Mixed messages in iron oxide-copper-gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions

Baker, Timothy, Mustard, Roger, Fu, Bin, Williams, Patrick J., Dong, Guoyi, Fisher, Louise, Mark, Geordie, and Ryan, Chris G. (2008) Mixed messages in iron oxide-copper-gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions. Mineralium Deposita, 43 (6). pp. 599-608.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1007/s00126-008-019...
 
54
2


Abstract

Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to giant (tens to hundreds of square kilometers) hydrothermal systems that include (1) barren regional sodic–calcic alteration, (2) granite-hosted hydrothermal complexes with magmatic–hydrothermal transition features, and (3) iron oxide–copper–gold (IOCG) deposits. Fluid inclusion microthermometry and proton-induced X-ray emission (PIXE) show that IOCG deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic–calcic alteration. The latter is characterized by lower salinity three-phase halite-bearing (type 2) and two-phase (type 3) aqueous inclusions. Copper contents of the type 1 inclusions (>300 ppm) is higher than in type 2 and 3 inclusions (<300 ppm), and the highest copper concentrations (>1,000 ppm) are found both in the granite-hosted systems and in inclusions with Br/Cl ratios that are consistent with a magmatic source. The Br/Cl ratios of the inclusions with lower Cu contents are consistent with an evaporite-related origin. Wide ranges in salinity and homogenization temperatures for fluid inclusions in IOCG deposits and evidence for multiple fluid sources, as suggested by halogen ratios, indicate fluid mixing as an important process in IOCG genesis. The data support both leaching of Cu by voluminous nonmagmatic fluids from crustal rocks, as well as the direct exsolution of Cu-rich fluids from magmas. However, larger IOCG deposits may form from magmatic-derived fluids based on their higher Cu content.

Item ID: 6898
Item Type: Article (Research - C1)
ISSN: 1432-1866
Keywords: iron oxide; copper; gold; Proterozoic; Cloncurry; bromine; chlorine
Date Deposited: 08 Mar 2010 04:16
FoR Codes: 04 EARTH SCIENCES > 0403 Geology > 040307 Ore Deposit Petrology @ 100%
SEO Codes: 84 MINERAL RESOURCES (excl. Energy Resources) > 8401 Mineral Exploration > 840102 Copper Ore Exploration @ 100%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page