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Weakly supervised underwater fish 
segmentation using affinity LCFCN
Issam H. Laradji1,3*, Alzayat Saleh2, Pau Rodriguez1, Derek Nowrouzezahrai3, 
Mostafa Rahimi Azghadi2 & David Vazquez1

Estimating fish body measurements like length, width, and mass has received considerable research 
due to its potential in boosting productivity in marine and aquaculture applications. Some methods 
are based on manual collection of these measurements using tools like a ruler which is time consuming 
and labour intensive. Others rely on fully-supervised segmentation models to automatically acquire 
these measurements but require collecting per-pixel labels which are also time consuming. It can take 
up to 2 minutes per fish to acquire accurate segmentation labels. To address this problem, we propose 
a segmentation model that can efficiently train on images labeled with point-level supervision, where 
each fish is annotated with a single click. This labeling scheme takes an average of only 1 second per 
fish. Our model uses a fully convolutional neural network with one branch that outputs per-pixel scores 
and another that outputs an affinity matrix. These two outputs are aggregated using a random walk 
to get the final, refined per-pixel output. The whole model is trained end-to-end using the localization-
based counting fully convolutional neural network (LCFCN) loss and thus we call our method Affinity-
LCFCN (A-LCFCN). We conduct experiments on the DeepFish dataset, which contains several fish 
habitats from north-eastern Australia. The results show that A-LCFCN outperforms a fully-supervised 
segmentation model when the annotation budget is fixed. They also show that A-LCFCN achieves 
better segmentation results than LCFCN and a standard baseline.

Fish habitat monitoring is an important step for sustainable fisheries, as we acquire important fish measure-
ments such as size, shape and weight. These measurements can be used to judge the growth of the fish and act 
as reference for feeding, fishing and conservation1. Thus, it helps us identify which areas require preservation in 
order to maintain healthy fish stocks.

The UN Food and Agriculture Organization found that 33 percent of commercially important marine fish 
stocks worldwide are over-fished2. This finding is attributed to the fact that fishing equipments often catch 
unwanted fish that are not of the right size3. Catching unwanted fish can lead to more time needed to sort them. 
It can also lead to more fuel consumption as these fish are extra weight on the boat, and cause long-term negative 
impact on the fisheries4. Thus, acquiring fish size information has many important applications.

Many methods for measuring fish size are based on manual labor. Some experienced fishers are able to esti-
mate length by eye. Other fishers use a ruler to measure the length5. More recently, fishermen use echosounders 
to get the fish size but these tools are still on trail6, 7. Unfortunately these methods are time consuming, labour 
intensive and can cause significant stress to the fish8, 9. Garcia et al.4 proposed an “underwater studio” with stereo 
cameras and illumination that is incorporated in trawls for automatic fish segmentation. However, their setup 
causes disruption to the fish which could reduce the reliability of the results.

Therefore, image segmentation systems for fish analysis10–12 have gained lots of traction within the research 
community due to their potential efficiency. They can be used to segment fishes in an image in order to acquire 
morphological measurements such as size and shape. These systems can be installed in a trawl or underwater to 
cluster fish based on their sizes4. Promising methods for image segmentation are based on deep learning, such as 
fully Convolutional Neural Networks (CNN) which now dominate many computer vision related fields. FCN813 
and ResNet38D14 have shown to achieve promising performance in several segmentation tasks. In this work, we 
use a segmentation network based on FCN8 with an ImageNet15 pretrained VGG1616 backbone.

Most segmentation algorithms are fully supervised13, 17, 18, as they require per-pixel annotations in order to 
train. These annotations are prohibitively expensive to gather due to the requirement of field expert annotators, a 
specialized tool, and intensive labor. In order to reduce these annotation costs, weakly supervised methods were 
proposed to leverage annotations that are cheaper to acquire. The most common labeling scheme is image-level 
annotation19, 20, which only requires a global label per image. Other forms of weak supervision are scribbles21 
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and bounding boxes22 which were shown to improve the ratio of labeling effort to segmentation performance. 
In this work, we use point-level annotations since they require a similar acquisition time as image-level annota-
tions, while significantly boosting the segmentation performance23. Unfortunately, methods that use point-level 
supervision either need training a proposal network24 or tend to output large blobs that do not conform to the 
segmentation boundaries23. Thus, these methods are not well suited to images with objects of specific bounda-
ries like fish. A promising weakly supervised method is localization-based counting fully convolutional neural 
network25 (LCFCN), which is better at localizing multiple objects but does not segment the objects correctly. In 
this work we build on LCFCN to improve its segmentation capabilities (Fig. 1).

Ahn and Kwak26 showed that it is possible to train a segmentation network with image-level annotations by 
learning to predict a pixel-wise affinity matrix. This matrix is a weighted graph where each edge represents the 
similarity between each pair of pixels27, 28. However, in Ahn and Kwak26 the process to obtain this affinity matrix 
is costly and depends heavily on proxy methods such as Class Activation Map (CAM)26 to approximate it. Given 
the advantages of affinity networks for image segmentation as shown in Ahn and Kwak26 and Tang et al.29, we 
propose a novel affinity module that automatically infers affinity weights. This module can be integrated on 
any standard segmentation network and it eliminates the need for explicit supervision such as acquiring pairs 
between pixels of CRF-refined CAMs26.

Therefore, we extend LCFCN with an affinity-based module in order to improve the output segmentation of 
the fish boundaries. Our model follows three main steps. First, features are extracted using a pre-trained back-
bone like ResNet38. Then, an activation branch uses these features to produce pixel-wise class scores. From the 
same backbone features, the affinity branch infers pairwise affinity scores between the pixels. Finally, the affinity 
matrix is combined with the pixel-wise class scores using random walk30 to produce a segmentation mask. The 
random walk encourages neighboring pixels to have similar probabilities based on their semantic similarities. 
As a result, the predicted segmentations are encouraged to take the shape of the fish. During training, these seg-
mentations are compared against the point-level annotations using the LCFCN loss25. This loss ensures that only 
one blob is output per object which is important when there are multiple fish in an image. Unlike AffinityNet26 
which requires expensive pre-processing and stage-wise learning, the whole model can be trained end-to-end 
efficiently. Finally, the segmentation output by our model can be used to generate pseudo ground-truth labels 
for the training images. Thus, we can train a fully supervised network on these pseudo ground-truth masks 
achieving better results. The reason behind the improvement can be attributed to the fact that these networks 
can be robust against noisy labels31.

We benchmark A-LCFCN on the segmentation subset of the DeepFish32 dataset. This dataset contains images 
from several habitats from north-eastern Australia (see Fig. 2 for examples). These habitats represent nearly the 
entire range of coastal and nearshore benthic habitats frequently accessible to fish species in that area. Each image 
in the dataset has a corresponding segmentation label, where pixels are labelled to differentiate between fish pixels 
and background pixels (see Fig. 4). Our method achieved an mIoU of 0.879 on DeepFish32, which is significantly 
higher than standard point-level supervision methods, and fully-supervised methods when the annotation budget 
is fixed. That is, when the total dataset annotation time is capped at a certain amount of seconds. We have also 
evaluated our method on the SUIM dataset33 and observed consistent results, indicating that our method can 
also be applied in controlled environments like those that have stereo cameras and conveyor belts.

For our contributions, (1) we propose a framework that can leverage point-level annotations and perform 
accurate segmentation of fish present in the wild. (2) We propose an affinity module that can be easily added to 
any segmentation method to make the predictions more aware of the segmentation boundaries. (3) We present 
results that demonstrate that our methods achieve significant improvement in segmentation over baselines and 
fully supervised methods when the annotation budget is fixed.

Figure 1.   Different labeling schemes. Point-level supervision places a single point on each fish body, whereas 
other non-precise labelling methods such as scribble-level and bounding box annotations provide more labelling 
details. The full supervision labelling method on the far right provides full label masks.

Figure 2.   DeepFish dataset. Images from different habitats with point annotations on the fish (shown as red 
dots). These images are from the open-source DeepFish dataset available at https://​alzay​ats.​github.​io/​DeepF​ish/.

https://alzayats.github.io/DeepFish/
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Related work
In this section, we first review methods applied to general semantic segmentation, followed by semantic segmen-
tation for fish analysis. Then we discuss affinity methods that use pair-wise relationships between the pixels for 
improved segmentation. Finally, we discuss weakly supervised methods for segmentation and object localization.

Semantic segmentation is an important computer vision task that can be applied to many real-life applications13, 

17, 18. This task consists of classifying every object pixel into corresponding categories. Most methods are based 
on fully convolutional networks which can take an image of arbitrary size and produce a segmentation map of 
the same size. Methods based on Deeplab17 consistently achieve state-of-the-art results as they take advantage 
of dilated convolutions, skip connections, and Atrous Spatial Pyramid Pooling (ASPP) for capturing objects 
and image context at multiple scales. However, these methods require per-pixel labels in order to train, which 
can result in expensive human annotation cost when acquiring a training set for a semantic segmentation task.

Semantic segmentation methods for fish analysis have been used for efficient, automatic extraction of fish body 
measurements34, and prediction of their body weight34–36 and shape for the purposes of preserving marine life. 
Garcia et al.4 used fully-supervised segmentation methods and the Mask R-CNN37 architecture to localize and 
segment each individual fish in underwater images to obtain an estimate of the boundary of every fish in the 
image for estimating fish sizes to prevent catches of undersized fish. French et al.38 presented a fully-supervised 
computer vision system for segmenting the scenes and counting the fish from CCTV videos installed on fishing 
trawlers to monitor abandoned fish catch. While we also address the task of segmentation for fish analysis, to 
the best of our knowledge, we are the first to consider the problem setup of using point-level supervision, which 
can considerably lower the annotation cost.

Affinity-based methods for semantic segmentation have been proposed to leverage the inherent structure of 
images to improve segmentation outputs39–41. They consider the relationship between pixels which naturally 
have strong correlations. Many segmentation methods use conditional random fields (CRF)17, 39 to post-process 
the final output results. The idea is to encourage pixels that have strong spatial and feature relationships to have 
the same label. CRF were also incorporated to a neural network as a differentiable module to train jointly with 
the segmentation task40. Others leverage image cues based on grouping affinity and contour to model the image 
structure42, 43. Most related to our work is Ahn and Kwak26 which proposes an affinity network that learns from 
pairwise samples of pixels labeled with a segmentation network and a CRF. The network is then used to output 
an affinity matrix which is used to refine the final segmentation output. Unfortunately, these methods require 
expensive iterative inference procedures, and require to learn the segmentation task in stages. In addition, it 
does not use point-level annotations for segmentation and it is used for images with clearly salient objects in 
the image like in PASCAL. This is incompatible with DeepFish where there could be many objects in a single 
image. In our work, we use part of the affinity network as a module that can be incorporated to any segmentation 
network, adding minimal computational overhead while increasing the model’s sensitivity to object boundaries 
and segmentation accuracy.

Weakly supervised semantic segmentation methods have risen in popularity due to their potential in decreasing 
the human cost in acquiring a training set. Bearman et al.23 is one of the first methods that use point-supervision 
to perform semantic segmentation. They showed that manually collecting image-level and point-level labels for 
the PASCAL VOC dataset44 takes only 20.0 and 22.1 seconds per image, respectively. This scheme is an order 
of magnitude faster than acquiring full segmentation labels, which is 239.0 seconds. The most common weak 
supervision setup is using image-level labels to perform segmentation19, 20. They use a wide range of techniques 
that include affinity learning, self-supervision, and co-segmentation. However, these methods were applied to 
the PASCAL VOC44 dataset that often has large objects. Other lines of weakly supervised methods address the 
problem of object localization and segment annotation45, 46. In our work we consider underwater fish segmen-
tation with point-level supervision which has its own unique challenges. For instance, compared to datasets 
like PASCAL and COCO, the DeepFish dataset has images of fish that are highly occluded. Most fishes are 
indistinguishable from elements in the background like debris and rocks and their shapes and sizes are difficult 
to capture by the model as the contrast between the body of the fish and the region surrounding it is small as 
observed in Fig. 2.

Weakly supervised object localization methods can be an important step for segmentation as they allow us 
to identify the locations of the objects before grouping the pixels for segmentation. Redmon and Farhadi48 and 
Ren et al.47 are current state-of-the-art methods for object localization, but they require bounding boxes. How-
ever, several methods exist that use weaker supervision to identify object locations31, 49–55. Close to our work is 
LCFCN25 which uses point-level annotations in order to obtain the locations and counts of the objects of interest. 
While this method produces accurate counts and identifies a partial mask for each instance, it does not produce 
accurate segmentation of the instances. Thus, we extend this method by using an affinity-based module that takes 
pairwise pixel relationships into context in order to output blobs that are more sensitive to the object boundaries.

Methodology
We propose A-LCFCN, which extends a fully convolutional neural network with an affinity-based module that 
is trained using the LCFCN loss. We consider the following problem setup. We are given X as a set of n training 
images with their corresponding set of ground-truth labels Y. Yi is a binary matrix of the same height H and 
width W as X with non-zero entries that indicate the locations of the object instances. As shown in Fig. 1, there 
is a single non-zero entry per fish which is represented as a dot on top of the fish.

Shown in Fig. 3, our model consists of a backbone Fbbθ () , an activation branch Factθ () and an affinity branch 
F
aff
θ () . The backbone is a fully-convolutional neural network that takes as input an image of size W ×H and 

extracts a downsampled feature map f for the image. The activation branch takes the feature map as input and 
applies a set of convolutional and upsampling layers to obtain a per-pixel output f act as a heatmap that represents 
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the spatial likelihood of the objects of interest. The affinity branch takes the same feature map as input and outputs 
a class-agnostic affinity matrix f aff  that represents the pairwise relationships between the pixels. The affinity map 
and the activation map are then combined using random walk to refine the per-pixel output f ref  . This refine-
ment adapts the output to be aware of the semantic boundaries of the objects, leading to better segmentation. 
These components are trained collectively, end-to-end, using the LCFCN loss LL , which encourages each object 
to have a single blob. To further improve the performance, the trained model is used to output pseudo ground 
truth masks for the training images. These masks are then used as ground truth for training a fully-supervised 
network that is then validated on the test set. The details of this pipeline are laid out below.

Obtaining the activation map and the affinity matrix.  The activation branch Factθ  transforms the fea-
tures f obtained from the backbone to per-pixel class scores, and upsamples them to the size of the input image.

The affinity branch is based on the AffinityNet structure described in Ahn and Kwak26, and the goal is to 
predict class-agnostic semantic affinity between adjacent coordinate pairs on a given image. These affinities are 
used to propagate the per-pixel scores from the activation branch to nearby areas of the same semantic object 
to improve the segmentation quality.

The affinity branch outputs a convolutional feature map f aff  where the semantic affinity between a pair of 
feature vectors is defined in terms of their L1 distance as follows,

where (xi , yi) indicates the coordinate of the ith feature on feature map f aff .
In contrast to AffinityNet26, we do not require affinity labels for feature pairs to train our affinity layers. These 

layers are directly trained using the LCFCN loss on the point-level annotations as described in "Training the 
weakly supervised model" section.

Refining the activation map with affinity.  The affinity matrix is used to refine the activation map to 
diffuse the per-pixel scores within the object boundaries. As explained in Ahn and Kwak26, the affinity matrix 
is first converted to a transition probability matrix by first applying the Hadamard power on W with value β to 
get Wβ and normalizing it with row-wise sum on Wβ . This operation results in the following transition matrix:

higher β makes the affinity propagation more conservative as it becomes more robust against small changes in 
the pairwise distances in the feature space. Using the random walk described in Ahn and Kwak26 we perform 
matrix multiplication of T on the activation map f act for t iterations to get the refined activations f ref .

Training the weakly supervised model.  The goal of our training strategy is to learn to output a single 
blob per fish in the image using point-level annotations (Fig. 1). Thus we use the LCFCN loss described in Lar-
adji et al.25 as it only requires point-level supervision. While this was originally designed for counting, it is able 
to locate objects and segment them. On the refined activation output f ref  , we obtain per-pixel probabilities by 
applying the softmax operation to get S which contains the likelihood that a pixel either belongs to the back-
ground or fish. The LCFCN loss LL is then defined as follows:

(1)Wij = exp{−||f aff(xi , yi)− f aff(xj , yj)||1},

(2)T = D−1Wβ , where Dii =
∑

j

W
β
ij .

Figure 3.   Affinity-based architecture. The first component is the ResNet-38 backbone which is used to extract 
features from the input image. The second component is the activation branch, which receives features from 
the backbone and outputs per-pixel scores with a 1× 1 convolution. The third component is the affinity branch, 
which outputs an affinity matrix by upsampling backbone features at three different depths and merging them 
with a 1× 1 convolution. These two outputs are aggregated using a random walk to get the final, refined per-
pixel output. The images here were obtained from the open-source DeepFish dataset available at https://​alzay​ats.​
github.​io/​DeepF​ish/.

https://alzayats.github.io/DeepFish/
https://alzayats.github.io/DeepFish/
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where Y is a binary matrix with non-zero entries to indicate the point annotation ground-truth. It consists of an 
image-level loss ( LI ) that trains the model to predict whether there is an object in the image; a point-level loss 
( LP ) that encourages the model to predict an object class for each pixel; a split-level ( LS ) and a false-positive 
( LF ) loss that enforce the model to predict a single blob per object instance (see25 for details for each of the loss 
components).

Applying the LCFCN loss on the original activation map usually leads to small blobs around the center of 
the objects which form poor segmentation masks56. However, with the activation map refined using the affinity 
matrix, the predicted blobs make better segmentation of the located objects. We call our method A-LCFCN as 
an LCFCN model that uses an affinity-based module.

Training on pseudo ground‑truth masks.  A trained A-LCFCN can be used to output a refined activa-
tion map for each training image. These maps are used to generate pseudo ground-truth segmentation labels 
for the training images. The outputs are first upsampled to the resolution of the image by bilinear interpolation. 
For each pixel, the class label associated with the largest activation score is selected, which could be either back-
ground or foreground. This procedure gives us segmentation labels for the training images which can be used for 
training a fully-supervised segmentation network, which could be any model such as DeepLabV357. At test time, 
the trained fully-supervised segmentation network is used to get the final segmentation predictions.

Network architecture.  While our framework can use any fully convolutional architecture, we chose a 
ResNet38 model based on the version defined in Ahn and Kwak26 due to its ability to recover fine shapes of 
objects. However, instead of having two networks, one for the affinity output and one for the activation output, 
we used a shared ResNet38 as the backbone which we found to improve the results by up to 0.23 mIoU and speed 
up training by around 0.3 seconds per iteration using 1 NVIDIA Tesla P100.

The affinity branch consists of three layers of 1 × 1 convolution with 64, 128, 256 channels, respectively, to be 
applied on 3 levels of feature maps from the backbone. The results are bilinearly upsampled to the same size and 
concatenated as a single feature map. This feature map then goes through a 1 × 1 convolution with 448 channels 
to obtain affinity features.

The activation branch consists of one 1x1 convolution with 2 channels. It is applied on the last feature map of 
the backbone to obtain the background and the foreground activation map. These activation maps are refined 
using random walk with the affinity branch to get improved segmentations.

For the fully supervised segmentation model that is trained on the pseudo ground-truth masks, we use a 
model that consists of a backbone that extracts the image features and an upsampling path that aggregates and 
upscales feature maps to output a score for each pixel. The backbone is an ImageNet pretrained network such 
as ResNet3826 and the upsampling layers are based on FCN813. The output is a score for each pixel i indicating 
the probability that it belongs to background or foreground. The final output is an argmax between the scores 
to get the final segmentation labels.

Experiments
We evaluate our models on two splits of the DeepFish dataset32, FishSeg and FishLoc to compare segmentation 
performance. We show that our method A-LCFCN outperforms the fully supervised segmentation method if 
the labeling effort between acquiring per-pixel labels and point annotations is fixed. Further, we show that our 
method outperforms other methods that do not use affinity. We further show that training on pseudo ground-
truth masks generated by A-LCFCN using a fully segmentation model boosts segmentation performance even 
further.

DeepFish32.  The DeepFish dataset (found here: https://​github.​com/​alzay​ats/​DeepF​ish) consists of around 
40 thousand images obtained from 20 different marine habitats in tropical Australia (Fig. 2). For each habitat, a 
fixed camera has been deployed underwater to capture a stream of images over a long period of time. The pur-
pose is to understand fish dynamics, monitor their count, and estimate their sizes and shapes.

The dataset is divided into 3 groups: FishClf that contains classification labels about whether an image has 
fish or not, FishLoc that contains point-level annotatons indicating the fish location, and FishSeg that contains 
segmentation labels of the fish. Since our models require at least point-level supervision, we use FishLoc and 
FishSeg for our benchmarks.

FishLoc dataset It consists of 3200 images where each image is labeled with point-level annotations indicating 
the locations of the fish. It is divided into a training set (n = 1600), a validation set (n = 640), and a test set (n = 
960). The point-level annotations are binary masks, in which the non-zero entries represent the (x, y) coordinates 
around the centroid of each fish within the images (Fig. 2).

FishSeg dataset It consists of 620 images with corresponding segmentation masks (see Fig. 4), separated into a 
training set (n = 310), validation set (n = 124), and a test set (n = 186). The images are resized into a fixed dimen-
sion 256× 455 pixels and normalized using ImageNet statistics15. According to Saleh et al.32, it takes around 2 
minutes to acquire the segmentation mask of a single fish. From the segmentation masks, we acquire point-level 
annotations by taking the pixel with the largest distance transform of the masks as the centroid (Fig. 1). These 
annotations allow us to train weakly supervised segmentation models.

(3)
LL = LI (S,Y)

︸ ︷︷ ︸

Image-level loss

+ LP(S,Y)
︸ ︷︷ ︸

Point-level loss

+ LS(S,Y)
︸ ︷︷ ︸

Split-level loss

+ LF(S,Y)
︸ ︷︷ ︸

False positive loss

,

https://github.com/alzayats/DeepFish
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Our models were trained either on FishLoc’s or FishSeg’s training set. For both cases we use FishSeg’s test set 
to evaluate the segmentation performance. We have removed training images from FishLoc that overlap with 
FishSeg’s test set for reliable results.

SUIM dataset33.  The SUIM dataset consists of 1525 pixel-level annotated images for training/validation 
and 110 samples for testing. Annotations contain human divers, aquatic plants, wrecks/ruins, robots/instru-
ments, reefs/invertebrates, fish and vertebrates, and sea-floor/rocks. For this work, we only use the fish labels, 
and we have used 20% of the training set as validation.

Evaluation procedure.  We evaluate our models against Intersection over Union (IoU), which is a stand-
ard metric for semantic segmentation that measures the overlap between the prediction and the ground truth: 
IoU = TP

TP+FP+FN  where TP, FP, and FN is the number of true positive, false positive and false negative pixels 
across all images in the test set.

We also measure the model’s efficacy in predicting the fish count using mean absolute error which is defined 
as, MAE = 1

N

∑
N

i=1
|Ĉi − Ci|, where Ci is the true fish count for image i and Ĉi is the model’s predicted fish count 

for image i. This metric is standard for object counting51, 58 and it measures the number of miscounts the model 
is making on average across the test images.

We also measure localization performance using Grid Average Mean Absolute Error (GAME)58 which is 
defined as, GAME(L) = 1

N

∑N
i=1

(
∑4L

l=1

∣
∣
∣Ĉl

i − cli

∣
∣
∣

)

, where, Ĉl
i is the estimated count in a region l of image n, 

and cli is the ground truth for the same region in the same image. The higher L, the more restrictive the GAME 
metric will be. We present results for GAME(L = 4) which divides the image using a grid of 256 non-overlapping 
regions where we compute the sum of the MAE across these sub-regions.

Methods and baselines.  We compare our method against two other weakly supervised image segmenta-
tion methods and a fully-supervised method. All these methods use the same feature extracting backbone of 
ResNet38, which we describe below.

Fully supervised fully convolutional neural network (FS-FCN) This method is based on the FCN8 architec-
ture described by Long et al.13. It is trained with the true per-pixel class labels (full supervision). It combines a 
weighted cross-entropy loss and weighted IoU loss as defined in Eq. (3) and (5) from Wei et al.59, respectively. It 
is an efficient method that can learn from ground truth segmentation masks that are imbalanced between differ-
ent classes. In our case the number of pixels corresponding to fish is much lower than those to the background.

Point-level loss (PL-FCN) This method uses the loss function described in Bearman et al.23 which minimizes 
the cross-entropy against the provided point-level annotations. It also encourages all pixel predictions to be 
background for background images.

LCFCN This method is trained using the loss function proposed by Laradji et al.25 against point level annota-
tions to produce a single blob per object and locate objects effectively. LCFCN is based on a semantic segmenta-
tion architecture that is similar to FCN13. Since it was originally designed for counting and localization, LCFCN 
optimizes a loss function that ensures that only a single small blob is predicted around the centre of each object. 
This prevents the model from predicting large blobs that merge several object instances.

A-LCFCN (ours) This method extends LCFCN by adding an affinity branch as described in "Methodology" 
section. Inspired by AffinityNet26, this branch predicts class-agnostic semantic similarity between pairs of neigh-
bouring coordinates. The predicted similarities are used in a random walk30 as transition probabilities to refine 
the activation scores obtained from the activation branch.

Figure 4.   Qualitative results. Predictions obtained from training point-level FCN (PL-FCN), LCFCN, affinity 
LCFCN (A-LCFCN) and A-LCFCN with pseudo-masks (A-LCFCN + PM). Each row corresponds to a different 
sample. With the affinity branch the predictions are much closer to the ground-truth labels.
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A-LCFCN + PM (ours) This method first uses the output of a trained A-LCFCN on the training set to obtain 
pseudo mask labels. Then an FS-FCN is trained on these pseudo masks and is used to output the final segmenta-
tion results.

Implementation details Our methods use an Imagenet15 pre-trained ResNet3814. The models are trained with 
a batch size of 1 for 1000 epochs with ADAM60 and learning rates of 10−4 , 10−5 and 10−6 . We report the scores 
on the test set of FishSeg using the model with the learning rate that achieved the best validation score. We used 
early stopping with patience of 10 epochs. We used the default coefficients for the LCFCN loss from Laradji 
et al.25, since we have not observed a difference in the final result when these coefficients are changed.

Comparison against weak supervision.  We train the proposed method and baselines on the FishSeg 
and FishLoc training sets and report the results on the FishSeg test set (which is a held-out set) in Table 1. Our 
results include 3 statistics, the Intersection-over-Union (IoU) between the predicted foreground mask and the 
fish true mask, the predicted background mask and the true background mask, and their average (mIoU).

Training on the FishLoc train set, A-LCFCN obtains a significantly higher IoU than LCFCN and PL-FCN 
methods, we observe a similar trend on the SUIM dataset (Fig. 5a). As shown in the qualitative results (Fig. 4), 
we see that LCFCN produces small blobs around the center of the objects while PL-FCN outputs large blobs. 
For both cases, they do not consider the shape of the object as much as A-LCFCN, suggesting that the affinity 
branch helps in focusing on the segmentation boundaries.

Training on the FishSeg train set which contains less images than FishLoc, the margin improvement between 
A-LCFCN and LCFCN is smaller. Further, LCFCN performed better when trained on the FishSeg training set 
than with FishLoc (see Table 1). We observed that the reason behind this result is that LCFCN starts outputting 
smaller blobs around the object centers the more images it trains on. Thus, it learns to perform better localization 
at the expense of worse segmentation. On the other hand, A-LCFCN achieved improved segmentation results 
when trained on the larger training set FishLoc than FishSeg. This result suggests that, with enough images, the 
affinity branch helps the model focus on achieving better segmentation.

We also report the results of A-LCFCN + PM which shows a consistent improvement over A-LCFCN for both 
FishLoc and FishSeg benchmarks. This result shows that a fully supervised method can use noisy labels gener-
ated from A-LCFCN to further improve the predicted segmentation labels. In Fig. 4 we see that this procedure 
significantly improves the segmentation boundaries over A-LCFCN’s output.

Comparison against full supervision.  In Table 1 we report the results of our methods when fixing the 
annotation budget. The annotation budget was fixed at around 1500 seconds, which is the estimated time it took 
to annotate the FishLoc dataset. The average time of annotating a single fish and images without fish was one 
second32. For FS-FCN which was trained on segmentation annotations, the training set consisted of 161 back-
ground images and 11 foreground images as it required around 2 minutes to segment a single fish. We see that 
A-LCFCN + PM outperforms FS-FCN in this setup by a significant margin, which suggests that with A-LCFCN 

Table 1.   Comparison between methods evaluated on the FishSeg test set, trained on either the FishLoc train 
set or the FishSeg train set. Foreground is the IoU between the predicted fish segmentation and their ground-
truth, and Background is the IoU between the predicted background segmentation and its ground-truth. The 
annotation budget for FS-FCN and the methods trained on FishLoc was around 1500 seconds.

Trained on FishLoc—tested on 
FishSeg Trained and Tested on FishSeg

Background Foreground mIoU Background Foreground mIoU

FS-FCN – – – 0.992 0.663 0.827

PL-FCN 0.931 0.214 0.573 0.910 0.173 0.542

LCFCN 0.989 0.559 0.774 0.992 0.684 0.838

A-LCFCN 0.993 0.727 0.860 0.993 0.713 0.853

A-LCFCN+PM 0.994 0.764 0.879 0.993 0.730 0.862

Figure 5.   Additional results on (a) the SUIM Dataset, (b) counting and localization, (c) Annotation budget.
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point-level annotations are more cost-efficient in terms of labeling effort and segmentation performance. In 
Fig. 5c we compare FS-FCN with A-LCFCN for multiple annotation budgets. We observe that A-LCFCN out-
performs supervised learning by a significant margin.

Counting and localization results.  To further evaluate the quality of the representations learned by 
A-LCFCN, we also test it on the FishLoc dataset for the counting and localization tasks. These tasks are essential 
for marine biologists, which have to assess and track changes in large fish populations61, 62. Thus, having a model 
that automates the localization of these fishes can greatly reduce the cost of tracking large populations, thus help-
ing marine scientist to do efficient monitoring. For our models, the counts are the number of predicted blobs in 
the image using the connected components algorithms described in Laradji et al.25.

As a reference, we added the MAE result of ‘always-median’ in Fig. 5b which is a model that outputs a count 
of 1 for every test image as it is the median fish count in the training set. We see that although A-LCFCN+PM 
has improved segmentation over A-LCFCN and LCFCN, the counting and localization counts are similar. These 
results suggest that we can solely use A-LCFCN+PM for the tasks of segmentation, localization and counting 
to have a comprehensive analysis of a fish habitat. Note that all blobs count for the MAE metric even if they 
do not intersect with the fish. Thus, MAE measures the counting score but not the localization score. GAME 
(described in "SUIM Dataset" section), on the other hand, measures localization by computing the MAE within 
small regions. So if one fish is in a region and the blob is in another region in the image, then the localization 
score is low.

Model’s limitations.  Point-level annotations are not as easy to acquire as image-level annotations. If there 
are plenty of fish, it would be easier to simply specify that the image has at least one fish and let the model learn 
to localize all fish in the image. This approach is not currently possible with our method. Another limitation is in 
the possible lack of generalization. It is not clear that the model can localize fish at habitats of completely differ-
ent background and constraints. These limitations are opportunities for future work that could make significant 
contributions to this area.

Conclusion
In this paper, we presented a novel affinity-based segmentation method that only requires point-level supervision 
for efficient monitoring of fisheries. Our approach, A-LCFCN, is trained end-to-end with the LCFCN loss and 
eliminates the need of explicit supervision for obtaining the pair-wise affinities between pixels. The proposed 
method combines the output of any standard segmentation architecture with the predicted affinity matrix to 
improve the segmentation masks with a random walk. Thus, the proposed method is agnostic to the architecture 
and can be used to improve the segmentation results of any standard backbone. Experimental results demonstrate 
that A-LCFCN produces significantly better segmentation masks than previous point-level segmentation meth-
ods. We also demonstrate that A-LCFCN gets closer to full supervision when used to generate pseudo-masks to 
train fully-supervised segmentation network. These results are particularly encouraging for reducing the costs 
of fish monitoring and achieving sustainable fisheries.

Data availability
The code is publicly available at https://​github.​com/​Issam​Larad​ji/​affin​ity_​lcfcn.
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