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Abstract—Oceanic temperature has a great impact on global
climate and worldwide ecosystems, as its anomalies have been
shown to have a direct impact on atmospheric anomalies. The
major parameter for measuring the thermal energy of oceans is
the Sea Surface Temperature (SST). SST prediction plays an
essential role in climatology and ocean-related studies. How-
ever, SST prediction is challenging due to the involvement of
complex and nonlinear sea thermodynamic factors. To address
this challenge, we design a novel ensemble of two stacked deep
neural networks that uses air temperature, in addition to water
temperature, to improve the SST prediction accuracy. To train
our model and compare its accuracy with the state-of-the-art,
we employ two well-known datasets from the national oceanic
and atmospheric administration as well as the international
Argo project. Using deep neural networks, our proposed method
is capable of automatically extracting required features from
the input timeseries and utilizing them internally to provide a
highly accurate SST prediction that outperforms state-of-the-are
models.

Index Terms—Sea surface temperature, deep neural networks

I. INTRODUCTION

EASONAL weather forecasting and SST prediction has

attracted increasing attention in scientific literature [1],
[2]. Because oceans cover approximately three quarters of the
surface of our planet, accurate SST prediction can provide
noticeable benefits to many environmental-related studies and
applications. To address the SST forecasting problem, various
prediction algorithms have been introduced in the literature
[31, [4], [S]. These diverse predictive models can be cate-
gorized into: (i) physics-based numerical models, (ii) classic
statistical methods, (iii) traditional neural networks, and (iv)
deep neural networks.

Physics-based numerical models use complex kinetic and
thermodynamic equations along with exciting parameters and
boundary conditions. General circulation models [3] and re-
gional ocean modeling system [6] are commonly used methods
in this category. The second category of the SST predictive
models, uses classic statistical methods to create a mathe-
matical model that embodies numerical relationship between
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one or more random variables. Markov model [4] and linear
regression [5] are two repeatedly reported statistical methods.
Traditional (a.k.a shallow) neural networks including Support
Vector Regression (SVR) [1] and wavelet neural networks [6],
are the third type of methods used for SST forecasting.

The fourth category of SST predication models are Deep
Neural Networks (DNN), which incorporate multiple hidden
layers to extract data features and to automatically learn SST
variation rules. These methods are very popular due to easy
access to big and up-to-date collections of in-situ and remotely
sensed SST data collected by various organizations and made
publicly available. Some well-established models in this cate-
gory include Fully-Connected Long Short-Term Memory (FC-
LSTM) [1], Gated Recurrent Unit Encoder-Decoder (GED)
[1], and Convolutional LSTM [2], which are shown to have
higher accuracy compared to the first three categories [1].

The SST forecasting DNN models can be divided into time-
series and next-frame predictors. While a timeseries predictor
works with spatial averaged SST [2], next-frame predictors use
SST distribution matrix in an area [7]. From a functionality
perspective, a next-frame predictor results in a higher mean
squared error, compared to its timeseries counterparts. This
is simply because the next-frame predictor needs to predict a
2D matrix, while timeseries predictors predict a single value.
Consequently, various practical applications need to choose
between next-frame or timeseries predictors, depending on the
trade-off between spatial coverage or prediction accuracy.

Here, we propose a new SST timeseries prediction model,
which consists of two stacked DNNs. While previous DNN
models have only used water temperature as their input [1],
[2], we also use readily available air temperature data for
improving the efficiency of our model. Two correlated air and
water temperature variables are fed separately to two stacked
DNNs. These two networks then form an ensemble to create
our highly accurate model. Simulation results show that our
model outperforms the state-of-the-art, even without using the
air temperature data. However, the accuracy is enhanced by
introducing an ensemble node, which merges the SST and air
temperature timeseries into the final prediction output.

II. BACKGROUND AND PROBLEM FORMULATION

Various factors can affect SST variations. These include
solar radiation, surrounding air temperature, heat exchange
with atmosphere, wind speed at sea surface, evaporation,
ocean internal processes, etc. [1]. Due to the diverse nature
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TABLE I
TEMPOROSPATIAL COORDINATES OF THE SEA AREAS UNDER STUDY AND
THEIR CORRESPONDING LAND WEATHER STATIONS

Location Type of Data Spatial Sampling

Name Timeseries Source Coordinates Duration

Bohai Sea Endogenous NOAA 117.5- 121.5E, 1998-2020
Averaged SST PSL 36.5- 40.5N

Dalian City Exogenous NOAA 121.633E, 1998-2020
Air Temp NCEI 38.9N

South China Endogenous NOAA 112.5- 119.5E, 1998-2020

Sea Averaged SST PSL 6.5- 21.5N

Dagupan City Exogenous NOAA 120.35E, 1998-2020
Air Temp NCEI 16.083N

North Pacific ~ Endogenous Argo 130- 190E, 2004-2019

Ocean Averaged SST 10- 50N

Amami Island Exogenous NOAA 129.5E, 2004-2019
Air Temp NCEI 28.383N

of these factors, accessing them in a desired location is not
always possible. Among these factors, the air temperature is a
common observation that can be found in almost any weather
station worldwide. Therefore, the air temperature can be easily
obtained to be used in conjunction with historical SST to
devise a better SST prediction model. If the air temperature is
not available for a desired point, it can be obtained from an
iso-latitude station to act as an exogenous variable.

In order to perform precise SST forecasting, here we
propose to utilize SST and air temperature, simultaneously.
The SST timeseries are extracted from the National Oceanic
and Atmospheric Administration (NOAA) Physical Science
Laboratory (PSL) and the Argo data sources, while the air
temperature timeseries come from NOAA National Centers
for Environmental Information (NCEI) [8]. Geolocations of
these timeseries are presented in Table I. The SST values
in this table are area averaged over the corresponding spatial
coordinates. The choice of these referenced coordinates are in
accordance with other published works [1], [2], which enable
us to compare the accuracy of our approach with literature.

The bilateral relationship between the SST and air tem-
perature has already been studied in climatological research.
More specifically, SST has been used as a reliable predictor of
weather anomalies [9], while air temperature is used to assist
in predicting SST [10].

A close inspection of Fig. 1 reveals the close relationship
between SST and air temperature factors in two typical ge-
olocations of our datasets (i.e., Bohai Sea and Dalian City).
However, the air temperature usually has higher dynamics
compared to the SST, which results in a lower statistical
correlation between them. To address this problem, a moving
average window can be slid over the air temperature data
sequence. This window acts as a low-pass filter (LPF), which
smooths the high dynamics of data. This smoothing process
will increase the accuracy of our proposed SST forecasting
algorithm. To elaborate, by applying an LPF to the air tem-
perature, the Pearson correlation coefficient increases to over
0.8 for all the geolocations in Table I. This indicates the
existence of a high linear relationship between the smoothed
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(a) SST at Bohai Sea (b) Air Temp in Dalian City

Fig. 1. Polar plot of (a) the area-averaged SST at Bohai Sea and (b) the air
temperature at its iso-latitude Dalian City, both from the NOAA data source.

air temperature and SST.

In this paper, the SST forecasting problem is represented by
function Fy(ssT), which returns a prediction value. Similarly,
predicting SST from historical air temperature values can be
formulated as function Fy(4ir), which returns another SST
prediction value. The predictive outputs of these two functions
can then be merged to build an enhanced SST predictor, i.e.,

FT(sst, Air) = wgsr F1(SST) + wair Fa(air), (1)

where wgsr and w4, coefficients adjust the relative contri-
butions of Fi(ssT) and F5(4ir) in the final prediction.

It is worth mentioning that the SST observations for the
North Pacific Ocean in the Argo data source, along with its
corresponding air temperature reads (i.e., the air temperature
from the Amami Island) are monthly averaged throughout this
paper. Consequently, any further smoothing is unnecessary for
this geolocation.

III. NETWORK ARCHITECTURE

The high-level block diagram of the proposed voting ensem-
ble of stacked DNNss is shown in Fig. 2(a). This model consists
of two separate stacked DNN branches that are trained with
different datasets. The first stage of the top branch (F}(ssT))
takes the SST timeseries as input and performs general prepro-
cessings e.g. outlier detection and missed data interpolation.
It then passes the clean data to the seasonality decomposition
block. This block decomposes the year seasonality from its
raw input timeseries, outputting trend and residual.

Trend is a straight line that matches as closely as possible
to the original timeseries. It can be easily found by linear
regression. Year seasonality on the other hand, is the repeating
one-year-long cycle in data. It can be calculated by yearly
averaging SST, after subtraction of the trend line. Calculation
of both the year seasonality and trend must be carried out with
the training dataset only, leaving the test dataset completely
unseen to the system. Finally, the residual is the remaining
random variation in the SST timeseries, which has not been
taken into account in the trend and seasonality [11]. The sum
of the trend and residual outputs are then fed to the core
processing block, which has an stacked architecture [12] of
an LSTM and a Multilayer Perceptron (MLP) network. This
block is illustrated in Fig. 2(b). It consists of two cascaded
LSTM layers and one fully-connected MLP layer.
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Fig. 2. Block diagram of (a) the voting ensemble model for SST forecasting,
which consists of two (b) stacked LSTM-MLP deep neural networks.

The two cascaded LSTM layers are referred to in parlance
as encoder-decoder or Seq2Seq[13]. The first LSTM layer
translates the dynamicity of the input sequence into a higher
dimensional representation, whilst the second LSTM layer
extracts useful features to feed to the next MLP layer. The
MLP layer then combines all the automatically discovered
features in the data, into its predictive output. Additionally,
two dropout layers are placed between each consecutive DNN
pairs to prevent the model from overfitting.

The second DNN branch in Fig. 2(a) (i.e., F5(A:r)) takes the
air temperature as input and performs the same preprocessing
as that on the SST. The next block smooths the given high-
dynamic data with a moving average window, which acts like
an LPF to increase the correlation between the air temperature
and SST. Similar to the first branch, the smoothed data is then
fed to the core stacked processing block to produce the final
outcome of the second branch.

Later in Section IV, we will show the prediction efficiency
of Fy(ssT) as a standalone branch. However, to further
improve the prediction accuracy of our model, we implement
(1) by placing an additional block to combine the outputs of
Fi(sst) and Fy(4ir), at the end of the network architecture
in Fig. 2(a). This block takes Fj(ssT) and F5(Aér) as the
inputs to a McCulloch-Pitts neuron with zero biasing and with
a linear activation function. This single neuron is referred to
in parlance as the voting ensemble [14]. As shown in (1), the
main objective of this block is to merge the independently
predicted results to form the final output of the network, i.e.,

F*(ssT, Air). Nevertheless, the weights of this single neuron
would be optimized by backpropagation through gradient
descent algorithm to produce the ultimate outcome.

The proposed voting ensemble model in Fig. 2 includes
some hyper-parameters that require optimization. The first one
is M, which represents the number of data elements inside
the input timeseries to the first LSTM layer in Fig. 2(b). This
parameter can be defined as,

Input Horizon
My = P v )
Sampling Period

where the Input Horizon refers to the length of time, in
which we look back in our historical data to provide future
predictions. Additionally, /V; and N» are the number of LSTM
units in the first and second layers of the stacked LSTM-MLP
network shown in Fig. 2(b). These two parameters should be
adequately large. Here ’adequately’ means, firstly,

N2>N1>M1. (3)

Secondly, N; and N, should be large enough so that the
dropped-out neurons in Fig. 2(b) do not adversely affect the
network performance.

The output of the second LSTM layer is fed into the
first and second dense layers of the following MLP network
with N3 and N, neurons, respectively. It is worth noting
that very large or small values of IN; will respectively result
in overfitting and underfitting, which consequently reduces
the overall accuracy. To achieve the best performance, we
performed a hyperparameter optimization process that resulted
in N; Vi € {1,2,3} values with 200, 300, and 100 neurons.
Finally, the number of output neurons from the MLP layer
(INy) should be equivalent to the number of elements in the
predicted output timeseries. This parameter can be defined as
the ratio of the forecasting horizon to the sampling period,
where the forecasting horizon simply indicates the length of
time of the prospective forecasting period.

IV. RESULTS AND DISCUSSIONS

In this section, we introduce and discuss the utilized air and
water temperature data sources. We also evaluate the efficacy
of our proposed model compared to literature.

A. Description of Data Sources

The conducted experiments in this paper are carried out
using two major data sources. The first data source is NOAA,
which is a USA national scientific agency. NOAA focuses and
monitors the conditions of both the oceans and atmosphere,
facilitated by its various centers and laboratories. The NOAA
PSL contains SST timeseries from September 1981 to present.
This data covers the global oceans in daily sampling period,
with 0.25 spatial resolution. In addition, the NOAA NCEI
has a global information system tool, which enlists global
weather stations. For each station, daily sampled atmospheric
measurements such as air temperature, precipitation, wind
speed, etc. are publicly available [15].

The second data source used in our experiments is Argo,
which is dedicated to oceanographic research and is collected



TABLE II
MEAN SQUARED ERROR OF AREA-AVERAGED SST FORECASTING AT THE BOHAI SEA, COMPARED WITH THE DIFFERENT SCHEMES USED IN [1]

i 15

Model Name Daily Mean Weekly Mean Monthly Mean fP———

1 Day 3 Days 7 Days 1 Week 3 Weeks 1 Month w FC-LSTM
= o] GED
GED [1] 0.166 0.415 0.742 0.350 0.514 0.581 % —e— Ourf;
FC-LSTM [1] 0.170 0424  0.787 0.382 0.592 0.687 2 —e— OurfF~
SVR [1] 0472  0.692  1.005 0.578 0.627 0.711 @ 0.5 7 "
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, £
Our Fi(ssT) 0.166 0322 0.514 0.310 0.696 0.272
Our Fa(Air) 2289 2829 1.633 0.835 1.135 0.242 0.0 1D 3Ds 7Ds 1w 3ws 1M
Our FT(ssT, Air) 0.157 0318 0.508 0.294 0.696 0.194 Forecasting Horizon
TABLE III

MEAN SQUARED ERROR OF AREA-AVERAGED SST FORECASTING AT THE SOUTH CHINA SEA, COMPARED WITH THE DIFFERENT SCHEMES USED IN [1]

i 0.4
Model Name Daily Mean Weekly Mean Monthly Mean i——
1 Day 3 Days 7 Days 1 Week 3 Weeks 1 Month Woos FGLSTM
= —e— GED
GED [1] 0.063 0125 0211 0.162 0.267 0.207 & —s— Ourf -\'/
FC-LSTM [1] 0.061 0.140 0.218 0.168 0.285 0.343 g 027 o ourf*
SVR [1] 0.095 0157 0242 0.214 0.285 0.212 © //'//\/\
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, = 0.1+
<
Our Fy(ssT) 0.055  0.084 0.131 0.078 0.135 0.104
Our F(Air) 0692 0738  0.802 0.676  0.812 0.874 T o he b 1w 3ws 1m
Our FT(ssT, Air) 0.055  0.084 0.131 0.077 0.135 0.099 Forecasting Horizon
TABLE IV

MEAN SQUARED ERROR OF AREA-AVERAGED SST FORECASTING AT THE NORTH PACIFIC OCEAN, COMPARED WITH THE PROPOSED MODEL IN [2]

Model Name Monthly Mean E 0.10 4 —®— Conv-LSTM
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months & Our Fy
2 —a— OurF~
Convolutional LSTM [2] 0.038 0.042 0.040 0.035 0.102 0.072 2 0051
Our F(ssT) 0.015 0.013 0.017 0.019 0.016 0.018 g o T T3
Our Fy(4ir) 0.283 0.456 0.294 0.288 0.440 0.488 LM 2-Ms 3Ms 4Ms 5Ms 6Ms
Our FT(ssT, Air) 0.014 0.013 0.017 0.017 0.016 0.012 Forecasting forizon

and made publicly available through an international program
since the early 2000s. The floating buoys of Argo record
temperature, salinity, oceanic currents, bio-optical properties,
etc. In contrast to NOAA, Argo does not measure atmospheric
parameters, and it has as low as 1 spatial resolution [8].

B. Prediction Accuracy and Comparison

The prediction results of our voting ensemble model are
compared with other published works in Tables II, III, and
IV. The last three rows in these tables correspond to the three
distinct nodes in our proposed model architecture, namely
Fi(ssT), which is the output of the top branch in Fig. 2(a)
(SST data only); F»(4ir), which is the output of the bottom
branch in Fig. 2(a) (air temperature only); and F*(ssT, Air)
that represents the output of our voting ensemble model in
Fig. 2(a) (both SST and air temperature data).

Similar to [1], our models in Tables II and III are separately
trained with the daily mean, weekly mean, and monthly mean
data. Therefore, the Mean Squared Error (MSE) values for 7

days in the daily mean category is different from the MSE
values for one week in the weekly mean category.

As can be seen from Tables II to IV, the prediction capabil-
ity of the standalone first branch in Fig. 2(a) (i.e., F1(sST))
is very strong. Among all the comparisons made, this single
branch provides better SST forecasting in 16 cases out of
the total 18 compared to literature. On average, our Fy(ssT)
offers 15% and 39% better MSEs, compared to GED [1] in
Tables II and III, respectively. It also provides 65% better
MSE, compared to convolutional LSTM [2] in Table IV. Note
that, GED is the best performing model presented in [1].

After combining the F} (ssT) and F5(Aér) branches using a
McCulloch-Pitts neuron to build a voting ensemble, our model
outperforms F (ssT) results and all previously reported works
in 17 out of the 18 comparisons. To summarize, on average
our proposed F'*(ssT, Air) ensemble model provides 19% and
40% better MSEs, compared to GED [1] in Tables II and III,
respectively. It also provides 68% better MSE, compared to
convolutional LSTM [2] in Table IV.
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Fig. 3. Time and memory complexities with respect to the number of data
points for one-day F't(sST, Air) forecasting in Bohai Sea.

These results show that our model outperforms previous
works, when only using SST data in most of the cases, while
it achieves a slight accuracy improvement, if an ensemble is
used to include some readily available air temperature data.

To further analyze the efficiency of our proposed model, we
used the big-O approach to evaluate our model’s demand when
changing the input size [16]. The analysis of both memory and
time complexities for one-day SST prediction at the Bohai
Sea are illustrated in Fig. 3. These plots quantify the growth
in required computational resources, against the number of
data points M in the input timeseries in (2). The results are
obtained during inference, where the weights and biases are
fixed. The plots reveal an O(n) linear growth for simulation
time, and an O(1) constant growth for the memory demand.
These suggest our model is efficient.

When comparing our model to the state-of-the-art for SST
prediction, it offers the following advantages.

o To the best of our knowledge, the proposed simple and
efficient ensemble of stacked DNNs for SST prediction is
unique and has not been reported previously in literature.

o Creatively incorporating the air temperature data from
close-by iso-latitude weather stations makes the model
more accurate and versatile. As a result, our model
outperforms the previous works by 19% to 68% better
prediction accuracy by adding readily available air tem-
perature data. This improvement is more prominent in
some geolocations than others. For instance, the accuracy
improvement for the Bohai Sea increases from 15% to
19% when including air data.

o The innovative injection of air temperature is beneficial
to our model not only for accuracy enhancement, but also
in reliability improvement. Our model is more resilient to
missing SST values and outliers, as the air temperature
data is present. By inspecting Tables II, III, and IV, it
is obvious that we can predict the SST, using the air
temperature only. This prediction has less than £1C error
in most of the cases. That is, we can use the second
F5(Air) branch as a missing SST value estimator.

One may further improve our model by adding extra
branches into its modular design to incorporate more exoge-
nous factors, e.g., solar radiation or wind speed. Besides, the
stacked LSTM-MLP DNN in our model can be replaced by
novel Transformer networks, which may better learn long-term
dependencies compared to an LSTM.

V. CONCLUSION

Accurate long-term SST prediction is challenging. To ad-
dress this problem, we proposed a light-weight and highly-
accurate new DNN structure that leverages the correlation
between SST datasets and air temperature at nearby iso-
latitude weather stations. We devised two stacked LSTM-MLP
networks and trained them with the correlated SST and air
temperature datasets. We then integrated the outputs of the
two stacked networks in a voting ensemble to form a highly
accurate model. We used the two well-known NOAA and Argo
data sources to train and test our models. We demonstrated
that our model significantly outperforms the state-of-the-art
SST prediction algorithms.
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