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Highlights 

 Intron retention is a mechanism of gene expression control in eukaryotes 

 Custom computational pipelines are essential for IR detection 

 Phylogenetic analyses reveal conserved IR and functional consequences 

 Subcellular fractionation helps determine the spatio-functional relationship of 

IR 

 Improvements in mass spectrometry are critical to detect novel IR-derived 

peptides 

 

 

Abstract  
 

RNA sequencing has revealed a striking diversity in transcriptomic complexity, to 

which alternative splicing is a major contributor. Intron retention (IR) is a conserved 

form of alternative splicing that was originally overlooked in normal mammalian 
physiology and development, due mostly to difficulties in its detection. IR has 
recently been revealed as an independent mechanism of controlling and 
enhancing the complexity of gene expression. IR facilitates rapid responses to 
biological stimuli, is involved in disease pathogenesis, and can generate novel 
protein isoforms. Many challenges, however, remain in detecting and quantifying 

retained introns and in determining their effects on cellular phenotype. In this review, 

we provide an overview of these challenges, and highlight approaches that can be 

used to address them.  
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1 Introduction  

1.1 Alternative splicing increases mammalian transcriptome 

diversity 

Advances in genome and transcriptome sequencing and gene annotation have 

revealed the widespread diversification of the proteome via alternative splicing across 

eukaryotic taxa [1, 2]. For example, exon combinatorics enable neuronal synapse 

specification via neurexin-neuroligin interactions [3]; maintenance of cell 

differentiation state as a result of alternative splicing of core pluripotency factors [4]; 

the immune response in the context of T-cell activation [5, 6]; and a plethora of other 

disease-related biological processes. Furthermore, introns themselves can contain cis 

and trans-acting elements including regulatory non-coding RNAs, such as small 

nucleolar RNAs [7] and microRNAs [8]. While these RNA transcripts are physically 

located in the intronic region, they can be transcribed independently of their host gene 

[9, 10].  

1.2 IR is a widespread form of alternative splicing across 

eukaryotic taxa 

Intron retention (IR) is a form of alternative splicing characterised by the inclusion of 

intronic sequence in a mature transcript (Figure 1). IR is widespread in plants, fungi 

and unicellular eukaryotes [11-13], but was previously thought to be nearly absent 

and/or irrelevant in animals [14-16]. Next generation sequencing has propelled the 

detection and quantitation of RNA originating from introns to an unprecedented 

extent. Ameur et al. [17] observed significant numbers of sequencing reads mapping 

to introns in total RNA libraries from human brain. Nonetheless, they considered 
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these intron-retaining transcripts as evidence for co-transcriptional splicing, as 

immature RNA transcripts, and not bona fide functional molecules.  

Recent work has revealed that IR is not an artefact of sequencing library preparation, 

and is actually much more widespread in the animal kingdom than originally thought. 

Three percent of Drosophila introns are nearly completely retained after splicing [18], 

and IR occurs in 50 - 75% of multiexonic genes across 11 animal species, ranging 

from chicken and frog - to platypus and human [19]. Our lab has demonstrated that IR 

affects 80% of coding genes in human, especially those involved in the cell cycle and 

differentiation [20]. IR has also been reported in approximately 5-6% of expressed 

genes in the mouse cortex [21].  

 

1.3 The fate of intron retaining transcripts is varied 

The fate of intron retaining transcripts (IRTs) in animals can be quite varied (Figure 

1). A subset is retained in the nucleus (these are said to be affected by a process called 

intron detention (ID) [22]), while others are exported to the cytoplasm. When 

exported into the cytoplasm, IRTs interact with the ribosome, and undergo NMD if 

premature termination codons (PTCs) are detected in them during the pioneer round 

of translation [23, 24]. Some IRTs escape NMD to generate new protein isoforms 

[25], while in other cases, signals in the retained intron serve to specify the 

subcellular localisation of the transcript or protein [26]. Other functions that have 

been proposed for IRTs include the regulation of intron-derived microRNA precursor 

(mirtron) and snoRNA expression, and the modulation of post-transcriptional gene 

regulation by acting as competing endogenous RNA [27]. However, these functions 

are not as yet validated experimentally. 
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1.4 IR is tissue specific, tightly regulated during development and 

altered in disease 

IR is a tissue-specific phenomenon in animals, which further supports its role as a 

mechanism of gene expression regulation. A higher proportion of introns is retained 

in neural and immune cell types, whereas IR events are less frequent in embryonic 

stem and muscle cells [19]. Increased IR in neuronal and immune cells may facilitate 

rapid respond to external stimuli, within a time frame shorter than that required for de 

novo transcription and protein synthesis [6, 21]. Specific IR patterns can be 

characteristic of cell subtypes as well, for example in luminal and myoepithelial 

breast cells [28]. In a reanalysis of over 2500 mRNA sequencing datasets, over 15000 

introns retained in at least one dataset were retained in fewer than 7% of all samples 

considered, further supporting the tissue-specificity of this process [20]. This 

specificity can enable tissue-specific sequestration of intron-retaining transcripts, 

serving to restrict the translation of proteins only to the cells where they are required, 

while concurrently maintaining transcription from the locus of origin in other tissues. 

Such a mechanism of action has been demonstrated, for example, in genes encoding 

critical presynaptic proteins in both neurons and non-neuronal cells: only in neuronal 

cells is the last intron spliced out, preventing RNA degradation and enabling fully 

spliced transcripts to be exported from the nucleus [29].  

IR is tightly regulated during differentiation and development. IR increases in key 

myeloid-related genes during granulocyte differentiation, leading to reduced RNA 

and protein levels, critical for the maturation of granulocytes [30]. Differential IR is 

also a characteristic of other cells of the hematopoietic lineage, including 

erythroblasts [31], megakaryocyte progenitors [32], and CD4+ T-cells transitioning 

from an inactive to active state [6]. IR mediates the down-regulation of genes 
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involved in cell cycle progression and up-regulation of genes with neuron-specific 

functions during the differentiation of embryonic stem cells into neural progenitors 

[19], and during reprogramming of mouse embryonic fibroblasts to induced 

pluripotent stem cells [33]. A subset of intron-containing mature mRNAs are shielded 

from rapid degradation in embryonic stem cells via their sequestration in the nucleus  

[22]. IR is also inversely correlated with gene expression levels during the 

reprogramming of mouse embryonic fibroblasts [33]. Recently, IR in polyadenylated 

transcripts has been shown to be crucial for modulating mouse cortical mRNA 

dynamics in response to neuronal activity. Over 200 retained introns were spliced out 

within 15 minutes in response to depolarisation [21], and a significant proportion of 

glutamate receptor transcripts are preferentially affected by IR in the cerebellum [34].  

IR is widespread across a range of cancer transcriptomes [35]. It has been described 

as a mechanism of tumour suppressor inactivation [36], and is the predominant form 

of alternative splicing in hypoxic tumour cells [37]. In hypoxia, IR leads to a 

reduction in protein levels of the critical cytotoxic response regulator HDAC6 and 

DNA double strand break pathway member TP53BP1 [37]. Roles for IR in other 

diseases are currently being investigated [27]. 

2 There are many bioinformatic challenges in investigating 

intronic regions 

2.1 Intronic regions are rich in repetitive sequences and longer 

than exonic regions 

Introns are rich in repetitive sequences, containing over double the density of these 

elements as exonic regions (Figure 2). These include Long and Short Interspersed 

Nuclear Elements (LINEs and SINEs), DNA transposons, tandem and low complexity 
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repeat sequences. Most of these genomic features are longer than the 75 – 150 

nucleotide read length characteristic of current high-throughput RNA sequencing 

technologies. This presents a unique challenge since RNA-optimised mapping 

algorithms such as Tophat2 [38], STAR [39] and MapSplice [40] have filters in place 

to discard reads that map to more loci than a specific threshold. Moreover, counting 

reads mapping to multiple locations is not straightforward (Figure 3B). Indeed, Bai et 

al. [41], have suggested that considering reads mapping to multiple locations 

introduces “noise” into IR calling and analysis. Unfortunately, exclusion of 

multimapping reads can lead to the loss of biologically important information. For 

example, repetitive sequences have been reported to be the critical functional 

component of retained introns in rat neurons [26]. In this case, SINE retrotransposons 

in retained introns are necessary and sufficient for targeting of cytoplasmic mRNAs to 

dendrites, while similar repeat elements in the 3’ UTR do not alter RNA subcellular 

localisation. Hence, any bioinformatic tool for IR identification and differential 

analysis which does not include an approach to deal with multi-mapping reads and 

repetitive sequences in the genome is likely to miss substantial, functionally relevant 

biological complexity.  

Introns are significantly longer than exons, reaching up to 500 kbp in some mammals. 

Therefore, it is difficult to evenly “sample” them to achieve adequate read coverage 

across their entire length. In humans, the average size of exons is 150 nucleotides, and 

that of introns is 3500 nucleotides [42], meaning that most exons are fully covered by 

current 150 bp paired-end sequencing approaches, while introns are not. There are 

two contrasting strategies to deal with this challenge as follows.  
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2.2 Pitfalls of splice-junction-only approaches to analyse IR from 

short read sequencing data 

The first approach to deal with long introns involves considering only reads mapping 

across the splice junctions of interest when calculating IR levels. This circumvents the 

issues described above concerning repetitive sequences within introns, and the issues 

of adequate normalisation of read coverage across introns of vastly different lengths. 

However, this approach requires very high read depth, since only ~10 – 25% of 

sequencing reads in a typical paired-end library span one or more splice junctions. For 

example, the developers of VAST-tools, which takes such a junction-read-only 

approach, recommend at least 70 million reads per sample (ideally >150 million 

reads) for improved detection and quantitation of all splicing types – not IR 

specifically. They observe improvement in alternative splicing assessment when read 

depth is increased to 200 – 300 million reads per sample [19, 43] . If insufficient read 

depth is observed, conclusions about the background distribution and baseline IR 

levels can be erroneous. Depending on the statistical tests implemented by each tool, 

this may lead to biased and unreliable analyses. Unfortunately, most publically 

available datasets and experiments carried out without the specific prior aim of 

alternative splicing characterisation are usually not as deep as this, meaning that using 

such tools to analyse pre-existing datasets may not be appropriate.  

2.3 Pitfalls of coverage-based approaches to analyse IR from 

short read sequencing data 

The second strategy considers both junction reads and reads mapping within the body 

of the intron. Tools and protocols that use this approach need to reliably address the 

mappability issues presented by repetitive elements, and to account for intron length 

when normalising retention levels between different introns of the same gene or 
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across genes [19, 20, 30]. Such approaches also require relatively high sequencing 

depth, since they frequently implement a coverage cut-off, where a certain proportion 

of the intron, or uniquely mappable region of the intron, must be covered by 

sequencing reads with a minimum depth (for example, 70% of the intron covered at a 

depth of 5 reads) [20, 21, 36, 44]. A common caveat with this cut-off is whether to 

consider the mean number of reads or the median, with most tools using the mean. 

Unfortunately, this is unlikely to be the best strategy, as the mean is statistically more 

susceptible to being skewed by outliers than the median. Hence, if there is a small 

repetitive region not masked by mappability assessment, using the mean coverage 

will inflate the actual level of reads (Figure 3B). Coverage thresholds are especially 

critical when considering mammalian protein-coding genes, as many of these harbour 

independently transcribed small RNAs, such as snoRNAs or microRNAs (Figure 3C). 

If host transcripts are expressed at high levels, and a coverage cut-off is not 

implemented or used, it might be erroneously concluded that IR affects the coding 

gene.  

2.4 Differential gene expression can bias IR detection and 

quantitation 

Any assessment of IR and differential IR must also consider the expression levels of 

the whole gene [41]. For example, if a gene is highly expressed, it is more likely that 

reads spanning both inclusion and exclusion splice junctions will be detected in the 

RNA sequencing library; therefore, passing any coverage, splice junction boundary 

balance or other cut-off. If a differential IR analysis between two tissues is attempted, 

the differences in gene expression level must be taken into account and subtracted, as 

these will directly affect detectability of IR (Figure 3A). Finally, the fact that many 

IRTs are subject to NMD adds an additional layer of complexity, as the gene may be 
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observed as expressed at a lower level due to the specific degradation of IRTs (Figure 

1). 

2.5 IR detection can be confounded by antisense transcription 

An additional constraint when using next generation sequencing to characterise IR is 

the abundance of sense and antisense transcription [45]. This means that any analyses 

of IR must take great care in identifying the strand of origin of the observed 

sequencing reads (Figure 3D), and use strand-specific sequencing protocols whenever 

possible. IR detection can be confounded by traces of genomic DNA. Thus, care must 

be taken to ensure effective DNase treatment of RNA samples and confirmation via 

quality control testing and filters implemented informatically [20].  

2.6 Long read sequencing captures full intron length but is 

limited by sequencing depth and accuracy 

Long read sequencing technologies have been heralded as ground-breaking in 

improving alternative splicing detection and quantitation [46], as they circumvent 

many of the length and mappability challenges outlined above. Unfortunately, these 

technologies are currently limited by their relatively low throughput, high error rates 

and propensity towards amplification and detection of shorter transcripts [47]. 

Assessing the extent of IR in species more complex than yeast [48] or beyond a small 

number of target genes [49] using long read sequencing is currently not readily 

tractable. 

2.7 IR validation rates remain low 

Even for dedicated IR studies, validation rates for estimates in the levels of IR remain 

low. For example, one study reported a correlation coefficient (r) of only 0.63 

between IR fold-changes determined using RNA-seq and qRT-PCR [19]. Given the 
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low number of genes validated using qRT-PCR in most studies to date, the best 

computational approaches capable of providing the most robust IR predictions remain 

to be determined.  

2.8 Best practices for informatic IR analysis 

To circumvent the challenges described above, for both junction-based and coverage-

based IR analysis, strand-specific sequencing should be carried out, and followed by a 

robust assessment of whether the read depth is adequate to sample intronic regions. 

This can be done by subsampling reads and examining splice junction or intron 

coverage statistics. If a junction based IR assessment approach is chosen, more 

sequencing depth will be required, while if a coverage-based approach is selected 

mappability assessment must be incorporated into the mapping and intron 

quantitation. Both strategies also require a filtering step to segregate IR in 

differentially expressed genes from IR in non-differentially expressed genes, with 

estimates for the latter frequently being more robust and reliable. Finally, new 

computational techniques need to be developed to incorporate data generated by long-

read sequencing with short-read data, and benchmarking studies of best practices for 

IR detection, normalisation and quantitation similar to those available for differential 

gene expression analysis [50, 51] need to be carried out.  

3 Obstacles in phylogenetic IR analyses 

We and others have shown that functionally related genes are affected by IR in 

humans and mice [19, 22, 30]. Phylogenetic IR analyses present the prospect of 

shedding light on the evolution and functional conservation of IR, but studying the 

conservation of IR comes with several challenges discussed below. 
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3.1 Sequencing depth and genome annotation quality vary for 

different species 

IR analysis requires the presence of well-curated genome annotations and adequate 

depth of coverage relative to genome size across all species considered. Early 

phylogenetic studies that used expressed sequence tags reported that many retained 

introns had relatively low coverage, and were less well-represented in assembled 

transcripts [12]. The first large-scale phylogenetic analyses of alternative splicing in 

vertebrates based on RNA sequencing data investigated splicing profiles across 7 

organs in 11 vertebrate species [52]. They found that alternative splicing complexity 

increased in species evolutionarily closer to primates, and observed the highest 

complexity in man [52]. In order to avoid biases in the detection of relative alternative 

splicing frequencies associated with differences in annotation qualities, the authors 

generated de novo exon-intron structures from the same number of random reads for 

each sample. In a follow-up study conducted by this group investigating IR in ~40 

human and mouse tissues, an evolutionarily conserved IR code was proposed to 

distinguish retained and constitutively spliced introns [19]. Retained introns were 

called after filtering based on coverage, depth, and read distribution to avoid 

consideration of false introns due to mis-annotation, insufficient precision due to lack 

of coverage, and false IR calling due to neighbouring alternative 5’ or 3’ splice sites 

or overlapping genes. Such tissue-specific transcriptome sequencing and refinement 

of genome assemblies may lead to improved annotations, revealing that regions 

previously considered to be introns are in fact exons [53]. 

Finally, the detection of alternative splicing events including IR is strongly dependent 

on the number of transcripts per gene [54]. This means that a method for transcript 

number normalization on a gene-by-gene basis needs to be employed in comparative 
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analysis across taxa. In the case of IR, it may be sensible to also normalize for the 

average number of introns per gene in a genome, as the likelihood of observing 

stochastic IR events increases with intron number [54, 55]. 

3.2 Introns vary in length and number, and their sequences are 

poorly conserved 

Unlike exons, intronic sequences are poorly conserved throughout evolution, apart 

from the four main splice signals (the 5’ and 3’ splice sites, the branch site, and the 

polypyrimidine tract) [56]. Little is known about cis-regulatory elements in introns or 

flanking exons that impact IR. This limits our ability to analyse the effects that base 

changes such as single nucleotide polymorphisms may have on possible IR-associated 

functions. Recently, enrichment of particular RNA binding sites has been observed in 

sequences of frequently retained introns as well as their flanking exons in human [20], 

however, their conservation has not been examined. 

An implicit problem in phylogenetic analyses of IR is the identification of 

orthologous introns because of their lack of sequence conservation. Phylogenetic 

analyses of exon-intron structures in orthologous genes have demonstrated that 25-

30% of intron positions are shared between at least two out of three lineages of 

animals, fungi and plants [57]. Two approaches are generally applied to determine 

orthologous introns: (1) requiring them to occur in the exact same position in 

orthologous genes (genomic coordinates between species are converted, for example 

by using the liftOver tool as in [19]), or (2) based on the orthology relationship or 

conservation of their flanking exons [58]. However, these methods can result in 

conflicting annotations for the same intron, especially when evolutionarily distant 

species are considered in the analysis. Additional research needs to be carried out to 
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ascertain which of these two approaches is appropriate depending on the evolutionary 

distance between considered organisms.  

The number of introns in genes varies considerably among lineages with very few or 

no introns in protists and fungi, intermediate numbers in plants and large numbers in 

multicellular animals [59]. Animal introns are on average much longer than exons, 

while in protists and fungi, where IR is the dominant form of alternative splicing, 

introns are shorter than exons. McGuire and co-authors suggest that in these species 

splice junctions are recognised via an intron definition mechanism as opposed to an 

exon definition mechanism, the primary form of splice site recognition in animals 

[59]. The authors further suggest that in plants, both mechanisms play a role in splice 

site recognition due to the great variance in intron lengths. In animals intron size is 

negatively associated with introns located towards the 3 end and correlates with 

genome size [58], and birds and reptiles have shorter introns than mammals. These 

differences in size and number necessitate normalisation in short read sequencing 

experiments comparing IR abundance across taxa, because IR events are more likely 

detected in species with fewer and or shorter introns.  

3.3 IR functions may not be conserved across distant lineages 

Another challenge in phylogenetic IR analyses is the assessment of conserved 

functions of IR. Computational tools for the identification of conserved, lineage-

specific IR events and their downstream effects have not been developed. Due to the 

relatively sparse data from the limited number of model organisms described above, 

broad extrapolations are required to study the evolution of the extent and function of 

IR. This is distinct from the approach that can be taken for canonical protein-coding 

genes, for which the underlying assumption is that the most important sequences, 

critical for the function of the protein, are the most conserved. With respect to IR, 
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low-conservation of most intron sequences negates this assumption. This has 

previously led to the conclusion that IR is merely transcriptional noise (e.g. due to 

errors in splicing) and has no functional implications [60]. A conclusive interpretation 

of functional consequences mediated by IR can only be achieved when the fate of 

intron-retaining genes (downregulation, detention in the nucleus, novel protein 

isoform generation) is clarified, for which currently no prediction algorithm exists. 

Comparative phylogenetic studies of IR resulting in the development of such 

algorithms would enable circumventing this challenge.  

 

Enrichment analysis of the list of genes affected by IR can illuminate the molecular 

functions and biological processes it regulates. Many tools for performing such 

analyses exist, including GSEA [61], DAVID [62], and PANTHER [63]. These rely 

on similar statistics, and can be used with predefined whole-genome backgrounds or 

custom user-specified ones. However, comparing enriched ontology terms or 

pathways across species may lead to false conclusions, as annotation quality varies 

between organisms, tending to be more comprehensive in widely studied organisms 

such as mouse and human. Enrichment analysis of alternative splicing in general is 

strongly confounded by detectability, to which expression is the biggest contributor 

[64]. In the case of phylogenetic exploration of IR, it is unclear how a valid 

background should be constructed: the usual approach is to consider all expressed 

genes in a sample, but, in a phylogenetic analysis, it might be more appropriate to 

include all orthologous genes in a comprehensive background gene set. 

Ultimately, as IR is likely to play different roles in different taxa, it seems to be more 

reasonable to study its functional conservation in closely related species with similar 

physiology, and not necessarily across distant evolutionary lineages. 
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4 Detecting IRTs undergoing degradation is challenging 

Numerous IRTs may be undetectable using RNA sequencing as they are rapidly 

degraded by NMD [65]. As reviewed elsewhere, NMD allows elimination of mRNAs 

with PTCs typically positioned more than 50-55 nucleotides upstream of their last 

exon-exon junction [66, 67]. As such, the majority of intron-retaining transcripts are 

computationally predicted as NMD targets [19, 30, 36]. However, some PTC-

containing IRTs may escape NMD, and are translated. For example, the IR form of 

the endoplasmic reticulum chaperone GRP78/BiP contains a PTC when intron 1 is 

retained, but a shorter functional immunologically detectable polypeptide is translated 

from a downstream initiation codon [68]. This means that although computational 

predictions of PTC introduction based on sequence may suggest that an IRT should be 

subject to NMD, a protein with a distinct function may be generated instead. 

Alternatively, intron-retaining transcripts can be degraded via nuclear degradation 

mechanism(s) or Staufen-mediated decay [29].  

One successful approach to enhancing the discovery of IR is to inhibit NMD prior to 

RNA sequencing. This process can be achieved by chemical or molecular means. 

Several chemical agents including emetine, actinomycin D, cycloheximide and 

caffeine can inhibit pathways involved in NMD activation such as protein translation 

and phosphorylation of NMD factors [29-31, 69-71]. Alternatively, RNA interference 

or gene knockout technologies can be used to ablate or inhibit the core NMD factors 

including UPF1, UPF2 and SMG6 [72, 73]. Using both chemical and siRNA 

approaches, we have previously shown that at least 45% of IRTs are subject to NMD 

in mouse granulocytes [30]. This is in contrast, for example, to work carried out in 

plants, where only 4% of transcripts containing a PTC were found to be targeted by 

the NMD machinery [74]. However, these approaches cannot measure transcripts 
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degraded by pathways other than NMD, including those that take place in the nucleus. 

We and others have reported that the vast majority of intron-retaining transcripts in 

erythroblasts and megakaryocytes are not degraded via NMD; although increased IR 

correlates with reduced gene expression in these cell types [31, 32]. This observation 

can be explained by the ID in the nucleus [31], where intron-retaining transcripts may 

be stored for later use. Recent work in mouse cortical neurons has demonstrated that 

for IRTs that undergo splicing within a 2-hour timeframe following transcriptional 

inhibition, only 73% undergo degradation, while 9% are instead spliced and go on to 

contribute to the pool of canonical protein-coding mRNA isoforms available to the 

cell [21]. A recent study has reported that only cytoplasmic intron-retaining 

transcripts are engaged by the ribosome [75], and while it is yet unknown whether 

novel proteins are derived from these transcripts, it is hypothesised that this initial 

round of translation is a prerequisite for NMD. It is reasonable to speculate that there 

are many more as yet unidentified functional intron-retaining transcripts, especially 

among those detained in the nucleus.  

5 The extent and function of intron retaining transcripts in 

the nucleus remain poorly understood 

When carrying out RNA sequencing, most studies do not first perform subcellular 

fractionation. This makes it impossible to assess what proportion of polyadenylated 

and non-polyadenylated transcripts with intronic reads is sequestered in the nucleus. 

Introns in these transcripts have been termed “detained” (ID), and these RNA can be 

degraded or stored in the nucleus, in contrast with classical “intron retaining” 

transcripts exported to the cytoplasm and accessible to the translation and NMD 

machineries (Figure 1, [22]).  
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Investigation of individual intron-detaining mRNA molecules sequestered in the 

nucleus under various physiological conditions has revealed the diverse roles this can 

play in reaction to a plethora of biological stimuli. Xu et al. [76] demonstrated a 

switch-like role of intron 3 retention and nuclear RNA localisation in modulating 

levels of apolipoprotein E protein in response to excitotoxic challenge. Ninomiya et 

al. [77] reported that the vast majority of Clk1 transcripts in mouse brain, spleen, 

lung, liver and other tissues contained detained introns, and were sequestered in the 

nucleus until heat shock. Global studies have further extended these single-gene 

observations. In a study of transcripts detaining the 3’ terminal intron, it was observed 

that the vast majority of these RNAs were not subject to NMD, and instead were 

detained in the nucleus and eventually degraded there [29]. A similar phenomenon 

has been observed in neuronal activity [21], heat shock [78] and stress response [22] 

paradigms. Overall, nuclear detention of IRTs appears to be a tightly controlled 

process, enabling cells to rapidly respond to stimuli without the need for transcription, 

and dynamically controlling available mRNA levels. Additional studies involving 

nuclear/cytoplasmic fractionation need to be carried out to assess the extent and 

function of IR vs ID, and to elucidate the mechanisms involved in regulating this 

process for specific RNA molecules. 

6 Lack of protocols for isolation of subcellular 

compartments precludes identification of IR transcripts 

targeted to them 

The presence of global subcellular compartments such as the cytoplasm and nucleus 

has been recognised since the earliest days of microscopy. However, there is less 

clarity on how many other spatial compartments and sub-compartments exist within 
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cells, and what defines the RNA and protein molecules that need to be trafficked there 

[79].  

Several studies have reported how IR can serve as a signal for subcellular targeting. 

IR was crucial for the correct localization of 33 neuronal mRNAs to dendrites, in turn 

affecting the localization of the proteins that they encoded [26]. The authors were able 

to observe this phenomenon because it was well established that neurons have a cell 

body, partitioned into the cytoplasm, from which dendrites and the axon branch off. 

Established protocols were available to separate these cellular compartments, and 

published information was available about which of the mRNAs were localised to the 

dendrites. Had this confluence of data not pre-existed – which is the case for most cell 

systems and subcellular compartments– the authors would most likely have 

erroneously discounted this small number of non-degraded, protein-coding IRTs as 

being subject to NMD in the cytoplasm.  

The localisation of not only RNA but also the proteins translated from them may be 

altered as a result of IR (Figure 1). Ni et al [68] showed that an intron-retaining form 

of the endoplasmic reticulum chaperone GRP78 was translated to form a shorter 

protein localised diffusely throughout the cytoplasm, while the non-IR form was 

tethered to the endoplasmic reticulum. Intriguingly, the diffusely localised isoform 

was more prevalent in leukemic patients, and hypothesised to play a pro-survival role 

during endoplasmic reticulum stress. Furthermore, while most splicing events occur 

co-transcriptionally in the nucleus, evidence from platelets – which lack a nucleus in 

their mature state - supports the possibility of cytoplasmic, point-of-action splicing 

[80]. Experiments carried out in isolated dendrites also demonstrate the possibility of 

intron removal occurring outside of the nucleus [81]. This has been proposed to 

enable highly compartmentalised cells to specifically target both mRNA and protein 
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molecules to key locations. Under such circumstances the intronic sequence forms the 

critical part of the “sentinel RNA” that contains the informative sequences for 

determining where in the cell a specific isoform and polypeptide variant will be 

transported to [82]. Hence, methods for the isolation of novel subcellular 

compartments is required to increase our understanding of the functions of IRTs as 

“targeted” molecules, and the alterations such targeting can undergo in disease 

contexts.  

7 Detecting protein-coding intron-retaining transcripts 

remains challenging 

It has long been hypothesised that the pioneer round of translation is a prerequisite for 

NMD and therefore most IRTs may be translated at least once [83, 84]. However, 

proteins originating from intron-retaining genes in 9 tissues had significantly lower 

protein output than those from non intron-retaining genes [20]. Strikingly, when 

examining ribosome binding data for IR events in a human cell line, there were no 

reads observed from retained introns, even though they were identified in 

polyadenylated mRNA [20]. 

Many individual cases of proteins generated from intron-retaining mRNAs with 

functions or subcellular localisation distinct from their fully spliced isoforms have 

been reported. Transcripts of the intermediate filament protein perphirin retaining two 

introns are upregulated in amyotrophic lateral sclerosis and translated to form a 

28kDa protein involved in forming round inclusions – a pathological hallmark of the 

disease [85]. An intron-retaining isoform of carcinoembryonic antigen-related cell 

adhesion molecule 6 (Ceacam6) is localised to the interface between Sertoli and germ 

cells in rat testes, and contains three additional Ig-CAM domains relative to the fully 
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spliced isoform [86]. In contrast to this, an intron retaining isoform of cyclin D1b is 

characterised by the introduction of a termination codon which leads to the production 

of a shorter protein with a higher transforming activity and nuclear vs cytoplasmic 

localisation [87, 88]. Similarly, a smaller protein isoform of myo-inositol-3-phosphate 

synthase (Isyna1) is generated as a result of IR, and competes with the larger one for 

NAD+ binding, modulating the activity of this enzymatic complex [89].  

Several individual protein-coding intron retaining isoforms have been associated with 

the development of human disease. IR results in the production of a smaller 

CYP11B1 protein isoform associated with the development of the steroidogenesis 

disorder congenital adrenal hyperplasia [90]. IR can also have a protective effect, with 

the retention of introns 12 and 13 in the calcineurin gene producing an isoform which 

improves cardiac function and reduces scar formation after myocardial infarction 

[91]. 

While it is clear from the above examples that IRTs can encode proteins with 

functions distinct from their non-intron-retaining counterparts, the full extent of this 

phenomenon and the functions of all of these IR protein isoforms remain unclear. 

This is primarily due to the challenge of correlating high-throughput RNA sequencing 

with proteomics data, as a result of the non-exhaustive, and often non-quantitative, 

nature of the latter. Indeed, only recently have technologies that purport to profile 

“full proteomes” been developed [92, 93], but available data support only a small 

subset of IR events [94]. During neuronal depolarisation, Prabakaran et al. [95] 

observed quantitative changes in a subset of peptides originating from introns using 

tandem mass tag labelling. Extrapolating based on canonical, well-known protein-

coding transcripts and peptides, proteomics data accounted for only 25% of the 

intron-retaining transcripts detected by RNA-seq. This indicates that substantial 
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improvements are needed for an unbiased, global, exhaustive detection of novel 

peptides and proteins from introns and other “non-canonical” coding regions. This in 

turn hampers functional studies investigating more than a handful of candidates, and 

their roles in normal biology and disease. 

8 The mechanisms regulating IR are complex 

One of the major questions in understanding the roles of IR in normal biology and 

disease is why some introns are retained while others are not. Several factors are 

known to be involved in IR regulation including the expression levels of splicing 

factors, RNA polymerase II occupancies and epigenetic changes [19, 20, 28, 30, 96, 

97]. Our group has previously reported the reduced expression of exon-defining 

splicing factors in granulocytes that harbour higher levels of IR than their progenitors 

[30]. In a comparative analysis of the 1000 most frequently retained introns versus an 

identical number of rarely retained introns in over 2500 tissue or cell types, we 

recently identified an enrichment of SR family protein binding sites in retained 

introns [20]. Knockdown of SR family proteins results in a dramatic increase in IR 

levels, indicating that most IR events can be modulated via common splicing 

regulatory mechanisms involving these proteins. However, the specificity of why one 

intron is retained whereas a nearby intron within the same gene is spliced out remains 

largely unexplained.  

We and others have also discovered the enrichment of RNA pol II stalling across 

retained compared to constitutively spliced introns, indicating that a slower 

transcription elongation rate is associated with IR [19, 97]. We have further 

demonstrated the association between enriched RNA Pol II occupancy at retained 

introns and reduced splicing factor recruitment to splice junctions flanking retained 
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introns. We have shown that this mechanism is linked to epigenetic changes. 

Consequent to reduced levels of DNA methylation, the occupancy of the methylated 

DNA-binding protein, MeCP2, decreases. Given that MeCP2 can act as an adaptor to 

recruit splicing factors, its de-enrichment near splice junctions results in reduced 

splicing factor recruitment, leading to IR. Reduced RNA Pol II occupancy may result 

as a consequence of inefficient splicing factor recruitment as previously reported [19].  

 

IR can also be regulated via the epigenetic mark H3.3 lysine 36 tri-methylation 

(H3.3K36me3) [96]. This chromatin mark recruits a reader protein BS69, which 

physically interacts with a component of the U5 snRNP complex, EFTUD2 [96]. 

Knockdown of BS69 in vitro led to an increased steady-state of processed mRNA in 

the cytoplasm, indicating that the binding of BS69 to EFTUD2 antagonises its activity 

and supresses splicing [96].  

 

Collectively, there is dynamic cooperation between epigenetic and splicing 

machineries in the regulation of IR. However, each of the mechanisms described 

above individually accounted for less than 20% of IR events observed in the 

investigated cell types [96, 97], indicating that other factors regulating IR remain to 

be determined. The dynamic regulation of IR by multiple distinct cellular processes is 

intriguing in itself, and indicates that our understanding of IR remains somewhat 

limited.  

9 Conclusions 

 

IR is an important form of alternative splicing that is crucial for normal human, 

animal and plant biology. However, many challenges remain in identifying IRTs and 
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understanding their functions. These challenges include the complexity of genome 

structure and organisation in higher organisms, and the plethora of algorithmic and 

bioinformatic difficulties in identifying and quantitating retained introns. This could 

be addressed by comparative studies of informatics methodologies, which have a long 

history in the differential gene expression analysis space [50, 98, 99], but are lacking 

for IR analysis. There are substantial pitfalls when adapting existing techniques 

developed for protein-coding genes for carrying out comparative phylogenetic 

analysis, as the roles of IR appear to be conserved within closely related taxa, but not 

across distant phyla. Finally, there is a lack of tools and approaches to investigate the 

mechanisms of IR regulation and its functional consequences in terms of protein 

production, RNA-based regulation, subcellular localisation or possible decay 

pathways. Overcoming these challenges will facilitate a more complete understanding 

of why cells retain certain introns and not others, and the contribution of this form of 

alternative splicing to the structure and function of gene transcripts in normal biology 

and disease.  
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Figure 1: The diverse fates of intron retaining transcripts.  

(A) Splicing results in the excision of all intronic sequence from a pre-mRNA 

molecule. (B) The mRNA is then exported to the cytoplasm, where it is translated into 

the canonical protein isoform. (C) Intron retention (IR) occurs when sequence 

corresponding to one or more introns is not spliced out of the pre-mRNA molecule, 

giving rise to an intron retaining transcript (IRT). (D) IRTs can be exported into the 

cytoplasm, where they can (E) interact with the ribosome and (F) be subject to NMD 

if a premature termination codon (PTC) is encountered, or (G) be translated to give 

rise to alternative protein isoforms. (H) Cytoplasmic IRTs can be targeted to specific 

subcellular compartments, where they are stored or translated. (I) Alternatively, an 

IRT can be sequestered in the nucleus – in which case it is termed an intron detaining 

transcript (IDT). This IDT can be subject to (J) stimulus-dependent splicing or (K) 

degradation.  

 

Figure 2: Introns are more enriched in repetitive sequences than exons  

In both the human and mouse genomes, intronic regions contain proportionally more 

repetitive sequence than exonic regions. RepeatMasker [100] annotations were 

intersected with collapsed human and mouse Gencode [101, 102] exonic and intronic 

regions using BEDTools [103], and the proportion of bases covered by each repeat 

type was calculated and visualised using tidyverse and ggplot2 [104].  

 

Figure 3: Informatic pitfalls of IR detection 

A schematic of a gene affected by differential IR between two cellular states.  (A) 

Differential expression alters the normalised density of reads across the entire gene 

body, resulting in better coverage in cell state 1 than 2.  Not taking these differences 
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into account can prevent or bias IR detection and quantification. (B) Unless coverage 

filters and adequate multimapping read handling are implemented, expression of the 

repetitive elements in introns 1 and 2 can result in spurious intronic and junction read 

counts. (C) These filters must also prevent the differential expression of the miRNA 

hosted in intron 3 from contributing to assessment of IR for this intron. (D) The 

antisense transcript hosted in introns 3 - 4, which is expressed in cell state 1 and not 2, 

could also confound analysis, since only stranded RNA-seq with subsequent coverage 

filtering could permit identification of this phenomenon. (E) If the sensitivity and 

specificity of the employed informatics pipeline is adequate, only intron 5 in cell state 

2 should be reported as differentially retained.  
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