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Abstract: Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into
adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the
surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting
this process include chromatin remodelling, histone modifications and aberrant DNA methylation,
which influence gene expression, alternative splicing and function of non-coding RNA. In this review,
we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on
causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the
complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation.
An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional
gene regulation evolves during the initiation, progression and metastasis formation in CRC.

Keywords: chromatin remodelling; histone modifications; aberrant DNA methylation; long
non-coding RNA; microRNA

1. Introduction

Besides genomic instability and mutations, the disruption of epigenomic control is a known
characteristic of cancer cells [1,2]. It was shown that the development of CRC is driven by an
accumulation of genetic and epigenetic aberrations [3].

CRC pathogenesis is associated with three major pathways, which are the basis for molecular
subtyping of CRC: microsatellite instability (MSI), chromosomal instability (CIN), and the epigenomic
CpG island methylator phenotype (CIMP) [4]. Additionally, an international Colorectal Cancer
Subtyping Consortium introduced four consensus molecular subtypes (termed CMS1-4), which are
largely based on transcription signalling associated with components of the tumour microenvironment
including CMS1 (MSI immune), CMS2 (canonical), CMS3 (metabolic) and CMS4 (mesenchymal) [5].
Although this taxonomy provided a basis for research in the CRC field, increasing evidence has revealed
that epigenetic alterations, including DNA methylation, histone marks, chromatin remodelling, and
noncoding RNAs (ncRNAs) play pivotal roles in the development of CRC, supporting the idea that
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epigenetic signatures can be used to further stratify the spectrum of heterogenous CRC phenotypes
into molecular subtypes associated with patient prognosis and treatment response.

In this review, we focus on epigenetics, alternative splicing, ncRNAs, and the interplay between
these mechanisms of gene regulation in CRC initiation, progression and metastasis.

2. Epigenetic Modulators, Modifiers and Mediators in CRC

Epigenetic alterations are strongly associated with neoplastic transformation in CRC [6,7].
Epigenetically induced activation of proto-oncogenes and silencing of tumour-suppressors play
a central role in the complexity of cancer emergence, progression and response to treatment [7,8].
Therefore, understanding epigenetic changes as a driving force in colorectal neoplasia opens up
new opportunities for the identification of reliable epi-biomarkers and the development of targeted
epigenetic therapies in CRCs.

Recently, Feinberg et al. introduced a cancer epigenetics framework in which genes act as
epigenetic modulators, modifiers or mediators [9]. In their model, epigenetic modulators regulate the
activity of modifiers that, in turn, induce the expression of epigenetic mediators (Figure 1). Mediators
dynamically change through feedback loops that target epigenetic modifiers, thereby shaping the
Waddington landscape of cancer development in which mediators bring about a cellular transition
towards a cancer stem cell state favouring tumour progression [9]. A deregulated epigenome often
caused by environmental factors and facilitated by the interplay between modulators, modifiers and
mediators can result in the intra-tumoural cellular heterogeneity that enables tumour evolution [9,10].

The same cascade of epigenetic modulators, modifiers and mediators can be documented in CRC.
Epigenetic subtypes of CRC are strongly associated with specific somatic mutations that drive the
step-wise progression of CRC [6,11–14]. During the early stages of CRC development, the normal
colorectal epithelium is transformed into a benign adenoma by inactivation mutations in tumour
suppressor genes (e.g., APC, TP53, SMAD4) and activating mutations in proto-oncogenes (KRAS, BRAF,
PIK3CA) [1,15,16]. Subsequently, through the sequential alterations in epigenetic modifiers [17,18]
and mediators [19], adenoma progresses to carcinoma and subsequently advances to an invasive and
metastatic tumour [6,20]. Therefore, epigenetic modulators, modifiers and mediators work together in
generating phenotypic variations of cancerous cells (Figure 1).

Using CRISPR gene editing, Matano et al. created CRC organoids with loss of function mutations in
APC, SMAD4 and TP53, and gain-of-function mutations in KRAS and/or PIK3CA that grew independent
from niche factors in vitro, and formed tumours after implantation under the kidney sub-capsule
in mice [21]. They suggested that driver pathway mutations in epigenetic modulators facilitate the
preservation of stem cells in the tumour microenvironment. However, further molecular lesions would
be necessary for invasive behaviour. Another study sequentially introduced both inactivation mutations
in tumour suppressor genes (APC, TP53, and SMAD4) and an oncogenic mutation in the KRAS oncogene
to create CRC organoids from intestinal stem cells [21]. By studying this CRISPR-mutated organoid
containing four of the most frequently mutated CRC genes, they have demonstrated that quadruple
mutants grow independent from niche factors as invasive carcinomas and combined loss of APC and
P53 is sufficient for acquiring CIN [22]. Another group has genetically dissected CRC progression
(adenoma-carcinoma sequence) by orthotopic transplantation of CRISPR-engineered CRC organoids
to study the contribution of common CRC key mutations (in Wnt, EGFR, P53, and TGF-β signalling
pathways) to metastasis [23]. Lannagan et al. generated complex preclinical models of serrated CRC
by serial introduction of inactivation mutations in five genes (MLH1, TGFBR2, RNF43, ZNRF3, and
p16Ink4a) in BRAFV600E organoids [24]. Although these studies have validated the critical role of
mutations in epigenetic modulators in CRC development, emerging studies have shown that mutations
in epigenetic modulators such as BRAFV600E and KRASG13D are tightly connected with the CpG island
methylator phenotype (CIMP), which is generated by epigenetic modifiers [13,14,25,26]. These studies
support the epigenetic functional framework depicted in Figure 1.
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Figure 1. Epigenetic functional system in the initiation and progression of CRC. Environmental cues,
such as repeated exposure to carcinogens, inflammation, injury, and ageing impinge on epigenetic
modulators. These, in turn, destabilize the epigenome through signalling and metabolic pathways.
As a result, chromatin states at epigenetic mediator genes are changed triggering their unscheduled
expression. Epigenetic mediators can also influence the plasticity of tumour cells during neoplasia,
giving rise to the formation of CSCs and metastases. In all these processes, epigenetic modifiers play
a central role. Mutations are frequently seen in epigenome modifying genes and, conversely, the
epigenetic changes can cause further mutations and genomic instability in modulators. LOF = loss of
function; TSG = tumour suppressor gene; GOF = gene of interest; Met = methylation; EMT = epithelial
to mesenchymal transition.

Although the role of BRAF and KRAS mutations in the development of CRC is well documented,
the chicken-or-egg problem for CRC is to definitively prove whether mutations in epigenetic modulators
eventually lead to CIMP or CIMP appears first and creates an environment that facilitates mutations in
epigenetic modulators. Interestingly, evidence for both hypotheses has been found, suggesting that
there are ultimately different pathways for epithelial cells to progress towards cancerous phenotypes
in cancer development. The BRAFV600E mutation has been shown to result in CIMP development via
increased BRAF/MEK/ERK signalling, which causes MAFG upregulation and phosphorylation. The
transcriptional repressor MAFG, in turn, recruits a corepressor complex that includes the chromatin
remodelling factor CHD8 and the DNA methyltransferase DNMT3B to CpG islands in the promoters of
CIMP genes [25]. In another study, acquisition of the KRASG13D mutation resulted in the upregulation of
zinc-finger DNA-binding protein ZNF304. As a consequence, ZNF304 recruits DNA methyltransferase
DNMT1 to CIMP gene promoters causing aberrant hypermethylation [27]. Conversely, other studies
have shown that aberrant DNA hypermethylation and CIMP provides a permissive context for
mutations in the BRAF gene [13,14,26].

Epithelial to mesenchymal transition (EMT)-associated reprogramming of normal and tumour
epithelial cells is a result of fundamental changes in several regulatory networks and the interplay
between them [28]. Impaired epithelial balance can contribute to the acquisition of a cancerous
state, e.g., through the deregulation of epigenetic control mechanisms, the transcriptional machinery,
alternative splicing, the expression of non-coding RNAs or alterations in translation and protein
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stability [28]. Widschwendter et al. showed that cancers may have a stem cell origin in which reversible
gene repression normally imposed by an epigenetic modifier (e.g., Polycomb group proteins) is replaced
by constant silencing, locking cells into a permanent state of self-renewal that predisposes them to
malignant transformation [11]. Another study demonstrated that driver mutations are significantly
associated with aberrant DNA methylation in many cancer types, including CRC, and that these
epigenetic changes contribute to carcinogenesis. These driver mutation–methylation patterns can
be used to classify heterogeneous cancers into subtypes [12]. Recently, an integrative genome-wide
DNA methylation and transcriptomic analysis of 216 CRC samples revealed five clinically and
molecularly distinct subtypes of colorectal adenocarcinomas, along with an association between
genomic methylation and age [26].

Besides genetic instability and mutations, epigenomic disruption can contribute to transformation
and the development of cancer-associated phenotypes [1,2]. Understanding the network of epigenetic
modifiers provides information to interpret the functional significance of epigenetic drivers of
tumorigenesis [2,29]. Epigenetic modifications, as an instructive layer, act on the genome and
can be cell type-specific [30,31]. Defects in epigenetic effectors (readers, writers and erasers) mediate
the development of cancers, including CRC [1,17,30,31]. Thus, we next focus on epigenetic modifiers
and their interactions in CRC cell regulation.

3. The Interplay between Non-Coding RNAs and Epigenetics in CRC

The interplay between epigenomics and non-coding RNA (ncRNA) expression and function
is currently receiving a lot of attention. Elucidation of this intricate regulatory network between
ncRNAs and epigenetic factors may offer new insights into the molecular mechanisms involved in the
pathogenesis of CRC and promote accurate diagnostic and prognostic biomarkers, as well as facilitate
the development of novel personalized therapeutic approaches. Especially, the ubiquitous functions
of long ncRNAs (lncRNAs) in CRC and elsewhere have been subject of many recent reviews [32–36].
LncRNAs have been implicated in diverse biological functions, e.g., acting as a scaffold for interactions
between various macromolecules, as a signal for the recruitment of the transcription machinery,
as a guide for the localization of ribonucleoproteins or as a decoy for microRNAs (miRNAs) or
proteins [37,38]. LncRNAs regulate gene expression at the epigenetic level (by regulating chromatin
remodelling, DNA methylation, or histone modification), the transcriptional level (by association with
transcription factors, enhancers or promoters), and post-transcriptional level (via alternative splicing,
transport and translation of pre-mRNA, or by interacting with miRNAs).

LncRNAs are often dysregulated in the pathological processes of CRC, functioning as oncogenes
or tumour-suppressors [3,34,35,39]. For example, lncRNA DLEU1 promotes CRC cell proliferation
and migration by recruiting SMARCA1, a subunit of the NURF chromatin remodelling complex, to
the promoter of KPNA3, a gene whose expression is associated with a lower survival rate and poorer
prognosis in CRC patients [40].

3.1. Noncoding RNAs and DNA Methylation in CRC

DNA methylation, in combination with other epigenetic events, has been associated with different
phenotypes of CRC including CIN, MSI and CIMP [41,42]. For example, a recent study has shown
that global hypomethylation is significantly associated with CIN in sporadic CRC [43]. Another study
confirmed the strong correlation between global DNA hypomethylation and CIN but also found that
the MSI phenotype correlates with regional hypermethylation [44]. Interestingly, they found that
CRC cells with CIN have an open chromatin conformation and are enriched in histone acetylation,
both in repetitive elements and coding regions. Conversely, MSI phenotypes have a higher incidence
of closed chromatin structures alongside low levels of histone acetylation. This supports the notion
that patterns of DNA methylation in combination with other epigenetic changes have an impact on
phenotype-specific gene expression and CRC pathogenesis [44].
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Aberrant DNA methylation also contributes to later stages of CRC, for example by establishing
a CIMP phenotype through global genome hypermethylation, which results in silencing of tumour
suppressor genes, such as CDKN2A/p16 [45]. CIMP has a strong association with the occurrence of
somatic mutations at driver oncogene loci, such as BRAFV600E and KRASG13D; supporting the existence
of links between genetic mutations and DNA methyltransferases [25,27]. The association of driver
mutations, including BRAFV600E and KRASG13D with methylation patterns can be used to stratify the
heterogeneous cell population of a tumour into homogeneous subtypes [12].

Epigenomic and transcriptomic profiling of the colon cancer cell line DLD1 showed that
a signature of mRNAs, miRNA, lncRNAs, and epigenetic alterations are associated with CRC
metastasis. In particular, global hypomethylation of gene-regulatory regions was found during
tumour progression, with the lowest degree of methylation present in metastases-isolated cells. Due
to promoter demethylation, the expression of H19 was elevated, a lncRNA which is associated with
poor survival [46]. Using a CRISPR loss-of-function screen, McCleland et al. identified a member
of the bromodomain and extra terminal (BET) protein family (BRD4) as a key epigenetic regulator,
which interacts with lncRNA CCAT1 for BET-mediated c-MYC regulation in CIMP+ CRC; suggesting
CCAT1 as a predictor of sensitivity to BET inhibitor drug JQ1 [47]. Chromatin readers such as BET are
considered druggable targets for cancer treatment [48].

LncRNAs can regulate genome-wide DNA methylation in association with the methyltransferase
DNMT1, especially DACOR1 (DNMT1-associated Colon Cancer Repressed lncRNA 1), which has
a highly tissue-specific expression in the normal colon [49]. The induction of tumour suppressor
DACOR1 in colon cancer cells restores DNA methylation of thousands of CpG dinucleotides at
hypomethylated sites in colon tumours including intergenic regions, promoters and gene bodies of
oncogenic transcription factors such as FOS and JUN [50].

5-hydroxymethylcytosine (5hmC) is the first oxidative intermediate product of the
5-methylcytosine (5mC) demethylation by the ten–eleven translocation (TET) protein family. Apart
from its intermediate role in the cytosine demethylation pathway, 5hmC has multifaceted regulatory
functions with emerging importance in cancer [51–55]. Hu et al. indicated that abnormal tumour-specific
enhancers and/or promoters modified by 5hmC promote dysregulation of CRC-related lncRNAs such
as TCONS_l2_00000584 and LINC00189 [53]. Mechanistically, 5hmC, along with histone marks
and transcription factors, determinate open chromatin structures to facilitate long-range chromatin
interactions at lncRNA loci and thus regulate lncRNA transcription. LncRNA enhancers marked with
5hmC show higher transcriptional activity than enhancers without 5hmC mark, thereby contributing
to the pathogenesis of CRC [53].

Another lncRNA named HIF1A-AS2 plays an oncogenic role by acting as a competing endogenous
RNA. HIF1A-AS2 is a decoy for miR-129-5p, whereby it indirectly promotes DNA Methyltransferase 3
Alpha (DNMT3A) expression and positively affects EMT and progression of CRC [56]. Interestingly,
miRNA expression is regulated by DNA methylation and histone modifications as well during CRC
tumorigenesis. Almost 10% of all miRNAs are regulated by DNA methylation in CRC cells [57]. DNA
methylation-mediated repression of three miRNAs (miR-181a, miR-135a and miR-302c) promotes
CRCs with MSI and 5-FU resistance according to Shi et al. [58]. MiRNA-132 was proven to
undergo transcriptional inactivation by DNA hypermethylation and implies a poor prognosis in
CRC [59]. Another study has identified that miR-133b is markedly downregulated through promoter
hypermethylation in human CRC tissues compared to healthy colon cells [60].

MiRNAs are also involved in DNA methylation regulation. Low miR-203 expression in CRC, for
example, indirectly causes ABCG2 promoter methylation lowering the expression of this important
efflux transporter and thereby CRC development. MiR-203 targets DNA Methyltransferase 3 Beta
(DNMT3B), which is relieved from post-transcriptional repression in CRC and can, therefore, methylate
the ABCG2 promoter [61].

An overview of the interplay between ncRNAs and DNA methylation in CRC is provided in
Table 1.
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Table 1. Interplay of ncRNAs with DNA methylation in the pathogenesis of CRC.

Non-Coding
RNAs

Epigenetic Partner/Other
Epigenetic Mediator Target Gene Tumorigenic Effects Reference

LncRNA & DNA methylation

DACOR1
interaction with DNMT1 to

reprogram genome-wide DNA
methylation

DNA methylation
at thousands of

CpG sites
increased clonogenicity [49,50]

HIF1A-AS2 regulates miR-129-5p and
DNMT3A expression

progression and EMT
formation of CRC [56]

H19

hypomethylation of the sixth
CTCF-binding site in the
differentially methylated

region of IGF2/H19

loss of imprinting
of IGF2T→ two

forms of aberrant
IGF2 expression

promotes microsatellite
instability and oncogenesis [62–64]

MicroRNA & DNA methylation

miR-133b promoter hypermethylation HOXA9/ZEB1
pathway

inhibits migration and
apoptosis; suppresses

metastasis
[60,65]

miR-149 epigenetically silenced by
DNA methylation

Specificity Protein 1
(SP1)

independent prognostic
factor for overall survival [66]

miR-132 downregulation by DNA
hypermethylation paxillin associated with cell

invasion [59]

miR-345 CpG island promoter
hypermethylation

BCL2-associated
athanogene 3

(BAG3)

suppresses colon cancer
cell proliferation and

invasiveness
[67]

miR-181a/135a/302c DNA methylation-mediated
repression

via repressing
PLAG1/IGF2

signalling

promotes the
microsatellite-unstable
CRC development and

5-FU resistance

[58]

miR-203 directly targets DNMT3B
causes ABCG2

promoter
methylation

predisposing CRC
development by lowering

expression of ABCG2.
[61]

3.2. Noncoding RNAs, Chromatin Remodeling, and Histone Modifications in CRC

Among many other functions, lncRNAs are involved in the cis- and trans-regulation of gene
expression. For example, the non-coding RNA DLEU1 contributes to CRC development and progression
by recruiting SMARCA1, an essential subunit of the NURF chromatin remodelling complex, to the
promoter of the KPNA3 gene. High expression of DLEU1 and KPNA3 correlated with poor prognosis
in CRC patients [40].

Several studies have shown that three lncRNAs (CCAT1-l, CCAT1 and CCAT2), located upstream
of the proto-oncogene MYC, are highly expressed in microsatellite-stable CRC and have been implicated
in CRC predisposition by different mechanisms of action [68–71]. Xiang et al. have shown that CCAT1-L
promotes CRC-specific chromatin looping through long-range interactions between the MYC promoter
and its upstream enhancers. Additionally, CCAT1-L modulates chromatin conformation at these loop
regions by interacting with CTCF [70]. It was shown that upregulation of c-MYC facilitated by a large
chromatin loop is linked to a cancer risk-associated single-nucleotide polymorphism (SNP, rs6983267)
in CRC cells. Later, Ling et al. demonstrated that the same SNP affects CCAT2 expression and the
risk allele of SNP rs6983267 produces more lncRNA CCAT2 transcript, which in turn up-regulates
MYC, miR-17-5p, and miR-20a through physical interaction with transcription factor TCF7L2. This
results in an enhancement of WNT signalling activity. CCAT2 itself is a downstream target of WNT,
suggesting the existence of a feedback loop [68]. Recent studies confirmed that CCAT1 and CCAT2
promote chromosomal instability in CRC pathogenesis and metastasis progression. Both lncRNAs
are considered valuable prognostic markers for CRC since high expression of CCAT1 and CCAT2 are
associated with cancer recurrence and poor overall survival [69,71].
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Epigenetic interplay with lncRNAs also affects advanced stages of CRC. Kogo et al., for example,
revealed that the lncRNA HOTAIR, in cooperation with the PRC2 complex widely reprograms
chromatin organization and thereby promotes liver metastases in stage IV CRC patients [72].

Besides DNA methylation and chromatin remodelling, histone modifications are also recognized
as early epigenetic events in cancers including CRC. Histone modifications recognized as the ‘histone
code’ affect chromatin structure and gene expression during tumorigenesis. In an integrated analysis
of RNA sequencing data of matched primary tumours, synchronous liver metastases and normal
colon tissues, as well as H3K4me3 ChIP-seq data, Chen et al. observed that H3K4me3 was enriched at
transcription start sites of lncRNAs dysregulated in CRC [73].

Xu et al. demonstrated that lncRNA SNHG1 directly interacts with the EZH2 subunit of Polycomb
Repressive Complex 2 (PRC2) and modulates histone methylation of Kruppel like factor 2 (KLF2) and
CDKN2B promoters in CRC [74]. SNHG1 also functions as a miRNA sponge in the cytoplasm and
increases Cyclin D2 (CCND2) expression by sequestering miR-154-5p [74]. We collated other examples
of lncRNAs that sponge miRNAs in CRC in Supplementary Table S1. Ding et al. revealed that lncRNA
CRNDE (Colorectal Neoplasia Differentially Expressed) epigenetically silences DUSP5 and CDKN1A
expression by binding to EZH2, a key component of the PRC2 complex. Thereby, CRNDE contributes
to advanced pathological stages in CRC [75].

DNA methylation and histone modifications appear to mutually reinforce silencing of
tumour-suppressor genes in CRCs. Wang et al., for example, have found that long non-coding
RNA 34 (or Lnc34a) recruits DNMT3A via Prohibitin-2 (PHB2) and Histone Deacetylase 1 (HDAC1) to
simultaneously methylate and deacetylate the MIR34A promoter [76]. Thereby, miR-34a transcription
is epigenetically switched off. Interestingly, microscopy experiments showed that Lnc34a is distributed
unevenly when colon cancer cells divide so that the production of miR-34a is asymmetrically inhibited
in one daughter cell but not the other. Wang et al. confirmed that Lnc34a is upregulated in late-stage
CRCs and overexpressed in cancer stem cells, which helps them to proliferate more rapidly [77].

LncRNA themselves are regulated by histone modifications. The transcription factor Ets-1
negatively regulates BRAF-activated lncRNA (BANCR) expression by binding and deacetylating
histone H3 within the BANCR promoter during CRC progression [78].

An overview of the interplay between lncRNAs and epigenetic events in CRC is provided in
Table 2.

Table 2. Interplay of lncRNAs with other epigenetic partners in the pathogenesis of CRC.

Non-Coding
RNAs

Epigenetic Partner/Other
Epigenetic Mediator Target Gene Tumorigenic Effects Reference

Chromatin remodelling

DLEU1

recruits SMARCA1, an
essential subunit of the NURF

chromatin remodelling
complex

activation of
KPNA3

CRC development and
progression [40]

CCAT1-L regulates long-range
chromatin interactions

activates the
transcription of the

MYC locus

both tumorigenesis and the
metastatic process [79]

HOTAIR
reprograms chromatin

organization in cooperation
with the PRC2 complex

global epigenetic
regulation

contributes to liver
metastases in stage IV CRC

patients
[79]

Histone modification

MALAT1 EZH2 represses
E-cadherin promotes chemoresistance [80]

HULC interacts with EZH2 to repress NKD2 oncogenic [81]

SNHG1

interacts with PRC2 in the
nucleus and acts as a

miR-154-5p sponge in the
cytoplasm

modulates histone
methylation of

KLF2 and CDKN2B
tumour progression [74]
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Table 2. Cont.

Non-Coding
RNAs

Epigenetic Partner/Other
Epigenetic Mediator Target Gene Tumorigenic Effects Reference

CRNDE binds to EZH2 DUSP5/CDKN1A

positively correlates with
advanced pathological

stages and larger tumour
sizes

[75]

SNHG17 binds to the EZH2 p57 promotes cell proliferation [82]

SH3PXD2A-AS1 interacts with EZH2 p57 and KLF2 promotes cells proliferation,
migration and invasion [83]

SNHG6 recruits EZH2 to the p21
promoter p21 positively correlates with

advanced tumour stage [84]

MEG3
interacts with PRC2 and
JARID2 to direct them to

target promoters

Clusterin signalling
pathway

inhibits cells proliferation
and migration [85]

PINT interacts with PRC2 to silence
genes

p53 autoregulatory
negative

mechanism

inhibits proliferation of
tumour cells [86]

PINT interacts with PRC2 EGR1 inhibits tumour cell invasion [87]

PCAT6 forms a complex with EZH2 activates
anti-apoptotic ARC

inhibits colon cancer cell
apoptosis [88]

Histone modification/DNA methylation

Lnc34a

recruits DNMT3A via PHB2
and HDAC1 to methylate and

deacetylate the MIR34A
promoter simultaneously

epigenetically
silence miR-34a

Increase colon cancer stem
cells (CSCs) proliferation in

late-stage CRC s.
[77]

HOXA11-AS
scaffold for the chromatin
modification factors PRC2,

LSD1, and DNMT1
lymph node metastasis [89,90]

4. Regulation of Alternative Splicing in CRC

Many recent studies have shown that alternative splicing (AS) is a key feature for transcriptomic
variations in CRC [91–96]. AS increases the diversity of both non-coding RNAs (regulatory) and coding
RNAs (protein isoforms). These transcriptome variations can be a result of either mutations in or
aberrant expression of trans-acting splicing factors such as hnRNPL [97], SRSF1 (alias ASF/SF2) [98–100],
and SRSF6 [101] or mutations in cis-regulatory sequences [102–104].

Several recent studies have demonstrated that RNA binding motif 4 (RBM4) initiates a hierarchical
AS cascade in CRC development; implying that splicing is highly regulated in this process [105–107].
Lin et al. demonstrated that RBM4 and PTBP1 exhibit opposite effects on modulating the utilization
of splicing factor SRSF3 exon 4. SRSF3, in turn, modulates the metastatic signature of CRC cells,
by reprogramming the splicing variants of MAP4K4 with distinct effects on JNK phosphorylation
and subsequent downstream signalling pathways [107]. Another study highlighted the potential
value of targeting this splicing cascade for CRC treatment and demonstrated how cell migration and
angiogenesis are increased via RBM4-regulated isoform expression of Nova1 (exon 4 skipping), SRSF6
(intron 2 retention), and VEGF165 upregulation. RBM4-mediated splicing regulation was shown to
promote CRC progression [106].

4.1. Epigenetic Regulators of Alternative Splicing in CRC

Epigenetic splicing regulation works through different modes including (1) the modulation of the
RNA Pol II elongation rate inducing either exon skipping or inclusion, (2) splicing factor recruitment or
sequestration and (3) adaptor/scaffolding function. Modes of epigenetic regulation can lead to changes
in splicing factor concentration both spatially and temporally.
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4.1.1. Modulation of RNA Pol II Elongation Rate

Several studies have shown that histone marks decorate specific exons to regulate RNA Pol
II elongation and thus influence co-transcriptional splicing [108–110]. For example, Poly (ADP)
ribose polymerase (PARP1) marks histones and thereby changes nucleosome deposition at specific
exon-intron boundaries, which in turn affects RNA Pol II movement and finally alters AS decisions
in a context-specific manner [110]. Riffo-Campos et al. showed that low nucleosome occupancy, due
to differential histone marks at exon 4A of KRAS, resulted in an accelerated RNA Pol II elongation
rate and subsequent lower abundance of isoform 4A in the CRC cell lines HCT116 and SW48 [109].
Yuan et al. demonstrated in a CRC mouse model that mutation of the histone methyltransferase SETD2
slows down transcription elongation and thereby facilitates the removal of intron 2 of dishevelled
segment polarity protein 2 (DVL2) pre-mRNA; thereby augmenting Wnt/β-catenin signalling and
tumorigenesis. Conversely, in normal cells SETD2-catalyzed H3K36me3, thus mediating intron 2
retention in the DVL2 transcript, which induces a premature stop codon. As a consequence, the DVL2
mRNA is degraded via nonsense-mediated decay [111]. Nonsense-mediated decay is a common
mechanism of AS-coupled auto-regulation of diverse mRNAs triggered by the retention of an intron
harbouring a premature stop codon [106,112].

4.1.2. Splicing Factor Recruitment or Sequestration

Chromatin structures and DNA methylation are important for splice site recognition [113–116].
Epigenetic events can also help to recruit splicing factors to a specific locus [117,118]. Using ChIP-seq
and RNA-seq analyses Kfir et al. revealed that SF3B1, an essential component of the U2 snRNP
complex, specifically binds nucleosomes positioned at short exons flanked by long intronic sequences,
suggesting that differences in chromatin organization between exons and introns pinpoint splicing
factors to their pre-mRNA targets and determine splicing decisions [119]. Kim et al. confirmed that
splicing factors specifically bind to post-translationally modified histone residues near exons that are
targets of AS [118].

Histone modifications, DNA methylation and epigenetic modifiers can team up to affect AS.
Maunakea et al. revealed that alternatively spliced exons are enriched in DNA methylation and that
DNA methylation in the gene body can enhance exon recognition by recruitment of the methyl-CpG
binding protein 2 (MeCP2) [120]. Similarly, using reduced representation bisulfite sequencing (RRBS)
data from primary colon tumours [121], Gelfman et al. confirmed that 5mC signals at CpG sites
are accompanied with elevated nucleosome occupancy involved in exon recognition [122]. MeCP2,
attracted through DNA methylation, is a writer of histone marks. Other chromatin-binding proteins
such as heterochromatin protein 1 (HP1) read these histone marks and act as an adaptor for coupling
transcription and AS of nascent pre-mRNA [123]. HP1 not only links histone methylation marks to
RNA splicing but also contributes to the progression of CRC by affecting cell cycle-related genes,
including CDK6 and p21 [124,125]. Davie et al. confirmed that some epigenetic marks such as histone
H3K4 trimethylation in coordination with epigenetic writers and readers dynamically affect pre-mRNA
splicing and vice versa [126].

Several studies have shown that active cellular mechanisms and mutations can dynamically
change histone marks and preferential association of splicing factors with exons [126–128]. For
example, the G13D mutation in KRAS impacts on the epigenetic modification of heterogeneous nuclear
ribonucleoproteins (hnRNPs) that is involved in pre-mRNA splicing [129]. Riffo-Campos et al. suggest
that KRAS mutations affect AS of EPDR1 and ZNF518B in CRC cells leading to differential isoform
expression in these genes [130].

4.2. Non-Coding RNAs and the Regulation of Alternative Splicing in CRC

MiRNAs regulate gene expression post-transcriptionally by binding to partially complementary
sites in the 3′ untranslated region of their target mRNAs and thereby mediating target degradation
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or translation repression [131]. The oncogenic miRNAs miR-1298 and miR-92a downregulate the
expression of SFQ and RBM4 in CRC [132,133]. Reduced expression of RBM4 leads to increased levels
of nPTB and specific exon 10 inclusion. nPTB, in turn, increases FGFR2 IIIc (mesenchymal-specific
isoform) and pyruvate kinase M2 (PKM2) transcripts, which result in the progression and metabolic
signature of CRC cells [133]. Studies have shown that non-coding RNAs, histone modifications and
splicing factors work together to realize the isoform switch of FGFR2 protein from the epithelia-type
FGFR2 IIIb to the mesenchymal-type FGFR2 IIIc [133–135]. Isoform switching from PKM1 to PKM2
governed by PTBP1 and PTBP1-associated miR-1 and miR-133b is critical for the maintenance of the
Warburg effect in CRC cells [136].

The involvement of lncRNAs in the regulation of AS is known and has been reviewed
elsewhere [137–139]. AS is a highly tissue/cell type-specific process critical to generate protein
isoforms. LncRNAs have an important role in the establishment and maintenance of cell type-specific
splicing outcomes by interacting with several Polycomb-group proteins, histone modifiers and
the chromatin-splicing adaptor complex, as well as splicing factors [134,140]. Thereby, lncRNAs
can also contribute to CRC development [141,142]. For example, LINC01133 titrates the splicing
factor SRSF6 away from its RNA targets and thereby inhibits epithelial-mesenchymal transition in
CRC mouse models [141]. However, the exact underlying mechanism by which SRSF6 controls
epithelial-mesenchymal transition and metastasis is yet to be defined. MALAT1 regulates AS by
influencing the localization of SR splicing factors into nuclear speckle domains [140]. It thereby
regulates cell-type-specific AS in a concentration- and phosphorylation-dependent manner [140,142].
Another study found that MALAT1 promotes tumour growth and metastasis in CRC by competitively
binding to SFPQ (also known as Polypyrimidine Tract-Binding Protein-associated splicing factor) and
releasing oncogene PTBP2 (polypyrimidine tract binding protein 2) from the SFPQ/PTBP2 complex [143].
Interestingly, MALAT1 and PTBP2 are overexpressed in CRC, but SFPQ remains unchanged in CRC
tissues compared to adjacent normal tissues [143]. Another lncRNA named GAPLINC (Gastric
adenocarcinoma predictive long intergenic noncoding RNA) can also bind to SFPQ, as well as NONO.
SFPQ and NONO promote cell invasion, motility and metastasis in CRC, partly by inducing the
expression of snail family zinc finger 2 (SNAI2) [144]. However, the exact underlying mechanisms
remain to be elucidated.

Some lncRNAs are encoded on the antisense strand of the gene, whose isoform expression
they influence via AS [145,146]. For example, UXT-AS1 promotes CRC progression by changing the
expressed isoform of UXT from UXT1 to UXT2 via AS. UXT-AS1 is significantly upregulated in CRC
and associated with poor prognosis [146].

We have summarized non-coding RNAs that have an impact on AS in CRC in Table 3.
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Table 3. List of noncoding RNAs regulating alternative splicing in CRC.

Non-Coding
RNAs Mechanism of Action in AS Target Gene Tumorigenic

Effect Reference

LINC01133 titrates SRSF6 away from its
targets

inhibits EMT and
metastasis [141]

GAPLINC binds to PSF and NONO SNAI2 promotes invasion
in CRC [144]

MALAT1
regulates SR splicing factor

distribution in nuclear
speckle domains

NA [140]

MALAT1
binds to SFPQ and releases
oncogene PTBP2 from the

SFPQ/PTBP2 complex

promotes tumour
growth and

metastasis in CRC
[143]

UXT-AS1 isoform switching from
UXT1 to UXT2 UXT1 promotes cell

proliferation [146]

miR-1296 represses SFPQ expression SFPQ accelerates CRC
progression [132]

miR-92a

causing imbalanced
expression of PTBP2
through AS-coupled

nonsense mediated decay

RBM4

contributes to
progression and

metabolic signature
of CRC cells

[133]

In Figure 2 we summarized current knowledge about the intricate interplay of gene-regulatory
mechanisms in CRC across multiple layers.
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Figure 2. Overview of cross-talk between gene-regulatory layers in CRC. This figure depicts selected
examples of the deregulated interplay between epigenetic events, alternative splicing (AS) and
noncoding RNA in colorectal cancer. See the text of the manuscript for further details. ↑ and ↓ arrows
represent up- or down-regulation or higher or lower activity of a factor, respectively. Intron and exons
are abbreviated as E or I, respectively. In the cases of AS, ↑ and ↓ represent increased and decreased
usage of an exon or intron, respectively. ∆ represents isoform switching of a transcript due to AS.
SET2D* represents a mutant of SET2D. The dashed arrow with question mark (?) represents a predicted
feedback loop between WNT and CCAT-2. A vector graphics version of this figure is provided as
Supplementary Figure S1.
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5. Epi-Biomarkers and Promising Targets for the Design of epi-Drugs

Understanding epigenetic regulation of gene and/or protein expression and integration of these
factors with genomic data in the context of CRC genesis can help to develop novel epigenetic biomarkers
for diagnosis and epigenetic drugs for the treatment of CRC patients. For example, the SEPT9 gene
methylation assay, which aims to detect abnormal methylation at the SEPT9 promoter region, is the
first FDA-approved assay for CRC screening using an epigenetic biomarker [147].

In addition to expression profiling of epigenetic modifiers (e.g., non-coding RNA), the assessment
of the epigenetic state (e.g., DNA methylation) of epigenetic modulators and mediator genes can be
utilized as prognostic, diagnostic and predictive biomarkers for CRC. Epigenetic modifiers have been
shown to act in a cell type-specific manner and some were found highly stable in biofluids. This
makes them attractive biomarkers. The biological significance of epigenetic modifiers has already
been proven in CRC, and so has their potential to be used as epi-biomarkers for different CRC
stages, including the early disease [148,149], EMT [56], metastasis [46], as well as the resistance to
drugs [80,150]. Increased levels of lncRNAs such as HOTAIR, DLEU1 and UXT-AS1, which can
alter the epigenetic landscape of CRC-promoting genes, have been shown to be associated with poor
prognosis in CRC [40,72]. In addition to genome-wide DNA hypermethylation (CIMP phenotype),
resulting in reduced expression of tumour suppressor genes, studies have revealed that transcriptional
profiling of ncRNAs may offer further molecular stratification and subtyping of CRC patients [151,152];
supporting the idea that epigenetic modifiers should be considered in subtyping strategies.

Besides their potential as tractable biomarkers in CRC, epigenetic modifiers hold great promise for
developing epi-drugs (Figure 3). In contrast to irreversible genetic mutations, epigenetic modifications
are reversible and dynamic, thereby making them a promising therapeutic target [153]. Several
FDA-approved examples of epi-drugs, such as HDACi and DNMTi, have already been tested in clinical
settings [154]. A growing number of studies also support the use of ncRNAs as potential targets
for anticancer drugs [155,156]. The first synthetic miRNA mimic to enter a clinical trial was MRX34
(NCT01829971), a miR-34a replacement. The aim of the trial was to evaluate the safety of MRX34 in
patients with advanced solid tumours including CRC [157]. Although MIRX34 showed antitumour
activity in a subset of patients, the project was terminated because of immune-related serious adverse
events reported in five patients treated with MIRX34.

It has been demonstrated that some DNMT/HMT inhibitors and HDAC inhibitors exert
their therapeutic effects by modulating the expression of regulatory non-coding RNAs including
miRNAs [158] and lncRNAs [53]; implying that the effects between epigenetics modifiers are reciprocal.
Even some lncRNAs such as HOTAIR mediate the reciprocal regulation between a histone-lysine
N-methyltransferase enzyme (EZH2) and a DNA methyltransferase (DNMT1) [159]. Therefore, certain
small molecule compounds such as AC1Q3QWB (AQB) are used in cancer therapy for selectively
blocking HOTAIR-EZH2 interaction. The combinatorial use of AQB and 3-Deazaneplanocin A (DZNep;
inhibitor of EZH2) offers an even more efficient treatment [160]. Another study has reported the
use of an antisense oligonucleotide (ASO) to displace lncRNA XIST, the initiator of X-chromosome
inactivation, from inactive X [161]. More ASOs targeting lncRNAs are currently in development [162].

Among the growing number of lncRNAs known to be involved in CRC, it is likely that more
links between lncRNAs and epigenetic events will be found (see examples in Tables 1 and 2), such
that combination therapies may provide a more effective treatment option. Such an approach could
be achieved using ASOs against a CRC-specific lncRNAs or synthetically-engineered lncRNAs, in
combination with current standard-of-care chemotherapies to ensure synergistic effects of epi-drugs.

Of note, many ncRNAs originate from cells in the tumour microenvironment (i.e., fibroblasts,
immune cells, endothelial cells) and shuttle to cancer cells via exosomes, providing another option of
therapy which has been extensively reviewed in our recently published article [163].
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6. Future Directions

Colorectal cancer arises in a stepwise mode from either discrete genetic alterations or epigenetic
perturbations. Multiple epigenetic mechanisms, including DNA methylation, histone modifications,
chromatin remodelling and non-coding RNAs are all involved in CRC pathogenesis. Among these,
lncRNAs are emerging as highly versatile players in diverse biological processes regulating gene
expression at the epigenetic-, transcriptional, as well as post-transcriptional levels. Although ncRNAs
reveal new layers of gene-regulatory complexity, with advances in technologies such as next-generation
sequencing and CRISPR, their functions will be gradually deciphered. Of note, recent findings reveal
that epitranscriptomic modifications of lncRNAs, such as N6-methyladenosine (m6A), pseudouridine
(Ψ), and 5-methylcytosine (m5C), can regulate the diverse functions of lncRNAs [164–167]. Although
epitranscriptomics adds yet another layer of complexity, it may also provide new opportunities for
discovering enhanced biomarkers or therapeutic approaches. However, the field of RNA modifications
is still in its infancy and much groundwork remains to be done.

In this context, many recent studies have demonstrated the power of diverse CRISPR technologies
to decipher the roles of epigenetic modulators, modifiers and mediators in CRC. The CRISPR/Cas9
system has been used for multiplexed knockout screens of epigenetic regulators [47,168]. Another
derivate, the CRISPR/deadCas9 system, in which the nuclease activity of Cas9 has been deactivated,
can still specifically target any dsDNA sequence through the design of a specific guide RNA. The
dead Cas9 system has been adapted to target transcriptional repressors (CRISPRi) and activators
(CRISPRa) [169]. Examples are CRISPR/dCas9-VPR for the transcriptional activation of fucosyl
transferase (FUT) genes [170], DICaS (genome-wide dual protein-coding and non-coding integrated
CRISPRa screening) to identify coding and lncRNA genes involved in drug resistance mechanisms [171]
and CRISPR/dCas9-KRAB for HS2 enhancer repression [172,173]. Furthermore, the dead Cas9 system
can be used for efficient, directed manipulation of the epigenome via fusion with epi-effector enzymes
such as the catalytic domains of TET1 for selective DNA demethylation [174], or DNA methyltransferase
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DNMT3A for targeted CpG methylation of gene promoters [175]. Dead Cas9 has also been used for
targeted localization of lncRNAs to specific genomic loci [176].

Moreover, the CRISPR/Cas9 technology could significantly reduce side effects of epigenetic drugs
by targeting them specifically to modulate genes of interest.

Lastly, it requires integrative approaches such as system biology to fully understand gene
regulation in CRC by means of epigenetics, alternative splicing, and ncRNAs. The complexity of
gene regulation realized by these mechanisms is difficult to comprehend and demands the aid of
computer models [177,178]. Spatial models of the intestinal crypts and colorectal cancer development
have been reviewed by De Matteis et al. [179]. Recently, a computational model was developed,
linking cell surface receptor (EGFR) activation, the MAPK signalling pathway and tumour growth
to determine whether ERK inhibitor drugs may be of benefit for CRC patients with the frequently
occurring BRAFV600E mutation [180]. Vafaee et al. have integrated data-driven and knowledge-based
approaches for biomarker identification in CRC and thereby identified a plasma miRNA signature that
is predictive of patients’ survival outcome [181]. To date, however, very few studies have integrated
epigenetics and alternative splicing into their models of cancer gene regulation.

Supplementary Materials: Table S1 and Figure S1 are available online at http://www.mdpi.com/2073-4409/8/8/929/
s1. Table S1: LncRNAs sponging microRNAs in CRC. Figure S1: Overview of cross-talk between gene-regulatory
layers in CRC (A vector graphics version).
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