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Abstract (200-250 words) 
Alternative splicing is a ubiquitous process that increases transcriptomic and proteomic 
complexity across the animal kingdom. Intron retention (IR) is a particular form of alternative 
splicing that is different from the other forms as it only increases transcriptomic complexity 
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but rarely directly affects the proteome. IR has long been neglected as it was considered a mis-
splicing event and was referred to as transcriptional noise. However, recent reports have 
attributed a pivotal role to IR in normal physiology and diseases.  
Studying IR comes with specific technical and analytical requirements, that enable a robust 
detection and quantification of this phenomenon. Advances in sequencing technologies and the 
development of IR calling and quantification software have facilitated numerous novel insights 
into the complex life of introns. 
In this chapter, we describe computational methods for the analysis of IR events, their 
characteristics and conservation, the regulation of IR, and downstream consequences. We also 
introduce experimental approaches that are used in IR research. 
 

Introduction 

Intron retention and the mammalian transcriptome 
With the advent of next-generation sequencing technologies, in particular RNA sequencing, 
we were able to study cellular transcriptomes at great detail. Recent landmark studies suggest 
that more than 95% of human multi-exonic genes are subject to alternative splicing and thereby 
give rise to at least two alternative isoforms (Merkin et al. 2012; Barbosa-Morais et al. 2012; 
Nilsen and Graveley 2010). 
A striking transcriptomic diversity, enabled by alternative splicing, was revealed across many 
species. A major contributor to this diversity is IR, the only form of alternative splicing that 
does not affect proteomic complexity (Wong et al. 2015). Moreover, IR was found to be a new 
form of post-transcriptional gene regulation that is important, for example, in the differentiation 
of hematopoietic lineages (Wong et al. 2013; Edwards et al. 2016; Ni et al. 2016; Pimentel et 
al. 2016). It is known that introns contain cis-regulatory elements, such as regulatory motifs, 
but they can also accommodate trans-acting elements, such as small nucleolar RNAs and 
microRNAs (Hirose and Steitz 2001; Kim and Kim 2007). Thus, IR has novel gene regulatory 
implications that can, for example, facilitate stem cell differentiation (Naro et al. 2017), rapid 
responses to biological stimuli (Mauger, Lemoine, and Scheiffele 2016; Ni et al. 2016), as well 
as disease pathogenesis and progression (Dvinge and Bradley 2015; Jung et al. 2015; Wong, 
Rasko, and Wong 2018). 
 

IR is a widespread form of post-transcriptional gene regulation 
Formally, IR occurs when the splicing machinery fails to excise an intron from a pre-mRNA 
transcript so that the introns remains part of the mature mRNA. While most mRNA transcripts 
are transported to the cytoplasm, where they function as a blueprint for protein synthesis, many 
intron-retaining transcripts remain in the nucleus (Boutz, Bhutkar, and Sharp 2015). Others, 
that are transported into the cytoplasm are often subjected to nonsense-mediated decay, a 
process initiated by the cellular surveillance machinery that detects premature termination 
codons. Retained introns are enriched in premature termination codons (Lareau et al. 2007), 
hence they are considered a mediator of nonsense-mediated decay and IR is seen as a distinct 
form of post-transcriptional gene regulation (Wong et al. 2015).  
While it has been shown that IR affects ~80 % of protein coding genes in human (Middleton 
et al. 2017), a comparison of IR occurrences in 11 vertebrate species has shown that in 50-75 
% of multi-exonic genes are affected vertebrates (Braunschweig et al. 2014). IR is also 
widespread in fungi, insects, viruses and represents the most frequent form of AS in plants 
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(Kim, Magen, and Ast 2007; McGuire et al. 2008). In rice, for example, IR occurs in 47% of 
all AS events (Zhang et al. 2010). 
In Saccharomyces cerevisiae, orchestrated IR occurs during the transition from vegetative 
growth to sporulation as 13 meiosis-specific introns are incompletely spliced during 
exponential growth in rich media (Juneau et al. 2007). Post-transcriptional regulation of the 
transition from mitosis to meiosis via IR is essential for yeast in order to maintain active 
growth. IR is also widespread during parasite differentiation, which was shown in analyses of 
the intron-rich genomes of apicomplexan parasites. Moreover, IR prevents translation of stage 
specific isoforms of glycolytic enzymes in T. gondii (Lunghi et al. 2016). 
Thus, it has been known for a while that IR is widespread in plants, fungi and unicellular 
eukaryotes (Ner-Gaon et al. 2004; Marquez et al. 2012; Sebe-Pedros et al. 2013). The 
omnipresence in vertebrate and mammalian species became only apparent when next-
generation sequencing technologies became available (Schmitz et al. 2017; Braunschweig et 
al. 2014).  

Alternative fates of intron-retaining transcripts 
It was shown recently that ~80% of coding genes can be affected by IR in human (Middleton 
et al. 2017), however the fate of intron-retaining transcripts is not always the same. Nuclear 
detained intron-retaining transcripts are either target of nuclear degradation pathways or 
comprise a pool of “sentinel” RNAs that are ready to be processed upon environmental stimuli 
facilitating rapid protein translation (Wong et al. 2015). Some intron-retaining transcripts 
might even become blueprints for new protein isoforms (Gontijo et al. 2011). Moreover, introns 
can carry signals that facilitate the specific subcellular localization of the intron-retaining 
transcript (Buckley et al. 2011).  
An overview about IR, fates of intron-retaining transcripts, and other forms of alternative 
splicing is provided in Figure 1. 

 
Figure 1 Biogenesis and fate of intron-retaining transcripts. (A) IR is an alternative splicing event that leads to the inclusion 
of an intron in the mature mRNA transcript. Gene splicing occurs co-transcriptionally and trans-regulators, such as DNA 
methylation, histone marks and the availability of splicing factors can modulate IR events. (B) The accumulation of intron-
retaining transcripts in the nucleus is referred to as intron detention. (C) In rare cases, intron-retaining transcripts are 
translated and produce new protein isoforms. (D) The majority of intron-retaining transcripts is degraded in the cytoplasm by 
nonsense-mediated decay. This leads to the reduction in target gene expression, which is why IR is considered a mechanism 
of post-transcriptional gene regulation. (E) Other forms of alternative splicing include exon skipping, alternative 3′ or 5′ splice 
site selection, and the mutual exclusive expression of exon pairs. 
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IR is tissue-specific and aberrant in disease 
Data suggest a tissue-specific regulation of IR leading to varying frequencies of IR observed 
between cell types. Methods to predict alternative splicing in a cellular or disease context have 
been developed, but have primarily focused on splice site mutations and their impact on 
splicing (Leung et al. 2014) (Xiong et al. 2015; Jaganathan et al. 2019; Baeza-Centurion et al. 
2019). 
Aberrant IR was found in multiple human diseases including diverse cancers (Perfetti et al. 
2014; Lacroix et al. 2012; Dvinge and Bradley 2015). Often, somatic mutations are the cause 
for aberrant IR, resulting in mis-splicing and as a consequence in partial or complete IR. In 
cancer, IR-inducing somatic mutations often affect tumour suppressor genes (Jung et al. 2015). 
 
In summary, an increasing number of studies have identified IR as a fundamental physiological 
process of gene regulation important in normal biology and disease. While advances in next-
generation sequencing technologies have revealed the extent to which alternative splicing 
(including IR) enhances transcriptomic and proteomic complexity (Pan et al. 2008), consensus 
workflows or best practises for IR detection and quantification are currently lacking. In this 
chapter, after introducing experimental techniques used for alternative splicing and IR research, 
we provide an overview about currently available tools and statistical approaches for 
differential IR analyses and challenges associated with IR detection and quantification. 
 

Experimental approaches for the investigation of intron retention 
When we consider experimental techniques used in IR research, we have to differentiate 
between methods for IR identification and quantification, as well as methods to study the 
regulation and consequences of IR. 
For the transcriptome-wide identification and quantification of IR, RNA sequencing is widely 
used, mostly as part of other whole transcriptome analyses, such as gene expression and 
alternative splicing. However, for the accurate identification of IR events optimized sample 
and library preparation, as well as sequencing protocols, are essential (Vanichkina et al. 2017). 
For an unbiased identification of IR events RNA samples have to be cleared from nascent RNA 
and DNA contamination, e.g. by DNAse treatment and poly-A enrichment protocols. For 
compartmental localization of IR, cellular fractionation protocols can be applied prior to RNA 
sequencing. 
Using data from bulk short-read RNA sequencing experiments, we and others were able to 
unravel specific sequential and structural characteristics associated with retained introns and 
their host genes (Edwards et al. 2016; Wong et al. 2013; Schmitz et al. 2017). For short-read 
protocols stranded paired-end sequencing is the preferred method and a high sequencing depth 
is crucial (Vanichkina et al. 2017). The dependency of novel splice junction discovery on 
sequencing depth and thus the reliable detection of IR events is illustrated in Figure 2.  
Long-read sequencing protocols, such as PacBio’s Single- Molecule, Real-Time (SMRT) 
Sequencing or Oxford Nanopore sequencing, can be used to study whole transcript isoforms 
(Rhoads and Au 2015; Byrne et al. 2017; Wang et al. 2016). With the aim of sequencing full-
length transcripts, these techniques provide the opportunity to identify single-molecule patterns 
of IR, such as mutually exclusive IR events, interdependent IR events, or IR switches.   
 



 5 

 
Figure 2 The dependence of alternative splicing discovery on sequencing depth. (A) Subsampling RNA-seq data into bins of 
increasing depth illustrates how an increasing number of IR events is detected with greater depth. (B) Sufficient sequencing 
depth is crucial to perform alternative splicing analysis in general, where saturated RNA-seq data rediscovers most annotated 
splice junctions. Junction saturation of RNA-seq data can be determined using the junction_saturation.py module of the 
RSeQC RNA-seq quality control package (rseqc.sourceforge.net/). Sequencing depth is indicated in million reads. 
 
IR is a low-frequency transcription event and apart from a high sequencing depth (>80 million 
reads), adequate read coverage is essential. For that reason, single-cell RNA sequencing does 
not yet fulfil basic requirements and is thus at present not suitable for IR detection and 
quantification. Due to various constraints (such as budget or RNA concentration), conventional 
mRNA sequencing is sometimes as well not adequate to quantify IR with sufficient precision. 
Moreover, sequenced reads are typically quenched by transcripts from highly-expressed genes. 
A medium-throughput solution, for the accurate quantification of IR, would be RNA Capture 
sequencing (CaptureSeq) for a selected panel of IR events. CaptureSeq uses a custom panel of 
oligonucleotide probes designed to bind complementary sequences specific to transcripts of 
interest (Mercer et al. 2014). While not suitable for de novo identification of IR events, this 
technique enables a strong increase in sequencing depth of the targeted transcripts. Despite this 
advantage, CaptureSeq has not been used for this purpose to date. Instead, qRT-PCR is the 
most widely used method for IR validation and quantification.  
In some situations, it is desired to also determine the cellular location of intron-retaining 
transcripts, which can be achieved by applying subcellular fractionation prior to RNA 
sequencing (Wong et al. 2013) or by using microscopy-based approaches, such as single-
molecule RNA FISH (fluorescence in situ hybridization). 

Bioinformatic approaches for IR identification and quantification 
Custom computational workflows are essential for IR detection and quantification (Vanichkina 
et al. 2017). Like with any RNA sequencing data analysis, it is vital that established quality 
control software, such as fastqc (www.bioinformatics.babraham.ac.uk/projects/fastqc/), 
multiqc (multiqc.info)(Ewels et al. 2016), Piccard (broadinstitute.github.io/picard/), or RSeQC 
(rseqc.sourceforge.net), are used before any other data analysis is performed. 
Given the quality control step confirmed positive attributes of the raw and mapped sequencing 
reads, the next data pre-processing steps are transcript identification and quantification. Only 
then further analysis steps can be applied, which in this case is the alternative splicing analysis 
or direct IR analysis. Best practices for pre-processing and analysis of RNA sequencing data 
have recently been summarized by Conesa and co-authors (Conesa et al. 2016).  
The analysis of IR events in RNA sequencing data differs from the analysis of other alternative 
splicing events, such as exon skipping or alternative splice site selection. However, available 
alternative splicing analysis tools report IR as part of their analysis reports. An overview of 
some alternative splicing software is provided in Table 1. 
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Table 1 Overview of algorithms for the analysis of alternative splicing events. 
Tool/Resource  Purpose/Method Website PMID 

MISO  
(Mixture of 
Isoforms) 
(Differential)  
 

gene isoform expression analysis; 
determines intronic percent spliced in (PSI) levels  
 

genes.mit.edu/burgelab/miso 21057496 

rMATS 
(Multivariate 
Analysis of 
Transcript 
Splicing) 
 

Differential alternative splicing analysis  
 

rnaseq-mats.sourceforge.net 25480548 

spliceR  
 

AS identification/quantification bioconductor.org/packages/sp
liceR 

24655717 

Psichomics  
 

Alternative splicing quantification and analysis bioconductor.org/packages/ps
ichomics 

30277515 

Whippet  
 

Fast AS detection and quantification algorithm github.com/timbitz/Whippet.j
l 

30220560 

SUPPA2  
 

Fast differential splicing analysis github.com/comprna/SUPPA 29571299 

MAJIQ Detection and quantify of local splicing variations 
from 
RNA-Seq data  
 

majiq.biociphers.org 29236961 

VAST-TOOLS 
(Vertebrate 
Alternative 
Splicing and 
Transcription 
Tools) 
 

Toolset for profiling and comparing alternative 
splicing 
events in RNA-Seq data 

github.com/vastgroup/vast-
tools  

28855263 

 

IR analysis software 
IR is a special form of alternative splicing and its identification requires specific considerations. 
Only a handful of tools that are dedicated to IR identification and quantification incorporate 
these considerations into their algorithms (Middleton et al. 2017; Pimentel, Conboy, and 
Pachter 2015) (Oghabian, Greco, and Frilander 2018). 
While most alternative splicing analysis tools follow a splice-junction or coverage-based 
approach for isoform identification and exon inclusion quantification, IR analysis requires a 
combination of both (Vanichkina et al. 2017). To date, three software tools have been 
developed specifically for IR detection and quantification (IRFinder, kma, and IntEREst; see 
Table 2 for details). These software tools have not been systematically benchmarked yet. 
However, in the following, we provide a brief overview and compare some of their key 
features. 

Models of gene structure 
While exonic sequences are well annotated for widely used model organisms the definition of 
introns remains fuzzy. The R package (Intron– Exon Retention Estimator, a.k.a. IntEREst) 
comes with a function for preparing a reference genome with defined gene structures 
(Oghabian, Greco, and Frilander 2018). The user can select to collapse all gene isoforms to 
avoid that intronic regions in one isoform belong to an exon of an alternative isoform. IRFinder 
too includes tools for preparing a custom reference genome (Middleton et al. 2017). All introns 
are derived from a given annotation file in GTF or GFF format and are defined as the regions 
between neighbouring exons in any transcript. To avoid false-positive predictions of IR events, 
IRFinder excludes regions within the intron that are covered by a non-intron feature (e.g. 
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miRNAs or snoRNAs). Moreover, the IRFinder output includes warnings indicative of 
overlapping isoforms or overlapping anti-sense genes and leaves it to the user to decide whether 
an IR event is real or not. kma determines intronic coordinates from a given genome reference 
(FASTA) and an annotation file, and, similar to IntEREst, excludes exonic regions from other 
isoforms (Oghabian, Greco, and Frilander 2018). However, kma adds a small region of the 
neighbouring exons to the intron coordinates to include reads spanning the intron-exon 
junctions for intron expression quantification (Pimentel, Conboy, and Pachter 2015). 
Other studies used derivatives of the intron models proposed by the three established tools. For 
example, Ni et al. consolidated transcript isoforms from RefSeq annotations and considered 
only shared intronic and exonic regions in their gene models to determine IR levels. Genes that 
contain non-coding transcripts or overlap with another genes or antisense transcripts were 
removed from the analysis. 
 

Metrics for IR quantification 
Most IR detection algorithms report the fraction of intron retaining transcripts in all transcripts 
of the same gene or gene isoform. Hence, the emphasis is not on the intron abundance. 
IntEREst, however, uses Fragments Per Kilobase of transcript per Million mapped reads 
(FPKM) for intron expression quantification, which is normalized for intron length and the 
total number of introns in a gene (Oghabian, Greco, and Frilander 2018). Moreover, IntEREst 
determines the relative intron inclusion level, also known as percentage spliced-in metric (PSI 
or Ψ)(Katz et al. 2010), to quantify IR. Ψ is determined based on the number of reads mapped 
to introns divided by the number of reads spanning the intron (or mapping exons flanking the 
intron) (Oghabian, Greco, and Frilander 2018). 
 
IRFinder uses a similar metric, which is called the IR-ratio: 
 
  𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
    (1) 

 
The IR-ratio considers the abundance of the retained intron and its flanking exons. The exonic 
abundance refers to the number of read fragments spliced across the exon-exon junction. The 
intronic abundance is the median number of reads that map to an intron. As indicated before, 
IRFinder excludes overlapping features as well as the highest and lowest 30% of values from 
the intronic abundance. Moreover, exonic and intronic abundance are filtered for feature length 
(Middleton et al. 2017). Therefore, although Ψ and IR-ratio are similar measures determined 
by reads mapping to introns, across splice sites, and to the flanking exons, software-specific 
filtering criteria are applied leading to slightly varying IR quantification measures. 
 
kma measures intronic abundance using either the transcripts per million (TPM) or FPKM 
metrics. For that, kma can be used with established transcript quantification tools such as 
Bowtie (Langmead and Salzberg 2012) or eXpress (Roberts and Pachter 2013). However, kma 
also provides Ψ as a readout, which is the ratio between intron expression and expression of 
the overlapping transcripts plus the intron expression (Pimentel, Conboy, and Pachter 2015). 
 
Other names for very similar approaches have been used, such as the Percent Intron Retention 
metric (PIR; (Braunschweig et al. 2014) or the Intron Retention Index (IRI) proposed by (Ni et 
al. 2016), where IRI is the ratio of the read density of intronic regions and that of exonic regions 
shared by all transcript isoforms of the same gene. Ni et al. also determined the intron retention 
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percentage (IRP) as the fraction of all reads that map to a junction (i.e. across-junction + 
spliced) (Ni et al. 2016). 
 
Table 2 Overview of IR detection/quantification algorithms. 

Tool/Resource  Purpose/Method Website Reference 
IRFinder  
 

Detecting intron 
retention from RNA-
Seq experiments 

github.com/williamritchie/IRFinder (Middleton et al. 
2017) 

Keep Me Around (kma)  
 

R package for IR 
Detection 

github.com/pachterlab/kma (Pimentel, Conboy, 
and Pachter 2015) 

IntEREst  
 

IR quantification github.com/gacatag/IntEREst (Oghabian, Greco, 
and Frilander 2018) 

 
In summary, the key question in most IR studies, as with most alternative splicing analyses, is 
about the proportion of transcripts that are affected by IR. 

Challenges in the identification and quantification of IR events 
A few confounders, i.e. transcriptional “noise” introduced by DNA contamination or 
unprocessed pre-mRNA transcripts, have to be considered in the analysis of IR events. 
IRFinder detects DNA contamination by computing the ratio of reads mapped to intergenic 
regions to the number of reads that mapped to coding regions (Middleton et al. 2017). In case, 
the ratio is above 10%, IRFinder emits a warning informing the user that the sample may not 
be suitable for IR detection. 
 
It is important to enrich RNA libraries for polyadenylated RNA (mature mRNA) to minimize 
pre-mRNA contamination. Pre-mRNA contamination would inflate IR-ratios and by counting 
the number of reads that map to a list of non-polyadenylated genes (small nucleolar RNAs and 
histone genes) IRFinder can identify samples that were not poly-A enriched prior to RNA 
sequencing. Again, in this case, the user is informed through a warning message. 
 
Another obstacle in IR quantification is low coverage or highly variable coverage in either the 
intronic or exonic regions or both. A reason for variable coverage could be repetitive sequences 
such as Long and Short Interspersed Nuclear Elements (LINEs and SINEs), DNA transposons, 
tandem and low complexity repeat sequences. kma removes introns with highly variable 
coverage using coverage filters (Pimentel, Conboy, and Pachter 2015), while IntEREst allows 
users to exclude repeat regions from the analysis (Oghabian, Greco, and Frilander 2018). 
However, it the user’s responsibility to provide a table of repeat coordinates, which can, for 
example, be retrieved from the Dfam database of repetitive DNA families (dfam.org). IRFinder 
determines regions of poor unique mappability, which include repetitive sequences, and 
excludes these from the IR quantification  (Middleton et al. 2017). 

Statistical approaches for differential IR analysis 
In many scientific scenarios, it is desirable to assess changes to IR pattern between two or more 
conditions. For example, we and others have determined differences in IR in hematopoietic 
cell differentiation (Edwards et al. 2016; Ni et al. 2016; Wong et al. 2013). Important insights 
were also gained by comparing IR pattern in tumours versus adjacent normal tissues (Dvinge 
and Bradley 2015). 
For the analysis of differential IR multiple statistical approaches have been proposed. For 
example, IRFinder is equipped with the Audic and Claverie test (Audic and Claverie 1997), 
which is suitable for scenarios in which only one or two replicates per sample are available. 
This was very often the case when RNA sequencing was expensive and labs could not afford 
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to sequence multiple replicates. In its current version, IRFinder provides scripts that prepare 
the IRFinder output for the use with the R Bioconductor package DESeq2 (Love, Huber, and 
Anders 2014). DESeq2, normally used for differential gene expression analysis in RNA 
sequencing data, fits read counts to a negative binomial generalized linear model and employs 
Wald statistics or the likelihood ratio test to determine differential gene expression or in this 
case differential IR. IntEREst too uses functions from established digital gene expression 
analysis tools. Differential IR can be determined using either edgeR (Robinson, McCarthy, and 
Smyth 2010), DEXSeq (Anders, Reyes, and Huber 2012), or DESeq2 (Love, Huber, and 
Anders 2014). 
 
The general assumption of most alternative splicing analysis tools is that splicing events, 
including IR, follow a binomial distribution, while the variability among replicates is 
considered to be normally distributed as well. However, some tools assume non-normally 
distributed intron inclusion levels and therefore use non-parametric tests, such as the Wilcoxon 
rank-sum, Kruskal–Wallis rank-sum, or Fligner–Killeen tests, to determine differences in mean 
intron inclusion levels between two condition. 
 
Often thousands of introns are tested for differential retention. Thus, multiple testing correction 
is required to reduce the chance of false-positives (or Type 1 errors). Popular methods for 
multiple testing correction are the Benjamini-Hochberg, Holm–Bonferroni, and False 
Discovery Rate methods, however, none of the IR quantification tools provides multiple testing 
correction. Hence, the user has to make sure that multiple testing correction is applied. 
An overview of statistical tests provided by different IR quantification tools is provided in 
Table 3. 
 
Table 3 For the analysis of differential IR multiple statistical approaches have been proposed. 

Software Statistical test Description 

IRFinder  Audic and Claverie test  suitable for scenarios in which only one or two  

replicates per sample are available 

IRFinder + 
DESeq2 

Wald statistics 
or likelihood  
ratio test 

fits read counts to a negative binomial generalized linear model and 
employs Wald statistics or the likelihood ratio test to determine 
differential gene expression or in this case differential IR 

IntEREst  various differential IR can be determined using either edgeR, DEXSeq, or 
DESeq2 

rMATS  likelihood-ratio test uses the binomial distribution for modelling the estimation uncertainty in 
individual replicates and the normal distribution for modelling the 
variability among replicates based on inclusion 

read counts, skipping read counts, and intron inclusion levels 

psichomics Wilcoxon rank-sum,  
Kruskal–Wallis rank-sum,  
Fligner–Killeen tests 

assume non-normally distributed intron inclusion levels and therefore use 
non-parametric tests to determine differential IR 

 

Experimental validation of IR events 
Acceptable candidates for qRT-PCR validation should have at least raw read counts IRcount > 
20 and consistent read coverage throughout the intron, while the flanking exons should also be 
well expressed (exoncount >200). The next step is to generate cDNA from RNA extracted from 
the selected cell line/tissue. This step is crucial for IR validation as any DNA contamination 
would interfere with the detection of the mRNA-containing-intron as DNA can be used as a 
template for amplification. Therefore, effective DNAse treatment is essential to eliminate any 
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DNA contamination from the RNA extraction step. For cDNA synthesis, oligo(dT) is used for 
selectively reverse transcribe mature RNA transcripts containing retained introns. Finally, for 
qRT-PCR validation, two specific sets of primers are designed to validate IR events. One set 
of primers targets the flanking exons to determine the exonic expression of the intron-retaining 
gene. Ideally, one of the primers should anneal across the exon-exon boundary to make sure 
that the spliced variant is detected (without the intron). The second set of primers aims to detect 
the intronic expression of the retained intron. Similar to the first set of primers, one primer 
should anneal across the exon-intron boundary. Finally, to calculate the abundance of intronic 
expression over the flanking exons expression (or % of IR), the expression of the intron and 
exon are normalised first to the housekeeper gene (2−Δ𝐶𝐶𝐶𝐶). Then the IR-ratio is computed (eq. 
1). 

Phylogenetic IR analyses 
With the help of phylogenetic IR analyses, one can determine the evolutionary and functional 
conservation of IR events across multiple taxa and in different cell systems. Several studies 
have demonstrated the relevance of IR conservation, e.g. in the innate immunity (Braunschweig 
et al. 2014; Boutz, Bhutkar, and Sharp 2015; Wong et al. 2013). In a phylogenetic analysis of 
alternative splicing in 7 organs from 11 vertebrate species, Barbosa-Morais et al. found that 
transcriptomic complexity increased in species evolutionarily closer to primates (Barbosa-
Morais et al. 2012). In this context, we have shown that the fraction of intron-retaining 
transcripts strongly anti-correlates with the number of protein-coding genes in vertebrate 
genomes, suggesting that IR compensates for the lack of transcriptomic complexity in species 
with fewer protein-coding genes (Schmitz et al. 2017). Moreover, we have shown that not just 
the characteristics of retained introns, such as their short length, high GC content, weak splice 
sites, etc. are strongly conserved, but also the characteristics of intron-retaining genes, such as 
their larger number of introns, longer 3′ untranslated regions, and bi-directional promoters 
(Schmitz et al. 2017). 
 
However, there are a few obstacles to deal with when performing a phylogenetic IR analysis. 
These include, for example, the likely event that sequencing depths vary between samples from 
different species. Moreover, the quality and depth of genome annotations vary between model 
organisms and therefore conservation of IR in gene orthologs is difficult to assess. 
Bias in the detection of IR event frequencies introduced by differences in annotation qualities 
can be avoided by generating de novo exon-intron structures from the same number of random 
reads for each sample (Barbosa-Morais et al. 2012). Stringent filtering based on coverage, 
depth, and read distribution can further reduce the risk of false intron retention calls due to mis-
annotation, or insufficient precision due to lack of coverage (Braunschweig et al. 2014; 
Barbazuk, Fu, and McGinnis 2008). 
Another factor that needs to be considered is that the number of IR events detected depends 
not just on the sequencing depth (Figure 2) but is also dependent on the number of transcripts 
per gene (Chen et al. 2014). Therefore, a method for transcript number normalization on a 
gene-by-gene basis is required in comparative analyses across taxa.  
Intron sequences are poorly conserved (unlike exons). Low-conservation of most intron 
sequences has previously led to the conclusion that IR is merely transcriptional noise (e.g. due 
to errors in splicing) and has no functional implications (Mendell et al. 2004). It can, therefore, 
be difficult to determine orthologous introns for phylogenetic analyses of IR. However, the 
intron positions in the gene structure are often shared between species of the same lineage 
(Rogozin et al. 2003). Therefore orthologous introns could be considered as those occurring in 
the same position in orthologous genes or could be determined based on the orthology 
relationship or conservation of their flanking exons (Zhang and Edwards 2012). 
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Differences in the size and number of introns in different species require normalisation in short-
read sequencing experiments comparing IR abundance across taxa because IR events are more 
likely detected in species with fewer and or shorter introns. 
There are currently no tools available that could be employed for the analysis of lineage-
specific IR events as well as their downstream effects and due to the relatively sparse data 
available for some model organisms, extrapolations are required to assess the evolutionary 
conservation of IR. 
 
Functional consequences of IR can be gauged using functional enrichment analysis for the 
genes affected by IR, with resources such as GSEA (Subramanian et al. 2005), DAVID 
(Sherman et al. 2007), or PANTHER (Mi, Muruganujan, and Thomas 2013). All of these and 
others use similar statistical approaches and can be used with predefined genomic background 
data or customised backgrounds, e.g. based on expressed genes. Nevertheless, since the 
annotation qualities vary, conclusions from a cross-species comparison of cellular processes or 
pathways affected by IR have to be made with caution. Generally, functional enrichment 
analyses of alternative splicing events are strongly confounded by detectability, to which 
expression is the biggest contributor (Timmons, Szkop, and Gallagher 2015). 
 

Analysis of IR regulation 
The exact mechanisms that lead to IR events are not yet fully understood. However, several 
cis- and trans-regulatory elements that have an impact on IR are known (Monteuuis et al. 
2019). Moreover, somatic mutations near splice sites are responsible for increased IR 
occurrences in multiple human cancers, often negatively affecting the expression of tumour 
suppressor genes (Jung et al. 2015). Differential expression of splicing factors and components 
of the nonsense-mediated decay pathway can also explain some of the aberrant IR patterns 
observed in human cancers (Dvinge and Bradley 2015). 

Experimental approaches to find regulators of IR 
For the discovery of regulators of IR multiple experimental and computational approaches are 
available. For example, advanced next-generation sequencing technologies provide 
opportunities to study intrinsic and extrinsic regulators of IR. Whole-genome or whole exome 
sequencing paired with RNA sequencing experiments can be used to identify genomic variants 
causing or inhibiting IR events (Jung et al. 2015; Maselli et al. 2014). Using whole-genome 
bisulfite sequencing, we found that reduced DNA methylation around splice sites and within 
the intron body can be favourable for IR (Wong 2017). Analysis of ChIP-seq data has shown 
that certain histone marks are enriched near splice sites of retained introns, suggesting an 
epigenetic mechanism of IR regulation (Braunschweig et al. 2014). Hence, to find genomic 
and epigenomic regulators of IR the same approaches as for gene regulation in general can be 
employed. 
Moreover, based on transcriptomics data of splicing factor knockdown experiments 
(encodeproject.org) we identified trans-regulators causing a drastic increase in IR (Middleton 
et al. 2017). Another transcriptomic approach for the identification of trans-regulators of IR is 
RNA crosslinking immunoprecipitation sequencing used for example for RNA binding protein 
footprinting. Widely used derivatives of this technique are HITS-CLIP, PAR-CLIP, and iCLIP 
(Lagier-Tourenne et al. 2012; Bergeron et al. 2015). A growing resource of such data that can 
be mined to find trans-acting or epigenetic regulators of IR is the Encyclopedia of DNA 
Elements – ENCODE project (encodeproject.org). 
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Bioinformatics analysis of IR regulators 
For the computational identification of regulators of IR custom workflows have to be 
implemented. For the analysis of intrinsic features of retained introns and their host transcripts 
one can take advantage of the many tools and code libraries that are available for the analysis 
of sequence composition, motif discovery, and structural characterisation of RNA molecules 
(e.g. bedtools - bedtools.readthedocs.io; BioPython - biopython.org, BioPerl - bioperl.org, 
Bioconductor - bioconductor.org), ViennaRNA Package - tbi.univie.ac.at/RNA). Our own 
analysis of intrinsic features of IR regulation revealed conserved characteristics, such as the 
shorter length, higher GC content, weaker splice sites of retained compared to non-retained 
introns (Schmitz et al. 2017). In this context, the maximum entropy model of short sequence 
motifs proposed by Yeo and Burge can be used to estimate the strengths of donor and acceptor 
sites (Yeo and Burge 2004). Intron-retaining genes were found to have longer 3′ UTR 
sequences, are enriched in bi-directional promoters, and have on average more introns than 
non-intron-retaining genes. 
 
The analysis of epigenomic regulators of IR can be performed analogously to the analysis of 
epigenomic gene expression regulation. Methods for the analysis of epigenomics data 
including DNA methylation (e.g. WGBS)(Bock 2012), histone modifications (e.g. ChIP-
seq)(Bailey et al. 2013), and chromatin structure (3C-based technologies, MNase-seq, DNase-
seq, FAIRE-seq, ATAC-seq)(Chang et al. 2018) data have been critically reviewed before. 
 
In studies that investigate the potential role of DNA methylation as a regulator of IR, 
methylation of CpG sites around 5′ and 3′ splice sites and the middle of an intron are assessed 
(Amit et al. 2012; Gelfman et al. 2013; Wong 2017; Gascard et al. 2015). The methylation 
signal (as percentage of methylated cytosines) is usually aggregated into non-overlapping bins 
or sliding windows and either parametric or non-parametric testing is performed to assess 
differential methylation between retained and non-retained introns. Whilst analysing DNA 
methylation as percentage is widely adopted and incorporated into a vast number of 
computational pipelines (Hansen, Langmead, and Irizarry 2012; Akalin et al. 2012; Dolzhenko 
and Smith 2014), normalised methylation fraction does not account for the potential 
inconsistency in sequencing depth of the different regions of the genome (Lea et al. 2017). To 
mitigate the potential coverage bias, differential methylation analysis can be performed on the 
raw count of methylated and unmethylated cytosines (that are calculated per sliding window) 
using an appropriate statistical model whose assumptions would satisfy the attributes of the 
data. Desirable characteristics of such a model would include the ability to deal with the 
correlated measures (as counts are aggregated into sliding windows) and to handle the 
unbalanced observations (which is especially relevant as the size of IR samples is usually 
smaller compared to samples of non-retained introns) and missing data (absence of a CpG site 
at the genomic loci of interest). One of the models that meets these parameters is the Binomial 
Generalised Linear Mixed Model (GLMM), where the raw counts of methylated and 
unmethylated cytosines for retained and non-retained introns are modelled through the logit 
link function and the hypothesis test is performed using a Wald test. The binomial GLMM 
procedure can be applied on Bismark output files, which contain the counts of methylated and 
unmethylated cytosines. In the absence of raw counts (majority of publicly available WGBS 
experiment datasets, including ENCODE, provide information on the methylation ratios and 
the read depth only), the binomial GLMM procedure can be carried out using the methylation 
ratio as a response variable and the read depth as the observational weight.  
 
Most peak calling tools for ChIP-seq data report the location of the mapped reads in BED 
format, a tab-delimited text file format to represent genomic coordinates. The next step in the 
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analysis of histone marks as IR regulators is to overlay these coordinates onto the genome and 
identify corresponding genetic features. Discovery and annotation of the sequenced genome 
remain a major ongoing challenge in the post-human genome era. Fortunately, the annotated 
coordinates of genetic features such as introns and exons for a variety of species can be readily 
downloaded from resources such as the Ensembl consortium (ensembl.org/info/data/ftp). 
Specialised tools such as the Linux command line software bedtools and the R Bioconductor 
package GenomicRanges provide a range of utilities to efficiently intersect, merge and sort 
genomic intervals, which aid in constructing a 2x2 contingency table to chart the frequencies 
of ChIP-seq peaks against binary IR event outcome. Statistical methods for enrichment analysis 
including Fisher’s exact test (for small sample size), Chi-square test or hypergeometric test (for 
large sample size) are commonly used to identify chromatin marks significantly associated with 
IR. Sampling procedures such as bootstrapping or subsampling procedures such as ‘m out of 
n’ bootstrapping should also be employed to increase statistical robustness of hypothesis 
testing. 
  
For a holistic approach integrative “omics” analysis pipelines involving the above-mentioned 
methods should be applied. Methods for multi-omics data integration and associated challenges 
have been discussed in recent reviews (Gomez-Cabrero et al. 2014; Qin et al. 2016; Huang, 
Chaudhary, and Garmire 2017).  

Modelling IR-mediated gene regulation 
In the previous section, we have discussed methods used for the identification of IR regulators. 
Given that regulators of IR become known one could predict the occurrence of IR events. 
Indeed, multiple machine learning-based approaches have been developed to predict exon 
usage, however, IR prediction tools have not been developed to date. Barash et al. used a 
Bayesian neural network to decipher the “splicing code”, which consists of hundreds of RNA 
sequence and structural features which can predict tissue-specific changes in exon usage 
(Barash et al. 2010). Later, the same group managed to improve prediction accuracy by 
applying a deep neural network (Leung et al. 2014). Other machine- and deep learning methods 
were developed to predict cryptic splicing as a result of somatic mutations (Xiong et al. 2015; 
Jaganathan et al. 2019; Baeza-Centurion et al. 2019). 
 
IR enhances gene regulatory complexity through an increased sophistication in gene expression 
fine-tuning (Figure 3a/b) and also induces complexity on a molecular network level (i.e. gene 
regulatory networks, metabolic networks, signalling networks) by introducing dose-dependent 
nonlinear dynamics (Figure 3c/d). Premature termination codons within introns mediate 
nonsense-mediated decay of intron-retaining transcripts. Therefore, orthotopic IR may serve to 
regulate overexpressing genes towards levels that are desired for a particular phenotype (Figure 
3a) or causes target repression towards ineffective levels (Figure 3b). Other downstream effects 
of IR in regulatory cascades other regulatory motifs are conceivable (Figure 3c/d). 
To study the dynamics of IR, it’s regulation and downstream consequences, a systems biology 
approach can be employed using either stochastic or deterministic modelling formalisms. 
Systems biology has been successfully implemented before, to study microRNA-mediated 
gene regulation, which is another form of post-transcriptional gene regulation (Schmitz et al. 
2014; Lai et al. 2013; Lai et al. 2018). 
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Figure 3 IR-mediated fine-tuning of gene expression and network dynamics. The illustrations depict the possible 
consequences of IR-mediated gene regulation that add to the gene regulatory complexity of a cell. (a) Orthotopic IR may serve 
to regulate overexpressing genes towards levels that are desired for a particular phenotype. (b) In this scenario, orthotopic 
IR causes target repression towards ineffective levels (the target is switched off). (c) The effect of IR in a cascade of sequential 
repression. (d) In a gene regulating a double positive feedback loop, IR may induce a memory effect causing the loop to lock 
irreversibly into a steady-state (expression of B and C is activated). a.u. = arbitrary unit. This figure has been adopted from 
the Supplementary Materials of the article (Schmitz et al. 2017) which is published under the Creative Commons Attribution 
license (CC-BY).  
 

Conclusion 
Introns have gained more attention recently and are now recognised as part of the complex 
gene regulatory network. IR, previously considered transcriptional noise, is in fact introducing 
additional transcriptomic complexity and variability in gene expression. IR is important in 
various stages of development, in cell differentiation, and diseases such as cancer. The 
sophistication of computational methods for IR identification and quantification is increasing 
constantly but there are still some challenges to overcome (Vanichkina et al. 2017). A major 
focus in the coming years of IR-related research lies on the integration of various experimental 
and computational approaches to facilitate comprehension of the complex regulation of IR and 
its intricate interplay with other forms of gene regulation. Systems biology will play an 
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important role when we aim to gain a mechanistic understanding of the regulation of IR and its 
consequences. 
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