are PPI networks [316] and genome-scale metabolic models [317]. The constructed
subnetworks can then be amended with the results of a pathway enrichment analysis or can be
mined for active module identification (Figure 5). These steps along with the visualization

approaches are discussed in more detail below.

3.2.1 Subnetwork construction

Generic databases of biological interactions and pathways are still far from complete [318,319].
However, the goal of these repositories is to capture the entire repertoire of molecular and/or
cellular interactions. Meanwhile, depending on the significant molecules identified in the omics
dataset under analysis, only a minor subset of these interactions is relevant. Hence, the first step for
network-based analysis of datasets is to construct a context-specific subnetwork. In addition to the
significant molecules, identified via omics data analysis, subnetworks commonly incorporate all
the known molecules that are in direct interaction with them [315]. These extra nodes provide new

perspectives for a more comprehensive and accurate network interpretation.

Network-based approaches can greatly facilitate multi-omics data integration and analysis [303].
Multiple levels of omics data produced from different single-layer techniques can be layered upon
a single network to achieve a more holistic view of the perturbed system [307]. Alternatively, it is

possible to construct multiple networks from different levels of omics data. The comparison of
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these networks can provide a deeper and more accurate view of the system under investigation and
result in more reliable conclusions [320]. Several algorithms such as AMARETTO [321] and
10OmicsPASS [322] facilitate network-based data integration. Interestingly, AMARETTO is able to
integrate phenotypic information such as radiography data with multi-omics data. This practical

approach has been shown to be effective in identifying candidate cancer driver genes [314].

3.2.2 Module identification

The constructed subnetworks are usually very complex and often referred to as hairballs. While
almost impossible to manually identify functional patterns in these subnetworks, graph mining
algorithms can be applied to identify functional units of the large subnetwork known as modules
[323]. Modules can be regarded as sets of densely connected nodes with an overall limited
connection to the rest of the network [324,325]. An important property of biological systems is that
molecules with similar functions closely interact with one another and tend to cluster together in
biological networks [325]. Hence, each module can be assigned a specific biological function. If a
subnetwork is constructed based on differential expression/abundance of molecules under a certain
condition, modules in this subnetwork are expected to represent perturbed parts of the system that

gave rise to the condition under investigation.

Since the disruption of certain pathways (e.g. apoptosis, proliferation, etc.) is common to almost all
cancer types [141], it is logical to consider that genes that harbor driver mutations should at least
to some extent cluster together in modules [326,327]. It is expected that modules containing genes
that are known to be involved in tumorigenesis and cancer progression can be utilized to predict
novel cancer driver genes. Moreover, module identification can facilitate the identification of co-

occurring cancer driver mutations [328].

The analysis of network modules facilitates the discovery of common disease mechanisms, disease
subtypes, or the mechanics of response to drugs [329]. Interestingly, biological networks are often

hierarchically organized, where for example a group of small, interconnected modules can be
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clustered together to form larger modules. Researchers can use these hierarchies to adjust the
magnification of the analysis for a more biologically relevant interpretation [330]. Methods such as
hierarchical Hotnet are specifically developed for cancer studies to identify these module

hierarchies and predict cancer driver genes [331].

Commonly used methods for module identification [332—334] first score nodes and edges based on
criteria such as differential expression and experimentally validated PPIs, respectively. Then, a
scoring system based on the aggregated scores of all the members of a hypothetical module is
formulated. An algorithm is used to identify optimal modules (those with the highest scores). In the
final step, the identified modules are queried for their statistical significance in relation to the

investigated hypothesis [329].

Multiple classes of algorithms have been implemented for module identification, including
diffusion-based algorithms and algorithms based on the prize-collecting Steiner tree problem [312].
Briefly, diffusion algorithms consider significant molecules as sources of a phenomenon such as
heat diffusion that spreads through the edges of the network until equilibrium is achieved. Here, the
goal is to find regions of the network with the most influence over them (i.e. hot regions) as these
regions represent highly active modules. Prize-collecting Steiner tree algorithms seek to find
modules optimized to contain the highest number of prizes (significant nodes) while minimizing
the number of edges. Some algorithms [335] also exploit specific properties of tumors such as
mutual exclusivity (i.e. activation/inactivation of a second driver molecule functionally related to

an already perturbed molecule is obsolete and rarely observed in a single tumor).

jActiveModules [332] is a widely used plug-in for network visualization software Cytoscape [336].
It can be used for module identification and can determine whether modules are common in
multiple states. jActiveModules scores all the nodes in a network based on the p-values from a
differential gene expression analysis and has a scoring function to determine the statistical

significance of any given module. First, it assigns an active or inactive state to each node in a
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subnetwork (with a 0.5 probability). Then, for a defined number of iterations, it selects a random
node, toggles its state (active/inactive), and recomputes the module’s score. If the aggregated score
of the module has increased, it keeps the node in its new state. Otherwise, it keeps or changes its
state with a defined probability. The process continues until a local optimum is achieved. The
identified module might not be the module with the global maximum score, but regardless it is of

biological interest.

Approaches for module identification are not limited to what has just been described. For example,
in [337], the authors proposed a novel module identification pipeline. In this method, gene-gene
correlation networks are constructed from omics data from two conditions under comparison. Then,
the networks are separately integrated with a priori knowledge of interactions to identify modules.
Thereafter, enriched modules (e.g. those significantly associated with upregulated genes in a certain
condition) can be identified and potentially be used for predictive or diagnostic purposes. A few
outstanding challenges regarding the existing methods and the overall approach should be
considered. There is a lack of a strong correlation between mRNA and protein abundance [338].
As a consequence, utilizing the mRNA profile on its own as the source for subnetwork construction
would result in an inaccurate representation of the actual system. iOmicsPASS [322] is a recently
developed algorithm that takes this issue into account by integrating transcriptomics and proteomics
data. iOmicsPass predicts phenotypic groups based on the joint expression pattern of the nodes
within densely connected modules. The algorithm has been shown to be effective for predictive
module identification especially when dealing with smaller datasets. Another major problem is that
it is possible for a single molecule to be shared among multiple biological modules. Current
methods, however, are not computationally effective in identifying overlapping modules [327].
Furthermore, despite a considerable rate of development of novel methods, there is a lack of
standard benchmarks for validation and comparison of suggested methods [329]. In addition, it
should be noted that the assumption that disease-related molecules cluster together in interaction

networks does not always hold for a complex condition such as cancer [327].
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3.2.3 Pathway enrichment analysis

Pathway enrichment analysis is a common approach for identifying disrupted molecular processes
and pathways underlying a certain condition [339]. The central idea is to identify common pathways
that a set of molecules (e.g. differentially expressed genes) is associated with. This reduces the
contextual complexity of the system and simplifies the interpretation of omics datasets by taking

advantage of prior knowledge about biological processes [340].

Three generations of pathway enrichment methods have been developed [340]. The first generation
was termed over-representation analysis (ORA). In this generation of methods, a list of significantly
differentially expressed molecules, based on p-value and/or fold change filters, is compared against
previously compiled functional lists of molecular processes to identify over-represented pathways.
DAVID [341] and WebGestalt [342] are among the widely used tools that exploit ORA algorithms.
A major drawback of ORA is that by defining filters, we risk the omission of important molecules
[343]. Moreover, ORA algorithms treat all the molecules that passed the defined filters as equally

significant [304].

The second generation of pathway enrichment methods is known as functional class scoring (FCS).
Instead of using predefined filters, FCS algorithms require an input list of all the evaluated
molecules, along with values corresponding to their level of differential expression (e.g. fold-
change or p-value) [340]. In these methods, all the input molecules are statistically ranked and the
overrepresentation of pathways is analyzed with the impact of each molecule in consideration [304].
A pitfall in this approach is that the analysis can become biased towards a few molecules that have
been identified as very significant. Gene set enrichment analysis (GSEA) [344] is a widely used
algorithm belonging to the second generation of pathway enrichment analysis methods. Genetrail
[345] is a popular and freely accessible web service that provides users with both ORA and FCS

algorithms for pathway enrichment analysis.
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The most recent generation of pathway enrichment methods was developed with the goal to
maximize the utilization of prior biological knowledge [346]. This generation of pathway
enrichment algorithms incorporates the topological features of nodes in biological networks (e.g.
upstream or downstream position in the pathway, degree and betweenness) as additional weighting
factors in the enrichment process [309,315]. In addition, in topology-based methods, the analysis
is not limited to input molecules but other molecules with close connections to input molecules can
be incorporated to identify relevant pathways. Studies indicate that topology-based methods
outperform conventional methods (ORA and FCS) both in genomics and metabolomics enrichment
analyses [324,347]. This generation of algorithms provides better capacity for the analysis of
molecular interactions and understanding the underlying mechanisms of a condition. In general,
there is no single best-performing tool for topology-based enrichment analysis. However, a recent
comparative study [324] identified DEGraph [348] as the superior method among the nine

algorithms investigated.

Overall, some major challenges remain for pathway enrichment analysis. In a recent study [347]
Nguyen and co-authors found that all of the tested pathway enrichment methods with the exception
of GSEA are prone to report false positives. GSEA on the other hand, suffers from low sensitivity.
Furthermore, the Fisher’s exact test, while a highly utilized method, performed poorly in this study
and produced a significant number of false-positive results. Hence, highly popular platforms such

as DAVID, which use this method, should be treated with extra care.

Most comparative studies focus on gene expression data and the results of these studies are not
necessarily applicable to other data types (for a list of methods and tools utilized in enrichment
analyses and their comparative performance derived from comparative studies refer to
Supplementary Table S3). Considering the importance of other layers of information in cancer
studies, this should be considered in future developments. One tool that already supports other
layers of information, including genomics, transcriptomics, proteomics, miRNAomics,

epigenomics, etc. is GeneTrail [345]. In addition, although studies indicate the superiority of
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topology-based enrichment methods, it is still not sufficiently recognized. It would be ideal if
popular and user-friendly portals of enrichment analysis would incorporate topology-based

approaches in order to make these methods accessible to a wider range of researchers.

The current lack of gold standard methods for pathway enrichment analysis coupled with the
plethora of existing approaches makes the selection of a suitable method a challenging task. This is
especially burdensome for researchers with limited computational expertise. With that being said,
there are a number of user-friendly web-based platforms such as MetaboAnalyst [225] and
Metascape [349] that offer users a comprehensive pipeline for pathway enrichment analysis.

Metascape (https://metascape.org/) takes advantage of multiple databases as its resource for

systems-level analysis of datasets. It provides powerful computational abilities with a simplified
and user-friendly interface designed for researchers with minimal computational expertise. Since
outdated data can severely impact the quality of analysis results [350], an important feature of
Metascape is the monthly data synchronization with the updated information in data repositories.
The workflow of Metascape can also be modified by users with more advanced computational skills
to meet the requirements of individual studies. Moreover, it can be utilized for cross-omics
comparisons of multiple gene lists and integrated analyses. Similar to DAVID, the resulting
enriched terms in Metascape are clustered and non-redundant. The results can also be exported to

Cytoscape for further analysis.

3.2.4 Network visualization

Through visualization, large amounts of data can be made more accessible for convenient pattern
detection and interpretation [351]. Whether it is in the form of processed networks or categorized
and functional tables, the goal of the visualization process is to reduce the overwhelming
complexity of large datasets and make them more readily interpretable. Many tools such as

Cytoscape [336], PaintOmics [352], and Omicsnet [353] are developed with the objective of
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simplifying the visualization process and offering users a wide array of options to modify how their

data is represented.

Cytoscape is a widely used freely accessible platform that provides users with an interactive
interface and powerful tools for network visualization and analysis. Cytoscape’s feature set can be
expanded by adding plug-ins developed by the community for specific computational tasks.

Omicsnet [353] is a recently developed web-based visualization tool (www.omicsnet.ca/) that

provides users with a 3D structure for visualization and analysis of large networks. It can
incorporate multiple heterogeneous datasets in a single subnetwork. Moreover, by taking advantage
of various structural layouts such as spherical and multi-layer layouts, it facilitates network analysis
and reduces the overwhelming complexity of large networks. In addition, it provides users with a
variety of functional and topological analysis tools including module identification and pathway

enrichment analysis.

3.2.5 Challenges and perspectives

Although there are numerous methods and tools developed to tackle the variety of problems
associated with the network-based analysis of omics data, this approach to data analysis is still in
its infancy. Whether it is a matter of reliability of the analysis or a matter of providing equilibrium
between the amount of lost data and precision, a number of challenges remain for the community

to address.

The quality of network analysis results can only be as good as the quality of the input data. Besides
the quality of omics data, a major challenge in this field is incomplete or inaccurate information in
network and pathway databases which has been shown to greatly affect the analysis process [350].
Hence, efforts to validate and expand the information in these databases are of essential importance.
In addition, analysis tools need to regularly update their knowledge base to keep up with the
expansion pace of the source databases. Moreover, limited overlap among interactome databases

means that they should be used in combination for more comprehensive results [347].
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A simple widespread approach for subnetwork construction is the inference of relevant nodes based
on significantly differentially expressed/abundant mRNAs or proteins. However, two caveats
should be considered when opting for such approaches. First, since there is evidence against a
strong correlation between mRNA and protein levels [272] the accuracy of utilizing mRNA
expression levels for subnetwork construction is questionable. Second, phenomena such as somatic
mutations, PTMs, and alterations in cellular localization can functionally affect PPIs. These
alterations might be overlooked when PPI subnetworks are constructed solely based on mRNA
expression or protein abundance. When this is coupled with inaccuracies and incompleteness of
current PPI databases, it becomes clear that constructed subnetworks based on differential mRNA
expression or protein abundance do not necessarily provide accurate representations of the altered
cellular interaction networks. Integrative approaches can ameliorate this flaw to a great extent. For
instance, using integrative analysis approaches prior to subnetwork construction, one can establish
a list of candidate significant molecules (e.g. genes with both somatic mutation and differential
expression, overexpressed genes with hypomethylation, etc.) and subsequently create a subnetwork
by mapping these molecules to the human interactome [354]. Alternatives include more
sophisticated methods where a list of candidate molecules is not determined a priori. For example,
in the very recently introduced EMOGI method specifically developed for cancer data exploration
[355], novel candidate cancer genes are predicted through a machine-learning approach that uses a
generic PPI network with a multi-omics feature vector for each node along with lists of high-
confidence cancer/non-cancer genes as input. However, only a limited number of user-friendly tools
allow for a network-based multi-omics data analysis. Moreover, current tools that provide the
capacity for this type of analysis are not comprehensive with regards to the types of integration they

can carry out.

Recently, efforts have been made to systematically compare the plethora of existing methods. These

studies analyzed current popular methods from different perspectives, deducing different existing
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challenges in the field, from the lack of a uniform distribution of p-values under the null condition

for enrichment analyses to the absence of a perfect method for all the study goals [324,347].

An exciting future awaits the network-biology approaches. Single-cell multi-omics technologies
provide a highly potent data source for the construction of multilayered networks providing holistic
views of individual cellular systems. Moreover, it opens a great opportunity for understanding
intratumoral heterogeneity [356]. From the enhanced capability to unravel the complex underlying
mechanisms of cancer to drug repurposing [357] and precision medicine [358], network-based
approaches facilitate the translation of raw biological data of single-layer omics experiments to

practical knowledge and possible interventions.

3.3 Successful implementations of integrative approaches in cancer research

With significant growth during the last decade, high-throughput technologies prompted many
studies with results of clinical relevance. The search for molecular markers predictive of the
response to specific types of treatment is a hot topic in precision oncology and many studies provide
encouraging results. For instance, in a study by Taber et al. [359], sequential analysis of genomics,
transcriptomics, and proteomics data resulted in the identification of a subgroup of muscle-invasive
bladder cancer patients with high genomic instability and non-basal/squamous expression subtype
that were highly responsive to cisplatin-based chemotherapy while patients with low genomic
instability and basal/squamous expression subtype showed poor response. In another study,
proteogenomics analysis of HPV-negative head and neck squamous cell carcinoma shed light upon
multiple clinically significant aspects of this malignancy [360]. In addition to providing insights
into the underlying biology of this type of cancer, they identified multiple potentially druggable
targets. Interestingly, this study proposed that amplification of EGFR does not necessarily correlate
with the prevalence of EGFR ligands, suggesting that the investigation of EGFR ligand abundance
is a more appropriate strategy for prediction of response to treatments with anti-EGFR monoclonal

antibodies.
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The interplay between molecules is best explored through network analysis. In a remarkable pan-
cancer network-based integration of genomics and transcriptomics data of 9,738 samples from 20
TCGA cohorts, Paull et al. [361] identified 407 master regulator (MR) proteins responsible for
channeling the functional effects of the plethora of genomic aberrations to specific gene expression
signatures across tumor types. These proteins were categorized into 24 MR modules, each involved
in the regulation of specific hallmarks of cancer. They proposed that based on the status of these 24
modules (activated/inactivated) in each individual, patient-tailored combinations of drugs that

specifically target these modules can be administered with precision.

In addition, although in its infancy, single-cell multi-omics is an emerging mighty technology.
Perhaps, the most profound contribution of single-cell technologies is that they allow us to dissect
intratumoral heterogeneity at individual cell resolution and explore common cancer type- or
subtype-specific patterns of heterogeneity among cellular clusters. The delineation of these patterns
can enhance our understanding of how tumors with specific origins exhibit certain properties (e.g.
metastasis, drug resistance, etc.), yielding insights into their assailable aspects and providing new
means for patient stratification [362]. Single-cell multi-omics has the capacity to uncover
intratumoral heterogeneity across layers of molecular information and provide us with a systems-
level understanding of this phenomenon. Indeed, an integrative study of mRNA and protein levels
at single-cell resolution evaluating the effect of BMP4 (a proposed therapeutic agent for
glioblastoma [363]) on early-passage glioblastoma cultures [364] identified extensive heterogeneity
in how subpopulations of cells respond to BMP4 treatment. Utilizing the mRNA and protein
information in complement, they concluded that while all of the treated cells activated the BMP4
pathway, a subset of cells escapes proliferation suppressive effects of BMP4 treatment through a
TNC protein-dependent mechanism. Together, such studies illustrate the massive potential of
integrative approaches in deepening our understanding of tumor biology and directing clinical

efforts towards precise patient stratification and treatment.
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4 Conclusion

Current omics technologies and computational advancements provide unprecedented capacity to
study cancer etiology and underlying mechanisms, discover clinically applicable diagnostic and
predictive biomarkers, identify therapeutic targets, and develop therapeutic interventions. Despite
significant progress in the field, various uncharted territories remain to be explored. The fact that
no driver mutation could be identified for 5% of the cancers [365] or the unknown exact basis for
metastasis [66] highlight the existence of fundamental gaps in our knowledge. Until these
fundamental shortcomings in our knowledge persist, our inability to design highly effective
therapeutic interventions is not surprising. With the enhancement of our knowledge during the last
decades, it is becoming evident that cancer should no longer be viewed as a disease of the genome
but should rather be regarded as a disease of the cellular system. Rapid advances in technologies
and methodologies are paving the road for more effective study of cellular systems and their
perturbations. However, the dispersion of the plethora of bioinformatics tools, the lack of
benchmarked gold standard methods, and the required computational skills are major prohibitive
elements. There is an ever-growing need for user-friendly workflows that have been adjusted for
specific study goals. The extension of current comprehensive platforms such as Galaxy [366] that
allow for designing and utilizing readymade workflows for a very wide range of omics experiments

will result in further facilitation of data analysis processes.

5 Abbreviations

1H NMR: Proton nuclear magnetic resonance; CASAVA: Consensus Assessment of Sequence And
Variation; cfDNA; cell-free DNA; CHIP: Clonal hematopoiesis of indeterminate potential; Co-IP:
Co-immunoprecipitation; ctDNA: circulating tumor DNA; DGE: Differential gene expression; ESI:
Electrospray ionization; FCS: Functional class scoring; FDR: False discovery rate; GATK: Genome
Analysis Toolkit; GC-MS: Gas chromatography-mass spectrometry; GSEA: Gene set enrichment
analysis; HLA: Human leukocyte antigen; HMDB: Human Metabolome Database; HPPP: Human
Plasma Proteome Project; LC-MS/MS: Liquid chromatography-tandem mass spectrometry;
MALDI-MSI: Matrix-assisted laser desorption ionization-based mass spectrometry imaging; MR:
Master regulator; NGS: Next-generation sequencing; ORA: Over-representation analysis;
PCAWG: Pan-Cancer Analysis of Whole-Genomes; PPI: Protein-protein interaction; PRM:
Parallel reaction monitoring; PTM: Post-translational modification; SRM: Selected reaction
monitoring; TAP: Tandem affinity purification; TCGA: The Cancer Genome Atlas; TMT: Tandem
mass tag; UMI: Unique molecular identifiers; VAF: Variant allele frequency; VSN: Variance
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Figure 1. A timeline of some of the major contributions to the field of systems biology

Figure 2. General workflows for different omics studies. The wet lab and computational
procedures are distinguished by different background colors.

Figure 3. Integrative study of biological phenomena. The first fundamental decision for modern
large-scale studies is the choice between hypothesis-driven or data-driven study design. While both
types of study designs are applicable, complementary approaches are recommended since
hypothesis-driven studies are vulnerable to bias while data-driven studies are highly prone to false-
positives [367]. The extracted omics data can be subjected to integration through multiple
approaches. The resulting functional data will improve our knowledge base and can serve as a
starting point for future studies. Already emerging pipelines demonstrate the clinical utility of the
integrative approaches [368]. The integration approaches provided in this figure are based on the
categorization in [240]. Sequential analysis: the integration of datasets subsequent to independent
analysis. Latent variable analysis: Partitioning of samples into functional groups through
unsupervised clustering for example by implementation of an expectation-maximization algorithm.
Penalized likelihood analysis: outcome prediction through penalized regression. Pairwise
correlation analysis: association estimation for related molecule pairs across datasets. Gene set
analysis: homogenization of multiple datasets by replacing every molecule with its respective gene
and subsequent enrichment of the resulting datasets. Network analysis: using prior knowledge of
molecular interactions to provide an environment for integration. Bayesian analysis: Utilization of
the information in an omics layer as the prior information for the analysis of another through
Bayesian approaches.

Figure 4. General workflow for the integration of genomics and tandem mass spectrometry data in
proteogenomics. The MS/MS spectra of the sample are searched against the theoretical spectra
inferred from the NGS data (most commonly RNA-seq) obtained from the same sample. The
identified novel peptides should be validated (using PepQuery). The resulting data can be utilized
for the study of post-translational modifications, identification of neo-antigens and biomarkers, and
mutation prioritization in the downstream interpretation. Network-based analysis of these data can
provide a critical vantage point for functional study of system perturbations.

Figure 5. General workflow for the network-based analysis of omics data. The constructed sub-
networks from the integration of the omics-driven data and prior knowledge of molecular
interactions can be subjected to module identification or enrichment analysis. The identified
modules can also be enriched to yield functional information. Note that it is possible to enrich the
omics data independent of the subnetwork construction process. An example of downstream
interpretation is to demonstrate multi-omics data in multi-layered networks for computational
and/or visual pattern detection. Going from either raw omics data or interactome databases to
subnetwork modules and enriched data, the complexity decreases, and the data is constantly
narrowed down to yield functional information. ORA, over-representation analysis; FCS,
functional class scoring.
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