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Abstract

Healthcare is an essential part of life, but modern healthcare systems are faced

with many challenges. Costs and resource demand in healthcare facilities have

been steadily rising, largely due to the ever-increasing global population. Our

population is also older than ever, which in turn leads to increased prevalence of

chronic health conditions and higher pressure on healthcare systems.

Many chronically ill patients need to spend large amounts of time in hospital,

with a variety of manual or invasive monitoring techniques used to observe their

health. This places high strain on healthcare workers such as nurses and doctors,

and also places significant emotional and financial strain on patients and their

families.

This thesis explores machine learning (ML) solutions that stand to greatly

improve the standard of healthcare worldwide, beginning with methods of non-

invasive vital sign measurement that could be used at home or in healthcare

environments. Focus then turns towards better utilisation hospital resources

in the intensive care unit, by quantifying severity of illness through mortality

risk prediction in various windows and thus empowering healthcare workers to

effectively triage and make treatment decisions..

Non-invasive and continuous methods for measuring systolic and diastolic BP

using hybridized neural network from easily-obtained HR signals are explored,

with the aim of eliminating the need for invasive intra-arterial measuring or the

use of uncomfortable sphygmomanometers. Using raw HR signals obtained via

photoplethysmogram and electrocardiogram sensor as inputs, a hybrid convolu-

tional and long short-term memory (CNN-LSTM) neural network (NN) is shown

to perform strongly for the task, and meets the high industry standards for blood

pressure monitoring devices.

iii



A solution with fewer input features is also explored, with the aim of improv-

ing computational efficiency for low-powered devices. This scheme uses features

of the ECG and PPG waveforms rather than manually calculated features and a

smaller CNN-LSTM network. It is shown to perform comparably to the scheme

utilising raw waveforms as inputs despite the significantly reduced number of

features, and again meets industry standards.

The RR is commonly measured through manual counting of breaths, a te-

dious and time-consuming process. As such, the automatic and continuous mea-

surement of this parameter is investigated. Multiple respiratory variations are

extracted from HR signals, with each used to determine an estimate for RR. A

respiratory quality index (RQI) is also developed to determine the quality of the

respiratory variation signals. RR estimates and corresponding RQIs are used

as inputs to a bidirectional long short-term memory (BiLSTM) network. This

process was repeated for three different segment lengths - 20, 30, and 60 seconds.

In all three cases, the BiLSTM network performed significantly better when the

novel RQIs were included as features.

The second section of the thesis explores mortality risk prediction, beginning

with adult patients. In this work, it is shown that adult mortality risk in intensive

care units within short- and long-term windows can be reliably assessed using

hybrid CNN-LSTM networks and vital sign data. The easy-to-acquire features

also ensures that mortality risk can be continuously updated without manual

intervention, allowing healthcare staff to observe trends in how the patient is

responding to treatment.

Lastly, this work investigates the prediction of neonatal mortality risk. Pre-

mature babies are a high-risk group of patients, and quantifying their risk levels

can assist in treatment decisions. In this work, we show high prediction perfor-

mance for neonatal mortality using only gestational age, birth weight, RR and

HR data as input features to a CNN-LSTM network.
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Chapter 1

Introduction

1.1 Background & Motivation

Healthcare is an essential part of life. Worryingly, modern healthcare systems

are under immense strain due to a growing and ageing population and a related

rise in chronic illness [6]. Resources from medical professionals to hospital beds

are in high demand across the healthcare sector [7].

Critical care is one of many healthcare services experiencing strain as a result

of an ageing population, with over 60% of admissions to Victorian Intensive

Care Units (ICUs) in 2010-11 occurring in patients over 60, despite this group

representing less than 20% of the population during this period [8].

ICUs treat the most critically ill of patients, and as such have the highest

mortality rate of all hospital units [9], ranging between 13.0%-14.4% in tertiary

hospitals in Victoria from 2001-2011 [8]. Patient outcomes are improved with a

high staff-to-patient ratio in ICUs [10], however providing this level of care comes

at a high cost. In 2013/14, intensive care in Australia cost $4,375 per patient

bed-day, resulting in an annual expenditure of $2,119 million dollars [11].

On the other end of the age range, Special Care Nurseries (SCNs) and Neona-

tal Intensive Care Units (NICUs) provide high levels of care to critically ill new-

borns. The rate of infant admission to SCNs and NICUs has been steadily

increasing, with 18.3% of all babies born in Australia admitted to one of these

critical care environments in 2018 [12]. As of 2018, the mortality rate for neonatal

patients was 2.2% [12].

While critical care for all age groups has undergone significant innovation and
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improvement in recent years, many issues remain. Some monitoring techniques

remain largely manual, with manual counting of breaths over a one-minute period

for respiratory rate measurement remaining the accepted method [13]. Such

manual measurement has been shown to be limited by factors such as patient

awareness, time constraints, external interruptions, and patient agitation [14–

16]. The time cost of patient monitoring is high, with nurses spending 7.2% of

their time performing patient assessment [17]. Other monitoring techniques in

critical care units are often invasive, such as gold-standard intra-arterial blood

pressure monitoring [18], which in turn leads to increased infection risk.

Treatments can also be highly invasive, with mechanical ventilation received

by 42% of ICU patients [8]. These invasive methods are only used where ab-

solutely necessary, however it can be challenging to make decisions about when

to initiate, alter, or withdraw such treatments. Recent studies have shown that

mortality risk assessment can aid in making difficult treatment decisions [19].

Decision making becomes increasingly important and no less challenging in

times of crisis. The ongoing COVID-19 pandemic has highlighted how rapidly

modern healthcare systems can be overwhelmed by widespread disease. Impacts

of the pandemic on ICUs and the wider healthcare system have been reported

across the world, in countries including Italy [20], France [21], Brazil [22], the

United Kingdom [23], the United States [24], and China [25]. Such impacts have

included overcrowding of hospitals [20], lack of resources [20, 23, 25], and in-

creased risk of infection among essential healthcare workers [23]. In Australia,

ICUs have identified their ability to add more beds, however the effectiveness of

this is restricted by a low capability to increase mechanical ventilation units and

staffing levels [26]. The widespread and significant impacts have lead to challeng-

ing decision making, with several reports examining ethical and fair rationing of

increasingly limited healthcare resources [27–29].

Mortality risk prediction could ease the burden of such decisions, allowing

healthcare workers to assess which patients require the most urgent access to

limited resources such as invasive ventilation. Unfortunately, existing methods

for quantifying mortality risk are limited in that they depend heavily upon labo-

ratory test results, are calculated once at admission and not updated throughout
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the stay, and decline in performance over time [30, 31].

The burden of COVID-19 on healthcare systems has also had significant im-

pacts on out-of-hospital care. Following the 2020 outbreak of COVID-19 in

Lombardy, emergency services took longer on average to arrive at medical in-

cidents than in 2019. Additionally, occurrences of out-of-hospital death where

resuscitation was attempted increased by 14.9 percentage points [32]. Out-of-

hospital monitoring with non-invasive devices would improve at-home care and

allow for rapid detection of a medical emergency, and thus improve response

times. Such at-home monitoring would have ongoing benefits in routine health-

care beyond the pandemic, particularly for elderly, chronically ill, or otherwise

at-risk patients.

Improvements in monitoring would offer significant advantages to the health-

care system. The development of automatic, continuous, and non-invasive meth-

ods for measuring vital signs such as respiratory rate and blood pressure would

greatly enhance monitoring both at-home and in the hospital. Moving to non-

invasive methods of measurement would also reduce the high infection risks in

intensive care units, particularly for the at-risk populations of neonatal and el-

derly patients. For patients admitted to the hospital, and more seriously the ICU,

mortality risk monitoring is an essential tool for improving patient outcomes by

enabling informed decision making around treatments.

In recent years, machine learning has emerged as a technique for improving

healthcare in areas including vital sign monitoring [33–45], detection of clinical

events or deterioration [46–54], and mortality prediction [36, 55–63]. However,

much of the research to date is not yet suitable for clinical implementation.

Motivated by the challenges in healthcare monitoring both in and out of ICU

environments, there are two main objectives for this thesis. Firstly, this thesis

develops machine learning methods for continuous and non-invasive measurement

of respiratory rate and blood pressure, using data from sensors that are readily

available and highly wearable. Secondly, this thesis aims to improve patient

outcomes in the ICU and NICU by developing mortality risk assessment tools

that utilize machine learning to predict mortality outcomes from readily obtained

vital sign measurements and basic demographics. Overall, this thesis presents
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solutions for improved measurement and monitoring of patient health in a range

of settings.

1.2 Research Problems

This thesis focuses on improving healthcare through the use of machine learning

techniques in several areas. The research problems investigated include the de-

velopment of novel methods for monitoring blood pressure and respiratory rate

continuously and non-invasively, as well as the development of tools for quantify-

ing severity of illness using vital sign information in intensive care units. These

research problems are elaborated upon as follows.

1.2.1 Blood Pressure Monitoring

Blood pressure is an important health parameter that can provide much infor-

mation about a patient’s cardiovascular health. The current gold-standard for

blood pressure monitoring is invasive intra-arterial monitoring with a pressure

transducer inserted into a suitable artery. While this method is capable of con-

tinuous monitoring, it is invasive and can only be utilised in clinical settings.

Other methods, such as the use of cuff-based sphygmomanometers, cannot pro-

vide continuous measurements of the parameter and remain uncomfortable.

Continuous and non-invasive blood pressure monitoring would be an ideal

solution to this problem, and much research has looked to achieve this goal.

However, the research problem remains relatively new and existing schemes have

not yet succeeded in meeting the standards required for clinical implementation.

To address this problem, this thesis proposes two schemes - one focused on max-

imum performance and the other on finding a balance between performance and

computational efficiency - that utilise hybridized neural networks to determine

blood pressure from electrocardiogram and photoplethysmogram waveforms.

1.2.2 Respiratory Rate Monitoring

Respiratory rate is a key vital sign, however it has been historically under-

recorded. The primary reason for this is that the accepted method for mea-
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surement is manual counting of the breath over a one-minute period, which is

time-consuming for healthcare professionals. Other methods are obstructive and

uncomfortable for patients, requiring placement of devices over the mouth or

nose to accurately measure the parameter.

The development of a method for measurement of respiratory rate in a non-

invasive and continuous manner has long evaded researchers, with devices from

microphones to stretch sensors trialled for the purpose. Unfortunately, many

sensors are still obstructive and not suitable for long-term wear. Additionally,

sufficient performance has not been achieved in the literature to date. This thesis

addresses the research problem of accurately monitoring respiratory rate through

non-invasive techniques through the development of a scheme that extracts res-

piratory modulations of the electrocardiogram and photoplethysmogram wave-

forms and assesses their quality, using quality indices and candidate respiratory

rate values as inputs to a neural network for final prediction of respiratory rate.

1.2.3 Mortality Risk Assessment

Decision making regarding resource allocation in intensive care units is a chal-

lenging and yet essential task. This has become increasingly apparent throughout

the COVID-19 crisis, which has seen ICUs filled beyond their capacity and thus

left healthcare professionals to decide which patients should be allocated the lim-

ited numbers of life-saving equipment such as mechanical ventilators. This is an

emotionally challenging task and places high strain on healthcare workers.

Making decisions regarding treatment paths is also challenging in critical care

environments, and it is often difficult to determine whether a patient is improving

or deteriorating following certain treatment path. As such, it can be often be

hard to determine when to start or withdraw treatments.

Mortality risk assessment can ease decision making in both areas, however

existing schemes are limited by their dependencies on knowledge of medical his-

tories and extensive laboratory results. Additionally, the performance of existing

schemes has been shown to deteriorate with time. Finally, the complex nature

of existing schemes means that mortality risk is typically only calculated once at

the commencement of the stay, and not updated throughout.
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Mortality risk assessment has attracted much interest in the literature, par-

ticularly from researchers aiming to use machine learning to improve predictions.

While machine learning improves the calibration problem (as machine learning

models can continuously learn as they work), schemes in the literature remain

dependent on complex variables and are not continuously updated throughout

the stay.

This thesis aims to address these problems by developing a hybrid neural

network scheme for the measurement of mortality risk within 3, 7, and 14 days.

One model is proposed for adult patients, and another for neonatal patients. In

both models, only vital signs, age characteristics, and sex are used as features.

The simplicity of these variables ensures that the scheme can be continuously and

automatically updated throughout a patient’s stay to allow ongoing assessment

of their condition.

1.2.4 Summary

To summarise, this thesis addresses several key research problems: the continu-

ous and non-invasive measurement of both blood pressure and respiratory rate,

and the development of mortality risk assessment schemes for both adult and

infant patient groups. The development of techniques for improved vital sign

monitoring not only improves at-home healthcare monitoring, but also greatly

enhances the ability of mortality risk prediction schemes to provide accurate

results. Addressing these major research problems has lead to the original con-

tributions outlined in the following section.

1.3 Original Contributions

To address the research problems outlined in Section 1.2., the following original

contributions to the literature are presented in this thesis:

1. In chapter 3, a robust and powerful hybrid neural network for non-invasive

and continuous blood pressure measurement that uses raw waveforms from

wearable electrocardiogram and photoplethysmogram sensors as inputs is
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developed, and is shown to meet industry standards for blood pressure

devices.

2. In chapter 3, a low-power alternative neural network scheme for blood

pressure measurement using 12 features that describe the shape of the

electrocardiogram and photoplethysmogram waveforms is also presented,

showing little compromise on predictive performance compared to the raw

waveform scheme and a significant decrease in computational time.

3. In chapter 4, a machine learning scheme for continuous and automatic

respiratory rate measurement is designed, based on deriving respiratory

signals from modulations to photoplethysmogram and electrocardiogram

signals caused by respiration and conducting respiratory signal quality as-

sessment.

4. In chapter 5, a hybrid neural network is constructed to create an accu-

rate and continuously-updating scheme for mortality prediction in adult

intensive care units, utilizing only vital signs and basic demographics as

features.

5. In chapter 6, the work on adult mortality risk assessment is extended upon

to develop a mortality risk assessment scheme for neonatal patients admit-

ted to neonatal intensive care units, utilizing respiratory and heart activity

variations along with basic demographics as features.

1.4 Significance

This thesis fills significant gaps in the healthcare monitoring literature. The

techniques presented for measuring blood pressure (BP) and respiratory rate

(RR) outperform previous literature, offering a strong solution for non-invasive

and continuous measurement of these parameters in environments ranging from

the home to the hospital. The algorithms for both blood pressure and respiratory

rate are based on photoplethysmogram (PPG) and electrocardiogram (ECG)

signals, which are widely used in devices from fitness trackers to medical-grade
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hospital equipment. The sensors that record these signals are also non-invasive,

unobtrusive, and can be continuously recorded - unlike many existing alternatives

for measuring BP and RR. As such, the proposed algorithms for measuring BP

and RR could be utilized by health and fitness device manufacturers to develop

tools from fitness watches to non-invasive monitors for critical care environments.

Additionally, the mortality risk prediction schemes for adult and neonatal

patients are the first to show that mortality risk can be continuously and accu-

rately predicted using only vital signs and basic demographics, enabling ease-

of-use and reducing the burden of care on healthcare providers in intensive care

environments. As the algorithm only depends upon vital signs, it could be uti-

lized by medical device manufacturers to develop wearable devices for automatic

and continuous severity of illness assessment, both in hospital and in telehealth

applications. This would minimize and potentially eliminate the time cost asso-

ciated with currently used mortality risk assessment schemes, and would enable

at-home monitoring for high-risk patients. Additionally, it would be possible to

create an entirely non-invasive device for this purpose if the proposed schemes

for measuring BP and RR were implemented alongside established techniques for

non-invasively measuring the remaining vital signs, which would greatly improve

patient experience.

Overall, the algorithms presented in this thesis offer solutions for a wide range

of significant problems in the field of healthcare, with applications ranging from

fitness to telehealth to critical care.

1.5 Document Organization

The structure of this thesis is as follows. Chapter 2 presents a thorough review of

the literature, with focus placed on previous works in the areas of blood pressure

monitoring, respiratory rate measurement, and mortality risk assessment. Rele-

vant machine learning techniques are also discussed, with reference to previous

works in the healthcare field.

Chapters 3-6 are the research chapters, focused on addressing the research

problems outlined in Section 1.2 through achieving the objectives outlined in
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Section 1.3. The following figure provides an overview of the structure of the

research chapters, and the relationships between them.

Figure 1.1: Conceptual framework illustrating the relationship between research

problems

As Fig. 1.1 illustrates, Chapter 3 presents two machine learning methods

for estimation of blood pressure from photoplethysmogram and echocardiogram

waveform. The first scheme uses raw PPG and ECG waveforms as inputs to a hy-

brid neural network, while the second scheme improves computational efficiency

by selecting features that describe the shape of the waveform and using these as

inputs to a hybrid neural network. Respiratory rate measurement is considered

in Chapter 4, where a scheme for extracting respiratory signals from heart activ-

ity information is proposed. Each extracted respiratory signal is assessed using a

respiratory signal quality index, and machine learning is then utilized to predict

the respiratory rate based on multiple signals extracted from heart activity. The

development of these two schemes is strongly related, as they are the only two

vital signs that do not have an existing method for continuous and non-invasive

measurement. The same input signals are used for both works, allowing for the

two schemes to be integrated into a single device readily.

After developing schemes for measuring vital signs, this thesis then turns to

using vital sign information for enhanced prognostics tools in clinical settings. As

shown in Fig. 1.1, Chapter 5 proposes a scheme for predicting mortality using

basic demographics and statistics extracted from temporal vital signs. This
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scheme is able to be readily updated throughout the stay, allowing for ongoing

assessment of a patient’s health and response to treatments. Building upon this,

neonatal mortality risk assessment is then considered in Chapter 6, using only

heart rate and respiratory rate information along with basic demographics to

assess mortality risk in infants.

Following the research chapters, Chapter 7 concludes this thesis with several

comments on future research directions.
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Chapter 2

Background

This chapter presents a literature review of novel vital sign monitoring tech-

niques and machine learning in healthcare, with emphasis on four key aspects:

blood pressure measurement, respiratory rate measurement, and mortality risk

prediction for both adults and neonates in the intensive care unit.

An earlier version of this literature review has been published in the following

journal article:

[1] S. Baker, W. Xiang, and I. Atkinson, “Internet of Things for Smart

Healthcare: Technologies, Challenges, and Opportunities”, IEEE Access, vol. 5,

pp. 26521-26544, November 2017

2.1 Vital Sign Monitoring

Vital signs quantify the status of several fundamental life-sustaining functions

of the body. The four fundamental vital signs are heart rate (HR), body tem-

perature, respiratory rate (RR), and blood pressure (BP) [64]. The monitoring

of pulse rate is largely a solved problem, with wrist-based photoplethysmogram

(PPG) sensors considered most comfortable for a long-term wearable system [65].

The operation of these sensors is illustrated below, and involves an LED shining

light into the artery. Some light is absorbed by the blood, while the remainder

reflects back to a photodiode. The amount of absorbed light varies while the

heart beats, and as such heart activity waveforms can be extracted and used to

assess parameters such as HR and blood oxygen saturation. Such sensors have

already been widely implemented commercially, with many devices by brands
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including Fitbit, Apple, and Garmin validated in the literature [66–69] and used

for a variety of research projects [70].

Figure 2.1: Photoplethysmographic pulse sensor

Aside from PPG sensors, echocardiogram (ECG) sensors can also be used to

acquire information about heart health, including the vital sign of heart rate.

ECG measurements are typically performed in healthcare settings, with multiple

electrodes used to monitor the electrical activity of a patient’s heart. However,

recent research has shown that ECGs can be reduced to as few as one electrode,

therefore making them more suitable for implementation into wearables including

wrist bands and chest straps [71–73].

Another of the vital signs is body temperature, which can be used to detect

hypothermia, heat stroke, fevers, and more. Measurement of body tempera-

ture is also a largely solved problems, with recent works surrounding the topic

primarily focusing on thermistor-type sensors. In [74, 75], the common negative-

temperature-coefficient (NTC) type temperature sensors were used, while positive-

temperature-coefficient (PTC) sensors were considered in [76, 77]. In all studies,

the thermistors were shown to measure a suitable range of temperatures for

monitoring the human body, with acceptable levels of error. These small sensors

could readily be included in a wrist-wearable device alongside PPG and ECG

sensing capabilities.

The two vital signs that are currently missing from the wearable wrist-watch
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picture are blood pressure and respiratory rate. The measurement of these two

parameters has become the focus of much literature in recent years. In this

section, existing methods in the literature for measuring blood pressure and

respiratory are critically analysed.

2.1.1 Blood Pressure Measurement

Blood pressure (BP) is a key parameter for assessing patient health. Hyper-

tension, a condition where BP is elevated above 140 mmHg for systolic blood

pressure (SBP) or 90 mmHg for diastolic blood pressure (DBP) [78], is a leading

risk factor for developing cardiovascular disease (CVD). It is also one of the most

common chronic illnesses, affecting 32% of adult Australians. Of those affected,

68% had uncontrolled or unmanaged hypertension [79]. Complications resulting

from hypertension lead to 9.4 million deaths per year [80]. Treatment to re-

duce blood pressure reduces the patient’s risk of developing CVD [81], however

treatment cannot commence until the condition is diagnosed.

Significant diagnostic benefit is also seen with accurate and continuous mea-

surement of mean arterial pressure (MAP), which is quantified by the relationship

between SBP and DBP:

MAP =
SBP + (2×DBP )

3
(2.1)

MAP is a useful parameter for determining overall blood flow and thus the

level of organ perfusion. Lower values for MAP can indicate high mortality risk

conditions such as sceptic shock, as well as less critical but still serious conditions

including syncope [82]. Conversely, elevated MAP causes cardiovascular strain

and can lead to serious and potentially fatal CVDs including stroke [83].

BP is an extremely important parameter, however there are no commercially

available devices capable of measuring BP continuously and non-invasively. The

current gold-standard method for measuring BP continuously is intra-arterial

monitoring, a highly invasive procedure that involves inserting an arterial line

into a patient’s blood stream [18]. This procedure must be performed in a sterile

clinical environment and increases the risk of infection for the patient. Intra-

arterial monitoring is therefore unsuitable for long-term BP monitoring.
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Sphygmomanometers are a much more common method for measuring BP.

These non-invasive devices are based on an inflatable cuff that is manually or

automatically inflated beyond the expected SBP, causing blood flow to be cut

off. The cuff is then slowly deflated, and the pressure at which audible blood

flow sounds begin is the SBP. Pressure continues to be reduced, and then the

pressure at which the blood sounds cease is the DBP [84]. While non-invasive,

sphygmomanometers still cause significant discomfort and are even used to as-

sess pain sensitivity in research applications [85, 86]. There are also several

limitations of sphygmomanometers. Firstly, they cannot perform continuous BP

monitoring [87]. Regular measurements are possible using an ambulatory sphyg-

momanometer, which can automatically inflate and deflate at regular intervals

to take multiple measurements within a 24 hour period. However this is not

truly continuous, and is disruptive to daily activities and sleep, and thus is not

a sustainable long-term solution. Another issue is that vibrations in the arterial

wall, which can be caused by conditions such as arrhythmias, can compromise the

ability of a sphygmomanometer to accurately measure BP [84]. They also cannot

be used on people with several pre-existing conditions, such as lymphedema [88].

Factors including cuff size and arterial wall stiffness (which varies with age) can

also greatly affect the performance of sphygmomanometers [84].

With the limitations of existing devices, there is a strong need for new meth-

ods of measurement of blood pressure. Continuous, non-invasive, and comfort-

able tools for measuring blood pressure would greatly improve diagnostic ability

and patient quality of life. The majority of the literature focuses on using manu-

ally extracted features of the electrocardiogram (ECG) and photoplethysmogram

(PPG) signals to estimate BP using various mathematical approaches.

Several early studies [89–92] attempted to derive simple equations that could

be used to accurately measure BP, based on the well-known inverse relationship

between systolic BP and pulse transit time (PTT). PTT is the time that it takes

for the pulse to travel from the heart to another point, usually the radial artery

at the wrist. The early works focusing on this [89–92] each used a combination

of ECG and PPG sensors, then derived expressions that utilised PTT and a

variety of other parameters to estimate BP. Each of these works were limited

Chapter 2 15



Machine Learning for Non-Invasive Patient Health Monitoring

by a need to frequently recalibrate the included parameters to obtain accurate

results. These problems arose even with the small patient samples, such as the

6 patients used to develop the model in [90] and 9 patients in [92].

As a result of the limitations around manually derived algorithms for BP

estimation, several recent works have turned their attention to machine learning

(ML) techniques for calculating BP. Some have considered ML to predict BP

using basic demographics and health parameters including age and body mass

index (BMI) [93] or using sphygmomanometers [94–96]. However, these methods

are non-continuous, and as such the majority of the literature instead focuses on

using ML to estimate BP from ECG and PPG signals [33, 34, 36–38, 97–100].

Several of these works [33, 38, 97] use the large Medical Information Mart for

Intensive Care (MIMIC-III) database, which includes over 40,000 patient records

from multiple critical care units in the period of 2001-2012. The aforementioned

works extracting features including pulse transit time (PTT) from the ECG and

PPG waveforms. These features were then used as the inputs to ML algorithms,

including AdaBoost in [33], multi-regression in [97], and multivariate adaptive

regression spline (MARS) analysis in [38]. While the MIMIC-III database is a

valuable resource, it suffers from intra-waveform alignment issues as the PPG

and ECG signals are not time-synchronised. This prevents accurate calculation

of PTT and other time difference features between the ECG and PPG wave-

forms [101]. As such, the schemes using MIMIC-III to obtain PTT and other

time-dependent parameters could not reliably be implemented in healthcare en-

vironments without further testing.

Two other recent works [37, 98] also used features including PTT extracted

from ECG and PPG signals, measured with the same equipment across all par-

ticipants. This likely improved consistency between measurements, however syn-

chronisation between devices measuring each waveform would remain challeng-

ing. The databases used in these works were small, with 85 patients and 110

patients considered by Miao et al. [98] and Song et al., respectively. Mean abso-

lute errors (MAEs) of 6.13 mmHg and 4.54 mmHg for SBP and DBP, respectively,

were achieved by the regression algorithm presented in [98]. Meanwhile, a MAE

of 4.8 mmHg was reported for both SBP and DBP by [37], achieved with a deep
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fully connected NN. These results are reasonable, however further validation of

the algorithms on larger patient databases would be required to confirm these

results.

The use of raw waveforms as input features is considered by [34] and [36].

In [34], regression algorithms including decision tree, support vector, adaptive

boosting, and random forest are trained to predict SBP, DBP, and MAP using

raw PPG waveforms. The adaptive boosting regressor performed the strongest,

achieving MAE values of 3.97 mmHg, 2.43 mmHg, and 2.61 mmHg, respectively.

However, the model shows signs of overfitting. The standard deviation (SD) is

high at 8.901, and 16% of all measurements had errors greater than 15 mmHg.

Raw ECG waveforms are used in [36] to train a regressor neural network (NN)

comprised of residual network and long short-term memory (LSTM) layers for

SBP, DBP, and MAP prediction. The MIMIC-III database was used along with

a second independent database, however synchronicity was not an issue given

that a single waveform was used with no timing-dependent features derived.

Results varied dramatically between databases, with the results on the MIMIC-

III database showing a MAE of 7.10 mmHg and SD of 9.99 mmHg for SBP, along

with a MAE of 4.61 mmHg and SD of 6.29 mmHg for DBP.

Several other works have investigated NNs for the prediction of BP, including

long short-term memory (LSTM) networks. However, the works that investigated

these used limited databases of 26 patients [100] and 96 patients [99], respectively.

Each work used manually extracted features of the ECG and PPG waveforms

as features. Minimal statistics were cited by each paper, with [100] citing root

mean square errors (RMSEs) of 2.571 mmHg and 1.604 mmHg for SBP and DBP,

respectively, while [99] reported RMSE values of 3.90 mmHg and 2.66 mmHg for

SBP and DBP, respectively. These values show promise for LSTM networks,

but significant further validation on larger databases and with more rigorous

statistical analysis is clearly required.

Aside from densely-connected and LSTM NNs, another candidate for BP

estimation is found in convolutional neural networks (CNNs). These networks

are well-known for their high performance in computer vision tasks, and raw

PPG and ECG waveforms could be effectively considered as images. They have
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previously been used to analyse ECG signals to detect conditions including atrial

fibrillation [51–53], however to the best of the author’s knowledge they have not

been used for BP detection from such waveforms.

The results of both [34] and [36] indicate that raw waveforms can be used

to predict BP with some success, however are not yet sufficient for clinical use.

Meanwhile, limited studies on small databases have suggested that NNs may

be suitable for analysing ECG and PPG signals, however there have been no

attempts to use NNs to analyse both waveforms simultaneously for the estimation

of SBP, DBP, and MAP. These are significant gaps in the literature.

In terms of assessing the performance of BP measuring algorithms and de-

vices, the most common technique in the literature is comparison to the Asso-

ciation for the Advancement of Medical Instrumentation (AAMI) standard and

British Hypertension Society (BHS) protocol for assessment of BP devices, each

of which is used for the validation of devices used in clinical applications. The

AAMI standard [102] is a pass-or-fail test that states that a device must be

tested on ≥ 85 people, achieve a mean absolute error (MAE) of ≤ 5 mmHg and

standard deviation (SD) of ≤ 8 mmHg compared to a gold-standard method to

pass, otherwise the device fails. Meanwhile, the BHS protocol [103] assigns a

grade between A-D depending on how many measurements have errors less than

several thresholds when compared to a gold-standard method. Only devices

that achieve ‘A’ or ‘B’ grades are recommended for clinical use. The criteria for

reaching different grades under the BHS protocol is outlined in Table 2.1 below.

Table 2.1: Grading criteria defined by the BHS protocol.

Absolute Difference (mmHg)

Grade ≤5 ≤10 ≤15

A 60% 85% 95%

B 50% 75% 90%

C 40% 65% 80%

D Worse than C

In terms of these two standards, none of the aforementioned works have

achieved ‘pass’ grades for the AAMI standard and ‘A’ grades for the BHS stan-

dard across SBP, DBP, and MAP. As such, it is unlikely that any of these schemes
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are suitable for clinical use. Thus, developing an algorithm that meets the re-

quirements set by the AAMI and the BHS remains a significant gap in the liter-

ature.

2.1.2 Respiratory Rate Measurement

Another of the vital signs is respiratory rate (RR), or the number of breaths

a patient takes per minute. Respiratory rate abnormality is one of the earliest

indicators of critical illness. Elevated RR has been linked to clinical deterioration

after emergency department discharge [104], cardiac arrest [105], pneumonia in

children [13, 14] and general mortality risk [106]. Meanwhile, fluctuations in RR

have been found to be strongly linked with patient stability [107].

Despite the importance of RR, it has been historically under-recorded com-

pared to other vital signs [15, 104, 108, 109]. One study has found that nurses do

not measure RR in 50% of cases due to time constraints and lack of equipment

[15].

In terms of equipment, the most common tools used for automatic RR mea-

surement are oronasal systems comprised of capnography, temperature, or mois-

ture sensors, however these have not been widely adopted [108].

Manual measurement through counting the number of breaths a patient takes

over a one-minute period remains the accepted method for determining RR [15].

This method has the obvious limitation of being non-continuous, however manual

measurement can also be negatively impacted by patient awareness, time con-

straints, interruption, and patient agitation [14–16, 110]. The need for manual

measurement of respiratory rate is also time consuming, with one study finding

that nurses spent up to 7.2% of their time on manual patient assessment [17].

Due to the diagnostic importance of RR and the major limitations in existing

methods of measuring this vital sign, many previous works have investigated a

variety of sensors and devices for measuring respiratory rate, including thermis-

tors [111], microphones [112], fibre optic vibration sensor [113], pressure sensors,

stretch sensors [74, 114, 115]. Each of these sensors has shown promise, however

they are not highly wearable. Thermistor-based devices involve sensor placement

in the nose, while the other sensor types are typically chest-worn.
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An emerging candidate for wearable RR measurement is the extraction of

respiration signals from PPG and ECG signals. There is significant movement

associated with breathing, along with changes in intrathoracic pressure. This

results in respiration modulating heart activity signals in three main ways -

baseline wander (BW), amplitude modulation (AM), and respiratory sinus ar-

rhythmia (RSA) modulation [116]. The extraction of these modulations and

subsequent use in estimating RR has been considered in several recent works

[39, 40, 42, 43, 117], with mixed success. Machine learning techniques including

linear regression and support vector regression have been considered [43], but

this has not been explored broadly on large datasets.

Overall, there are still substantial improvements to be made in the field of

measuring RR automatically and continuously. The most promising method is

the extraction of respiration modulations from the ECG and PPG signal. Ma-

chine learning has shown some promise on smaller datasets, however its potential

has not been widely explored for this purpose.

2.1.3 Summary

Blood pressure and respiratory rate remain the two most challenging vital signs to

measure, particularly in a continuous and non-invasive manner. Recent literature

suggests that the heart activity signals of ECG and PPG contain information

that can be used to calculate both BP and RR, however existing literature has

not yet met the standards required for clinical use. Machine learning techniques

have been explored to improve BP and RR estimation from ECG and PPG

signals, but this has not yet led to clinically-suitable devices.

2.2 Mortality Risk Assessment

The automatic and continuous measurement of vital signs can support a wide

variety of healthcare applications, including the assessment of mortality risk in

critical care environments. Intensive care units (ICUs) treat the most critically

ill patients and have the highest mortality rate of all hospital units [9], ranging

between 11.3-12.6% [118]. Mortality risk assessment can aid healthcare pro-
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fessionals in making treatment decisions and determining the effectiveness of

treatments [19].

Assessment of mortality risk has been considered in the literature for two main

age ranges: adults and neonates. In this section, the literature on mortality risk

assessment for adult and neonatal patients is thoroughly examined.

2.2.1 Adult Mortality Risk Assessment

Several points-based schemes are currently used in adult ICUs to quantify mor-

tality risk. The most prevalent of these are the Acute Physiology and Chronic

Health Evaluation (APACHE) score [119], Simplified Acute Physiology Score

(SAPS) [120] and the Sequential Organ Failure Assessment (SOFA) score [121].

APACHE and SAPS have each undergone several updates, with the most recent

versions being APACHE-IV and SAPS-III, respectively. Despite this, APACHE-

II and SAPS-II remain the most commonly used versions of these schemes world-

wide [122].

These scores rely on health parameters that are often time-consuming and

difficult to obtain, as well as manual data entry. In addition to these disadvan-

tages, it has been found that the performance of these schemes decrease fairly

rapidly over time, with SAPS-II found to be out of calibration within 12 years

of its development [30]. Several recent studies have also found calibration issues

with APACHE, SAPS, and SOFA [123–125]. Changing patient population and

medical treatments account for much of the calibration loss, as each of these

schemes is trained on a singular dataset at a particular point in time [30]. It

has also been observed that the schemes perform poorly on cohorts from differ-

ent regions than those they were trained on, including Europe and Singapore

[123, 125]. This indicates that insufficient consideration of diverse populations

affects the performance of the schemes.

The limitations of traditional scoring systems has lead to a rise in researchers

investigating machine learning for mortality prediction [35, 55–61] and related

applications including detecting sepsis risk [46–48, 126] and general clinical dete-

rioration [49, 50]. Techniques used included random forest [35], logistic regression

[55], gradient boosting [55, 59, 60], and neural networks [56–58, 61]. These recent
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works have focused on using machine learning techniques for binary classification;

that is, determining whether a patient is a mortality risk or not. Neural networks

were the most commonly used, and showed strong performance on smaller num-

bers of variables than was achieved with other techniques. Neural networks also

offer the benefit of being reasonably easy to configure for continuous learning,

ensuring that calibration is always up-to-date. This in turn leads to enhanced

ability to generalise to current populations, even as populations, treatments, and

outcomes change with time.

Most recent works [35, 56–60] have developed schemes that are heavily depen-

dent on laboratory results including those obtained from extensive blood, urine,

breath, and other clinical analyses. These parameters are often complex and

time-consuming to obtain, and then additionally require entry into the patient’s

medical records for the scores to be calculated.

Performance of mortality risk assessment schemes is typically quantified using

the area under the receiver-operator curve (AUROC), which compares the false-

positive rate (percentage of incorrect predictions of mortality) with the true-

positive rate (percentage of correct predictions of mortality) for a varying cut-off

threshold for mortality prediction. AUROC can range from 0-1. In terms of

this parameter, the highest performing of the aforementioned schemes was that

presented in with an AUROC of 0.94, however the scheme depended on other

scoring schemes including the All Patients Refined Diagnosis Related Groups

(APR-DRG) and Medicare Diagnosis Risk Groups (MS-DRG). The grouping

of patients under these schemes is dependent on doctor diagnosis, introducing

a significant human bias. APR-DRG and MS-DRG are also not used in all

hospitals, limiting the broader usage.

Another strong work was that presented in [59], achieving an AUROC of

0.927. However, this scheme depended on 148 features comprised predominantly

of complex laboratory results. The high number of parameters required would

place significant burden on healthcare workers in terms of measurement and data

entry, limiting the practical usefulness of the scheme.

Other schemes have attempted to use fewer variables, such as the scheme

presented in [55] which investigated the use of only vital signs as parameters.
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However, an AUROC of only 0.65 was achieved. Through expanding their vital

sign feature vector to include Glasgow Coma Score (GCS) and SAPS-II score,

they were able to raise the AUROC to 0.84 - however this again introduces

dependency on complex parameters. Nonetheless, this work showed promise for

the use of vital signs in predicting mortality risk. Another work to identify

the importance of vital signs in critical care was that presented in [126], which

found that 10 of the 20 most important parameters for detecting onset of septic

shock were derived from vital signs. Further exploration of the use of vital signs

in predicting mortality should be considered given that they measure the most

critical functions of the human body [127].

Another trend in the literature is the assessment of mortality risk for the

entire stay using data acquired at admission. However, one recent work [61] has

identified that this is inflexible given that a patient’s condition can dramatically

change during the stay, and investigated the use of a shifting window to iden-

tify mortality risk at any time. However, this scheme depended on 48 hours of

extensive laboratory values that would be time-consuming and difficult to con-

tinuously update. Further exploration of repeatable mortality risk prediction

would undoubtedly be valuable for assessing patient response to treatments and

detecting any deterioration.

While machine learning has been broadly explored in the literature, relatively

little research has investigated the use of neural networks (NNs) for mortality

prediction. Early works investigating NNs focused on simple feed-forward net-

works and achieved comparable results to traditional scoring schemes [128–130].

More recent works have identified long short-term memory (LSTM) networks

as candidates for mortality prediction [56, 61, 131], as have hybrid networks

comprised of convolutional neural network (CNN) and LSTM layers [57].

Overall, the major limitations in current mortality risk assessment schemes

for adult patients are the use of extensive and complex features, and the focus

on predicting mortality for the entire stay using data taken at and immediately

after the time of admission. Further investigation into developing a mortality

scheme that is able to be continuously recalculated throughout the stay with

simple features is required, and the use of NNs is a promising avenue to achieve
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this goal.

2.2.2 Neonatal Mortality Risk Assessment

Complications resulting from preterm birth are the leading cause of death in

children under 5 [132], causing over 1.1 million deaths per year globally [133].

Preterm infants are often admitted to Neonatal Intensive Care Units (NICUs).

As many as 84.41% of infants with birthweight between 500g-1499 g are admitted

to NICU in the United States, while 48.17% of infants weighing 1500-2499 g are

admitted.

Several scoring schemes comparable to APACHE and SAPS are used in the

NICU for mortality risk assessment. One common scheme is the Clinical Risk

Index for Babies (CRIB-II) [134], a simpified version of the earlier CRIB score

[135]. The Score for Neonatal Acute Physiology (SNAP) [136] and SNAP Perina-

tal Expansion (SNAPPE) [137] are also commonly used, as are their successors

SNAP-II and SNAPPE-II. Other scores such as the Berlin score [138] and Neona-

tal Mortality Prognostic Index (NMPI) [139] are also in use to a lesser extent.

The limitations of these scores are comparable to the limitations of the

APACHE, SOFA, and SAPS scores for adult mortality prediction. Each of the

scores for predicting mortality risk in neonates was developed over fifteen years

ago, with the publication of CRIB-II in 2003 marking it as the most recent

scheme. Recent works have identified a significant decrease in performance for

scores in the SNAP/SNAPPE family of scores [140] and CRIB-II [19]. A recent

extensive review of multiple scoring schemes [31] concluded that updated and en-

hanced scoring systems are required to account for the significant advancements

in neonatal care.

In addition to calibration loss, several scoring schemes feature complexity or

inflexibility in the variables used. CRIB-II is the simplest scoring scheme, relying

on five variables, however each of these are not updated after admission, limiting

the usefulness in determining patient response to treatment. Meanwhile SNAP-

II, SNAPPE-II, Berlin score, and NMPI each use complex variables including

PO2/FiO2, serum pH, presence of seizures, urine output, base excess, and more.

Due to the limitations of existing scores, several recent works have investi-
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gated alternative methods for predicting neonatal mortality risk. Studies have

investigated logistic regression [141, 142], densely-connected neural networks [63],

random forest [143], and fusion of multiple algorithms into a so-called “super-

learner” [62] for binary classification of mortality risk in neonates. Of these

schemes, the highest performing were those based on neural network techniques

[62, 63] and random forest [143].

While the use of machine learning can aid in overcoming calibration issues,

the works in the literature remain limited by the selection of variables that are

challenging to measure regularly. Parameters considered by the schemes in the

literature include laboratory results [62], maternal characteristics [63, 141], exist-

ing conditions [62, 63], and more. Other parameters are challenging to quantify

definitively, such as the condition of the baby through visual inspection used in

[141]. The use of such parameters increases burden on healthcare workers and

thus limits the usefulness of the scheme.

On the other hand, several works in the literature are limited by their se-

lection of variables that do not change, including pre-birth and start-of-labour

characteristics [141], blood oxygen at admission [142], and respiratory support

within the first 24 hours after birth [142]. Fixed variables prevent recalculation

of risk during the stay, thus preventing assessment of response to treatment and

other changes to the infant’s condition throughout their stay.

Given the similarities between adult and neonatal mortality risk prediction,

neural networks including CNNs and LSTMs are also strong candidates for as-

sessment of mortality risk prediction in infants. An ideal scheme would include

variables that are easy to calculate regularly, utilising a machine learning strategy

that would ensure calibration remains strong throughout the future.

2.2.3 Summary

Mortality risk prediction is an essential component of ICU decision making. Ac-

curate prediction of this parameter enables treatment decisions, resource alloca-

tion, and assessment of patient condition. However, existing schemes are limited

by the use of complex or fixed variables to quantify mortality risk. They are

further limited by their assessment at the start of the stay, without further up-
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dates during the stay to enable constant reassessment of the patient’s condition.

There are indications in the literature that machine learning techniques may be

suitable for mortality risk prediction, however schemes that have attempted the

use of machine learning have remained dependent on a high number of complex

input variables. There remains a significant gap in the literature regarding the

use of machine learning on non-complex variables that can be readily assessed

throughout the stay to enable continuously updating mortality risk assessment.

2.3 Neural Networks

Machine learning has been identified as a candidate solution for blood pressure

measurement [33, 34, 36–38, 93–100], respiratory rate measurement [43, 144], and

mortality risk assessment in both neonatal [62, 63, 141–143] and adult [35, 55–

61, 131] patient cohorts. Recently, several works in these healthcare applications

have focused on neural networks specifically [34, 36, 56, 57, 61–63, 99, 100, 131]

due to their enhanced ability to learn complex patterns compared to traditional

machine learning techniques such as logistic regression and random forest. As

such, this thesis has placed focus on neural network techniques for healthcare

applications.

Every neural network shares some core components. Firstly, neural networks

are comprised of three layer types: input, hidden, and output layers. The input

layer receives the features, the hidden layers are where the inputs are processed,

and the output layer returns the result of the operation. Within each layer there

are a number of units (also called cells or neurons) that perform a mathematical

operation. They each have their own weights and biases that are updated through

the process of training using an optimization algorithm. It is this process that

allows the network to learn from the data it is seeing. Units within the hidden

layers are typically called hidden units. In training a neural network, a loss

function is used to tell the network which parameter it is aiming to optimize (for

example, error or accuracy).

While neural networks have these characteristics in common, there are also

many differences across the various types of neural networks. In this section,

26 Chapter 2



Machine Learning for Non-Invasive Patient Health Monitoring

several fundamental neural network structures are introduced and described in

detail.

2.3.1 Feed-Forward Neural Networks

Feed-forward neural networks (FFNNs) are also known as densely-connected,

fully-connected, or dense NNs. FFNNs are the most basic form of NN, with each

cell in a hidden layer connected to every cell from the previous layer. The major

advantage of FFNNs is that they are mathematically simple and therefore highly

efficient for small feature vectors. In many cases, if a FFNN were to perform

well, there would be little need for more complex NNs to be utilized. However,

works utilizing FFNNs for applications such as mortality prediction [128–130]

saw little improvement compared to manually-derived scoring systems. A single

layer of a FFNN can be mathematically described as follows:

yi = g(xi • wy + by) (2.2)

where yi and xi represent the output and input of layer i respectively, while wy

and by are the weights and biases, learned using the powerful Adam optimizer.

The symbol ‘•’ denotes element-wise matrix multiplication, and g() represents

the activation function chosen. There are several common activation functions,

including ReLU (g(z) = max(0, z)), sigmoid (g(z) = 1
1+e-z

), and tanh (g(z) =

tanh(z)).

An example of a FFNN with an input layer, three hidden layers, and output

layer is shown in Figure 2.2 below.

Aside from multi-layer FFNNs, it is common for a singular densely-connected

layer to be used as the output layer of other neural network types. This will be

illustrated in the following subsections.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are broadly used in image and video

recognition tasks due to their ability to identify patterns. They have found use

in healthcare applications for tasks related to blood pressure and respiratory
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Figure 2.2: Example of a FFNN with three hidden layers.

rate measurement, such as recognizing variation in Korotkoff sounds [54] and

detecting heart abnormalities in ECG signals [51–53]. They have also been con-

sidered in combination with other network types for mortality risk assessment

[57]. Typically, they are most useful in applications where there are a large num-

ber of input variables and patterns are not already known. A single CNN layer

is described mathematically as follows:

yj
i = g(

N∑
n=1

wjn
i ∗ xm(i-1) + bj

i) (2.3)

where yij is the output jth feature map of the ith layer, after convolution has been

performed and passed through the activation function. The symbol ∗ represents

the convolution operation. The parameter wjn
i is the nth weight of the jth feature

map from the previous layer, where n = 1, ..., N . The term xm
(i-1) represents the

outputs of the previous (i − 1)th layer, and lastly bj is the jth bias term of the

lth layer.

CNNs can be implemented for one-dimensional, two-dimensional, or three-

dimensional data. Time-series data, such as ECG and PPG signals, are examples

of one-dimensional inputs. An example of a CNN with three hidden units and a

densely-connected output layer is illustrated in Fig. 2.3.
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Figure 2.3: Example of a CNN with three hidden layers.

2.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are largely used for sequential data based on

their enhanced ability to ‘remember’ what they have learned in the past. This

makes the suitable for tasks such as handwriting recognition and language pro-

cessing. A traditional RNN is mathematically expressed through two equations.

Firstly, the equation that defines the activation value from time step t, with the

activation function denoted by g, is as follows:

at = g(waaa(t− 1) + waxxt + ba) (2.4)

where at is the activation value from time-step t that will is inputted to the

following time-step t+ 1 and a(t-1) is the activation value from time-step (t− 1),

providing information about the past. The parameter xt is the input for time-

step t, and ba are the relevant biases for calculating the activation value. waa

and wax are the weights for the activation value a(t-1) and input xt respectively.

The second relevant equation for RNNs gives the predicted output, and can

be defined as follows:

yt = g(wyaat + by) (2.5)

where yt is the output of layer t, at is the activation value of layer t, and wya

and by are the weights and biases used for calculating the output prediction,

respectively. The activation function is again denoted by g()

A graphical example of an RNN with three hidden layers followed by a

densely-connected output layer is illustrated in Figure 2.4.
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Figure 2.4: Example of an RNN with three hidden layers.

2.3.4 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks are an advanced type of recurrent

neural network, offering several additional benefits over simple RNN. LSTM

introduces several gates that make decisions regarding what to remember and

what to forget. LSTMs have been widely used in healthcare applications for tasks

such as predicting sceptic shock [145], seizure detection [146], cancer prediction

[147], heart anomaly detection [148] and blood pressure estimation [99, 100].

The following series of equations represent the process for updating the cell

state ct in a single layer t of an LSTM network. Activation functions are again

represented by g(), however activation functions used often vary for the gate

equations and final output equation.

c̃t = tanh(wc[ a(t-1), xt] + bc) (2.6)

f t = g(wf[ a(t-1), xt] + bf) (2.7)

ut = g(wu[ a(t-1), xt] + bu) (2.8)

ot = g(wo[ a(t-1), xt] + bo) (2.9)

ct = ut • c̃t + f t • c(t-1) (2.10)

at = ot • g(ct) (2.11)
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Eqn. (2.6) represents the calculation of candidate values c̃t that may be used

to update the cell state ct. Then, (2.7)-(2.9) show the calculation of the forget

gate f t, update gate ut and output gate ot respectively. Finally, the cell state

ct is updated in (2.10), while the layer output is determined in (2.11). The ‘•’

symbol in (2.10) and (2.11) represents element-wise matrix multiplication.

In (2.6)-(2.9), wc, wf, wu and wo refer to the learned weights for their respec-

tive operations, while bc, bf, bu and bo are the learned biases. Additionally, the

parameter a(t-1) refers to the output of the previous layer, while xt is the input

for time-step t. Eqn. (2.10) utilizes the results of (2.6)-(2.8) as well as the cell

state of the previous time step, c(t-1) to update the cell state, and (2.11) uses the

resultant cc as well as the output gate results.

An example of a LSTM NN with three hidden layers and a densely-connected

output layer is illustrated in Fig 2.5.

Figure 2.5: Example of an LSTM NN with three hidden layers.

A variation on LSTM is Bidirectional LSTM (BiLSTM). The LSTM network

described above feeds data through the network from beginning to end of the

sequence. BiLSTM also does this, but additionally passes the data through the

network in reversed order. Results of both forward and reversed passes are then

concatenated after each layer before being passed to the next layer. This enables

the network to learn from both past and future data. BiLSTMs follow the same

mathematical structure as unidirectional LSTM, applying this structure to both

passes of the data.

An example of a BiLSTM network is illustrated in Fig. 2.6. A single bidirec-
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tional layer is comprised of both forward and backward LSTM pass, as well as

the concatenation operation that combines them.

Figure 2.6: An example of a BiLSTM NN with three hidden layers.

2.3.5 Summary

In this section, several NN structures that have been previously used in the lit-

erature for healthcare applications have been presented. FFNNs are the most

mathematically simple of these, however have found limited success in health-

care applications previously. Despite this, a fully-connected output layer is a

standard feature of most NN structures. CNNs are strong contenders for large

feature vectors due to their ability to recognize previously unknown patterns,

while LSTM NNs have been found to perform strongly on sequential data. The

use and hybridization of these networks could provide substantial value to the

applications of blood pressure measurement, respiratory rate measurement, and

mortality risk prediction
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2.4 Conclusion

This literature review has conducted a comprehensive analysis of existing works

and technologies for monitoring vital signs and overall severity of illness. Through

this analysis, several key research gaps have been identified.

Firstly, there is no known scheme for non-invasive and continuous blood pres-

sure measurement that meets the key industry standards outlined by the British

Hypertension Society and the Association for the Advancement of Medical In-

strumentation. This indicates that existing schemes would not be suitable for

clinical implementation, leaving a substantial gap in the literature.

A similar issue is seen with respiratory rate measurement. Existing methods

are either manual or obstructive and uncomfortable. Several pilot studies have

considered non-invasive methods for continuous respiratory rate measurement,

however low error has not been achieved on large datasets. A significant research

gap remains in developing a robust technique for automatic, continuous and non-

invasive respiratory rate measurement that is highly accurate.

Currently, blood pressure and respiratory rate are the only vital signs that

cannot be measured continuously and non-invasively in clinical settings. The

development of schemes that fill these gaps would strongly support the develop-

ment of enhanced diagnostics and prognostics tools, including those for mortality

risk assessment.

In terms of assessing severity of illness or mortality risk in critical care pa-

tients, existing schemes suffer from a wide range of issues including time cost,

complexity of variables, and poor accuracy. The development of an easy-to-

interpret scheme based on parameters that can be automatically recorded would

fill a substantial gap in the literature.

This thesis addresses these significant research gaps, providing a broad range

of techniques designed for implementation in environments ranging from health

trackers to critical care units.
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Chapter 3

Deep Learning for Blood Pressure

Estimation using Electrocardiogram

and Photoplethysmogram Data

This chapter contains materials published in the following article, which has been

accepted for publication with Computer Methods and Programs in Biomedicine:

[4] S. Baker, W. Xiang, and I. Atkinson, “A Hybrid Neural Network for

Continuous and Non-Invasive Estimation of Blood Pressure from Raw Electro-

cardiogram and Photoplethysmogram Waveforms,” accepted by Computer Meth-

ods and Programs in Biomedicine in May 2021.

This chapter also contains materials from the following manuscript:

[149] S. Baker, W. Xiang, and I. Atkinson, “A Computationally Efficient

CNN-LSTM Network for Estimation of Blood Pressure,” manuscript prepared,

publication to be pursued following the acceptance of [4].

3.1 Introduction

Blood pressure (BP) is a key diagnostic tool for a variety of life-threatening con-

ditions. Elevated BP, or hypertension, is a major risk factor for cardiovascular

disease (CVD), contributing to the deaths of 9.4 million people every year [80].

Additionally, poor organ perfusion can be identified through the measurement

of BP-derived parameters, particularly mean arterial pressure (MAP). MAP is

useful in determining overall blood flow and thus the level of nutrient delivery
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to organs, and therefore is routinely measured when dealing with high-mortality

conditions like septic shock [82]. MAP that is too low can lead to shock, syn-

cope, and poor perfusion to organs, while elevated MAP places strain on the

cardiovascular system and can eventually to various CVDs including stroke [83].

Despite the importance of monitoring BP, there are currently no commer-

cially available devices capable of continuous and non-invasive BP measurement

that have been approved for medical use. Currently, the gold-standard method

for continuous and accurate BP monitoring is intra-arterial monitoring, which

involves the invasive insertion of a catheter equipped with a pressure transducer

into a patient’s artery [18]. This is clearly not suitable for long-term monitoring

as it must be performed in a clinical environment and it increases infection risk

for the patient. Typically, BP is measured using less invasive sphygmomanome-

ters, cuff-based devices which is manually or automatically inflated to determine

BP. However, sphygmomanometers are incapable of continuous monitoring and

cause significant discomfort to many patients [87]. They also cannot be used on

people with several pre-existing conditions, such as lymphedema [88].

There is a clear need for improved methods of clinical and at-home BP mon-

itoring, especially for high-risk patients. As such, many recent works have in-

vestigated methods for non-invasive measurement of BP. One promising area of

research lies in machine learning (ML). ML techniques have been used to esti-

mate BP from various health factors such as age and gender [93], as well as for

improving sphygmomanometer measurements [95, 96].

More recently, many researchers have investigated the calculation of BP from

electrocardiogram (ECG) and photoplethysmogram (PPG) signals [33, 34, 36–

38, 97–100]. In [33, 38, 97], the Medical Information Mart for Intensive Care

III (MIMIC-III) database was used to obtain features such as pulse transit

time (PTT) and other manually extracted features of the ECG and PPG wave-

forms. These were then used with algorithms including AdaBoost in [33], multi-

regression in [97] and multivariate adaptive regression spline (MARS) analysis

in [38]. Unfortunately, the MIMIC-III database used by these works suffers from

intra-waveform alignment issues that make calculation of PTT and other time-

dependent features between ECG and PPG signals unreliable [101]. As such,
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these schemes could not be reliably applied in healthcare applications.

In [34], raw PPG waveforms are used to train an AdaBoostR algorithm to

estimate SBP, DBP and MAP. This model was trained on a small subset of the

MIMIC-II data of 1,323 records and not validated on a distinct testing set. In

results presented from the training set, the model was clearly suffering from a

large number of high-range errors and large standard deviation (SD), particularly

in SBP estimation. This indicates that the model had overfit to the training data,

and therefore would be unlikely to perform strongly on new data.

Meanwhile, in the recent paper [36], raw ECG waveforms are used to train

a neural network for SBP, DBP, and MAP prediction. Testing was performed

on MIMIC-III data, as well as a second independent database. Results across

these two databases varied significantly, with the scheme shown to not perform

as strongly on the large MIMIC-III database. It is likely that utilizing both PPG

and ECG data would significantly improve performance, and PPG signals are

comparatively easy to obtain from wearable devices compared to ECG signals.

Two recent works [37, 98] obtained features from ECG and PPG signals before

using ML techniques to predict BP. Features considered included PTT, which was

measured using the same equipment across all participants. This likely improved

synchronization between devices when compared to the waveform synchronity

issues in [33, 97, 150], however clock drift could still impair PTT calculation over

longer periods. Each of these works built small databases using measurements

from healthy volunteers, with [98] obtaining readings from 85 patients and [37]

using 20-second segments from 110 subjects. Good results were presented in both

works, however larger databases would be needed to verify that these schemes

would perform well on a wide range of patients.

In this chapter, two hybrid neural network (NN) schemes are proposed.

Each scheme incorporate temporal convolutional neural network (CNN) and long

short-term memory (LSTM) layers for the estimation of BP. In each hybrid NN,

he CNN layers act to identify the most important features, while the LSTM lay-

ers have a strong ability to remember information and thus identify relationships

between features.

The first scheme proposed in this chapter uses 5-second windows of both raw
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ECG and PPG waveforms as inputs. By using raw waveforms as inputs, the

hybrid CNN-LSTM network is able to learn from all of the available informa-

tion, rather than from manually identified features. Avoiding manual feature

selection also has the advantage of removing human bias from training and test-

ing. Additionally, the use of a short, 5-second window of data ensures that BP

can be calculated rapidly and continuously, and is less prone to suffering from

interference than longer windows.

In the second scheme proposed by this chapter, focus was placed on improv-

ing computational efficiency. Twelve features describing the shape of 5-second

segments of ECG and PPG are derived and used as input features. This strategy

minimises the risk of human bias as it focuses on describing what can be seen in

the waveform, rather than deriving complex features such as PTT.

The remainder of this chapter is structured as follows. Section 3.2. presents

the methodology, including schemes for preprocessing, signal quality assessment

and developing the hybrid NNs for BP estimation. Section 3.3. discusses the

results of testing conducted on the NN algorithms to assess their performance.

Finally, Section 3.4. briefly concludes this work and summarises its significance.

3.2 Methodology

3.2.1 Data Acquisition

Deep learning is most successful when large quantities of data are used for train-

ing, validating, and testing the models. The Medical Information Mart for In-

tensive Care (MIMIC) [151] database features many de-identified patient records

from critical care environments and has been used in several significant and high-

impact studies focused on developing biomedical algorithms, including [33, 97].

To train neural networks to estimate both SBP and DBP, ECG and PPG signals

are required. Additionally, reference “true” values for SBP and DBP are needed,

which can easily be derived from arterial blood pressure (ABP) waveforms avail-

able in the MIMIC database. As such, all records that contained ECG, PPG

and ABP waveforms were obtained, resulting in a database comprised of 6,972

unique patients.
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3.2.2 Data Preprocessing

Following acquisition, each record was split into 5-second segments. This seg-

ment length allows for extremely rapid BP estimation, while also providing a

wide enough window to accurately calculate BPs even where the heart rate

is extremely low. Segments were taken sequentially, with no overlap between

segments. This ensured that each segment contained completely unique data.

During the segmentation process, any segments with missing or flatlining signals

were immediately discarded.

3.2.3 Data Selection

Signal quality indices (SQIs) have been developed in several previous works to

assess the quality of ECG signals, using techniques including spectral analysis

[152], fuzzy support vector machines [153], [150], and simple sanity checks [154].

While these works offer significant SQI tools for ECG signal assessment, they

do not consider PPG signals. As such, for this work a straightforward SQI strat-

egy is implemented, comprised of sanity checks for PPG and ECG waveforms.

Heart rate (HR), beat-to-beat (BTB) intervals and waveform heights are calcu-

lated for ECG and PPG in each record. HR values derived from each signal must

be equal and fall within 40-180 bpm for a record to be considered “good” by the

SQI tool. This is the range which is physiologically probable for HR [154] and

thus is a reasonable indicator of signal quality. The consistency of the signal is

also considered by finding the maximum-to-minimum ratio for both beat-to-beat

intervals and peak heights and ensuring that the maximum is no more than 50%

larger than the minimum.

Records were also excluded if pulse pressure (the difference between SBP and

DBP) was not between 20-60 mmHg. Pulse pressure is considered high when

it is over 60 mmHg [155, 156], and is usually indicative of an immediate health

problem. Meanwhile, pulse pressure is considered low beneath 40mmHg and

indicates poor heart function [155, 156], so an intentionally conservative lower

limit of 20 mmHg was chosen for this application given that data is acquired

from critical care units.
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Algorithm 1 Signal Selection Algorithm

Input: hr ppg, hr ecg, ppg peak ratio, ecg peak ratio, ppg btb ratio, ecg btb -

ratio, true sbp, true dbp, pulse pressure

Output: use record

1: if (hr ppg == hr ecg) & (hr ppg > 40) & (hr ppg < 180) & (ppg peak -

ratio < 1.5) &

(ecg peak ratio < 1.5) & (ppg btb ratio < 1.5) &

(ecg btb ratio < 1.5) & (pulse pressure > 20

& (pulse pressure < 60)] then

2: record quality = 1

3: else

4: record quality = 0

5: end if

In Algorithm 1, hr ppg and hr ecg are the HRs calculated from the PPG

and ECG signal respectively. Additionally, ppg peak ratio and ecg peak ratio are

the ratios of the maximum peak height to the minimum peak height for each

signal, while ppg btb ratio and ecg btb ratio are the ratios of the widest to smallest

BTB intervals for each signal. Each of these metrics offers a measure of signal

consistency, which in turn is indicative of signal quality. Lastly, the parameter

pulse pressure is the pulse pressure values calculated from the ABP signal.

After assessing the suitability of all signals using Algorithm 1, the resulting

data was inspected and outlier BP values were excluded. The final database

contained over 200,000 records for use in training and testing of the proposed

NNs.

3.2.4 Feature Extraction

This chapter describes two schemes for prediction of blood pressure. The first

scheme uses the raw ECG and PPG waveforms, while the second scheme uses a

small vector of features which describe the shape of the waveforms. The feature

selection process is described for each scheme as follows.
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Raw Waveform Scheme

In the first scheme, the input features used are the amplitudes of raw ECG and

PPG waveforms over a 5-second period. As ECG and PPG waveforms were

both sampled at 125Hz, the feature vector included 625 amplitude data features

from both the ECG and PPG waveforms, for a total feature vector size of 1,250

amplitude data points.

Feature-Based Scheme

In the second scheme, the aim was to improve computational efficiency by greatly

reducing the number of features used. In selecting which features to extract from

the signals, human bias was minimised by predominantly choosing features of

the signal, rather than features calculated from the signals. In other words, the

majority of the chosen features aimed to describe the shape of the waveform.

For ECG, the waveforms were described by extracting all R, P, T, Q, and

S-wave amplitudes from the signal, as well as the beat-to-beat (BTB) interval

- that is, the time between R-waves. These features are illustrated in Fig. 3.1

below. To quantify the typical R, P, T, Q, and S-waves within the 5-second

signal segment, median was used rather than mean to minimise the impacts of

outliers. Mean was however used to quantify the typical BTB inerval between

R-waves, as the time scale was less likely to be affected by noise than the various

wave heights.
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Figure 3.1: A typical ECG waveform.

The median peak and trough heights of the PPG signal were then calculated

after extracting all peaks and troughs from the signal. The BTB intervals be-

tween two peaks were also extracted, with the mean then taken to quantify the

typical BTB interval. These features are illustrated in the sample PPG signal

shown in Fig. 3.2.

Figure 3.2: A typical PPG waveform.

The few features that required slightly more calculation were PPG wave

height, heart rate, and mean up-time. As illustrated in Fig. 3.3, the PPG

wave height was calculated as the difference between the first peak and trough

heights, while the median of the HRs calculated from the PPG and ECG signals

was used as HR in the feature vector. Lastly, up-time was calculated as the time
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taken for the PPG signal to go from trough to peak. This was calculated for all

trough-peak pairs and averaged to get a mean up-time, which was then used in

the feature vector.

Figure 3.3: Calculation of additional PPG features.

Overall, the feature vector contained 12 important features of the ECG and

PPG signals. These features required minimal calculation and thus minimize

the risk of human bias impacting upon the ability of a NN to learn from the

data. The twelve features used were the R-wave median, S-wave median, Q-

wave median, P-wave median, T-wave median, mean BTB interval of the ECG,

mean BTB interval of the PPG, PPG wave height, heart rate, median PPG peak

height, median PPG trough depth, and mean up time.

3.2.5 Proposed Neural Network

Raw Waveform Scheme

For the task of blood pressure estimation from raw waveforms, a hybridised

deep neural network (DNN) is proposed, combining temporal convolutional lay-

ers with long short-term memory (LSTM) layers, as shown in Fig. 3.4. CNNs

are typically used to identify important features and patterns within a signal, re-

gardless of their location, and have previously been used in the related problems

in ECG anomaly detection [51–53]. Meanwhile LSTM networks perform excep-

tionally well on sequential data due to their ability to ‘remember’ what they

have previously seen. This enables them to draw links between multiple features

readily, and has lead to them being trialled in ECG and BP related problems
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[99, 100, 148]. Combining the two network structures draws on the benefits of

both to create a powerful hybrid NN with strong predictive abilities for sequen-

tial waveform data. The proposed hybrid CNN-LSTM outperformed separate

CNN and LSTM networks with respect to MAE, SD, and error distribution in

preliminary testing.

Figure 3.4: System model of the proposed NN for BP estimation using raw waveforms

as inputs.

The proposed network then utilizes three temporal CNN layers, each with

128 hidden units and utilizing ReLU activation. The first two CNN layers use

a kernel size of 10, while the third uses a kernel size of 4. All CNN layers use a

stride of 1. The CNN layers are mathematically described by Eqn. (3.1).

yj
i = relu(

N∑
n=1

wjn
i ∗ xm(i-1) + bj

i) (3.1)

where yij is the jth feature map of the ith layer. Convolution is denoted with the

∗ symbol. Weights wjn
i describe the nth weight of the jth feature map from the

(i−1)th layer, where n = 1, ..., N . The outputs of the (i−1)th layer are denoted

as xm
(i-1), while bias is denoted as bj for the jth bias term of the ith layer. Biases

are initialised to zero and updated using the Adam optimizer algorithm [157]

with a learning rate of 0.01.

Maximum pooling is applied following each convolutional layer, as shown in

Fig. 3.4. Pool1 and Pool2 both use pool and stride sizes of 10, while Pool3 uses

pool and stride sizes of 4. Applying maximum pooling after CNN downsamples

the outputs, which aids in the prevention of overfitting.
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As shown in Figure 3.4, the unravelled ECG and PPG data is passed to the

regression network as a feature vector, before passing through an efficient net-

work comprised of multiple interleaved convolutional, dimensionality reduction,

and LSTM layers. The output of the final hidden layer is passed to a densely

connected layer. This output layer utilises ReLU activation to predict blood

pressure as a decimal value. The same network structure was used for training

separate SBP and DBP prediction networks.

Following the convolutional section of the network, there two bidirectional

LSTM network layers with 128 hidden units. Bidirectional LSTMs (BiLSTMs)

consider data in both original and reversed order, allowing them to learn from

values both in the past and future within the sequence. Results from both

forward and reversed sequences are concatenated to provide the overall output,

however the mathematical structure for both passes remains the same as standard

LSTM. This mathematical process is described Eqns. (3.2-3.7) below.

c̃t = tanh(wc[ a(t-1), xt] + bc) (3.2)

f t = σ(wf[ a(t-1), xt] + bf) (3.3)

ut = σ(wu[ a(t-1), xt] + bu) (3.4)

ot = σ(wo[ a(t-1), xt] + bo) (3.5)

ct = ut • c̃t + f t • c(t-1) (3.6)

at = ot • tanh(ct) (3.7)

where the weights are wc, wf, wu and wo, while biases are bc, bf, bu and bo.

Biases and weights are learnt using the Adam optimization algorithm [157] with

a learning rate of 0.01. The previous layer output is denoted as a(t-1), while xt

is the input to timestep t. Lastly, Equations (3.6) and (3.7) are the updated cell

state and layer output respectively.

The final layer of the network is a simple densely-connected node that pro-

vides the final output of the network, which is the prediction for blood pressure.

This network structure was used for training and testing of networks for SBP

and DBP estimation separately.
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Feature-Based Scheme

For the feature-based scheme, a shallower hybrid CNN-LSTM network was used.

As shown in Figure 3.5, the 12-feature vector is used as the input to the network

comprised of multiple convolutional, pooling, and LSTM hidden layers. Each

layer had 128 hidden units, with the CNN layers featuring a kernel size of 2

with stride of 1 and the maximum pooling layers featuring pool and stride sizes

of 2. The output of the final hidden layer is passed to a densely connected

layer utilizing sigmoid activation, which then determines the most likely blood

pressure.

Figure 3.5: System model of the proposed NN for BP estimation using twelve features

of the waveforms as inputs.

This network was able to be shallower than that of the raw waveform scheme,

as fewer input features lead to convergence on a solution without as many lay-

ers. The layer depth illustrated in Fig. 3.5 was found to provide the optimal

MAE, with increased depth showing no improvement with respect to this key

parameter. Additionally, unidirectional LSTM was used rather than bidirec-

tional LSTM in this case, as the latter showed no improvement in predictive

performance. Therefore it was preferable to use unidirectional LSTM, which

offers lower computational cost. As with the raw waveform scheme, biases are
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initialised to zero and updated using Adam optimization [157] with a learning

rate of 0.01.

3.2.6 Training & Testing of the NNs

The networks for both the raw waveform and feature-based scheme were trained

using 80% of the data. A further 10% of the data was used for validation of SBP

and DBP, allowing for fine-tuning of the hyperparameters. The final 10% of data

remained unseen to the networks for use in testing.

For the raw waveform network, training and validation was performed over

750 epochs with mean absolute error (MAE) used as the loss function. Mean-

while, the feature-based network converged rapidly after 50 epochs, with any fur-

ther iterations found to cause overfitting to the training set. For both schemes,

network performance was checked at the end of each iteration; if the network was

achieving a lower MAE than all previous iterations, then the network weights

were saved. If not, then training moved on to the next iteration. This ensured

that the best weight combination encountered during training and validation was

used for the final network.

Testing was then conducted using the highest-performing networks for SBP

and DBP estimation in each scheme. The predictions made by the SBP and DBP

networks are also combined to produce a prediction for mean arterial pressure

(MAP), which represents the average pressure in a person’s arteries during a

single cardiac cycle [82] and is mathematically defined as follows:

MAP =
SBP + (2×DBP )

3

The results achieved by the networks were recorded and analysed, and are

presented with discussion in the following section.

3.3 Results & Discussions

In evaluating the performance of the proposed CNN-LSTM model for the estima-

tion of SBP, DBP, and MAP, two widely accepted standards for the approval of

blood pressure devices for use in clinical environments are considered - the British
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Hypertension Society (BHS) protocol and the Association for the Advancement

of Medical Instrumentation (AAMI) standard.

Furthermore, this section evaluates the level of agreement between the cal-

culations made by the CNN-LSTM networks and the expected SBP, DBP, and

MAP values as determined from ABP waveforms within the MIMIC-III database,

which were obtained using gold-standard intra-arterial blood pressure measure-

ment. The schemes proposed in this chapter are also compared to previous

related works, highlighting the improvement that the proposed schemes make to

accurate blood pressure estimation.

3.3.1 Comparison to the BHS Protocol

The BHS protocol [103] assigns grades of A-D to blood pressure measurement

devices, based on the percentages of measurements that achieve absolute differ-

ences of less than 5mmHg, 10mmHg, and 15mmHg respectively, when compared

to gold-standard measurement techniques such as intra-arterial monitoring. The

grading criteria established by the BHS protocol are illustrated in Table 2.1. De-

vices that achieve grades of A or B in accordance with the BHS grading criteria

are considered suitable for clinical use, while those that achieve lower grades are

not recommended for clinical use.

Raw Waveform Scheme

As shown in Table 3.1, the proposed raw waveform scheme satisfies the require-

ments for an A grade device in the estimation of SBP, DBP, and MAP, and thus

would be recommended for use in clinical settings.

Table 3.1: Assessment of raw waveform scheme based on BHS protocol.

Absolute Difference (mmHg)

≤5 ≤10 ≤15 Grade

SBP 67.66% 89.82% 96.82% A

DBP 82.79% 96.12% 99.09% A

MAP 84.21% 97.38% 99.58% A
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Feature-Based Scheme

As shown in Table 3.2, the feature-based scheme also comfortably satisfies the

requirements for an A grade device in the estimation of SBP, DBP, and MAP.

It can be seen that fewer predictions fell within each error category than with

the raw waveform scheme, however the maximum grade for the BHS standard is

still comfortably achieved.

Table 3.2: Assessment of feature-based scheme based on BHS protocol.

Absolute Difference (mmHg)

≤5 ≤10 ≤15 Grade

SBP 64.96% 89.90% 97.76% A

DBP 82.08% 96.18% 98.86% A

MAP 81.04% 96.91% 99.50% A

3.3.2 Comparison to the AAMI Protocol

Blood pressure devices are often evaluated with respect to both the AAMI and

BHS protocols, as they have different mechanisms for determining device suitabil-

ity. The AAMI standard [102] states that a device must have a mean difference

of ≤5 mmHg and a standard deviation (SD) of ≤8 mmHg from gold standard

measurements. Devices are assigned a grade of “Pass” if the aforementioned

criteria are met, otherwise the device is given a grade of “Fail”. Each of the

proposed schemes were compared to the AAMI standard as follows.

Raw Waveform Scheme

As illustrated in Table 3.3, the raw waveform scheme comfortably achieve “Pass”

grades with respect to the AAMI criteria. The proposed algorithms achieve

impressively low MAEs and SD in estimation of all BP parameters, and would

be suitable for implementation in healthcare.

Feature-Based Scheme

After testing the proposed CNN-LSTM model on the test set, it was found that

the algorithm achieved acceptably low MAE and SD in estimating SBP, DBP, and
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Table 3.3: Assessment of raw waveform scheme based on AAMI standard.

MAE (mmHg) SD (mmHg) Grade

SBP 4.4097 6.1075 Pass

DBP 2.9105 4.2347 Pass

MAP 2.7663 3.8832 Pass

MAP, as is illustrated in 3.4. This model therefore achieves a comfortable “pass”

grade in all areas of BP estimation according to the AAMI standard. While MAE

is higher than was achieved by the raw waveform scheme, this scheme would still

be suitable for healthcare applications.

Table 3.4: Assessment of feature-based scheme based on AAMI standard.

MAE (mmHg) SD (mmHg) Grade

SBP 4.5010 5.9678 Pass

DBP 3.0167 4.2987 Pass

MAP 3.0517 4.1357 Pass

3.3.3 Analysis of Error Distribution

Accurate measurement of BP is of vital importance in healthcare applications.

To further analyse the performance of the proposed schemes, error histograms

were generated for SBP, DBP and MAP prediction to inspect the spread of errors.

Raw Waveform Scheme

Figs. 3.6-3.8 present the error distributions for the SBP, DBP, and MAP predic-

tions generated by the raw waveform scheme. Each of these histograms clearly

shows that ‘0’ is the most common error, and that most other errors are also

extremely low.
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Figure 3.6: Error histogram for SBP (raw waveform scheme).

Figure 3.7: Error histogram for DBP (raw waveform scheme).

Figure 3.8: Error histogram for MAP (raw waveform scheme).

50 Chapter 3



Machine Learning for Non-Invasive Patient Health Monitoring

Feature-Based Scheme

The error distributions for SBP, DBP, and MAP predictions made by the feature-

based scheme are illustrated in Figs. 3.9-3.11. Each of these histograms clearly

shows that ‘0’ is the most common error, and that most other errors are also

extremely low. The error histograms for the feature-based scheme show a similar

distribution of error as was achieved by the raw waveform scheme.

Figure 3.9: Error histogram for SBP (feature-based scheme).

Figure 3.10: Error histogram for DBP (feature-based scheme).
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Figure 3.11: Error histogram for MAP (feature-based scheme).

3.3.4 Level of Agreement between Intra-arterial Monitor-

ing and CNN-LSTM Networks

Bland Altman plots are a key method for assessing the level of agreement between

two methods of measurement, particularly in medical applications. These plots

illustrate the difference between two measurements compared to the mean of the

two measurements, and as such a high density of data near the central ‘mean

difference’ line and narrow ‘limits of agreement’ (LOAs) indicate a strong level

of agreement between measurements.

Raw Waveform Scheme

In Figs. 3.12-3.14, the SBP, DBP, and MAP predictions made by the raw wave-

form scheme are compared with the values obtained using the current gold-

standard of BP monitoring, intra-arterial measurement. Each figure clearly

shows a high density of points near the mean difference line with narrow LOAs

for SBP, DBP, and MAP graph. As such, it is clear that there is a high level

of agreement between the proposed CNN-LSTM models the respective measure-

ments made via intra-arterial monitoring.
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Figure 3.12: Bland Altman plot for SBP (raw waveform scheme).

Figure 3.13: Bland Altman plot for DBP (raw waveform scheme).

Figure 3.14: Bland Altman plot for MAP (raw waveform scheme).
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To further evaluate the level of agreement between the proposed scheme and

intra-arterial BP measurement, regression plots were generated and the coeffi-

cients of correlation were calculated to quantify the strength of the relationship

between measurements. In all regression plots, the dashed black line shows the

theoretical “perfect” correlation, while the solid black line represents the actual

correlation. The regression plots for SBP, DBP, and MAP are shown in Figs.

3.15, 3.16 and 3.17 respectively.

Figure 3.15: Regression plot for SBP (raw waveform scheme).

Figure 3.16: Regression plot for DBP (raw waveform scheme).
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Figure 3.17: Regression plot for MAP (raw waveform scheme).

Each regression plot illustrates strong positive linear correlation between the

“true” values and the actual predictions generated by the raw waveform CNN-

LSTM model. The calculated correlation lines fall close to ideal correlation

lines in all cases. To further analyse correlation, the correlation coefficients were

calculated, with the results displayed in Table 3.5.

Table 3.5: Coefficients of correlation for the raw waveform scheme.

Blood Pressure Parameter Coefficient of Correlation

SBP 0.8008

DBP 0.8482

MAP 0.8597

These results clearly confirm the strong positive linear relationships between

the predictions for SBP, DBP, and MAP made by the proposed scheme when

compared with the respective measurements acquired with invasive intra-arterial

monitoring.

Overall, it is evident that there is a high level of agreement and strong cor-

relation between the raw waveform scheme and the current gold-standard for

blood pressure estimation. As the proposed scheme is entirely non-invasive, un-

like intra-arterial monitoring, these results are extremely promising for the future

of healthcare, especially for at-risk patients such as premature babies and the

elderly.
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Feature-Based Scheme

Bland-Altman analysis was also performed for the feature-based scheme, with

Figs. 3.18-3.20 showing the Bland Altman plot for SBP, DBP, and MAP. As

shown in these figure, there is a high level of agreement between the values

calculated by the feature-based CNN-LSTM model and that of the intra-arterial

monitoring, with narrow LOAs and clustering of data points around the mean

difference line visible in all graphs.

Figure 3.18: Bland Altman plot for SBP (feature-based scheme).

Figure 3.19: Bland Altman plot for DBP (feature-based scheme).
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Figure 3.20: Bland Altman plot for MAP (feature-based scheme).

To further evaluate the level of agreement between intra-arterial BP and

the feature-based scheme, regression plots were generated and the coefficients of

correlation were calculated. In Figs. 3.21-3.23, the solid black line represents

the line of best fit to the data, while the dashed black line illustrates what the

“ideal” linear regression would have been. A reasonable level of agreement is seen

between gold-standard intra-arterial monitoring and the feature-based scheme in

each figure, however this level of agreement is not as strong as was seen between

intra-arterial monitoring and the raw waveform scheme.

Figure 3.21: Regression plot for SBP (feature-based scheme).
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Figure 3.22: Regression plot for DBP (feature-based scheme).

Figure 3.23: Regression plot for MAP (feature-based scheme).

The correlation coefficients are shown in Fig. 3.6, with all confirming the

positive linear relationship between intra-arterial measurements and predictions

made by the proposed CNN-LSTM networks in all categories of BP measurement.

In each case, the correlation coefficient was lower than those achieved by the raw

waveform scheme, but still reasonably strong.

Table 3.6: Coefficients of correlation for the feature-based scheme.

Blood Pressure Parameter Coefficient of Correlation

SBP 0.6085

DBP 0.6808

MAP 0.6686
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3.3.5 Comparison to Previous Works

Several works that are strongly related to this work are presented in [33, 34,

36–38, 98]. Each of these methods utilises PPG and ECG signals to predict

blood pressure, though preprocessing and segment lengths vary. Several of these

works utilise the MIMIC-II database [34, 38, 158] or MIMIC-III database [36],

while others utilise small databases that were independently acquired [37, 98].

In this section, the results obtained by the NNs proposed in this chapter are

compared with the best results achieved by the previous literature. The work in

[36] presented results from several databases, and as such the results that they

obtained using MIMIC-III data are used in comparisons, as these results are the

most directly comparable to this work.

In Table 3.7, the models developed in previous works are compared to the

proposed CNN-LSTM networks with respect to the BHS protocol. In terms

of SBP, this table shows that the proposed raw waveform and feature-based

schemes outperform the previous state-of-the-art works. The proposed schemes

are the only ones to have achieved an ‘A’ grade for SBP estimation across all data

analysed. This comparison also shows that the raw waveform scheme performs

marginally better than the feature-based scheme in terms of the BHS protocol

criteria, achieving more predictions under each error threshold.

Table 3.7: Comparison of schemes based on the BHS protocol.

Absolute Difference (mmHg)

≤5 ≤10 ≤15 Grade

Kachuee SBP 34.1% 56.5% 72.7% D

[33] DBP 62.7% 87.1% 95.7% A

MAP 54.2% 81.8% 93.1% B

Mousavi SBP 71% 77% 84% C

[34] DBP 84% 92% 97% A

MAP 79% 83% 93% B

Miao SBP 51% 81% 94% B

[98] DBP 62 % 92% 99% A

Continued on next page
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Table 3.7 – continued from previous page

Absolute Difference (mmHg)

≤5 ≤10 ≤15 Grade

MAP 60% 90% 98% A

Song SBP N/A N/A N/A B

[37] DBP N/A N/A N/A A

MAP - - - -

Miao SBP 50.07% 76.41% 90.39% B

[36] DBP 65.66% 89.77% 96.63% A

MAP 65.14% 89.58% 96.61% A

Raw Waveform SBP 67.66% 89.82% 96.82% A

Scheme DBP 82.79% 96.12% 99.09% A

MAP 84.21% 97.38% 99.58% A

Feature-Based SBP 64.96 % 89.90% 97.76% A

Scheme DBP 82.08% 96.18% 98.86 % A

MAP 81.04% 96.91% 99.50% A

The proposed schemes also perform extremely well for DBP estimation when

compared to the previous works. As shown in Table 3.7, the raw waveform

scheme again performs slightly better than the feature-based scheme. However,

both schemes definitively outperform the DBP prediction networks presented in

other works. While the work in [34] achieved a higher percentage of results with

≤5 mmHg error, the proposed schemes each had a higher percentage of errors

≤10 mmHg and ≤15 mmHg. This indicates that the work in [34] has overfit

to the data, while the networks proposed by this chapter have not suffered from

overfitting, and therefore generate fewer extremely high errors. While all schemes

for DBP estimation achieved grades of ‘A’ and therefore could be recommended

for use by the BHS for this particular parameter, the raw waveform scheme has

achieved the lowest number errors greater than 10 mmHg and thus would be

considered the most suitable for clinical use.

MAP prediction is also considered in Table 3.7, which compares the schemes

proposed in this chapter with previous works. No results for MAP were presented

by [37], but this important diagnostics parameter was examined in [33, 34, 36,
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98]. As shown in Table 3.7, both of the proposed schemes for MAP estimation

outperform the previous works. With 99.19% of errors falling under 15 mmHg

for the raw waveform scheme, it is clear that this scheme has very few high-

range errors when compared to previous state-of-the-art works. Only the schemes

proposed by this chapter and the work presented in [36, 98] achieve the grade of

‘A’, however the schemes proposed here each had significantly fewer high-range

errors exceeding 5 mmHg and thus would be the most suitable for clinical use.

Once again, the raw waveform scheme slightly outperforms the feature-based

scheme.

As shown in Table 3.8, the proposed schemes also compare favourably with

previous works with respect to the AAMI standards. In all cases, the grade

was determined based on MAE and standard deviation (SD). Table 3.8 shows

that the schemes proposed in this chapter and the scheme presented in [37]

are the only ones to achieve a grade of “Pass” for SBP estimation. However,

the raw waveform scheme has a lower MAE and SD than that of [37], while the

feature-based scheme achieves results comparable to those presented in [37]. The

proposed schemes each have a marginally higher MAE and SD than the scheme

in [34] for DBP and MAP, however this is likely due to the overfitting seen in

Table 3.7 for [34].

Table 3.8: Comparison of schemes based on the AAMI standard.

Error Metrics (mmHg)

....MAE.... SD Grade

Kachuee [33] SBP 11.80 9.88 Fail

DBP 5.83 5.71 Fail

MAP 5.92 5.25 Fail

Mousavi [34] SBP 3.97 8.901 Fail

DBP 2.43 4.173 Pass

MAP 2.61 4.911 Pass

Miao [98] SBP 6.13 7.76 Fail

DBP 4.54 5.52 Pass

MAP 4.81 6.03 Pass

Continued on next page

Chapter 3 61



Machine Learning for Non-Invasive Patient Health Monitoring

Table 3.8 – continued from previous page

Error Metrics (mmHg)

....MAE.... SD Grade

Song [37] SBP 4.8 6.0 Pass

DBP 4.8 6.0 Pass

MAP N/A N/A N/A

Sharifi [38] SBP 7.83 9.1 Fail

DBP 4.86 5.21 Pass

MAP N/A N/A N/A

Miao [36] SBP 7.10 9.99 Fail

DBP 4.61 6.29 Pass

MAP 4.66 6.36 Pass

Raw Waveform Scheme SBP 4.4097 6.1075 Pass

DBP 2.9105 4.2347 Pass

MAP 2.7663 3.8832 Pass

Feature-Based Scheme SBP 4.5010 5.9678 Pass

DBP 3.0167 4.2987 Pass

MAP 3.0517 4.1357 Pass

Overall, the proposed raw waveform and feature-based schemes for the pre-

diction of SBP, DBP, and MAP both perform strongly and have been shown to

generalize well to new data. For SBP, DBP and MAP, the proposed models both

achieved ‘A’ and “Pass” grades for the BHS and AAMI standard respectively.

The schemes proposed in this chapter were the only schemes to achieve these

high results for all three BP metrics.

Additionally, the schemes proposed by this chapter were the only schemes to

achieve both ‘A’ and “Pass” grades for SBP measurement. The raw waveform

scheme exhibited superior predictive performance when compared to the feature-

based scheme, achieving lower MAE for SBP, DBP, and MAP, as well as stronger

results with respect to the BHS criteria.

A strong level of agreement with gold-standard measurements was achieved

by both schemes, as shown by the Bland-Altman and regression plots. However,

the regression plots indicate stronger positive correlation between intra-arterial
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monitoring and raw waveform scheme predictions than was seen when comparing

intra-arterial monitoring with the feature-based scheme. These results suggest

that both of the proposed schemes are highly suitable options for non-invasive BP

estimation from ECG and/or PPG waveforms, with the raw waveform scheme

achieving the best predictive performance and level of agreement with intra-

arterial monitoring.

3.3.6 Computational Efficiency

To compare the computational efficiency of the two schemes proposed in this

chapter, speed testing was conducted on a NVIDIA GeForce GTX 1070 graphics

card. The time taken for the model in the feature-based scheme to make a

single prediction was 3.86 × 10-6 seconds, while the raw waveform model took

1.20× 10-4 seconds to make a prediction. This means that the proposed feature-

based scheme is capable of making predictions 31× faster than the raw waveform

scheme. While the higher performance of the raw waveform scheme would make it

more suitable for clinical applications, the significantly improved computational

efficiency with slight reduction in performance would make the proposed feature-

based scheme more suitable for wearable devices.

3.4 Conclusion

In this work, two schemes based on hybridized CNN-LSTM neural networks

are proposed for the estimation of blood pressure. The first scheme utilized

raw ECG and PPG waveforms as inputs, showing that with minimal data pre-

preprocessing, accurate estimations of SBP, DBP, and MAP can be achieved with

the CNN-LSTM network structure. In the second scheme, 12 straightforward

features describing the shape of ECG and PPG waveforms are extracted and used

as inputs to a shallower CNN-LSTM neural network, with strong performance

again seen for the prediction of SBP, DBP, and MAP.

When compared to standards set by the reputable healthcare bodies of BHS

and AAMI, the proposed networks performed extremely well. The two schemes

each met the requirements set by AAMI and achieved grades of ‘A’ in accordance
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with the BHS protocol for SBP, DBP, and MAP. This success indicates that a

device implementing either of the proposed schemes would be recommended for

clinical use by these professional bodies.

Furthermore, when the proposed models are compared to previous state-

of-the-art schemes in the literature, the proposed schemes outperformed each

previous work. Previous schemes performed well in measurement of certain BP

parameters, but not in others. Additionally, overfitting was apparent in some

schemes. Meanwhile, the schemes proposed in this chapter are shown to have

fit the data extremely well through their high performance on previously unseen

data. Additionally, the proposed schemes were the only ones to achieve grades

of ‘A’ for the BHS protocol and ‘pass’ for the AAMI standard across all BP

measurements.

When comparing the two proposed schemes directly, it was found that the

raw waveform scheme showed stronger performance by the AAMI and BHS cri-

teria than the feature-based scheme, as well as demonstrating a higher level

of agreement with the gold-standard intra-arterial monitoring. However, the

feature-based scheme still met the requirements of each standard and was found

to be capable of making a prediction 31x faster than the raw waveform scheme.

Overall, the raw waveform scheme would be more suitable where computational

power is readily available, while the feature-based scheme would be suitable for

wearable devices as it offers lower-power computation without significant com-

promise on predictive performance.

Overall, the performance of the proposed algorithms indicate that hybrid

CNN-LSTM networks are highly suitable for blood pressure prediction. Imple-

menting the proposed algorithms into appropriate healthcare monitoring devices

would likely result in non-invasive, continuous, and highly accurate blood pres-

sure measurements for a number of applications, from intensive care to smart

watches.

The proposed algorithm addresses the first research problem of blood pres-

sure monitoring (presented in Section 1.2.1) and leads to the first two original

contributions presented in Section 1.3. This chapter offers substantial contri-

bution to the literature through accurate schemes for both low-power wearables
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and higher-powered devices such as medical equipment and computers. The high

performance of CNN-LSTM networks in this chapter lead to the exploration of

LSTM and CNN-LSTM networks in the remaining research chapters of this the-

sis.
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Chapter 4

Machine Learning Approach to Cal-

culating Respiratory Rate from Heart

Rate Variations

This chapter contains materials included in the following manuscript, which has

been submitted to PLOS One

[3] S. Baker, W. Xiang, and I. Atkinson, “Determining respiratory rate from

photoplethysmogram and electrocardiogram signals using respiratory quality in-

dices and neural networks,” PLoS One, vol. 16, no. 4, p. e0249843, February

2021.

4.1 Introduction

Respiratory rate (RR) is a fundamental physiological parameter, and abnormal-

ity in this vital sign is one of the earliest indicators of critical illness. One recent

study found that elevated respiratory rate was a key predictor of clinical deterio-

ration within 48 hours of discharge from the emergency department (ED) [104].

Another classical study determined that the occurrence of at least one RR ≥

27 breaths per minute (BrPM) in a 72 hour period was a strong predictor of

cardiac arrest [105]. Elevated RR has also been linked to increased mortality

[106], while relative changes in RR have been shown to indicate patient stability

[107]. In children, elevated RR is a primary indicator of pneumonia, an infection

that is the most common cause of death in children aged 0-5 [13, 14]. Clearly,

66



Machine Learning for Non-Invasive Patient Health Monitoring

abnormalities or variations in the RR are key indicators of clinical deterioration.

Despite the clinical significance of RR, several studies have noted that it is

historically less recorded than other vital signs [15, 104, 108, 109]. This has

somewhat improved with the introduction of the Modified Early Warning Score

(MEWS) [108], which incorporates measurement of RR. However, one study

observed that nurses still don’t measure RR in 50% of cases [15]. Time constraints

and the lack of equipment for measuring RR were both cited as reasons for not

monitoring this parameter.

This lack of recording can be partially attributed to the fact that there is a

lack of tools available for automatically measuring RR. Currently, most common

methods for automatic RR measurement rely on oronasal systems incorporating

sensors including capnography, temperature, and moisture sensors [14]. However,

these have not been widely adopted, with issues related to cost, wearability, and

accuracy identified for existing automated devices [14].

Manual measurement remains the accepted method for determining RR. To

obtain RR, it is recommended that healthcare staff count the number of breaths

a patient takes over a one-minute period [13]. However, several studies have

found that both doctors and nurses estimate respiratory rate over shorter time

periods, or without counting the breath at all [16, 110]. Accuracy of manual RR

calculations can be affected by patient awareness [15], as well as time constraints,

interruptions from patients and other staff, and patient agitation [14, 110].

In addition to the complications associated with obtaining an accurate man-

ual RR measurement, there is also a significant time cost. One study found

that as much as 7.2% of nurses’ time was spent performing patient assessment,

including measurement of RR [17]. There are approximately 3 million registered

nurses in America, earning an average of $75,510 USD per annum each as of

May 2018 [159]. Thus, the total financial cost incurred by time nurses spend on

patient assessment exceeds 16 billion USD per year.

Given the major limitations in measuring RR, it is clear that a reliable method

of automatic and continuous monitoring of this vital sign in a non-invasive man-

ner would significantly improve patient outcomes in hospitals. Additionally,

given the usefulness of RR as an early indicator of critical illness, continuous
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at-home measurement of RR could be lifesaving for at-risk patients living alone.

Several recent studies have investigated the use of photoplethysmogram (PPG)

and echocardiogram (ECG) signals to derive RR in a wearable and non-invasive

manner [39, 40, 42–45]. Respiration modulates the ECG and PPG signals in three

main ways - baseline wander (BW) modulation, amplitude modulation (AM)

and respiratory sinus arrhythmia (RSA) modulation, more commonly known as

frequency modulation (FM). These modulations are caused by movement as-

sociated with breathing, and various responses to the change in intrathoracic

pressure during respiration [160].

In order to accurately estimate RR, several recent studies have developed res-

piratory quality indices (RQIs) to determine which of the extracted modulations

are of the highest quality [43, 44, 117]. This in turn allows for identification of

which modulation-extracted RRs are realistic, thus allowing for more accurate

estimation of actual RR.

Interestingly, there are very few studies that have attempted to estimate RR

from PPG and ECG using machine learning (ML). The best performing ML-

enabled technique was presented in [43], where a mean absolute error (MAE) of

0.71 BrPM was achieved using linear regression on a small database. While these

are good results, this chapter demonstrates that they can be improved upon by

instead using neural networks (NNs) in combination with the proposed novel

RQI scheme.

In this chapter, an RQI scheme is developed for assessing the quality of

modulation-extraction respiration signals. The proposed scheme uses statistics

regarding the signal variation to assign ‘good’ or ‘bad’ ratings to RRs calculated

from modulation-extracted signals. Bidirectional long short-term memory (BiL-

STM) neural networks are trained and tested, comparing the performance in two

scenarios: one where only RR features are used as features, and the other where

both RR and corresponding RQIs are used.

The remainder of this chapter is structured as follows. Section 4.2. describes

the methodology utilized for obtaining signal quality and an overall RR estima-

tion using various NN structures. Section 4.3. presents results and discussion

before Section 4.4. concludes the chapter and provides recommendations for
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future work.

4.2 Methodology

4.2.1 Obtaining Data

Data for this work was obtained from the open-source Medical Information Mart

for Intensive Care (MIMIC-III) database [151], which features an extremely large

number of records from intensive care units (ICUs). To train the neural networks,

ECG and PPG signals were needed to derive RR from the BW, AM, and FM

modulations. Additionally, a reference “true” RR signal was needed to provide

the neural networks with an expected output RR. As such, the PhysioBank

ATM tool [161] was used to obtain a list of all records containing ECG, PPG,

and respiratory waveforms from the MIMIC-III database. Then, a Python script

was developed to download all relevant records as MATLAB-compatible files,

utilizing several functions from the Waveform Database (WFDB) Toolbox [162].

After running this script, a total of 8,781 records were obtained. No exclusions

were made based on patient demographics, diagnoses or treatments received, as

the goal of this chapter was to develop an all-inclusive scheme that could measure

respiratory rate irrespective of whether respiration was being affected by health

conditions or respiratory support treatments.

4.2.2 Preprocessing Data

The primary preprocessing performed was the denoising of ECG and PPG sig-

nals. Many of the ECG and PPG signals were affected by baseline wander that

could be attributed both to respiration and other movement. This BW prevents

accurate derivation of respiration from amplitude and frequency modulations,

and also inhibits signal quality assessment. To eliminate all BW from each in-

dividual ECG signal, a sixth-order polynomial was fitted to the ECG signal and

then subtracted from it. Meanwhile, a low-pass Chebyshev filter was applied to

each PPG signal and then subtracted from it to remove frequency components

outside of the range of the heart rate. The order of the filter was determined

Chapter 4 69



Machine Learning for Non-Invasive Patient Health Monitoring

dynamically based on the sampling frequency of each signal. In all cases, the

original ECG and PPG waveforms were retained for estimation of BW due to

respiration later on.

After removing the low-frequency BW components from the signals, it was

observed that many ECG signals still appeared noisy. To denoise the ECG

signals, a seventh-order Savitsky-Golay filter was utilized. This filter type was

chosen due as they are well-known to preserve small details of a waveform, such

as the Q- and S-waves found in ECG signals.

After signals were denoised, all records including ECG, PPG and respiratory

signals were split into segments. In this chapter, three different segment lengths

are trialled to determine the most suitable length for accurate RR prediction.

The segments chosen were 20, 30, and 60 seconds. These segment lengths are

commonly used in the literature, allowing for fair comparison. They also each

enable very frequent RR estimation, while also providing a wide enough window

to accurately calculate even very low RRs. At this point, any segment with a

missing signal or flat-lining signal was discarded.

For each 20-second segment, the R-waves (or peaks) of the ECG signals were

found, as well as the peaks of the PPG and reference RR signals. Additionally,

the beat-to-beat intervals were calculated for PPG and ECG signals, and the

breath-to-breath (BrTBr) interval was calculated for RR signals. Heart rate

(HR) was then calculated from both the PPG and ECG signals, before RR was

calculated from the reference respiration signal. This extracted information was

then used by a purpose-built signal quality index (SQI) as described in the next

section, to determine the overall quality of the segment and thus the segment’s

suitability for training and testing the neural networks.

Furthermore, the RR of each 20-second segment was calculated by finding the

average period between peaks of the respiration signal. This period represents

one full breath, and thus the RR was calculated using the following formula:

RRtrue =
60

mean(BrTBr1, BrTBr2, ..., BrTBrn)
(4.1)

where ‘BrTBr’ represents a breath-to-breath interval measured in seconds,

‘n’ is the number of BrTBr intervals within for the 20-second respiratory signal,
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and the ‘RRtrue’ is taken as the “true RR” for that segment.

4.2.3 Signal Quality Assessment

Signal quality assessment is vital to ensure that neural networks are learning

from realistic data. One significant work [154] found that simple conditional

statements can be used to effectively assess the quality of PPG, ECG, and blood

pressure (BP) signals. In these works, various sanity checks were performed to

determine the quality of a signal, such as ensuring that heart rate (HR) and

beat-to-beat (BTB) intervals were within reasonable ranges. Reasonable range

for RR were determined based on clinical medicine resources

In this work, PPG and ECG signals are considered with respect to calculating

RR, and as such the quality of the respiration signal is also vital. As such,

this work develops an SQI tool based on conditional statements relevant to the

problem in order to successfully classify a record containing PPG, ECG and

respiration signals as either “good” or “bad” based on a series of conditional

statements. This is described by the following algorithm:

Algorithm 2 Signal Quality Index Algorithm

Input: hr ppg, hr ecg, ppg peak ratio, ecg peak ratio, ppg btb ratio, ecg btb -

ratio, true rr, true rr peak ratio, true rr brtbr ratio

Output: signal quality

1: if [(abs(hr ppg - hr ecg) < 10) & (hr ppg > 40) & (hr ppg < 180) &

(ppg peak ratio < 1.5) &

(ecg peak ratio < 1.5) & (ptp btb ratio < 1.5) &

(ecg btb ratio < 1.5) & (true rr > 8) &

(true rr < 35) & (true rr peak ratio < 1.5)

& (true rr brtbr ratio < 1.5)] then

2: signal quality = 1

3: else

4: signal quality = 0

5: end if

In this algorithm, hr ppg and hr ecg are the HR values calculated from the
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PPG and ECG signals, respectively. They are compared to each other to verify

that they were acceptably similar, then hr ppg was checked to ensure that HR

was within the physiologically probable range of 40-180 bpm [78]. Meanwhile,

ppg peak ratio, ecg peak ratio and true rr peak ratio represent the ratio of the

maximum to minimum peak heights for the PPG, ECG and reference RR signals

respectively, and ppg btb ratio, ecg btb ratio and true rr brtbr ratio represent the

ratio of maximum to minimum PPG signal BTB intervals, ECG signal BTB

intervals and reference RR signal BrTBr intervals respectively. It was checked

that each of these ratios was <1.5 to ensure that there was acceptable consistency

within each individual signal, as consistency is a strong indicator of signal quality.

Lastly, true rr represents the RR extracted from the reference signal using Eq.

4.1, and it was checked that this fell within the conservative range of 8-35, as

the RR of a healthy adult would fall between 15-30 BrPM [163] but within

an ICU environment it is likely that RRs across critically ill patients would be

highly variable. Records that met all criteria were assigned a signal quality of 1,

meaning “good”, while failure to meet any criteria resulted in a signal quality of

0, or “bad”.

After testing all 20-second segments with the SQI tool, a total of 19,084

“good” records were found. The next stage was to extract features from each

of these signals for use in training the neural networks. This was a multi-step

process, which begins with the extraction of respiration-induced modulations

from the ECG and PPG signal as discussed in the following subsection.

4.2.4 Extracting Respiratory Signals from ECG and PPG

If PPG and ECG signals were recorded with no interference from respiration

or movement, they would appear as is shown in Fig. 4.1. However, this is not

the reality. Recall that respiration can modulate the ECG and PPG signals

in three key ways - baseline wander (BW) modulation, amplitude modulation

(AM) and frequency modulation (FM) caused by respiratory sinus arrhythmia.

As previously discussed, one or more respiratory modulations may be absent from

the PPG and ECG signals of some patients. As such, endeavouring to extract all

three key modulations from both the ECG and PPG signal will greatly enhance
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a neural network’s ability to estimate true RR.

Figure 4.1: Sample ECG and PPG unaffected by respiration.

Extracting Respiratory Signals

In the context of respiration, BW is the overall shift in the baseline of an ECG or

PPG signal due to respiration, as is shown in Fig. 4.2. BW was obtained by low-

pass filtering the ECG and PPG signals. Hereafter the BW signals extracted from

the PPG and ECG signals are denoted as PPG-BW and ECG-BW, respectively.

Meanwhile, AM presents as the variation in peak heights in the ECG and PPG

signals, after BW has been removed, as shown in Fig. 4.3. Finally, FM presents

in ECG or PPG signals as varying beat duration, as shown in Fig. 4.4. Thus,

AM and FM respiration signals are easily derived from the peak heights and BTB

intervals of the waveforms, respectively. The AM and FM signals extracted from

PPG and ECG are henceforth denoted as PPG-AM, PPG-FM, ECG-AM, and

ECG-FM.

Figure 4.2: BW in the ECG and PPG signals.
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Figure 4.3: AM in the ECG and PPG signals.

Figure 4.4: FM in the ECG and PPG signals.

After BW, AM and FM signals were extracted from the PPG and ECG sig-

nal, peaks and troughs of each signal were calculated and stored in six separate

vectors. Breath-to-breath intervals, as well as the intervals between trough loca-

tions, were also calculated and stored in six additional vectors. These parameters

were then used by the developed respiratory quality index (RQI) tool described

in the following subsection.

Finally, a possible respiratory rate was derived from each signal by finding

the average period between peaks (the breath-to-breath interval), and thus de-

termining the number of breaths per minute. This process is mathematically

defined as:

RRsignal =
60

mean(BrTBr1, BrTBr2, ...BrTBrn)
(4.2)

where ‘BrTBr’ is a breath-to-breath interval, ‘n’ is the number of BrTBr

intervals within the extracted signal, and the ‘signal’ of RRsignal is the PPG-BW,

PPG-AM, PPG-FM, ECG-BW, ECG-AM or ECG-FM.
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4.2.5 Respiratory Quality Assessment

The development of an RQI scheme that assigns each modulation-extracted res-

piratory signal a quality rating on some scale could improve RR estimation al-

gorithms, as knowledge about the quality of each estimated RR can enhance the

networks ability to determine true RR based.

This chapter proposes an efficient and effective RQI scheme that considers

the variance in peak heights (ph), trough depths (td), and the distances between

peak pairs (p-p) and trough pairs (t-t) for any given extracted RR signal.

Consistency is a key indicator of respiratory signal quality, and as such a

metric called the differential coefficient of variation (DCV) metric is developed, a

variation on the the coefficient of variation (CV), to quantify how much variation

is in the signal. The DCV is calculated as follows:

DCV = 1− σ

µ
(4.3)

where σ represents the standard deviation (SD) and µ represents the mean of

the vector of data. The DCV is calculated for each of the four properties of

interest - peak height, trough depths, distance between peak pairs, and distance

between trough pairs. These are denoted as DCVph, DCVtd, DCVp-p and DCVt-t

in Equation (4.4), respectively.

As is shown in Equation (4.4), the RQI is then calculated by finding the

average of the four DCVs.

RQI =
∑ DCV ph +DCV td +DCV p-p +DCV t-t

4
(4.4)

The calculated RQI will be 0 in the case where there is no consistency, and 1

in the case where there is perfect consistency. As consistency is the best indicator

of signal quality, higher RQI values indicate better quality signals.

This scheme was used to calculate an RQI for each of the six modulation-

extracted respiratory signals in every 20-second record; PPG-BW, ECG-BW,

PPG-AM, ECG-AM, PPG-FM, and ECG-FM.
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4.2.6 Feature Selection

Two separate feature vectors are developed to analyse the performance of neural

networks with and without the RQI features as inputs. For the first test, only the

modulation-extracted RRs are selected, resulting in a six-feature input vector as

follows:

[RRECG-BW, RRPPG-BW, RRECG-AM,

RRPPG-AM, RRECG-FM, RRPPG-FM]

For the second test, the feature vector included RQIs calculated using the

scheme proposed in this chapter, along with the modulation-extracted RRs. The

resultant twelve-feature vector is as follows:

[RQIECG-BW, RRECG-BW, RQIPPG-BW, RRPPG-BW,

RQIECG-AM, RRECG-AM, RQIPPG-AM, RRPPG-AM,

RQIECG-FM, RRECG-FM, RQIPPG-FM, RRPPG-FM, ]

These two feature vectors were constructed for every record that was classified

as ‘good’ by the SQI tool.

4.2.7 Neural Network Structure

In this work, a bidirectional long short-term memory (BiLSTM) network struc-

ture is used to predict respiratory rate from the input features. BiLSTM cells are

updated using the same mathematical structure as unidirectional long short-term

memory cells, but the data is passed through the network both as-is (forwards)

and in reversed order (backwards). The results of these operations is then con-

catenated before passing to the next layer. The mathematical structure of a

single forward or backwards pass is described by the following equations.

c̃t = tanh(wc[ a(t-1), xt] + bc) (4.5)

f t = σ(wf[ a(t-1), xt] + bf) (4.6)

ut = σ(wu[ a(t-1), xt] + bu) (4.7)
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ot = σ(wo[ a(t-1), xt] + bo) (4.8)

ct = ut • c̃t + f t • c(t-1) (4.9)

at = ot • tanh(ct) (4.10)

where , wc, wf, wu and wo refer to the learned weights for their respective op-

erations, while bc, bf, bu and bo are the learned biases. Once again, these are

learnt during training using the Adam optimization algorithm. Additionally, the

parameter a(t-1) refers to the output of the previous layer, while xt is the input

for timestep t. Eqn. (4.9) utilizes the results of (4.5) through (4.7) as well as

the cell state of the previous time step, c(t-1) to update the cell state, and (4.10)

uses the resultant cc as well as the output gate results. The ‘•’ symbol in (4.9)

and (4.10) represents element-wise matrix multiplication.

The neural network structure utilised in this work includes three hidden BiL-

STM layers each comprised of the forward and backwards passes followed by

the concatenation operation. The first two hidden layers return a sequence of

all hidden cell states, hence the high number of concatenation operations. The

third hidden layer outputs only the final state of each cell from both the forward

and backwards pass, and these are then concatenated. The network structure is

illustrated in Fig. 4.5 below.
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Figure 4.5: Structure of the BiLSTM model.

The NN structure included 128 hidden units per hidden layer and a batch

size of 1024 to enable good generalization without overfitting. Adam optimiza-

tion [157] is used to update weights and biases during training, while the mean

absolute error (MAE) is used as the loss function.

4.2.8 Training & Testing the Algorithms

In this work, the NN structure was trained six times to compare the performance

of the network using the six different feature vectors, as follows:

• All 12 features, as calculated from 20-second segments

• The 6 RR features only, as calculated from 20-second segments
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• All 12 features, as calculated from 30-second segments

• The 6 RR features only, as calculated from 30-second segments

• All 12 features, as calculated from 60-second segments

• The 6 RR features only, as calculated from 60-second segments

The data was pseudorandomly shuffled before being split into subsets for

training, validating, and testing. 80% of the data was used for training the NNs,

10% was used for fine-tuning hyperparameters through the validation process,

and the remaining 10% of unseen data was utilized to fairly test the models.

4.3 Results & Discussions

After training and testing all of the NN configurations, statistical and graphical

analysis was conducted to assess the performance of each network. In terms of

statistical analysis, several informative metrics were considered: mean absolute

error (MAE), root mean square error (RMSE), and Pearson’s correlation coeffi-

cient (PCC). Furthermore, Bland Altman analysis was conducted by calculating

the bias or mean difference (MD) and the width between the limits of agreement

(LOAs).

Segment

Length

Features MAE

(BrPM)

RMSE

(BrPM)

PCC MD LOA

Width

20 seconds RR & RQIs 0.821 2.236 0.891 -0.08 8.76

RR Only 1.301 2.776 0.829 -0.16 10.87

30 seconds RR & RQIs 0.747 1.926 0.901 0.14 7.54

RR Only 1.116 2.430 0.839 -0.04 9.53

60 seconds RR & RQIs 0.638 1.575 0.932 -0.15 6.17

RR Only 0.711 1.731 0.919 -0.14 6.79

Table 4.1: Performance of BiLSTM NN using various feature vectors for estimating

respiratory rate

MAE gives key insight into how skilled the network is at producing a reason-

able prediction for RR. RMSE is indicative of how many high-range errors there
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are, and thus provides information about whether the network has fit appropri-

ately to the data. PCC indicates the level of linear correlation, and will give a

result between 0 and ±1, representing no correlation and total positive/negative

correlation respectively.

In terms of the Bland Altman analysis metrics, a low MD along with narrow

LOAs is a good indicator of strong agreement between the two methods of mea-

surement. In Bland Altman analysis, each data point is the result of comparing

the mean of the two measurement methods with the difference between their

predictions. As such, a high-performing network would have low MD and low

LOA width.

The results of calculating these metrics for the BiLSTM NNs trained using

each feature vector are shown in Table 4.1. These results clearly indicate that

the inclusion of RQIs calculated using the proposed scheme greatly improves the

success of machine learning in estimating true RR. Table 4.1 shows that the

inclusion of RQI features reduced the MAE by up to 36.89% when compared to

the equivalent networks that were trained using solely the modulation-extracted

RRs. Significant improvements RMSE and PCC are all also visible across all NN

structures considered. In all cases, including RQI features increased the level of

agreement between true and predicted RR measurements, narrowing the LOA

width. MDs were extremely small across all networks.

Table 4.1 also shows that the BiLSTM network model performs strongly

regardless of the segment length used to derive the RR and RQIs, however MAE

is shown to decrease as segment length is increased. The overall lowest MAE

was 0.638, achieved by the network trained on RRs & RQIs extracted from 60

second segments. As the inclusion of RQI features is shown to reduce MAE, the

remainder of this analysis will focus on the networks trained with both RR &

RQI features.

To further analyse the predictive performance of the BiLSTM network, the

following error histograms were created to graphically investigate the spread of

errors in RR predictions. To create these figures, all errors were rounded to the

nearest 0.25 to allow for better visualisation. These figures reiterate the high

accuracy of the systems trained using both RR and RQI features.

80 Chapter 4



Machine Learning for Non-Invasive Patient Health Monitoring

Figure 4.6: Error Histogram for RR Estimation using RR & RQI features derived

from 20-second PPG & ECG segments.

Figure 4.7: Error Histogram for RR Estimation using RR & RQI features derived

from 30-second PPG & ECG segments.
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Figure 4.8: Error Histogram for RR Estimation using RR & RQI features derived

from 60-second PPG & ECG segments.

The performance of the BiLSTM network is further analysed via the Bland

Altman plots in Figs. 4.9-4.11. Bland Altman plots are used to assess the level

of agreement between two measurement methods - in this case, comparisons are

made between the proposed BiLSTM model against the reference RR measure-

ment from the MIMIC-III database. The difference between the two measure-

ments is plotted against the mean of the two measurements, and as such a high

density around the central ‘mean difference’ line within the ‘limits of agreement’

indicates strong agreement between two schemes. In each plot, the difference vs.

mean results were often extremely close together and appeared to overlap. As

such, a density color scale is included in Figs. 4.9-4.11 to better illustrate the

concentration of points. As can be seen from these plots, there is a high density

of points along the mean difference line, with LOA widths falling below 10 BrPM

for all parameters. This indicates a strong correlation between the true RRs and

those predicted by the proposed network, regardless of the segment length used

for feature extraction.
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Figure 4.9: Bland Altman Plot for RR Estimation using RR & RQI features derived

from 20-second PPG & ECG segments.

Figure 4.10: Bland Altman Plot for RR Estimation using RR & RQI features derived

from 30-second PPG & ECG segments.
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Figure 4.11: Bland Altman Plot for RR Estimation using RR & RQI features derived

from 60-second PPG & ECG segments.

To further assess the correlation between the true and predicted values for

RR, the regression plots in Figs. 4.12-4.14 were constructed. In each figure,

the thick black line represents what ‘perfect’ correlation would look like, while

the dashed black line is the actual correlation achieved by the network. From

this regression plot, it is clear that there is a strong correlation between the

predictions made by the BiLSTM model and the reference RRs obtained from

the MIMIC-III database, regardless of the segment length used to derive the

features. In each plot, the actual correlation line falls very close to the ideal

correlation line, and very few data points are outliers in the trend.

Figure 4.12: Regression Plot for RR Estimation using RR & RQI features derived

from 20-second PPG & ECG segments.
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Figure 4.13: Regression Plot for RR Estimation using RR & RQI features derived

from 30-second PPG & ECG segments.

Figure 4.14: Regression Plot for RR Estimation using RR & RQI features derived

from 60-second PPG & ECG segments.

Overall, the BiLSTM model shows low error and a high level of agreement

with gold-standard measurement, regardless of which segment length is used for

feature extraction. Performance increased as segment length increased, but even

shorter segments showed strong results. In all cases, the inclusion of features

calculated based on the proposed RQI scheme greatly improves the performance

of the BiLSTM neural network. Therefore, it is clear that a BiLSTM model

utilising extracted RRs and the proposed RQIs would significantly improve RR

calculation in clinical and at-home environments, with longer ECG and PPG

segments for feature extraction leading to the most accurate predictions.
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4.3.1 Comparison to Previous Works

The results obtained by the BiLSTM model compares well to previous works

when the feature vectors with both modulation-extracted RRs and corresponding

RQIs were used, regardless of segment length. This is shown in Table 4.2. It is

clear that both models outperform the previous state-of-the-art schemes for RR

estimation from ECG and PPG signals, achieving significantly better MAE and

comparable RMSE.

Error Metrics (BrPM)

Segment

Length (s)

MAE

(BrPM)

RMSE

(BrPM)

Orphanidou [39] 60 1.80 N/A

Karlen [40] 60 N/A 2.3

Birrenkott [43] 32 0.711, 3.122 N/A

Pirhonen [45] N/A 1.764 3.996

BiLSTM + RQI 20 0.821 2.236

BiLSTM + RQI 30 0.747 1.926

BiLSTM + RQI 60 0.638 1.575

Table 4.2: Comparison to previous works

1 Based on testing against 42 Capnobase [164] records

2 Based on testing against 53 records MIMIC-II [165] records

3 Based on testing against 42 Capnobase [164] records, results varied based on window length

selected and on signal used (PPG or ECG)

Compared to the works presented in Table 4.2, the BiLSTM model with RR

and RQI features perform extremely strongly regardless of segment length used

to extract these parameters. The RMSEs of all models were lower than the

previous works in the literature. In terms of MAE, the model trained using 60s

segments outperformed all previous works. One work [43] reported a lower MAE

of 0.71 BrPM on the Capnobase database than was achieved by the proposed

models based on 20s and 30s signal segments, however the MAE of [43] rose to

3.12 BrPM when the scheme was applied to the larger and more comprehensive

MIMIC database. As this chapter is based on MIMIC data, the latter result
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is more comparable. Overall, the BiLSTM model outperforms the literature in

terms of MAE regardless of segment length.

Interestingly, enhanced results were achieved even where the short window

length of 20 seconds was used. Accuracy increased with time, however the risk

of artefacts impacting the signal quality also increases with the length of the

segment. This suggests that the proposed scheme could predict RR faster, while

also achieving a lower error.

It is also worth noting that the previous works largely relied on very small

datasets. Through using a large database for this work, it has been possible to

thoroughly validate the performance of the network across a large and diverse set

of patients. The results presented in this chapter were obtained through training

and testing the proposed schemes on the large and diverse MIMIC-II database,

compared to other recent works such as [43, 45] where 95 and 29 records were

used to obtain the results in Table 4.2, respectively. This ultimately means that

the proposed BiLSTM network with RQI features is more likely to translate to

real-world application with success, while many of the previous works would need

to be validated on larger databases.

4.4 Conclusion

In this work, an RQI scheme was developed to enhance the performance of neural

networks utilizing the respiratory modulations of ECG and PPG signals to esti-

mate true RR. The proposed RQI scheme was implemented and tested to evaluate

improvements in the performance of NNs in predicting RR from modulation-

extracted RR estimates, with exceptional results.

When RQIs were used alongside modulation-extracted RRs as input features,

a bidirectional LSTM model was able to achieve the low MAE of 0.821 BrPM.

This is a significant improvement when compared to other works in the literature,

and proves that RQIs can greatly enhance the performance of neural networks.

The results of this chapter show that a device implementing the proposed

RQI scheme with a BiLSTM NN would be suitable for continuous and non-

invasive monitoring of respiratory rate, using hardware that is already in place
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in many healthcare environments. This algorithm would likely be suitable for

clinical use due to the low error and strong agreement with current gold-standard

measurements. It also offers ease of implementation that is achieved through

utilising sensor data already available in clinical and at-home healthcare settings.

With further validation on persons outside of ICU, it would also be suitable for at-

home health monitoring. This scheme could greatly improve early prediction of

potentially fatal conditions, enhance remote healthcare, and ultimately improve

patient outcomes.

This chapter addresses the research problem of respiratory rate monitoring

that was presented in Section 1.2.1 and provides the third original contribution

listed in Section 1.3. The high performance of LSTM networks in this chapter

further supported their use as part of the hybrid networks used in subsequent

research chapters. Additionally, the development of this scheme alongside the

blood pressure schemes presented in Chapter 3 supports the development of

enhanced diagnostics and prognostics tools. The following chapters therefore

focus on developing prognostics tools that assess mortality risk using only vital

signs and basic demographics.
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Continuous and Automatic Mor-

tality Risk Prediction for Adult

Patients using Vital Signs

This chapter contains material that has been published in the following article:

[2] S. Baker, W. Xiang, and I. Atkinson, “Continuous and Automatic Mor-

tality Risk Prediction using Vital Signs in the Intensive Care Unit: A Hybrid

Neural Network Approach,” Scientific Reports, vol. 10, pp. 21282, December

2020.

5.1 Introduction

Intensive care units (ICUs) treat the most critically ill patients, and as a result

are known to have the highest mortality rate of hospital units [9]. In 2001-2012,

mortality rates across several ICUs in the United States (US) ranged from 11.3%-

12.6% [118]. As such, typical ICUs have high staff-to-patient ratios, and it has

been found that outcomes are improved where there are a higher number of nurses

and consultants per bed [10]. However, providing a high standard of critical care

comes at a cost, with $108 billion spent on critical care medicine in the US in

2010, accounting for 0.72% of gross domestic product (GDP) [166]. The use

of mortality risk assessment tools can aid in resource allocation and treatment

decisions, potentially reducing costs while continuing to provide a high standard

of care to critically ill patients.
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There are several points-based schemes currently used to quantify mortality

risk in ICUs today, including multiple iterations of the Acute Physiology and

Chronic Health Evaluation (APACHE) score and Simplified Acute Physiology

Score (SAPS). While newer versions exist, APACHE-II [119] and SAPS-II [120]

remain the most commonly used mortality risk assessment tools worldwide [122].

Another commonly used tool is the Sequential Organ Failure Assessment (SOFA)

score [121], which was developed to assess sepsis risk but has since been found

to be a relatively good predictor of mortality. Unfortunately, there are several

limitations associated with these tools. Firstly, it has been found that their per-

formance decreases fairly rapidly over time, with Kramer [30] indicating that

SAPS II was out of calibration by 2005. Several subsequent studies have also

identified calibration problems with APACHE, SOFA, and SAPS [123–125]. Cal-

ibration can be lost over time due to changing patient populations and medical

treatments, and typically results in overestimation of mortality [30]. Aside from

the effect of time, Sakr et al. [123] and Lew et al. [125] noted that the schemes

performed poorly for European and Singaporean cohorts, respectively. This in-

dicates that insufficient consideration of diverse patient cohorts has also affected

performance. Aside from calibration issues, these schemes rely on variables that

can be time-consuming and difficult to obtain, such as pathological laboratory

test results and patient medical history.

The limitations of existing scoring systems have lead to a rise in researchers

exploring machine learning techniques for mortality prediction [35, 55–61], as well

as the related issues of predicting the onset of various intervention methods [167,

168] detecting the risk of sepsis [46–48, 126] and other clinical deterioration events

[49, 50]. Machine learning approaches have the advantage of being relatively easy

to continuously update and recalibrate, with algorithms able to be configured in a

way that enables continuous training based on new data obtained while it is being

used in clinical environments. This in turn enables machine learning techniques

to better generalise to current local or global populations, even as treatments and

outcomes change with time. A recurring theme in these papers is a dependence

on features including complex laboratory results, existing health conditions, and

other patient history. Of the aforementioned studies that consider mortality
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risk prediction, the majority depend heavily upon laboratory results [35, 56–60],

which include values obtained from extensive blood, urine, breath, and other

clinical analysis, and are often complex and time-consuming to obtain and then

enter in patient’s medical records.

A common metric for assessing the discrimination performance of diagnostic

tools is the area under the receiver-operator curve (AUROC). In terms of this

metric, the highest performing mortality prediction systems were presented by

Johnson et al. [59] and Delehanty et al. [60] with AUROCs of 0.927 and 0.94,

respectively. However, the system presented by Johnson et al. [59] is dependent

on 148 features comprised predominantly of complex laboratory results. This

limits the usefulness of the system, as medical staff would need to measure and

enter a massive number of variables to receive an accurate prediction.

Meanwhile, in the work presented by Delahanty et al. [60], only 17 variables

were used - however, over 50% of the decision made by their system is based

on All Patients Refined Diagnosis Related Groups (APR-DRG) risk of mortality

and severity of illness, as well as Glasgow Coma Score (GCS), and the cost-

weight index based on Medicare Diagnosis Risk Groups (MS-DRG). In short,

this system depends heavily on diagnoses being made manually by doctors based

on data available close to the time of ICU admission. This introduces potentially

heavy human bias, and would not be functional for hospitals where the APR-

DRG and MS-DRG diagnosis coding schemes aren’t used.

Conversely, Deliberato et al. [55] investigated the use of features extracted

from only vital signs, achieving a relatively low AUROC of 0.65, indicating low

ability to distinguish between mortality and non-mortality cases. The authors

also considered using vital signs in combination with other parameters, achieving

a much higher AUROC of 0.84 when vitals data was combined with the GCS,

SAPS-II score, patient demographics and information obtained about the patient

during their hospital stay prior to ICU admission. This is certainly an improved

performance; however it depends upon significant lab results and data from pre-

admission. It would be preferable to use only vital signs and basic demographics,

but with much higher performance than the 0.65 AUROC achieved by this work.

Another common theme in the literature is that of mortality prediction at
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admission. While there are advantages of early mortality risk prediction, this

method is inflexible and does not consider how a patient might respond to treat-

ments after ICU admission. This was identified in a recent work by K. Yu et

al. [61], where a bidirectional long short-term memory network was trained on

multiple windows to identify mortality risk at any given time. This scheme uses

the same features such as the SAPS-II score, which includes many laboratory

values, GCS, demographic information, admission type, and comorbidities. As

such, laboratory measurements would need to be repeated regularly for the sys-

tem to predict effectively. Additionally, it requires 48 hours of data to predict

future mortality risk effectively.

In the literature, there are many machine learning (ML) techniques consid-

ered for prediction of mortality. However, there have been relatively few that

investigate the use of neural networks (NNs) specifically. Early works investi-

gating NNs for mortality prediction focused on simple feed-forward neural net-

works [128–130], achieving comparable performance to scoring schemes such as

APACHE. Works in recent years have begun to focus on NNs that are more

advanced, such as long short-term memory (LSTM) NNs and convolutional NNs

(CNNs). Several works [56, 61, 131] have identified long short-term memory

(LSTM) networks as candidates for mortality prediction. LSTM has also proven

successful in predicting septic shock [46] and other clinical deterioration events

[50]. The primary advantage of LSTM is that it has the ability to ‘remember’

information that it has already seen, allowing it to identify relationships between

different variables within the sequence.

Meanwhile, convolutional neural networks (CNNs) have also proven powerful

in solving many medical problems such as detecting heart anomalies [51–53],

identifying variations in Korotkoff sounds [54] and gait detection [169]. CNNs are

exceptional at identifying the importance of certain features with respect to one

another, and thus adding CNN layers prior to LSTM layers can greatly improve

the predictive ability compared to pure LSTM. This was attempted by Alvis et

al. [57], with their scheme achieving an AUROC of 0.836 when predicting ICU

mortality from a 48-hour window of features including vital signs and laboratory

values. This strongly suggests that a well-designed CNN-LSTM network would
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be a good candidate for mortality prediction, combining the benefits of both

network types for a resultant network that can identify important variables and

any relationships that exist between them.

Aside from the model itself, another critical factor in the success of a neural

network is the selection of features. To develop a system that could automati-

cally update mortality risk throughout a patient’s stay, it is essential to choose

features that are both meaningful and easy to measure, ideally without any man-

ual measurement. One recent work by Giannini et al. [126] considered hundreds

of features for predicting septic shock, a strong risk factor for mortality. In a

retrospective analysis, the authors found that 10 out of 20 of the most impor-

tant features were derived from vital signs, while another was age. This finding

is significant but largely unsurprising, given vital signs measure the most crit-

ical functions of the human body [127]. Fortunately, vital signs are regularly

recorded, either through automatic measurements or regular manual measure-

ments. These advantages mean that vital signs and statistics derived from them

are ideal features for use in mortality prediction.

Another important factor in the real-world success of a NN for medical pre-

diction problems is the adoption of clinicians. In recent years, many studies

have identified the need for artificial intelligence to be interpretable, especially

for healthcare applications [170–173]. Primarily, interpretability involves making

the system easier to understand and therefore to trust. There are many ways to

achieve this, including selecting features that are simple to understand from the

perspective of domain experts [172].

As such, this chapter aims to develop a neural network approach for mor-

tality using straightforward features with clear ties to patient health. Our work

contributes to the literature through the development of the novel Artificial In-

telligence Mortality Score (AIMS) scheme, a mortality risk classifier based on a

hybridized CNN-LSTM network that uses only age, gender, and statistical pa-

rameters derived from a 24-hour window of vital sign measurements as features.

AIMS is capable of continuously-updating prediction of the risk of mortality

within 3-day, 7-day, and 14-day windows. Much of the previous literature fo-

cuses on predicting mortality events within the entire stay [57–60], however the
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average length of stay in ICU in America is only 3.8 days [166]. Our analysis of

the patients from the MIMIC-III database who met our selection criteria revealed

that 65% of patients stayed in ICU for ≤ 3 days, 87% for ≤ 7 days, and 95% for

≤ 14 days. The models in the literature that focus on the entire stay would likely

form a bias towards data obtained from shorter stays, given that these form the

majority of cases. This in turn introduces the risk that models would not per-

form as well on longer-term patients. However, mortality risk assessment needs

to be reliable for even the longest staying patients to ensure that they receive the

appropriate care should they begin to stabilize or deteriorate. As our selection

of 3-day, 7-day and 14-day windows encompasses the entire stay for the majority

of patients, it enables fair comparison to the literature. In clinical practice, it

offers the clear advantage of predicting risk within a clear time frame, with the

score able to be easily and continuously recalculated continuously throughout the

stay so that mortality risk is able to be quantified for all patients at all times,

including for those with longer stays in ICU.

The remainder of this chapter is structured as follows; Section 5.2. describes

the methodology used for extracting and processing data from the MIMIC-III

database, as well as the structure of the AIMS network. Section 5.3. presents

results and discussion, including comparison to currently used schemes and other

novel schemes in the literature. Finally, Section 5.4. concludes the chapter and

presents recommendations for future work.

5.2 Methodology

5.2.1 Selection of Data

The large amount of data used in this work was obtained from the Medical

Information Mart for Intensive Care (MIMIC-III) clinical database [151]. The

MIMIC-III database is comprised of deidentified data from over 60,000 ICU stays,

including both adult and neonatal patients.

This study focuses on adult patients admitted to ICU for any reason, and thus

the only criterion when selecting patient records was that the patient must be

≥18 years old. To be able to extract data for 3-day, 7-day, and 14-day mortality
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risk prediction, we obtained a 14-day window for each patient. Our method for

selecting data is outlined as follows:

• Where the patient survived their ICU stay, and their stay exceeded 14 days,

the first 14 days of data after ICU admission were obtained;

• Where the patient died during their ICU stay, and their stay exceeded 14

days in length, the 14 days of data prior to their death time were obtained;

• Where the patient stay was shorter than 14 days, all data from ICU ad-

mission to discharge from ICU were obtained.

For all patients, some fundamental information was recorded during the data

selection process - namely their age, gender, and time of death where applicable.

The events that were obtained from the database for our AIMS scheme were

the heart rate (HR), systolic BP (SBP), diastolic BP (DBP), mean arterial pres-

sure (MAP), respiratory rate (RR), blood oxygen levels (SpO2), and temperature.

All events matching this description were obtained, as our AIMS scheme depends

upon statistical analysis of the variation of events such as HR and temperature.

Vital signs were chosen as features for two main reasons: interpretability, and

ease of measurement in the ICU. Vital signs are the most fundamental indica-

tor of health, and are readily understood by all healthcare professionals. Most

vital signs are easily measured using non-invasive equipment, enabling contin-

uous measurement and thus data streams rich with information. Perhaps the

most challenging to measure are BP and RR, with continuous methods currently

either invasive or uncomfortable. However, recent research in measuring these

parameters has focused on non-invasive, continuous methods [1], and as such it

is likely that data streams for BP and RR measurement will become increas-

ingly data rich as this technology is adopted into clinical practice. Richer data

streams enable better quantification of the variability of vital signs, and thus

would further improve the predictive performance of our network.

5.2.2 Feature Selection

For the development of our AIMS scheme, features were selected or derived from

the commonly recorded parameters in the ICU. The first two features selected
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are those that provide basic information about the patient: their age and gender.

Age is recorded in years as an integer, while gender is recorded as a binary value

where ‘1’ and ‘0’ represent female and male patients, respectively.

All other features selected were chosen to represent the vital signs of interest

- HR, SBP, DBP, MAP, RR, SpO2 and temperature. These parameters were

regularly recorded in the MIMIC-III database, however the recording was often

inconsistent with the frequency of measurement varying throughout the patient’s

stay. This resulted in highly variant quantities of data available for different

patients. However, it has previously been shown that trends in vital signs can

assist in identification of clinical deterioration in hospital settings [174]. As such,

we apply statistical analysis to quantify the variability of each vital sign over

the 24-hour window. This has the benefit of representing the inconsistent data

within the database in a consistent manner, and also has the secondary benefit

of improved computational efficiency.

We limit the acquisition window to 24 hours to ensure that the network is

considering the patient’s current health status. In our own experimentation,

narrower windows reduced performance, while broader windows of 48 hours did

not significantly improve performance. Additionally, if a wider window were used

then the network may be prone to under- or over-estimating the severity of the

patient’s current condition based on their previous condition. For example, if all

data from admission onward were used, then the patient might remain relatively

stable for the first 9 days of their stay before showing signs of deterioration on

the 10th day. If a risk window from admission onward was used, then overall

the variation in the patients health would appear low, and thus the deterioration

may not be noticed. Similarly, a patient who is highly unstable at the start of the

admission but stabilises as a result of treatment might incorrectly be identified

as a mortality risk. Considering a 24-hour risk window avoids this problem, as

AIMS could be regularly and automatically recalculated throughout the entire

stay, and thus would be more capable of identifying deterioration or stabilisation

during long stays.

From the 24-hour window, the first and last values were taken to indicate how

the vital sign changed from the beginning to the end of the window, while the
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minimum and maximum values were recorded to show the most extreme events

during the window. Mean and median were both chosen to provide an accurate

representation of the average event for the vital sign - the use of both helps

to reduce the risk of unusual data distribution skewing the result. Finally, the

standard deviation (STD) is used to quantify the variability of the events for that

vital sign. Where any result was NaN, it was replaced with a ‘numerical NaN’

chosen to be the extremely negative value of -999. If more than two vital signs

were completely absent from a patient’s records, then that record was discarded

and not used for training or testing of the AIMS model.

After extracting the relevant data, the final feature array included the funda-

mental patient information, as well as the variability statistics for each vital sign.

This resulted in a total of 51 features, including age, gender, and 7 statistical

features for each of the 7 vital signs.

Our model was trained to predict three different cases; risks of mortality

within 3 days, 7 days, and 14 days respectively. These models are hereafter

referred to as AIMS-3, AIMS-7 and AIMS-14 respectively. These windows were

selected to consider both immediate mortality risk, and longer term mortality

risk. The feature vectors for risk of mortality within 3-day, 7-day and 14-day,

risk windows considered the same features, however they were calculated from

varying 24-hour windows in each case.

Where the patient survived their ICU stay, the relevant 24-hour window used

for training and testing the model was always the first 24 hours after admission.

Where the patient did die, the 24-hour window selected was dependent on the

length of their stay. Where the patient died within less than the 3-day, 7-day, or

14-day risk period, the first 24 hours of data post-admission were used. Where

their death occurred after a longer stay than the risk window, then their time of

death was set as the end time, and the 24-hour prediction window was chosen

to start from (end time - size of the risk window). For example, where 3-day

mortality risk was considered, the death time would be set as ‘72 hours’. Then,

72 hours prior to death would be chosen as relative 0, with the prediction window

thereafter being data recorded between hours 0 to 24.

After data and feature selection, there were 3 distinct cohorts. This was
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largely as a result of inconsistencies in data richness, with certain variables not

recorded for some patients in different windows. This lead to some patients

having data available for one or two risk windows, but not the remainder. The

cohorts for AIMS-3, AIMS-7, and AIMS-14 are illustrated in Tables 1-3 below.

Ages have been clustered by ranges, as ages exceeding 89 in the MIMIC-III

database were set to values exceeding 300 for de-identification purposes [151].

Table 5.1: Characteristics of patient cohort for AIMS-3

Characteristic All patients

(n = 51279)

Survived

(n = 45863)

Died

(n = 5416)

Female 22415 (43.71%) 19888 (43.36%) 2527 (46.66%)

Age (Years)

18-39 4896 (9.55%) 4687 (10.22%) 209 (3.86%)

40-59 14204 (27.70%) 13147 (28.67%) 1057 (19.52%)

60-79 21230 (41.40%) 19040 (41.51%) 2190 (40.44%)

≥ 80 10949 (21.35%) 8989 (19.60%) 1960 (36.19%)

Table 5.2: Characteristics of patient cohort for AIMS-7

Characteristic All patients

(n = 51455)

Survived

(n = 45863)

Died

(n = 5592)

Female 22483 (43.69%) 19888 (43.36%) 2595 (46.41%)

Age (Years)

18-39 4906 (9.53%) 4687 (10.22%) 219 (3.92%)

40-59 14244 (27.68%) 13147 (28.67%) 1097 (19.62%)

60-79 21305 (41.41%) 19040 (41.51%) 2265 (40.50%)

≥ 80 11000 (21.38%) 8989 (19.60%) 2011 (35.96%)
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Table 5.3: Characteristics of patient cohort for AIMS-14

Characteristic All patients

(n = 51639)

Survived

(n = 45863)

Died

(n = 5776)

Female 22560 (43.69%) 19888 (43.36%) 2672 (46.41%)

Age (Years)

18-39 4916 (9.52%) 4687 (10.22%) 229 (3.96%)

40-59 14282 (27.66%) 13147 (28.67%) 1135 (19.65%)

60-79 21397 (41.44%) 19040 (41.51%) 2357 (40.81%)

≥ 80 11044 (21.39%) 8989 (19.60%) 2055 (35.58%)

5.2.3 Neural Network Structure

Hybrid NNs offer the advantages of multiple standard NN types. In this ap-

plication, we develop a hybridized CNN-LSTM network, as shown in Fig. 5.1.

CNNs are widely used to identify patterns and important features, while LSTM

networks are known for their “memory”, which enables them to remember which

information in a sequence is the most important. Combining the two network

structures results in a powerful hybrid NN with strong pattern and sequence

recognition abilities, which is highly beneficial in an application where patterns

and feature importances are not easily identified.

Figure 5.1: AIMS network structure.
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As shown in Fig. 5.1, our network includes two temporal (one-dimensional)

CNN layers with 128 hidden units each. Both CNN layers utilize rectified linear

unit (ReLU) activation, described mathematically as

relu(z) = max(0, z) (5.1)

The CNN layers can thereafter be mathematically described as follows:

yj
i = relu(

N∑
n=1

wjn
i ∗ xm(i-1) + bj

i) (5.2)

where yij represents the output jth feature map of the ith layer. Convolution

is indicated by the ∗ symbol. Weights are denoted using the term wjn
i, which

describes the nth weight of the jth feature map from the (i− 1)th layer, where

n = 1, ..., N . The parameter xm
(i-1) represents the outputs of the (i− 1)th layer,

and finally bj is the jth bias term of the ith layer. Weight and bias terms are

all initialized to zero and updated using the Adam optimization algorithm [157]

throughout training.

Temporal average pooling layers with a pool size of 2 and a stride size of

2 follow each of the CNN layers. This operation sweeps through the output of

the CNN layers, taking the average of each pool it sees and outputting that

value. Effectively, this downsamples the data by a factor of 2, helping prevent

overfitting of the network. Average pooling layers are denoted in Fig. 5.1 as

AvgPool-1 and AvgPool-2, respectively.

A bidirectional LSTM layer with 128 hidden units follows the final temporal

average pooling layer. Bidirectional LSTMs (BiLSTMs) have the same mathe-

matical structure as unidirectional LSTMs, but data is passed through the net-

work in both the original and reversed orders. This allows for learning from both

past and future values in the sequence. The results of both the forward and re-

versed passes are then concatenated to form the final output. The mathematical

theory of LSTM networks is described by Hochreiter et al. [175].

The final layer of our AIMS network is a simple densely-connected unit uti-

lizing sigmoid activation, which outputs a value between 0-1. If the result is <

0.5, the network predicts that the patient will survive. Conversely, if the result

is ≥ 0.5, the network predicts that the patient will die. The further away from
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0.5 the output is, the more confident the network is in its prediction, and higher

confidence typically corresponds with higher accuracy.

For the purposes of training and testing the performance of AIMS, thresholds

are used to predict either ‘mortality’ or ‘no mortality’. However, in terms of

interpreting this result in a clinical sense, the overall prediction of ‘mortality’ or

‘no mortality’ could be provided alongside a confidence metric that indicates how

certain the neural network was of its prediction. The raw 0-1 value outputted by

the final layer of the network indicates the level of confidence the network has in

its prediction. This confidence metric could be modified for easier understanding

by the clinicians using the following equation:

ConfidencePercentage =
|0.5− output|

0.5
× 100 (5.3)

Using this equation, a score of 0.14 would be interpreted as ‘no mortality -

72% confident’ while a score of 0.78 would be interpreted as ‘mortality - 56%

confident’. This easy-to-understand strategy would further increase the likeli-

hood that clinicians would trust the model, as they would be able to better

understand the severity of the patient’s condition and it would be clearer that

AIMS is not simply making binary decisions with full confidence. This metric

would also give clinicians more insight into the path of treatment that would be

most appropriate. For example, a patient who was predicted as ‘mortality - 96%

confident’ may require more rapid and extreme treatment than a patient who

was predicted as ‘mortality - 2% confident’; effectively on the cusp of the two

prediction classes.

5.2.4 Training & Testing the Algorithms

To train and test the proposed AIMS network, we used stratified k-fold cross-

validation with 10 folds. Using this method, the data is split in 10 different ways,

with all data being used as the testing set during one fold. Stratification ensures

that each class is represented roughly equally in all splits. Cross-validation using

k-fold gives a more realistic idea of the performance of a network.

After preprocessing, records from 51,279 unique patient stays were available

for use in training and testing AIMS-3. There were slightly higher record numbers
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of 51,455 and 51,639 for AIMS-7 and AIMS-14 respectively. The slight differences

in record numbers are caused by a higher degree of missingness in some windows,

leading to more data that was excluded in those cases. As we were using 10 folds

for cross validation, 10% of the data was used for testing purposes and thus

was unseen to the model for that fold. A further 80% of the data was used as

the training set for AIMS, while the final 10% was used for validation, which

improves fine-tuning of hyperparameters and allows for assessment of the “best”

model during training.

The data available for this task was highly unbalanced, with mortality events

only occurring in up to 11.19% of cases. To ensure that the model did not achieve

high accuracy simply by overfitting to the majority class, a weighting of 9 was

placed on the importance of learning the minority case. This value is reflective of

the mortality rate within the ICUs included in the MIMIC-III database; it was

chosen based on the fact that there were approximately 9 non-mortality cases to

each mortality case within each cohort. This weighting ensured that the network

considered the two classes to be equally important, and placed approximately

equal emphasis on accurately predicting both mortality and survival. If the

network is to be trained on an ongoing basis in the future, this weighting may

need to be adjusted based on the mortality rates within the training set of data,

but this could be done programmatically.

For each fold, the AIMS model was trained over 100 epochs with a batch size

of 1024. These values were found to be optimal for ensuring that the model is

capable of generalizing well, rather than overfitting to the training data. Binary

crossentropy was used as the loss function, due to its clear suitability for this

binary classification problem. For each fold, the “best” model weights were

determined to be those that resulted in the lowest validation set loss during the

100 epochs of training; these weights were saved and used to test the model.

The loss function used was binary cross-entropy, due to the binary classification

nature of the model.
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(a) AIMS-3 (b) AIMS-7 (c) AIMS-14

Figure 5.2: Average ROC and ROC of each fold for 10-fold cross validation.

5.3 Results & Discussions

Following the training and testing of AIMS-3, AIMS-7 and AIMS-14 with 10-

fold cross-validation, an extensive statistical analysis was conducted to assess the

performance. The most commonly used metric in assessing the performance of

a diagnostic tool is AUROC, which plots the true positive rate against the false

positive rate. Figs. (5.2a-5.2c) illustrate the receiver-operator curves (ROCs)

for each of the trained networks. It is clear from these figures that the ROC

curve is highly consistent across all 10 folds, with none deviating far from the

calculated average. This cross-validation confirms that the results obtained from

the AIMS-3, AIMS-7, and AIMS-14 models are a realistic representation of how

the network would perform in reality.

Fig. 5.3 further illustrates the differences between the ROC curves for the

three networks. As can be observed from this figure, the AIMS-3 model achieves

the highest AUROC, followed by AIMS-7 and then AIMS-14. This is a largely

unsurprising result as AIMS-3 predicts the risk of death within the shortest

window of 3 days. However, this figure also clearly demonstrates that all three

models have high AUROC, meaning that they are able to distinguish between

mortality and non-mortality cases very well.

A numerical summary of the AUROC results obtained across the 10-fold

cross-validation of each model is presented in Table 5.4. This table highlights

the minimum, maximum, and average AUROC obtained across the 10 folds when

training each of the three models. These values again indicate the strong consis-

tency across all 10 folds of cross-validation, further suggesting that this model
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Figure 5.3: Comparison of ROCs for all AIMS schemes

is realistic and suitable for use as a diagnostic tool. The highest variance in

AUROCs across folds is seen in AIMS-14, which is to be expected given that

accurate prediction becomes more challenging across longer windows. However,

the variance is still very low and all folds achieved strong AUROC values.

Table 5.4: AUROC statistics over 10 folds

Model AUROC

Minimum Average Maximum

AIMS-3 0.8741 0.8835 0.8926

AIMS-7 0.8587 0.8619 0.8676

AIMS-14 0.8399 0.8577 0.8826

An alternative metric to the AUROC considered by some works in previous

literature is the area under the precision-recall curve (AUPRC). This metric can

be useful where data is imbalanced, as it was within our chosen database. Fig.

5.4 illustrates the precision-recall curves (PRCs) for each of the AIMS schemes.

As is evident in Fig. 5.4, each of the AIMS models performs strongly and is well

above the baseline. Once again, we see that AIMS-3 has the best curve, achieving
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Figure 5.4: Comparison of PRCs for all AIMS schemes.

an average AUPRC of 0.5973 across 10 folds. Meanwhile AIMS-7 and AIMS-14

achieve AUPRCs of 0.5529 and 0.5487, respectively. This again indicates that

there is more certainty regarding mortality risk prediction for smaller windows

of time.

Other features that are important for any classification problem are accuracy

(ACC), specificity or true negative rate (TNR), and sensitivity or true positive

rate (TPR). ACC, TNR and TPR provide insight into the overall accuracy, the

accuracy for the negative class, and the accuracy for the positive class, respec-

tively. We summarise these parameters, as well as those of AUROC and AUPRC,

in Table 5.5. Each of the presented value is the average, taken across the 10 folds

of cross-validation.

Table 5.5: Results obtained by AIMS

Model ACC (%) TNR TPR AUROC AUPRC

AIMS-3 80.07 0.802 0.792 0.884 0.597

AIMS-7 77.07 0.770 0.780 0.862 0.553

AIMS-14 76.22 0.765 0.779 0.858 0.549
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Table 5.5 clearly shows that each of the networks achieves high accuracy.

High accuracy alone cannot be used to assess the results where data is so heavily

imbalanced, so sensitivity (TPR) and specificity (TNR) are also considered. Both

of these parameters are measured between 0-1. High sensitivity and specificity

indicate the ability of the network to correctly predict the mortality and non-

mortality events, respectively. For each of the AIMS models, TPR and TNR

are nearly equal, indicating that they can predict both the mortality and non-

mortality cases with similar accuracy. Once again, AIMS-3 performs best in all

categories, but AIMS-7 and AIMS-14 still show strong performance despite their

longer prediction window.

5.3.1 Comparison to Previous Works

After performing thorough statistical analysis on AIMS-3, AIMS-7 and AIMS-14,

we now consider how these networks perform compared to other state-of-the-art

systems presented in the literature. The comprehensive Table 5.6 compares our

three AIMS schemes to schemes presented by several recent papers. Unfor-

tunately, many papers only presented AUROC, but where other metrics were

available we have included these for comparison also. Accuracy and TNR have

not been included, as these have unfortunately not been presented in any of the

works we consider.

We include columns presenting the number of features, measurement window,

and description of features. The description of features column is used to broadly

explain what types of features were used by each network. ‘Vital signs’ refers

to raw vital signs and any statistics derived from them, ‘GCS’ is the manually

determined Glasgow Coma Score, ‘demographics’ refers to information about

the patient’s background, ‘comorbidities’ are existing diagnosed conditions, and

‘medications’ are those administered during the ICU stay. ‘Laboratory results’

refers to results obtained from blood, urine, and other laboratory analysis, in-

cluding but not limited to: bilirubin, creatinine, hematocrit, blood urea nitrogen,

white blood cell count, and many more.
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Table 5.6: Performance of AIMS-3, AIMS-7, AIMS-14 and other schemes from the

literature

Model No.

Fea-

tures

Description of

Features

Measurement

Window

(hrs)

TPR AUROC AUPRC

Alves [57] 37 Vital Signs,

Laboratory

Results

48 (from

admission)

- 0.836 -

Delahanty [60] 17 APR-DRG

Codes, MS-

DRG Cost

Index, GCS,

Vital Signs,

Laboratory

Results

48 (24 hours

pre- and

post-ICU

admission)

- 0.94 -

Deliberato

[55] (Best

Model)

14 Vital Signs,

Demographics,

GCS

Varies - 1 hour

from

admission,

plus

pre-admission

data and

SAPS-II

- 0.84 -

Deliberato

[55] (Vitals

Model)

6 Vital Signs 1 (from

admission)

- 0.65 -

Johnson [59] 148 Vital Signs,

GCS

Laboratory

Results

24 (from

admission)

- 0.927 -

Thorsen-

Meyer [131]

44 SAPS-III fea-

tures (Vital

Signs, GCS,

Laboratory

Values, Co-

morbidities,

Demographics,

Patient History)

Various (from

admission)

- 0.73-0.88 -

Continued on next page
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Table 5.6 – continued from previous page

Model No.

Fea-

tures

Description of

Features

Measurement

Window

(hrs)

TPR AUROC AUPRC

Miao [35] 32 Demographics,

Comorbidities,

Laboratory

Values, Medica-

tions

N/A - used

first

measurements

after

admission

- 0.821 -

Yu, K. [61] Varies Bag-of-words

representation

48 (any

window)

- 0.8854 0.3184

Yu, R. [56] 15 Vital Signs,

GCS, Labora-

tory Results

24 (from

admission)

0.503 - 0.520

Zahid [58] 79 Vital Signs,

Laboratory

Results, De-

mographics,

GCS

24 (from

admission)

- 0.86 -

AIMS-3 51 Age, Gender,

Vital Signs

24 (any

window)

0.792 0.884 0.597

AIMS-7 51 Age, Gender,

Vital Signs

24 (any

window)

0.780 0.862 0.553

AIMS-14 51 Age, Gender,

Vital Signs

24 (any

window)

0.779 0.858 0.549

Our AIMS-3 and AIMS-7 networks exceed the performance of all other schemes

except those presented by Johnson et al. [59], Delahanty et al. [60], Thorsen-

Meyer et al. [131], and K. Yu et al. [61] in all measured metrics. Compared to

the scheme presented by K. Yu et al. [61], our AIMS-3 scheme achieves an AU-

ROC that is less than 0.002 lower, while AIMS-7 and AIMS-14 achieve slightly

lower AUROCs. However, our models perform much more strongly in terms of

the AUPRC. This indicates that our models have far stronger precision and re-

call, which in turn indicates a higher accuracy, and stronger performance on the

mortality event class. Additionally, our scheme depends on far simpler features

that are easily interpreted by the user.

The model proposed by Thorsen-Meyer et al. [131] for 90-day mortality from
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admission time was based on iterative improvement to the measurement through-

out the hospital stay. It is based on the same features as SAPS-III, with these

features recalculated every hour and used to update the model’s prediction. At

admission, the AUROC was at its lowest - 0.73. This then steadily increased

throughout the stay, with AUROC reaching 0.82 after 24 hours, then 0.85 after

72 hours, and finally 0.88 at the time of discharge from ICU. This is an inter-

esting approach for long-term mortality prediction, however it differs from our

own scheme in several ways. Firstly, our scheme provides mortality risk predic-

tion within shorter windows, which is more suitable for supporting immediate

treatment decisions. Accurate prediction of 90-day mortality is certainly com-

mendable, but the width of the window would limit the usefulness in making

treatment decisions during a patient’s stay. Secondly, the dependence of the

Thorsen-Meyer et al. model [131] on SAPS-III parameters introduces a higher

burden on healthcare workers, with a number of pathological tests needing to

be constantly re-run to keep this information up-to-date. Our scheme uses only

vital signs, which are simple to record even without automatic equipment. As

such, our scheme would place less additional burden on healthcare providers and

would be more suitable for low-resource hospitals. Finally, the Thorsen-Meyer

et al. model [131] has substantially lower AUROC during the early stages of

admission, reaching only 0.82 with 24 hours of data. All three of our AIMS

schemes achieve a higher AUROC using 24 hours of data. Furthermore, within

24 hours our AIMS-3 scheme achieves a marginally better AUROC than that of

the Thorsen-Meyer et al. model [131] at time of discharge. Overall, the AIMS

scheme would be more suitable for short-term mortality prediction in ICU envi-

ronments.

The AUROC of our strongest network, AIMS-3, also compares favourably

to the high-performing scheme presented by Johnson et al. [59]. Unfortunately

there are no other metrics presented in this paper to which we can compare.

However, it is clear that this model depends on a feature vector nearly three

times larger than our own. Additionally, the feature vector used by Johnson

et al. [59] depended heavily upon laboratory values. Of the 148 variables con-

sidered, only 20 were vital signs - the rest were the results of laboratory tests
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and the GCS. As such, it would be extremely difficult to implement this scheme

in reality, and even more challenging to update it regularly during the stay, as

medical professionals would have to undertake the laborious task of extensive

data entry. Meanwhile, our scheme depends primarily on vital signs that are ei-

ther automatically recorded or manually measured simply and regularly, greatly

reducing the demand on healthcare workers.

Minimal statistics were presented by Delahanty et al. [60], but they do achieve

the highest AUROC of the papers we consider. Unfortunately, it has many limi-

tations. While it depends on 17 features directly, three of those features are based

on manual diagnosis. As previously discussed, the APR-DRG Risk of Mortality

and APR-DRG Severity of Illness are determined based on the diagnosis of the

patient, which requires that all diagnoses are known, and also that the hospital

uses this particular coding scheme. The scheme also demonstrated strong depen-

dency on MS-DRG codes to determine the Medicare cost-weight index, and these

codes are certainly not used in all hospitals. Despite depending on 17 features

directly, the dependency of the scheme presented by Delahanty et al. [60] on

these 3 diagnoses-based features means that there is a much greater true depen-

dence based on the many parameters that are used to determine the diagnosis.

Additionally, the scheme presented Delahanty et al. [60] depends on a 48-hour

window including 24 hours pre-ICU admission and 24 hours following admission.

Therefore, it could not be used in any window other than at ICU admission, and

would likely not perform well where the patient is admitted directly to ICU with-

out having first stayed elsewhere in the hospital. Conversely, our AIMS schemes

depend on just 24 hours of data, and can be easily and automatically updated

throughout the patient’s stay.

Overall, our AIMS schemes - particularly AIMS-3 - perform strongly as op-

posed to the comparative schemes in the literature. Two papers - those by

Johnson et al. [59] and Delahanty et al. [60] achieved higher AUROC, but pre-

sented no other statistics. Additionally, there are strong limiting factors that

would prevent their adoption into healthcare environments. Meanwhile, our

AIMS networks depend solely upon statistics derived from vital signs and two

simple demographics - age and gender. These parameters are regularly recorded

110 Chapter 5



Machine Learning for Non-Invasive Patient Health Monitoring

in ICUs, often automatically. Additionally, the selection of vital signs as parame-

ters would ensure that even low-resource healthcare environments would be able

to utilise our scheme. The ease of measurement would also be extremely valuable

in times of crises where a high number of patients may be admitted to intensive

care, such as following a natural disaster or during a pandemic like COVID-19.

Other schemes in the literature that rely on time-consuming and laborious col-

lection of pathology results and/or patient histories would place high burden on

an already strained system, making them challenging and impractical to use in

such situations.

Our AIMS models also have the advantage of being easy to calculate in any

24-hour window due to the regular and often continuous recording of vital signs.

This is a significant advantage over other schemes that have only considered cal-

culation of mortality during a single window immediately following admission.

We therefore conclude that our scheme is a strong candidate for predicting real-

time mortality in ICU environments, however we acknowledge that this study

has been conducted retrospectively on a single popular ICU database. We aim

to further verify the performance of AIMS through clinical trials, with the aim

of ensuring that it will perform as strongly on other patient populations. Fur-

ther improvements will be made as necessary to ensure that the AIMS scheme

performs equally well across all populations.

5.4 Conclusion

In this chapter, we have presented AIMS, a hybrid neural network structure that

combines temporal convolution layers with long short-term memory layers. We

have then trained and tested three instances of AIMS: AIMS-3, AIMS-7, and

AIMS-14, which predict the risk of a mortality event within the following 3, 7,

and 14 days, respectively.

AIMS-3 was the highest performing instance of the network, however AIMS-7

and AIMS-14 also perform strongly and compare well to other schemes in the

literature. All three schemes could be used simultaneously in hospitals, giving

healthcare workers a clear picture of both short-term and longer-term mortality
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risk to the patient.

The AIMS scheme is dependent only on age, gender, and statistics derived

from vital signs. These features are all readily and regularly recorded in ICU

environments, with minimal effort required by healthcare workers. The simplic-

ity of the features chosen also ensures that AIMS could be recalculated on a

continuous and automatic basis during a patient’s stay. This would provide in-

valuable information about whether a patient is responding to treatment or not,

thus allowing medical professionals to modify their treatment plan more readily.

Furthermore, the simplicity of both inputs and outputs to AIMS improves the in-

terpretability of the overall model, thus improving the likelihood that healthcare

providers would place their trust in its predictions.

One limiting factor for this work was that the MIMIC-III records for indi-

vidual patients are not equally data-rich for all windows considered. This leads

to some patients being included in the cohort for one or two schemes, but not

the remainder. In turn, this prevented robust analysis of stability between the

systems - that is, analysis of how similar the predictions of AIMS-3, AIMS-7,

and AIMS-14 were for a single patient. We aim to address this in the clinical

trial phase, where we will be able to ensure that data is recorded with consistent

frequency throughout trials.

Overall, AIMS is an easy-to-interpret and powerful tool for mortality risk

prediction in the ICU. The results presented in this chapter indicate that the

three AIMS networks may be suitable for clinical implementation. In our own

future works, we aim to conduct clinical trials using the AIMS networks to further

analyse and improve upon its performance. We will also seek to assess the

interpretability of the system during the clinical trial process, improving upon it

as necessary.

The AIMS scheme addresses the research problem of mortality risk assess-

ment in adults, as described in Section 1.2.3. It leads to the fourth original

contribution of this work. Furthermore, this chapter shows that vital signs can

be used to predict mortality risk, which informed the feature selection and overall

methodology of the following and final research chapter.
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Chapter 6

Non-invasive and Continuous Neona-

tal Mortality Risk Assessment us-

ing Respiratory and Heart Rate

Variations

This chapter extends upon the adult mortality risk prediction scheme presented

in Chapter 6, developing a neural network technique for mortality risk prediction

in neonatal patients. A separate risk prediction scheme is necessary for this

group, as ‘normal’ health parameters differ greatly between newborns and adults.

The scheme presented in this chapter quantifies mortality risk for neonates using

fewer vital signs and alternative age demographics that quantify the prematurity

of the infant.

This chapter contains materials included in the following manuscript, which

has been submitted to Computers in Biology and Medicine

[5] S. Baker, W. Xiang, and I. Atkinson, “Non-invasive and Continuous

Neonatal Mortality Risk Assessment using Respiratory Rate and Heart Rate,”

in revisions with Computers in Biology and Medicine.

6.1 Introduction

Complications resulting from premature birth are the leading cause of death in

children under 5 [132], and over 50% of neonatal deaths occur in preterm infants
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[176]. Child deaths due to preterm birth are in excess of 1.1 million per year

globally [133]. Recent data shows that preterm birth rates are increasing in 62

of the 65 countries with reliable trend data, indicating that this is a growing

problem throughout the world.

Preterm infants are regularly cared for in Neonatal Intensive Care Units

(NICUs). A recent study in the United States found that 84.41% of very low

birthweight infants (those weighing 500-1499 g) and 41.18% of low birthweight

infants (those weighing 1500-2499 g) are admitted to NICU, respectively [177]. In

the NICU, assessment of mortality risk assists medical specialists in making diffi-

cult decisions regarding which treatments should be used and when, and whether

initiated treatments are working effectively. It has been identified that precise

mortality prediction would ease the process of making such decisions [178].

Currently, there are several scoring schemes used in NICUs for mortality

risk assessment. One commonly used score is the updated Clinical Risk Index

for Babies (CRIB-II) [134], which is a recalibrated and simplified iteration of

the original CRIB score [135]. Another family of scores that are routinely used

are the Score for Neonatal Acute Physiology (SNAP) [137] and it’s derivatives,

which include the expanded SNAP Perinatal Expansion (SNAPPE) [136], and

the simplified versions of SNAP-II and SNAPPE-II [179]. The Berlin score [138]

and Neonatal Mortality Prognostic Index (NMPI) [139] are also used, albeit to

a lesser extent.

There are several limitations with the existing scores. Firstly, all aforemen-

tioned scores include parameters that require complex manual measurement.

CRIB-II is the simplest and relies on just five parameters, however one of these

is base excess. The small number of variables is good for quick calculation, how-

ever may limit the ability of the CRIB-II score to identify response to treatment

throughout the NICU stay. The SNAP-II is more complex to calculate, rely-

ing on parameters such as PO2/FiO2, serum pH, presence of seizures, and urine

output. SNAPPE-II expands SNAP-II by adding gestational age, birthweight,

and Apgar score. The Berlin score includes similar complex variables to CRIB-II

and SNAPPE-II, including Apgar score, base excess, severity of respiratory dis-

tress syndrome, and use of artificial ventilation. Finally, NMPI utilises variables
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including PO2/FiO2, congenital malformations, base excess, and septicaemia.

Furthermore, these scores were all developed over 15 years ago. The most

recent score is CRIB-II, which was formulated in 2003. There have been signifi-

cant advancements in neonatal intensive care thereafter, and a recent extensive

review of the scoring systems has identified the need for updated and enhanced

scores based on more recent cohorts [31]. This is further highlighted by a recent

study [140], which found that the SNAPPE-II score achieved an AUROC of 0.849

on babies admitted to a Bangladesh hospital between 2012-2013. This is signif-

icantly lower than the AUROC of 0.91 that was reported in the 2001 paper in

which SNAPPE-II was proposed [179]. Similarly, a recent paper [178] conclude

that CRIB-II does not adequately account for advancements in neonatal care,

after finding that CRIB-II achieved AUROCs of 0.667 and 0.708 for mortality

cases in ≤7 days >7 days, respectively on babies admitted to the NICU of Sam-

sung Medical Centre between 2001-2011. This is undoubtedly a drastic decrease

from the AUROC of 0.92 reported in the 2003 paper that proposed CRIB-II

[134].

With recent studies identifying the weaknesses of existing scores, there has

some renewed interest in developing updated neonatal mortality risk scores using

new techniques, however this field is in its infancy when compared to the field of

adult mortality risk prediction. Several studies have done this using techniques

including logistic regression [141, 142], densely-connected neural networks [63],

random forest [143], and fusion of multiple machine learning algorithms into a

superlearner [62].

In one work [141], neonatal mortality risk prediction is considered for three

cases: pre-birth, at start of delivery, and 5 minutes post-birth. The latter was

the post-birth scenario, where variables used include mode of delivery, delivery

complications, size of baby, condition of the baby at 5 minutes, and several

more. Some of these variables are subjective, and were reported by mothers or

family members. Logistic regression with these parameters showed reasonably

good ability to distinguish between the mortality and non-mortality cases, as

measured by the area under the receiver-operator curve (AUROC) of 0.85.

Another work [142] analysed 18 candidate variables to develop a logistic re-
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gression model, ultimately selecting three parameters - birthweight, admission

oxygen saturation, and highest level of respiratory support within 24 hour of

birth. This relatively simple score achieved AUROCs of 0.8903 and 0.8082 on

UK and Gambian cohorts, respectively. The simplicity of these scheme is a large

advantage, however it focused only on babies who weighed less than 2000 g. Low

birthweight is defined by WHO as <2500 g, so this study exclusionary of some

babies who fall into this risk category.

Another recent work [143] considered multiple machine learning techniques,

namely logistic regression, linear and quadratic discriminant analysis, k-nearest

neighbor (KNN), support vector machine (SVM), random forest (RF), and three

Gaussian processes. The features selected incorporated vital signs, birthweight,

gestational age, and the SNAP-II and SNAPPE-II scores. The highest AUROC

of 0.922 was achieved using the random forest classifier. This shows strong

ability to distinguish between mortality and non-mortality cases, however the

dependence on SNAP-II and SNAPPE-II leads to a dependence on the complex

variables that these scores use.

Several machine learning techniques were also considered in another recent

work [63], including logistic regression, KNN, RF, Gradient Boosting Machine,

SVM, and densely-connected neural networks (NNs). Features used included

birthweight, gestational age, and other basic demographics, as well as more com-

plex variables such as presence of chorioamniotis, prenatal care, administration

of antenatal steroids, maternal hypertension, and more. The neural network

outperformed the other schemes, achieving an AUROC of 0.9136. This indicates

that NNs are a stronger candidate for solving the problem of neonatal mortality

than other machine learning techniques, however the complex variables used in

this work limit the usefulness of the scheme. Choosing simpler features would

greatly improve usability.

Another work [62] used a superlearner approach to predict mortality for post-

operative neonatal patients, creating a fusion of 14 machine learning techniques

to determine a best estimate. The algorithms included in the fusion were pre-

dominantly regression and RF algorithms. Extensive variables including demo-

graphics, existing conditions, prior treatments, congenital malformations, and
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incidence of sepsis were used. This work achieved an AUROC of 0.91, again

highlighting the strength of machine learning. However, the usefulness is once

again limited by complexity of variables. This particular work is also specifically

focused on postoperative neonates, rather than extending to all NICU patients.

The literature on predicting adult mortality is far more extensive, and many

studies have investigated machine learning for prediction of mortality in adult

ICU [35, 55–61], with most achieving reasonable ability to distinguish between

mortality and non-mortality. Of particular interest are long short-term memory

(LSTM) networks, which were identified to be suitable for mortality prediction

and the related problem of sepsis prediction in several works [46, 55, 61]. Ad-

ditionally, one work [57] identified that the hybridisation of LSTM networks

with convolutional neural networks (CNN) can enhance predictive performance,

although their own work was again based on complex variables.

A recurring limitation in the literature for both neonatal and adult mortality

prediction is the selection of variables that are tedious or difficult to measure

regularly. This limits the usefulness of such schemes, as often the acquisition of

these parameters would increase the burden on neonatal healthcare staff. Con-

versely, several other studies were limited by their selection of variables that do

not change - such as the scheme [142] that used birthweight, blood oxygen at

admission, and respiratory support within the first 24 hours from birth. This

prevents recalculation of the infant’s risk on a continuous or ongoing basis, and

does not allow for assessment of response to treatments.

An ideal mortality risk prediction scheme would be one that uses funda-

mental demographics and routinely measured parameters to provide continuous

mortality risk assessment, allowing for assessment of changing risk throughout

the NICU stay without placing unreasonable additional burden on NICU staff.

In this chapter, the Neonatal Artificial Intelligence Mortality Score (NAIMS)

is proposed. NAIMS is a hybrid CNN-LSTM neural network that relies on simple

demographics and trends in vital signs to determine mortality risk in the NICU

for short- and long-term risk windows. Using 12 hours of data from any window,

NAIMS shows strong performance in predicting an infant’s risk of mortality

within 3, 7, or 14 days. Due to the simplicity of the proposed scheme, NAIMS
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could readily be continuously and automatically recalculated, enabling analysis

of a NICU baby’s responsiveness to treatment and other health trends.

The remainder of this chapter is structured as follows: Section 6.2. presents

the methodology used for selecting, extracting, and processing data from an on-

line, open-source database. It also discusses the structure of the NAIMS network.

Section 6.3. includes results and discussion, including comparison to the afore-

mentioned schemes for neonatal mortality risk prediction. Section 6.4. concludes

the chapter.

6.2 Methodology

6.2.1 Data Selection

The data used in this study was obtained from the Medical Information Mart

for Intensive Care (MIMIC-III) clinical database [151]. This database includes

records from 7870 neonates admitted between 2001-2008. As this study focuses

on all infants admitted to the NICU for any reason, the criterion used to select

patients was that the first care unit was the NICU. No exclusions were made

based on birthweight, gestational age, or other factors.

At this stage, length of stay for the mortality cases was evaluated to determine

the most useful windows for mortality prediction. It was found that the average

length of stay (LOS) was 8.08 days with a high standard deviation (SD) of

16.75 days. This served as the motivation for considering several risk windows

of varying lengths, namely 3-day, 7-day, and 14-day windows. Assessment of

mortality risk within these three windows would enable assessment of immediate

risk, as well as longer-term survival prospects.

Given the largest window of interest is 14 days, there were 14 days of data

acquired for each patient. If the NICU stay exceeded 14 days, the first 14 days

were obtained for non-mortality cases, while the 14 days prior to death time were

used for the mortality cases. Where any patient stay was less than 14 days, all

data from NICU admission to discharge or death were obtained.

Information obtained from this database included gestational age, birth-

weight, gender, time of death (where applicable) and available chart events.
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Feature selection was then performed, as discussed in the following subsection.

6.2.2 Feature Selection

In selecting features for the proposed NAIMS scheme, there were several major

considerations. Firstly, to prevent placing additional burden on healthcare staff,

it was determined that features must be based on parameters that are easy

to measure. Ideally, dynamic parameters would also be able to be measured

automatically. Secondly, feature selection was supported by recent findings in

the literature.

Demographics features that describe fundamental information about the pa-

tient were selected - namely birthweight, gestational age, and gender. Birth-

weight and gestational age have repeatedly been shown in the literature to be

strong indicators of mortality risk, and have been used by most existing schemes

in the literature for this reason. Birthweight is a static variable, and thus the

first birthweight in the patient’s record was used. For most patients, gestational

age was recorded in MIMIC-III as a range (i.e. 26-28) weeks. As such, took the

middle value of the provided range was taken to be the gestational age. Where

the infant was older than 40 weeks, their gestational age was recorded as “40” in

MIMIC-III; thus any patients in this age group had their gestational age recorded

as simply 40.

Sex has also been used as it has been long known that physiological differences

between the genders lead to differing normal ranges for vital signs [180]. During

preprocessing, the sex of babies was set to either ‘1’ or ‘0’, corresponding to the

‘F’ or ‘M’ classification in MIMIC-III, respectively.

Next, features were selected from commonly recorded parameters in the

NICU. A recent comprehensive review paper [181] concluded that the current

techniques of intermittent vital sign measurement fail to capture health trends,

and that continuous analysis of vital sign trends would likely improve outcomes

for NICU patients. Another work [182] identified that short-term variability of

heart rate (HR) and respiratory rate (RR) are strong predictors of high morbid-

ity. As such, focus was placed on HR and RR in this work. These two metrics are

readily available in the MIMIC-III database, indicating that they are currently
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recorded routinely and readily in NICU environments.

To capture information about the trends in these two vital signs, a 12-hour

period at the beginning of the relevant risk window was selected. All HRs and

RRs during this 12-hour window were recorded, and then statistical analysis was

applied to quantify the variation of each vital sign during the 12-hour window.

For both HR and RR, the first value, last value, minimum value, maximum

value, mean value, median value, and standard deviation was calculated for in-

clusion in the feature vector. The first and last values were chosen as these can

highlight major changes in the vital sign during the 12-hour window. Minimum

and maximum are used to show the most extreme values during the consid-

ered window. To represent the average vital sign, both mean and median were

recorded. While mean is typically more useful, median is helpful in the case

where there are significant outliers. Finally, the standard deviation is used as it

is a strong indicator of variability. Where either HR or RR measurements were

completely absent from a patient’s record, that record was discarded and not

used for training or testing.

The final feature array was as follows: birthweight, gestational age, gender,

first value for HR, last value for HR, minimum HR, maximum HR, mean HR,

median HR, standard deviation of HR, first value for RR, last value for RR,

minimum RR, maximum RR, mean RR, median RR, and standard deviation of

RR.

These features were calculated from the first 12 hours for each of the con-

sidered risk windows; 3-day, 7-day, and 14-day. Cohorts varied in size for each

considered risk window, due to differing levels of missingness in the data for

different windows.

6.2.3 Balancing the Dataset

Following data and feature selection, it was clear that the data was strongly

unbalanced. In the cohort that met all criteria for inclusion in training and test-

ing the 3-day NAIMS scheme, only 1.02% of the 2,751 cases ended in mortality.

Similarly, for 7-day and 14-day NAIMS, the mortality rates were 1.02% of 2,751

cases and 1.09% of 2,753 cases, respectively. The level of imbalance can cre-
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ate significant overfitting issues when training a neural network, and as such the

non-mortality cases were undersampled by saving only 150 eligible non-mortality

records.

Following undersampling, the mortality rate in the 3-day and 7-day cohorts

was 15.64% of 179 cases, while for 14-day NAIMS the mortality rate was 16.47%

of 181 cases. Further statistical analysis of the cohorts used for training and

testing each version are outlined in Tables 6.1 and 6.2 below, with 3-day, 7-

day, and 14-day names hereafter denoted as NAIMS-3, NAIMS-7 and NAIMS-14

respectively.

Table 6.1: Characteristics of patient cohort for NAIMS-3 and NAIMS-7

Characteristic All patients

(n = 179)

Survived

(n = 151)

Died

(n = 28)

Birthweight (kg) 2.13 (0.46-4.76) 2.27 (0.61-4.76) 1.39 (0.46-3.64)

Female 77 (43.02%) 71 (47.02%) 6 (21.43%)

Gestational age at

birth (weeks)

≤24 16 (8.94%) 5 (3.31%) 11 (39.29%)

25-28 22 (12.29%) 14 (9.27%) 8 (28.57%)

29-32 15 (8.38%) 13 (8.61%) 2 (7.14%)

33-36 87 (48.60%) 85 (56.29%) 2 (7.14%)

≥40 39 (21.79% 34 (22.52%) 5 (17.86%)

Table 6.2: Characteristics of patient cohort for NAIMS-14

Characteristic All patients

(n = 181)

Survived

(n = 151)

Died

(n = 30)

Birthweight (kg) 2.12 (0.46-4.76) 2.27 (0.61-4.76) 1.37 (0.46-3.64)

Female 79 (43.65%) 71 (47.02%) 8 (26.67%)

Gestational age at

birth (weeks)

≤24 16 (8.84%) 5 (3.31%) 11 (36.67%)

25-28 24 (13.26%) 14 (9.27%) 10 (35.72%)

29-32 15 (8.29%) 13 (8.61%) 2 (6.67%)

33-36 87 (48.07%) 85 (56.29%) 2 (6.67%)

≥40 39 (21.55% 34 (22.52%) 5 (6.67%)
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6.2.4 Neural Network Structure

Hybrid networks have previously been used in mortality prediction for adults

in one work that used extensive laboratory values and vital signs over a 48-

hour window, achieving reasonable AUROC of 0.834 [57]. While this shows good

ability to distinguish between mortality and non-mortality cases, the dependence

on long measurement windows and laboratory measurements limits the usability

of the scheme for adult patients, let alone neonatal patients.

Figure 6.1: Neural network structure for NAIMS.

As such, in this chapter a shallow CNN-LSTM hybrid neural network is pro-

posed, as illustrated in Fig. 6.1. The hybridisation of these two NN types

combines the benefits of both. CNNs are well known for their ability to iden-

tify important features, while LSTM networks are well known for their ability

to remember previous data in the sequence. These attributes are important

in health applications, where the most important features are often not known.

Deeper networks were trialled, however no improvement in performance was seen

as a result of adding further layers. As such, the shallow network was used for
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maximum efficiency.

The proposed NAIMS network uses the 17-feature vector outlined in the

previous subsection as the input. This input vector is passed to the first layer, a

temporal CNN layer with 128 hidden units that can be mathematically denoted

as follows.

yj
i = max(0,

N∑
n=1

wjn
i ∗ xm(i-1) + bj

i). (6.1)

where yij is the jth output feature map from the ith layer. The term wjn
i,

denotes the nth weight of the jth output feature map from the (i − 1)th layer,

with n = 1, ..., N . The bias term bj is the jth bias term of the ith layer. Weights

and biases are updated during training using the Adam optimization algorithm.

The outputs of the (i − 1)th layer are denoted as xm
(i-1) represents the outputs

of the (i− 1)th layer. Finally, the convolution operation itself is denoted by the

asterisk symbol (∗).

The temporal CNN layer is then followed by a temporal average pooling layer,

with pool and stride sizes of 2. This operation steps through the output of the

CNN layer and takes the average of each pool. This results in a undersampled

output, which aids in prevention of overfitting without needing to use dropout.

The output from the pooling layer is then passed to a bidirectional LSTM

(BiLSTM) layer with 128 hidden units. The mathematical structure of the layer

is shown in Eqs. (6.2)-(6.7). As the layer is bidirectional, the data is passed

through this mathematical process in both original and reversed orders. The

benefit of bidirectionality is that the layer can learn from both past and future

values in the sequence.

c̃t = tanh(wc[ a(t-1), xt] + bc) (6.2)

f t = σ(wf[ a(t-1), xt] + bf) (6.3)

ut = σ(wu[ a(t-1), xt] + bu) (6.4)

ot = σ(wo[ a(t-1), xt] + bo) (6.5)

ct = ut • c̃t + f t • c(t-1) (6.6)
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at = ot • tanh(ct) (6.7)

where weights are indicated by wc, wf, wu and wo, respectively. Biases are

indicated by bc, bf, bu and bo, respectively. Again, biases and weights are up-

dated using the Adam optimization algorithm. Outputs of the previous layer are

denoted as a(t-1), while xt is the input to time t. Equations 6.6 and 6.7 are the

updated cell state and layer output respectively. Element-wise multiplication is

denoted by ‘•’, while σ is the sigmoid activation function.

The final layer of NAIMS is a densely-connected node utilizing signmoid

activation. Where the result of this activation is ≥ 0.5, the patient is predicted

to die within the 3-day, 7-day, or 14-day window of the respective networks.

Conversely, a result < 0.5 indicates survival for that period.

6.2.5 Training & Testing the Algorithms

The NAIMS network was trained using stratified k-fold cross-validation with 5

folds, a method that splits data in 5 different ways while ensuring consistent

ratios of the positive to negative cases in each split. All data is used as part of

the testing set in only one of the five folds. Results obtained via cross-validation

provide a more realistic view of the network performance. Due to using five folds

for cross-validation, 20% of the data was used for testing in each fold, and thus

remained unseen to the network while training for that fold. For training and

validation, 60% and 20% of the data was used, respectively.

Even after undersampling the non-mortality cases, the remaining data was

unbalanced, with mortality occurring in up to 16.47% of cases. To prevent over-

fitting to the majority case of non-mortality, heavier weightings were placed on

the importance of learning the mortality case until their relative importances

were roughly equivalent. This ensured that the network would consider accurate

prediction of the death and survival cases as equally important, which is essential

to prevent overfitting to either case.

For each of the five folds, NAIMS was trained for 75 epochs with a batch size

of 2048 with binary cross-entropy used as the loss function. This combination

was found to enable good generalization. During each fold, the weights that

resulted in the lowest validation loss were used for testing.
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6.3 Results & Discussions

In analysing the performance of the NAIMS networks, the key metric consid-

ered was area under the receiver-operator curve (AUROC). AUROC is the most

common metric used for analysing diagnostics tools, and is calculated from the

receiver-operator curve (ROC). Higher AUROC values indicate stronger ability

to distinguish between the mortality and non-mortality case. Fig. 6.1 plots the

ROC curves for NAIMS-3, NAIMS-7 and NAIMS-14, with the AUROC shown in

the legend. From this graph, it is clear that NAIMS-3 has achieved the highest

AUROC, followed by NAIMS-7 and then NAIMS-14.

Figure 6.2: Comparison of ROCs for all NAIMS schemes.

Area under the precision-recall curve (AUPRC) is also often considered, par-

ticularly where data is imbalanced and the predictive performance on the positive

cases is highly important. AUPRC is considered with respect to the performance

of a baseline random classifier, which would vary in performance depending upon

the imbalance of the data. The higher the AUPRC is above the random classifier,

the better its ability to distinguish between the two classes. The precision-recall

curves for all NAIMS schemes are shown in Fig. 6.3, with AUPRC values pre-

sented in the legend. This figure clearly shows that the AUPRC for NAIMS-3 is

very strong, with NAIMS-7 and NAIMS-14 also performing quite strongly. Over-

all, this indicates that all three models are distingushing well between mortality

and non-mortality cases.
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Figure 6.3: Comparison of PRCs for all NAIMS schemes.

The results obtained by NAIMS-3, NAIMS-7 and NAIMS-14 during the test-

ing phase are further numerically summarised in Table 6.3. In addition to

AUROC and AUPRC, several metrics were considered to evalutate the predic-

tive accuracy. Overall accuracy (ACC), sensitivity or true positive rate (TPR),

and specificity or true negative rate (TNR) were calculated for each version of

NAIMS. TPR and TNR are useful metrics for an unbalanced data set, as they

show the accuracy for the positive (mortality) and negative (survival) cases, re-

spectively. This allows for analysis of the fit; if ACC, TPR and TNR are all

similar values, then the network has fit equally well to both cases despite the

imbalance of the data.

Table 6.3: Results obtains by NAIMS, presented as the average across the 5 folds with

standard deviation in parantheses.

Scheme ACC (%) TPR TNR AUROC AUPRC

NAIMS-3 86.81 0.8710 0.8675 0.9336 0.8397

(7.88) (0.0726) (0.0941) (0.0337) (0.0356)

NAIMS-7 80.33 0.8125 0.8013 0.8804 0.7207

(5.74) (0.0568) (0.0787) (0.0471) (0.1511)

NAIMS-14 73.77 0.7500 0.7351 0.8470 0.6904

(6.09) (0.0916) (0.0894) (0.0259) (0.0824)

As shown in Table 6.3, NAIMS-3 performed extremely strongly. NAIMS-3

achieved an excellent AUROC of 0.9336 with strong overall accuracy and highly
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similar performance on both the positive and negative classes, as shown by the

TPR and TNR values. Both NAIMS-7 and NAIMS-14 also achieved good results,

with strong AUROC values and reasonable accuracy. Unsurprisingly, NAIMS-3

was the strongest performer across all metrics. This is likely due to it’s shorter

predictive window, as the patient is more likely to be showing signs of deteriora-

tion when mortality risk is assessed for a shorter window. Meanwhile NAIMS-14

had the lowest performance, likely due to the longer window. This trend further

emphasises the need for continuous short-term mortality risk assessment as an

alternative or compliment to the single mortality assessment that is routinely

performed at admission time in NICUs today.

It is also worth noting that the models could readily be tuned to focus more

heavily on predicting the positive case, however this would lead to reduced predic-

tive performance for the negative case and thus an increase in false alarms. This

work aimed for roughly equal ability to predict both the positive and negative

case with the intention of reducing alarm fatigue, a well documented phenomenon

in NICU and general hospital environments [183–185] wherein healthcare workers

are overwhelmed by the large number of patient health alarms and thus become

desensitized to them. Alarm fatigue leads to serious risk of missing significant

alarms, which has previously lead to deaths in hospitals [184].

6.3.1 Comparison to Previous Works

In this section, the results achieved by the NAIMS schemes are compared to works

presented in the literature. Table 6.4 compares the AUROCs of recent works,

and includes descriptions of the features and measurement windows considered

in each of the included works. The majority of previous works did not include

ACC, TPR, TNR and/or AUPRC values in their analyses, so these have been

excluded from the table.
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Table 6.4: Performance of NAIMS-3, NAIMS-7, NAIMS-14 and other schemes from

the literature

Scheme No.

Features

Description of

Features

Data

Acquisition

Window

Algorithm

Type

AUROC

Cooper [62] 284 Birth char-

acteristics,

laboratory

test results,

treatments re-

ceived, existing

conditions

Varied - all

available data

from the patient

stay to time of

mortality risk

assessment used

Superlearner

(14 ML

algorithms)

0.91 -

Podda [63]

(Best Model)

12 Birth char-

acteristics,

demograph-

ics, existing

conditions,

treatments re-

ceived, maternal

characteristics,

maternal treat-

ments received

Varied - used

values regarding

maternal health

pre-birth, plus

measurements

from the first 5

minutes

post-birth

Densely-

Connected

Neural

Network

0.9136

Houweling

[141] (Post-

Birth Model)

10 Birth character-

istics, maternal

characteristics,

condition of the

baby by visual

inspection

Varied - some

information

obtained

pre-birth and

during birth,

plus 5 minutes

post-birth

Logistic

regression

0.85

Medvedev

[142] (UK

Cohort)

3 Birth weight,

admission oxy-

gen saturation,

highest respi-

ratory support

within 24 hours

24 (from

admission)

Logistic

regression

0.8903

Continued on next page
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Table 6.4 – continued from previous page

Scheme No.

Features

Description of

Features

Data

Acquisition

Window

Algorithm

Type

AUROC

Medvedev

[142] (Gam-

bia Cohort)

3 Birth weight,

admission oxy-

gen saturation,

highest respi-

ratory support

within 24 hours

24 hours Logistic

regression

0.8082

Jaskari [143]

(Best Model)

14 Vital signs,

demographics,

SNAP-II and

SNAPPE-II

scores

36 hours Random

Forest

0.922

NAIMS-3 17 Gestational age,

birthweight,

gender, vital

signs

12 (any

window)

CNN-LSTM 0.9336

NAIMS-7 17 Gestational age,

birthweight,

gender, vital

signs

12 (any

window)

CNN-LSTM 0.8804

NAIMS-14 17 Gestational age,

birthweight,

gender, vital

signs

12 (any

window)

CNN-LSTM 0.8470

The results presented in Table 6.4 indicate that NAIMS-3 outperforms all

previous works in the literature, achieving a significantly higher AUROC than all

previous works. This high-performing network also has several other advantages

over existing schemes, including the ability to perform mortality risk assessment

based on any 12-hour window of data during the patient’s stay.

NAIMS-7 performs comparably to previous works, outperforming multiple

schemes. NAIMS-14 performs comparably to the work presented by Houweling,

et al. [141], however does not perform as strongly as much of the literature. It

is likely that access to additional training data would improve the performance
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of all NAIMS networks, and indeed this would be the next step required to work

towards implementation of these schemes in real healthcare environments.

While the proposed NAIMS networks depend upon more features than some

previous works, 14 of the 17 features are easily derived from temporal HR and

RR data. Conversely, several works [63, 141] depend on variables that are com-

pletely distinct from each other and thus require more extensive acquisition and

calculation. Furthermore, the work presented by Houweling, et al. [141] de-

pends upon subjective metrics assessing the baby’s appearance, rather than on

tangiable measurements. In the work presented by Jaskari, et al. [143] only

14 variables are directly mentioned, however the dependence on SNAP-II and

SNAPPE-II introduce many additional dependencies. Of the previous works in-

cluded in Table 6.4, only the scheme presented by Jaskari, et al. [143] could be

updated on an ongoing basis during the patient stay. All other works depend on

variables that are static and are measured immediately post-birth.

Another significant advantage of all NAIMS schemes is the ability to be up-

dated regularly and automatically, which allows for easier identification of trends

in the patient’s health. Gender and birthweight are fixed at birth, and gestational

age could be automatically updated as the baby ages. HR and RR statistical val-

ues can be automatically calculated from monitoring equipment, or from manual

data entries made by healthcare staff. Meanwhile, the only other scheme in the

literature that is designed in such a way that mortality risk could be updated dur-

ing the stay [143] still depends upon variables that would realistically make this

challenging. Namely, it depends upon SNAP-II and SNAPPE-II scores which in-

troduce a direct dependency on parameters such as PO2/FiO2, base excess, and

urine output. Such parameters are substantially more complex to measure than

vital signs, and thus would introduce a higher burden on healthcare workers.

Overall, the NAIMS schemes perform well when compared to existing schemes

in the literature. In particular, NAIMS-3 outperforms all works in the literature,

highlighting the benefit of shorter-term mortality risk assessment. NAIMS can

be recalculated regularly and automatically, allowing for ongoing analysis of the

patient’s condition during the NICU stay. Furthermore, NAIMS uses a short,

12-hour window of temporal data to make its predictions, allowing the first pre-
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diction to be made within half a day of admission, without needing knowledge

of maternal condition prior to birth. As a result of these benefits and the strong

ability to distinguish between mortality and non-mortality cases, it is suggested

that the NAIMS schemes are suitable for use in predicting mortality risk in

NICU environments. In particular, the NAIMS-3 scheme outperforms all ex-

isting works in the literature and would thus be highly suitable for use as a

continuously-updating short-term mortality risk prediction tool.

6.4 Conclusion

In this chapter, the NAIMS shallow hybrid neural network is proposed, utilizing

temporal convolution, pooling, and long short-term memory layers. NAIMS was

then trained and tested for predicting mortality risk within the following 3, 7, and

14 day periods, resulting in NAIMS-3, NAIMS-7, and NAIMS-14, respectively.

It was shown that NAIMS-3 outperformed all other schemes in the literature,

with NAIMS-7 and NAIMS-14 performing comparably to several state-of-the-art

works. The high performance of NAIMS-3 indicates that this network would be

suitable for use in NICU environments.

NAIMS also depends only upon simple features that are readily available in

the NICU environment already. This simplicity enables regular and automatic

recalculation of mortality risk during the stay, which in turn enables healthcare

workers to monitor a patient’s health trends and response to any treatments.

The primary limitation of this work was the low availability of data. While

MIMIC-III contains extensive records for adult patients, relatively few neonatal

patients were included. Furthermore, the mortality rate amongst NICU patients

in MIMIC-III was 1.02%, resulting in a need to undersample the non-mortality

cases to prevent overfitting in training. Nonetheless, this work serves as a proof-

of-concept that neonatal mortality risk can be predicted from easily obtained

vital signs in the NICU.

Overall, the NAIMS scheme performs strongly in mortality prediction for

shorter risk windows. The presented results indicate that NAIMS-3 outper-

forms previous works in the literature, while NAIMS-7 and NAIMS-14 perform
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comparably. The NAIMS schemes could readily be implemented in healthcare

environments due to the high availability of the vital sign data it depends on in

healthcare environments. Further clinical testing would be required to validate

the performance of the network before widespread implementation could occur.

This chapter and the NAIMS scheme address the research problem of mor-

tality risk assessment in a neonatal cohort, as discussed in Section 1.2.3. It also

provides the fifth and final original contribution of this thesis. This chapter has

further validated that vital sign information can be used to assess mortality risk

across multiple critical care cohorts. It has also reiterated the strong performance

of CNN-LSTM hybrid neural networks in healthcare applications.
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Conclusion

7.1 Summary

Patient outcomes in intensive care units can be vastly improved through contin-

uous and non-invasive monitoring of vital signs and quantification of mortality

risk. Existing algorithms in the literature for monitoring the vital signs of blood

pressure and respiratory rates are unsuitable for clinical implementation, while

existing schemes for determining patient risk are dependent on many complex

health metrics that are challenging to recalculate throughout a patient’s hospi-

tal stay. This thesis addresses these issues through the development of machine

learning schemes for the measurement of blood pressure and respiratory rate

from heart activity waveforms, before moving on to the assessment of mortality

risk using vital sign data and basic demographics.

The research problem presented in Section 1.2.1 is addressed through the de-

velopment of two schemes for non-invasive and continuous blood pressure mea-

surement. Firstly, a hybrid CNN-LSTM neural network was developed for the

calculation of SBP, DBP, and MAP using five-second segments of ECG and PPG

waveforms as inputs. This minimised preprocessing and reduced the risk of intro-

ducing human bias to the neural network. The proposed scheme outperforms all

other schemes in the literature, and meets the standards set by both the AAMI

and BHS. Based on the results presented in this chapter, it is highly likely that

this scheme would be suitable for clinical use.

Next, this work expands upon the investigation of suitable blood pressure

monitoring techniques to develop a more computationally efficient alternative.
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Twelve simple features that describe the structure of the ECG and PPG wave-

forms are extracted and used as features, minimising the risk of human bias im-

pacting the learning of the neural network while improving efficiency. A shallow

CNN-LSTM network was then used to predict SBP, DBP, and MAP. The per-

formance of this scheme was slightly lower than that of the scheme presented in

the previous chapter, however still performed strongly compared to the literature

and comfortably met the AAMI and BHS standards for blood pressure devices.

This scheme would serve as a suitable alternative in low-powered devices.

The second research problem, presented in Section 1.2.2, was considered

next. A scheme was developed to measure respiratory rate continuously and

non-invasively, with ECG and PPG signals again used to derive inputs. Respi-

ratory rate modulates these heart activity signals in three ways, and thus each

modulation was extracted from both signals. A respiratory quality index (RQI)

tool was then used to quantify the quality of the extracted modulation waveform

and a candidate respiratory rate was derived. Where the six candidate RRs and

corresponding RQIs were used as inputs to a bidirectional LSTM neural network,

the results outperformed all previous works. It was found that the inclusion of

the proposed RQI scheme greatly enhanced the neural network’s ability to learn

from the data. Overall, the results of this chapter indicate that this scheme could

be implemented in clinical environments.

This concluded investigations of enhanced vital sign monitoring. The pro-

posed schemes for blood pressure and respiratory rate fill a significant gap in

the literature; of the five vital signs, only respiratory rate and blood pressure

were previously unable to be monitored continuously and non-invasively. The

schemes presented in this thesis also depend only upon waveforms that are al-

ready recorded in hospitals. The ability to measure all five vital signs continu-

ously has significant diagnostic benefit to environments such as intensive care,

leading to the second theme of this thesis - mortality risk assessment in intensive

care. This research problem was described in Section 1.2.3, with consideration

of both adult and neonatal cohorts.

Mortality risk prediction for adult patients was considered first, with varia-

tions in vital signs over a 24-hour period quantified with straightforward statis-
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tics and used as inputs to a CNN-LSTM hybrid neural network model. The

model was trained to predict mortality risk within 3-day, 7-day and 14-day pe-

riods, enabling quantification of mortality risk within several risk windows. The

proposed model performed strongly compared to the literature, indicating that

vital signs offer viable metrics for the accurate prediction of mortality in criti-

cal care settings. The simplicity of the features ensures that mortality risk can

be continuously updated throughout the stay, providing invaluable information

about whether a patient is responding to treatment or not, thus allowing medical

professionals to modify their treatment plan more readily.

Following the success of the adult mortality risk prediction scheme, neonatal

mortality risk assessment was considered using a similar approach. A shallow

CNN-LSTM neural network was developed and trained using information re-

garding the variation of heart rate and respiratory rate within a 12-hour period,

with the scheme for predicting mortality over a 3-day window outperforming all

existing works in the literature. The scheme also performed strongly when quan-

tifying 7-day and 14-day mortality risk. This further indicates that vital signs are

suitable candidates for mortality prediction, and that short-term mortality risk

prediction is more suitable than existing schemes based on whole-stay mortality

risk assessment at time of admission.

This concluded the investigation on mortality risk assessment, filling a sig-

nificant gap in the literature by devising first-of-a-kind schemes for continuously

updating mortality risk prediction that relies only on vital sign features. Pre-

vious schemes in the literature were non-continuous and depended on complex

laboratory testing, limiting their usefulness in the real world.

Overall, this thesis has addressed the research problems outlined in Section

1.2 through developing enhanced methods for non-invasive measurement of blood

pressure and respiratory rate, enabling all five vital signs to now be measured

continuously. This thesis then investigated the use of vital signs for prognos-

tic purposes, namely quantifying the severity of illness in critical care patients

through mortality risk assessment. With the implementation of the proposed

techniques for measuring vital signs, the mortality risk prediction schemes would

become increasingly powerful.
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The significance of this work lies in the development of tools that address key

needs in the medical industry. Vital signs are key indicators of overall health,

and this work presents novel and accurate methods for measuring these parame-

ters non-invasively and continuously from sensors which are readily available in

clinical settings and wearable devices. The importance of measuring vital signs

accurately and continuously is further emphasised by the successful development

of prognostics tools for mortality risk assessment presented in this thesis. The

mortality risk prediction schemes are also significant in the healthcare field. The

schemes proposed in this work require little to no manual input from health-

care workers, minimizing time wasted on data entry and analysis. They also

would improve patient experience, as it eliminates the dependency on extensive

laboratory tests that is present in existing schemes. Overall, this work has sig-

nificant implications for device manufacturers, healthcare staff, and end-users in

applications ranging from at-home fitness tracking to critical care units.

7.1.1 Recommendations for Future Work

Healthcare is a broad field, and while this thesis has addressed many key gaps in

the literature, there are certainly still opportunities for future work. Suggested

areas for future directions include:

• Clinical trials for the developed algorithms - the blood pressure and respi-

ratory rate measurement techniques presented in this thesis are dependent

on ECG and PPG, both of which are readily available in hospital settings.

Conducting clinical trials in hospital settings is a vital but significant task

in moving towards real-world implementation of the proposed algorithms.

• Development of wearable hardware devices - the development and testing of

highly wearable devices implementing ECG and PPG sensors would enable

the use of these algorithms in applications ranging from fitness tracking

to telehealth, and would enable continuous health monitoring outside of

hospital settings.

• Investigation of multiple PPG as a replacement for ECG and PPG - while

ECG is acquirable via wearables, it is more challenging to do so contin-
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uously than it is to measure PPG waveforms continuously. Therefore it

would be worthwhile exploring whether multiple PPG signals, perhaps ac-

quired from different locations on the body, could be used to achieve com-

parable performance to the current combination of ECG and PPG. This

would require extensive hardware design and data acquisition.
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