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Abstract

Assessing fish habitats is an important step for maintaining sustainable fish-

eries. Counting and sizing fish in real-time across habitats requires significant

human efforts. Reducing the labour cost in maintaining and improving fish

productivity could lead to enormous economic impact. In this work, a com-

puter vision framework has been developed that can aid experts in analyzing

such fish habitats. Also, an efficient labelling method is developed for train-

ing a CNN-based fish-detector on a relatively small number of underwater

fish/no-fish images (4,000), combined with 17,000 known negatives such as

images with no fish in them or above-water general-domain images. Moreover,

a benchmark based on a large image data-set of remote underwater video col-

lected from tropical Australia is presented. The purpose of this benchmark is

to facilitate specialized algorithms that can automate the task of fish image

analysis. The benchmark dataset consists of approximately 40,000 labelled

images representing 20 different fish habitats around Australia. A model

that estimates the fish weight directly from its image is also developed. For

this model, fish masks were automatically segmented and fit using simple

mathematical models to achieve a low mean absolute percent error (MAPE) of

4-10% while using 1,400 test images. This thesis presents a practical and easily

reproducible weight-from-image approach and tests the use of a segmentation

convolutional neural network (CNN) for estimating fish weight. The methods

outlined in this thesis are one step towards the development of valuable prac-

tical computer vision applications. The methods described herein will aid in

the classification of various fish species habitats, determining the presence or

absence of fishes, and quantifying fish weights and sizes. Thus, the thesis rep-

resents an important technological step towards better fisheries management,

ecosystem management, and fish stock conservation programs.
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Chapter 1

Introduction

1.1 Overview

Empowering machines to see the world and recognize visual objects around

us is one of the primary challenges often addressed using Artificial Intelli-

gence. For humans, it is relatively easy to perform several tasks that involve

identifying, localizing and segmenting objects in our perceived worlds, using

multiple visual recognition systems while differentiating between different

recognized objects. One look at an image is adequate for a human to identify

and explain many of its details. For example, a human can easily spot and

identify a fish in the first image in Figure 1.1, and can quickly describe it

as a single fish in an underwater habitat. Moreover, a human can segment

the fish from the background (Figure 1.1, right), identifying where the fish

begins and where it ends. However, these processes (e.g., identifying there

is a fish, segmenting the fish, classifying the habitat) are much more difficult

for a computer to do. However, other tasks such as sizing and weighing the

fish in a photo are much easier to do; the majority of the work lies in correctly

identifying the location and size of the fish.

Fisheries research often involves deploying remote underwater video sta-

tions and compiling thousands of hours of video footage to be analyzed by

volunteers or paid workers. While easy to obtain, identifying and measuring

fish within videos can take even longer than recordings themselves [7]. Thus,

there is a need to address these challenges using computer vision applications.

Below, I discussed the two main challenges my thesis will aim to address

in the context of underwater cameras used for fisheries management and

1



conservation: identifying fish, and after identification, weighing and sizing

fish.

Figure 1.1: visual recognition tasks. Left: a fish in an underwater habitat. Middle:
localization of the fish. Right: human segmentation of the fish from the background.

Thesis aims. This thesis has two broad aims, which when deployed in the

future, may provide extremely valuable information to fisheries management,

ecosystem management and conservation to aid in maintaining the integrity

of fish stocks while saving thousands of man-hours that can be better spent

on ground operations within fisheries.

• The first aim is to develop practical computer vision applications capa-

ble of detecting fishes from various aquatic habitats using a large image

dataset. The image database DeepFish consists of approximately 40 thou-

sand labelled images representing 20 fish habitats collected from remote

coastal marine-environments within tropical climates from around Aus-

tralia. My thesis uses DeepFish to evaluate a variety of deep learning

methods that can be grouped according to four main tasks: (1) classifi-

cation, (2) counting, (3) localization, and (4) segmentation of fishes.

• The second aim of my thesis is to measure harvested fish weights and

sizes from their images and develop a practical and easily reproducible

weight-from-image approach. This involves using basic statistical mod-

els to determine approximate size and weights of fish.

Challenges. Visual recognition and scene comprehension tasks appear

natural and simple for us as humans; it is often easy to overlook how difficult

these tasks are for a computer to replicate. In the ’mind’ of a computer, images

are stored as an array of integers representing the brightness at every pixel

(i.e. grey-scale image). A real-life image might have millions of pixels, and the

computer must convert these patterns of brightness values into higher-level

2



concepts (e.g. the outline of a fish). The same fish seen under various lighting

conditions from another camera perspective, or in a different posture might

still represent a “fish”, although the "pattern" of these pixels could change

dramatically. In contrast, patterns that have similar low-level representations

(e.g. fish scale-like patterns) could also be confused for a different object (e.g.,

ground debris, aquatic plants, etc.) [8; 9; 10]. The process of segmentation

(determining where the fish begins and ends relative to the background, to

obtain the fish’s contour) is even more challenging. In a computer, this task

is done by assigning a label (integer) to each pixel, which marks if it is part

of the ’fish’ or part of the ’background’. Hence, the very natural tasks of

visual perception (i.e. describing the image), classifying images (fish or no

fish), and segmenting different elements of a single object (the fish contour)

in an image requires the annotation of millions of pixels with sequences of

integers that share a complex pattern. In contrast to visual recognition and

scene understanding tasks, the task of predicting fish weight from its image

is not an easy task for humans. However, for computers that easily can recall

the size vs. weight relationships derived from thousands of fish images, the

task is made relatively easier. The computer vision tasks in this thesis require

localizing, detecting and segmenting multiple high-level features in images in

order to predict weight, which depends more on the morphological features

of the fish. In this thesis, images of harvested fish have been used as inputs

to a convolutional neural network (CNN) developed to predict the weight of

fish.

Promising progress. Despite the fact that the complexity of fish identifi-

cation and segmentation tasks, these areas of computer vision have recently

experienced rapid progress in terms of accuracy. In particular, state-of-the-art

image classification deep CNN models have seen significant improvements in

recent times [2] and can now classify thousands of optical objects at accuracies

equivalent to an average human, and sometimes even beating them during

some specific classification tasks (e.g. classifying dog breeds [11]). Another

advancement is object detection and segmentation, which have both improved

drastically [12; 13]. Concurrently, these advancements have promoted many

real-world applications (examples include self-driving cars, face detection and

3



recognition, perception in robotics [14]).

Motivation. The motivation behind this work is the development of valu-

able practical computer vision applications capable of classifying, counting,

localizing, and segmenting underwater fishes in various aquatic habitats, and

measuring fish weights and sizes to provide valuable information to fish-

eries management, ecosystem management and conservation to maintain the

integrity of fish stocks. Monitoring the abundances and biomass of fish is

paramount to monitoring fish population health. Therefore, classifying var-

ious underwater habitats, determining the fish species that use them, and

analyzing their abundance and size can all give valuable insights regarding

the health of the ecological system, and can be used for monitoring environ-

mental changes [8; 15; 10]. Underwater fish species classification can also be

used to understand fish distribution patterns and identify seasonal trends in

species migrations to provide a deeper insight into the behaviour of a species

as a whole [16; 17]. These tasks are part of a large scale project to improve

understanding of habitat requirements for tropical coastal fisheries species

and is critical to fisheries and conservation management, as they provide (a)

knowledge of juvenile habitats that need to be protected, (b) knowledge of the

extent and direction of population change, (c) the ability to predict the size

of future harvestable fish stocks, and (d) an understanding of the impact of

habitat/environmental change on fish recruitment and survival.

1.2 Contributions and Outline

In this thesis, a Deep Learning CNN models have been developed to leverage

real-world applications for marine habitats. These neural network architec-

tures can be used to detect the presence of underwater fish species and predict

the weight of harvested fish from images of fish, using datasets of either im-

ages or videos. The content of chapters 3,4,5 and 6 are based on the following

papers: Where is the Fish: a Benchmark for Analyzing Fish Habitats, Un-

derwater fish detection with weak multi-domain supervision [18], Estimating

mass of harvested asian seabass lates calcarifer from images [19], Automatic

weight estimation of harvested fish from images[20]. Figure 1.2 provides the
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Figure 1.2: Thesis structure and interconnection of chapters.
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thesis structure and the interconnections among chapters.

The content of this thesis was written by myself, Alzayat Saleh. My primary

supervisor Dmitry A. Konovalov supervised the project, offered suggestions, and

helped revise drafts and the final version of the thesis. The use of ’we’ throughout

this thesis is to acknowledge the contribution of others noted on page xxiii:

the Statement of the Contribution by Others.

Chapter 2 presents brief technical background concepts on neural net-

works and deep learning relating to this thesis.

Chapter 3 developed a labelling-efficient method of training a CNN-based

fish-detector (the Xception [21] CNN was used as the base) on relatively small

numbers (4,000) of project-domain underwater fish/no-fish images from 20

different habitats. Additionally, 17,000 known negative (i.e. missing fish)

general-domain (VOC2012) above-water images were used. Two publicly

available fish-domain datasets supplied an additional 27,000 above-water and

underwater positive/fish images. By using multi-domain collection of images,

the trained Xception-based binary (fish/not-fish) classifier achieved 0.17% false-

positives and 0.61% false-negatives on the project’s 20 thousand negative and

16 thousand positive holdout test images.

Chapter 4 presents a benchmark called DeepFish that is based on a large im-

age dataset of remote underwater video collected from remote coastal marine-

environments of tropical Australia. The dataset consists of approximately 40

thousand labelled images representing 20 fish habitats across Australia. As

baselines, I also evaluate a variety of deep learning methods across four tasks:

(1) classification, (2) counting, (3) localization, and (4) segmentation of fishes.

Chapter 5 developed a Segmentation Convolutional Neural Network trained

on 200 images which were used to automatically segment fish-body from the

background in all of this study’s 1,072 digital images of Asian seabass (bar-

ramundi, Lates calcarifer). The automatically-extracted fish body areas were

used to predict the corresponding manually-measured weights for each fish,

yielding highly accurate single- and two-factor mass-from-area estimation

models.

Chapter 6 developed a practical and easily reproducible approach to es-

timating weight from an image, and details how a standard “off-the-shelf”
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segmentation CNN such as LinkNet-34 [22] could be trained efficiently using:

(i) only 100-200 training image-mask pairs; (ii) a linear learning rate annealing

schedule; and (iii) reduced learning rate for the ImageNet-trained encoder

(ResNet-34). With- or without-fins fish masks were automatically segmented

and fit by one-factor and two-factor weight-from-area models. Then they were

fit using 1,072 area-weight pairs from two locations, where area values were

extracted from the automatically segmented masks. When applied to 1,400

test images (from a third location), the one-factor whole-fish mask model

achieved the best mean absolute percentage error (MAPE), MAPE = 4.36%.

Direct weight-from-image regression CNNs were also trained, where the no-

fins based CNN performed best on the test images, with MAPE = 4.28%.

Finally, Chapter 7 concludes the thesis, where the remaining challenges

have been identified, and potential future work have been discussed.

7



8



Chapter 2

Technical Background

This chapter provides a brief technical background on concepts such as neural

networks and deep machine learning. The following chapters involve work

that was developed for a larger project on processing underwater images,

which involves real-world applications for marine habitats. The details of

each part are discussed herein.

2.1 Neural Networks and Backpropagation

A ’Neural Network’ is a computer system originally conceived by mimicking

actual cerebral neural networks that make up brain’s grey matter. A com-

puter’s neural network, a.k.a. an artificial neural network, "learns" to do a

specific task by using a large amount of data, usually through network training

that does not involve any task-specific rules. A neural network is constructed

from three types of layers: an input layer, hidden or latent layers, and an

output layer (e.g. see Figure 2.2). Where in the Input layer, input features are

acceptable in this layer. It provides information to the network from outside,

no calculation is made on that layer and nodes pass the information(s) on to

the hidden layer. In the Hidden Layer, this layer of nodes is not exposed to

the outside world, but it is the abstraction that comes with a neural network.

Hidden layer performs all kinds of calculations on the functionality entered

via the input layer and transfers the result to the output layer. Finally the Out-

put Layer, This layer brings the information that the network has learned into

the outside world. In this section, I will discuss some of the main components

of artificial neural networks.
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2.1.1 Activation Functions

The activation function in a neural network defines whether a given node is

"activated" or not based on the weighted sum of input features. The sigmoid

function is one of the most commonly used activation functions today. The

sigmoid function is defined as:

S(x) =
1

1 + e−x (2.1)

where S(x) is the sigmoid function output that will be used as the input

for the following node and x is the weighted sum of input features from

the previous layer. The sigmoid function is non-linear, and ranges in value

between 0 and 1. This simplicity of interpretation (between 0 and 1) makes

it fairly popular, and because the function enables the nodes to take any

values between 0 and 1 because of these properties. In the output layer, for

multiple output classes, the probability of "activating" each output class will

be different. Then, the function with the largest "activation" value is selected,

thus improving the network’s ability to classify the image.

2.1.2 Bias Node

Another important component in successful neural networks are the "bias"

nodes. A bias value enables the activation function to be shifted to the left or

to the right and aids the model to find a better fit faster. In other words, bias

nodes are added in order to increase the model’s flexibility (see Figure 2.1).

In particular, when all input features equal to 0, the network can adjust to the

data and decrease the distance between the fitted values in other data spaces.

2.1.3 Cost Function

Cost functions measure the performance of a data-based machine learning

model. The cost function is important to consider, as it measures and presents

error in the form of a single real number between predicted values and ex-

pected values. In other words, it maps a value of one or more of these variables

into a real number which represents an event’s cost. As an example, the cost
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function for linear regression is defined as:

J =
1

2m

m

∑
i=1

(ŷ− y)2 (2.2)

, where m is the number of training example, ŷ is the predicted value of the

model, and y is the true value of the inputs of the training data.

For classification tasks, the loss function L is generally a cross-entropy loss

function. Cross-entropy loss measures the performance of a classification

model with a probability value ranging from 0 to 1. The loss of cross-entropy

functions will increase as the predicted probability differs from the ground

truth. Another classification loss is Hinge Loss. In Hinge Loss, the correct

category score should by some safety margin be higher than the sum of

values for all incorrect categories. The regression task is a predictive mod-

elling technique which examines the causal effect relationship between the

variables, independent (ground-truth) and dependent (predicted) variables.

There are various regression techniques that can be applied to predict depen-

dent variables, both for linear and non-linear responses (e.g. linear regression,

polynomial regression), and for binary outcomes (logistic regression).

2.1.4 Optimization

In a supervised learning problem, the learning task can be reduced to an op-

timization problem in the form of θ∗ = arg minθ g(θ), where θ is a parameter

vector and g usually combines a regularization penalty and the average loss

for all examples.

Given a function f (x), an ’optimization’ method helps in either minimizing

or maximizing the value of f (x). In deep learning, the optimization methods

is used to train the neural network by optimizing the error function E. The

error function is defined as:

E(W, b) =
m

∑
i=1

L (ŷi, yi) (2.3)

where W and b are the weights and biases of the network, respectively. The

value of the error function E is thus the sum of the mean squared loss L be-
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tween the predicted value ŷ and true value y. The value of ŷ is obtained dur-

ing the forward propagation step and makes use of the previously-mentioned

weights and biases of the network. Optimization minimizes the value of error

function E by updating the values of the trainable parameters W and b.

Optimization methods fall into two main categories [23]: 1) First-order

optimization: this method minimizes a loss function E by using its gradi-

ent slopes for the parameters. The most commonly used method is Gradient

Descent [23]. The gradient is optimized by calculating a matrix of partial

derivatives (computed using backpropagation - as detailed below), which pro-

vides the slope of g simultaneously at each dimension of θ. The gradient

enables first-order approximation via a Taylor series of g, hence the name

“first-order optimization”. Therefore, the gradient is used to determine the

next direction to search for Global Optima. In order to enhance θ and reach a

lower g, a small quantity is subtracted from θ in the optimal direction (since

the gradient provides the direction of the rise and conversely the descent in

g), such that the global optimum is eventually reached and g is minimized. 2)

Second-order optimization: this optimization adopts the second-order deriva-

tive (Hessian [24]) to minimize the loss function. The Hessian is a square matrix

of second-order partial derivatives of a scalar-valued function, or scalar field.

The Hessian describes the local curvature of a function of many variables [24].

The Hessian specifies if the first derivative is decreasing or increasing, which

implies the function’s curvature and provides a quadratic surface that touches

the curvature of the Error Surface. As the second derivative is computation-

ally expensive, second-order optimizations are not used as often as first-order

optimization methods.

2.1.5 Backpropagation

The backpropagation algorithm mentioned previously refers to the process

of efficiently computing gradients of the functions using the inputs from the

last layer. Put simply, backpropagation involves the recursive use of the chain

rule formula to calculate partial derivatives. Using the function g, the data

(xi, yi) as input, and the parameter θ. Backpropagation probably is the most

important building block in the neural network
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To address this, in applications of the neural networks, the CNN initially

does a ’forward pass’ by taking a batch of the dataset {(xi, yi)}m
i=1 and the

current parameter θ. A forward pass is when the network is used to calculate

all the intermediate values, by passing the data input to the hidden layer to

process according to the activation function, then passing the values on to

the next layer, then do a “forward” passing. The network then calculates the

intermediate values for the batch of the dataset and stores them for later. The

cost function g at the end is then displayed using a “computational graph”,

(a computational graph is a directed graph where the nodes correspond to

operations or variables). After the forwards pass, a backwards pass is done

through all intermediate stages, and these derivatives are then “chained” by

the local gradients. For each backwards pass, the matrix is multiplied by the

next Jacobian matrix ∂yi
∂xi

in the full product.

2.2 Convolutional Neural Network

A convolutional neural network (CNN) [2] is a type of feed-forward artificial

neural network, specifically designed for dealing with datasets that have some

spatial or topological features (e.g. images, videos), where each of the neurons

are placed in such a manner that they overlap and thus react to multiple spots

in the visual field, and each spot has redundant neurons connecting. CNNs

are broadly designed after the neuronal architecture of the human cortex

but on much smaller scales [25]. A CNN neuron is a simple mathematical

design of the human brain’s neuron that is utilized to transform nonlinear

relationships between inputs and outputs in parallel (see Figure 2.1). There

are two primary layers in a CNN: convolutional layers and pooling layers.

2.2.1 Convolutional Layer

In this layer, the convolutional processes (i.e., overlap among neuron inputs)

used on limited fields to avoid learning billions of weights (parameters) in

the case of a fully connected layer. This excessive computation is avoided

because of both weight-sharing via the convolutional layers combined with

filters for the corresponding feature map. Further, parameter sharing is a way
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Figure 2.1: Left: A drawing of a biological neuron and myelinated axon, with signal
flow from inputs at dendrites to outputs at axon terminals. Right: A diagram of the
biological inspiration behind a single CNN neuron. Inputs xi interact multiplicatively
with the synapses wi. The cell body accumulates the sum of all inputs and then fires
an output signal according to the activation function. If the activation is the sigmoid
non-linearity (with output range in [0,1]), then the output can be interpreted as the
average firing rate of the neuron. Figure from [1]

of controlling for model overfitting [26], in addition to reducing computing

memory requirements and enhancing CNN performance [27].

2.2.2 Pooling Layer

Pooling layers are used to further control for overfitting by reducing the

amount of the representations with a specified in Max Pooling, think of scaling

an image in size, by taking the maximum old pixel of the map to the same new

pixel (i.e. with no trainable parameters). Pooling layers are systematically-

implemented between convolutional layers in a traditional CNN architecture.

The pooling layers work on each channel (activation map) individually, and

downsample them spatially.

When combined together, convolutional and pooling layers make up the

convolutional network, and together, aid in managing the computational dif-

ficulty of CNN architecture (e.g. see Figure 2.2).

2.3 Supervised Learning

Supervised learning is a deep learning task used to enable the computer

to quickly learn a function that maps to an input-output object pair, also

known as a training example, where each input object is paired with the

desired output value. This function uses a set of training examples based
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Figure 2.2: Architecture of LeNet-5, an old convolutional neural network for digits
recognition. Each layer is a feature map, i.e a set of different neuron convolutions,
whose weights are constrained to be identical. [2]

on manually-labelled training data, done by human observers or supervisors,

hence the name for the learning method.

Supervised learning analyses and generates an inferred function that maps

to the training examples, which then can be used to map to new examples

outside of the training set.

A computer can be programmed to map ( f : X 7→ Y) to formulate several

practical problems, where X is an input domain and Y is an output domain.

For example, in the classification task, the object in the image is visually

recognized to classify it, where X was the dataset of images and Y is a set of

corresponding values of a fish existing in each image or not.

Unfortunately, most of the time, it is difficult to manually feature engi-

neer (i.e implementing domain knowledge of a dataset to create ’features’

or reduced dimensionalization of the pixel values that allows deep learning

algorithms to be more efficient) in order to determine a function f that can

recognize a fish in the image. Comparatively, it is often more feasible to collect

a large dataset of (x, y) ∈ X × Y for the mapping process, and this affords

supervised learning advantage as an alternative mapping technique when

solving these kinds of problems. Specifically, in the fish classification task, I

collected a dataset of fish images, each image being manually labelled for the

presence or absence of a fish.

When conducting supervised learning on a dataset of n example images

{(x1, y1) , . . . (xn, yn)}, a mapping function ( f : X 7→ Y) can be identified

from a set of functions by searching and selecting for the function that is
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most consistent relative to the other functions within the training dataset.

More specifically, consider a class of functions F that map X 7→ Y, and a

scalar-valued loss function (L(ŷ, y)) that computes the difference between the

predicted label ŷi = f (xi) for f ∈ F and the true label yi to find a mapping

function f ∗ that minimizes the loss over the training dataset. Upon finding

this function, the original training dataset can then be discarded but the

learned function f ∗ is retained, which is used to map elements of X to Y. To

ensure that the function f ∗ generalizes outside of training data, the process of

regularization is applied.

Regularization is a technique that makes small changes to the learning

algorithm to improves the performance of the model on testing or out-of-

sample data. In other words, it avoids the risk of over-fitting to the training

data by discouraging learning of more complex models. Model regularization

involves a regularization term being added to the general cost function, which

makes more complex models more costly (increases g). This means that the

relative weight matrices for CNNs with simpler models are smaller and thus

favoured over CNNs using more complex models and higher relative weight

matrices. The most common forms of regularization are L1 and L2.

Thus, using regularization, the supervised learning task becomes an opti-

mization problem taking the general form of: θ∗ = arg minθ g(θ), where θ is

a parameter vector and g(θ) = 1
n ∑n

i=1 L ( fθ (xi) , yi) + R ( fθ). Note the added

regularization function, R ( fθ) within the cost function g. The θ parameter is

a part of the mapping function f , while the functions L and R do not require

any training.

2.4 Neural Network Workflow

In this section, I present the standard workflow for implementing a neural

network in practice.

2.4.1 Data preparation

The first step is to obtain a dataset. For this thesis, the data were represented

as a collection of pairs (x, y), where x is an input (i.e. an image of a habitat
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that potentially contains a fish) and y is a label (a binary mask or integer [0,1]

indicating if there is a fish present or if this pixel is part of the fish). After

this, the data were split into three different folds/subsets: a training fold, a

validation fold and a test fold (80%, 10%, and 10% of the complete dataset,

respectively). The training fold is used for optimizing parameters through

backpropagation, the validation fold for optimizing hyperparameters, and the

test fold for the final step of evaluating the model’s accuracy.

2.4.2 Data preprocessing

Data preprocessing can help improve the convergence of neural networks

[2]. As the datasets used in this thesis are images, a common preprocessing

technique for normalizing and standardizing images was used. This technique

subtracts the mean of the image to normalize it and divides it by the standard

deviation to standardize it independently for every input dimension of x (i.e.

each image). This standardization was done during the train, validation and

test phases, and the application of these statistics in preparing the validation

and test dataset as it helps with the deployment of the definite model into a

real-world application.

2.4.3 Architecture design.

In this step, the neural network architecture (the function of f , as notated

above) is determined. This step is sometimes said to be more of an art than

a science [28]; however, there are some simple heuristics that can be used

to set up an appropriate architecture in practice. It is common to process

images (pixel data) with convolution layers, because of the parameter-sharing

benefits to convoluted neurons (weights) in determining broader patterns in

the images. Recall that the adjacent neurons in one activation map share the

same weights (filters). This greatly reduces the number of trainable parameters

in each convolutional layer relative to a layer with one neuron per each pixel

or a group of non-overlapping pixels. A very rough rule of thumb for deciding

the scale of the CNN architecture is that the full model should have a roughly

comparable number of parameters as the number of examples (i.e. images) in
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the training dataset [28].

2.4.4 Optimization.

In this thesis, I applied the optimization algorithm Adam [29]. Adam is an

adaptive learning rate optimization algorithm, which means that it calculates

unique learning rates for various parameters in a dynamic or changing way.

To adapt the learning rate for each weight of the neural network, Adam utilises

estimates of the first and the second moments of the gradient. Adam’s initial

learning-rate (lr) was set to 1× 10−4, where the rate was halved every time

the validation accuracy did not increase after 10 epochs (the number of passes

of the entire training dataset the CNN model has completed during training).

The training was done in batches of 4 images at a time, and training was

restarted twice from an initialization based on the highest-accuracy model if

the validation accuracy did not increase after 32 epochs, where upon each

restart the initial lr was multiplied by 0.9. As a sanity check for code debug-

ging and to compare to other batches for overfitting, I intentionally overfit

one individual batch of the dataset (approaching zero training loss) before

optimizing the whole training dataset.

2.4.5 Hyperparameter optimization.

Stochastic gradient descent optimization can be seen as an inner loop of the

optimization, or an iterative method for optimizing an objective function,

while hyperparameter optimization is the outer loop that defines proper values

of hyperparameters in which the chain rules applied during backpropagate

are hard to exploit (e.g., it is difficult to determine the number of units in

each hidden layer or the appropriate learning rate). This process is done by

first searching for optimal hyperparameters, next optimizing the model, and

finally evaluating the model. Eventually, the model that achieves the best

validation accuracy (and least validation loss) is accepted as the final model.
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2.4.6 Evaluation.

Once the final model is determined, I tested the model on the test fold of

the complete dataset and documented the prediction accuracy on this data

that had never been seen by the model before. Additional enhancements

to model performance are also achieved by using model ensembles, which

average the outputs of various models trained from different initializations or

with different hyperparameters.

Using the computational techniques described above, the rest of this the-

sis aims to address my two main aims: (first aim) training CNN models to

determine fish presence/absence (Chapter 3) and classification, counting, lo-

calization, and segmentation of fishes (Chapter 4). (second aim) generating

weight estimates for these fish (Chapter 5 and 6).
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Chapter 3

Underwater Fish Detection

This chapter and the following chapter are devoted to the first part of the

thesis project: underwater Fish Detection. Specifically, a CNN-based binary

image labelling efficient procedure was developed to train for fish-detection

within images (i.e. fish/no-fish) and fish-localization. The goal of this chapter

is to develop a deep learning method capable of significantly reducing the

amount of human effort needed to analyze fish habitats. The structure of this

chapter is as follows: Section 3.1 introduces the procedure. Section 3.2 exam-

ines recent developments in the detection and classification of underwater fish.

Section 3.3.1 describes the labelling-efficient training and testing data prepa-

ration protocol. Section 3.3.3 presents the training pipeline. Section 3.3.4, the

most novel feature of this work, demonstrates the weakly-supervised training

of CNN fish detectors using external-to-project image domains. Section 3.4

presents the results on the project test images not used in the fish-detector

training.

The content of this chapter is written by the candidate, and he also wrote the code,

annotated the dataset, and performed the experiments.
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3.1 Introduction

Remote underwater video (RUV) is a tool used in fisheries monitoring, as well

as for the management of ecosystems, and conservation programs [30; 31].

RUVs aid in the collection of valuable information about fish and habitats

used by fish at both low cost of deployment (relative to direct surveys of

fish) and with less human interference. The application of remote underwater

video (RUV) is divided into baited[31] (BRUV) and unbaited (UBRUV) cameras.

UBRUV processing (UBRUV) was used for the purposes of this project, as

it offers the following advantages: a) UBRUV provides more information

regarding early life history of fishes, b) UBRUV provides more information

about the spatial distribution and temporal dynamics of juveniles.

For fisheries and conservation management, this information is important

because it provides (a) the ability to estimate the scale of potential stocks,

(b) an understanding of the scope and direction of population change, (c)

knowledge of juvenile fish habitats that can be prioritized for conservation

purposes, and (d) understanding of early life-history of fish and differences in

fish abundances across habitats with different levels of environmental change.

Over time, the quality of cameras used in BRUVs and UBRUVs has con-

tinued to improve. As with most electronic technologies, this trend is likely

to continue, where the same technical specifications are likely to decrease in

price, while more advanced video recording options become available. Even

at the current RUV unit prices of $100-$1,000 USD, it is still financially viable

for governments and monitoring organisations to deploy a large number of

RUVs that will generate a large amount of video. However, this video must be

processed from the deployed RUVs, which usually requires humans to watch

and annotate thousands of hours of videos before a large-enough dataset is

obtained for which population inferences can be made.

Additionally, BRUVs and UBRUVs are often deployed in sometimes visually-

difficult environments with high turbidity or discolouration (Figs. 3.1). Here,

RUV footage often becomes at best unreliable and at worst unusable for the

detection of fish by human observers (see Section 3.2). Since fishes are often

missing in many sections of the unbaited videos, it is here that modern Deep
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Learning [32] though Convolutional Neural Networks (CNNs) can aid tremen-

dously by automatic sorting underwater video clips into segments where fish

are present vs. segments where fish are missing altogether [33].
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3.2 Related Work

The Fish4Knowledge or F4K [34; 4; 35; 36] project is the first large-scale au-

tomatic fish detection and classification study carried out over five years be-

tween 2010 and 2015. The project is based on images and videos. F4K was

first collected in Taiwan, with tens of thousands of hours of submarine coral

reef video clips.

Based on the Fish4Knowledge project, [37] published the LCF-14 manual

with annotated dataset of 30,000 fish images and 1,000 video clips of 10 differ-

ent species of fish. The pictures and videos were used for the LifeCLEF2014

challenge dataset [34] competition. For fish classification, the VLfeat-BoW

[38; 39] was applied as a baseline for the identification of fish in still pictures

with 97% average precision (AP) and 91% average recall (AR), defined as [40]

AP =
1
c

c

∑
j=1

TPj/(TPj + FPj), (3.1)

AR =
1
c

c

∑
j=1

TPj/(TPj + FNj), (3.2)

where TPj, FPj and FNj are the numbers of true-positives, false-positives and

false-negatives within the classified results for the jth species, respectively,

and where c is the number of species. The video algorithm ViBe [41] was

used first for background subtractions, then followed by the VLfeat-BoW

[38; 39] to achieve only AP = AR = 54%. The same LCF-14 test videos have

been reported using the [42] Support Vector Machine (SVM) Classifier, with

very similar AP ≈ AR ≈ 50%. The slightly lower recall (91%) from (3.1)

was attributed to the higher number of false-negatives FNj (as against FPj,

there was notably higher overall accuracy: 97%). In addition, [37; 42] showed

significantly worse outcomes (AP ≈ AR = 50− 54%) for video data. More

specific fish detection methods are the subject of this section of the project.

From the fish task competition of LifeCLEF2014 [34; 37], [43] used the Fast

Regional Convolutional Network, Fast-R-CNN, together with the AlexNet
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Figure 3.1: Sample fish-containing video frames from the 20 considered habitats.

for rapid object detection and classification in images, as has also been used

in [33]. 24,272 image sets were manually curated for training and testing

to classify 12 different fish species. The fish task pictures of LifeCLEF2014

were derived from the F4K collection [36]. For the 12 species, a mean average

precision (mAP; the total area under the precision-recall curve) of 81.4% was

achieved [33] (see [33] for the exact definition of the total area under the

precision-recall curve). The most important aspect of [33] to manually pick

one of the 12 species for each train and test file. In this case, the Convolution

Neural Network (CNN) knew during training that any picture could also have

unrelated fish features that were not related to the species being trained/tested

upon. In submerged video system, the ability to detect each species is often

unknown.

For the purposes of classifying test images by looking for the most related

species type, the face recognition algorithm of [44] was applied in [30]. The

LCF-14 [37] dataset used to build 32× 32 grayscale training and testing images

for [30]. The average accuracy of classification was 94.6% classification, which

was an important improvement compared to a similar study, [45], using sparse

image representation. The [30] approach for face-recognition, and the likely

cause of the improvement in accuracy, relied on an external process [46], which
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makes it less realistic to extract and crop fish sub-images from any particular

video.

In some experiments, the MoG [47] (Gaussian Mixture-based Background/-

Foreground Segmentation Algorithm) used to segment moving fish from the

stationary subsurface are used as context substraction in [46]. Variations in

pixel intensities for fish are on average less than fluctuations seen on real fish

habitats due to the fish being the foreground target. In the case of real fish

habitats, MoG [47] context subtraction works extremely well. The clean and

debris-free water in the lower right corner, for example of Fig 3.1 exemplifies

this. The MoG algorithm is readily available in many popular software pack-

ages such as OpenCV [48] and Matlab (TM). The typical motion detection

methods of fish (for example, [46]) in complex under-water fish environments

could not, by nature, differentiate between floating waste and comparably-

sized juvenile fish, or when the fish were stationary. Fish are also inseparable

from the ground debris when they remain stationary for long periods of time,

as seen in the middle of Fig 3.1’s sparse algal bed (top row, second image from

right), and fish in the mid-left (similar subfigure). Moreover, background vari-

ations of pixels are comparable to pixel variations on slow moving fish when

using the MOG method [47], causing it to fail to differentiate the fish.

To train CNNs and use them in different environmental sites and/or de-

tect unknown species, only three CNN layers are used in [40]. CNN has been

tested for LCF-14 using 20,000 labelled images as a training set, as well as 93

videos for 15 fish species, with training accuracies as high as AP = 97.18%

[49; 50]. In [40], videos were used in both [37] and LCF-15 data sets, which

processed frames made into separate frames and then all images were re-

designed to the 32× 32 form and converted to gray scale. However, the CNN

performance degraded to AP = 65.36% when trained on LCF-14, but tested

with the noisy and low-quality images from the LCF-15 dataset. In addi-

tion, [31] reported that the CNN classification precision of [40] declined from

87.46% when trained on LCF-15 data, to 53.5% when used on a completely

different dataset [31]. This drop in output highlights the technical limitations

of any fisheries or ecology monitoring project. It is difficult to train CNNs for

generic fish detection and to use them in different environmental locations
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and/or to identify previously-unknown organisms. Therefore, the financial

and human costs of setting up and developing a CNN project have become a

central consideration to be discussed in this section.

Images from habitats in West Australia including kelp, sand, seagrass

and coral reef habitats [51] were recorded via UBRUVs in [31]. The videos

have been processed and resulted in 2,209 images containing 16 labels for 16

different species of fish and a 17th label indicating other organisms apart from

fish. The images extracted and resized to a 224× 224× 3 shape, where the

three colour channels were kept (hence the additional ×3). This resulted in a

large improvement in vision processing performance relative to the greyscale

images [40; 30]. AlexNet[52], VGGNet[53], and ResNet[54], were used in

[31]. A comprehensive image collection using ImageNet [55] weights, to

initialise initial CNNs layers were loaded for the pre-trained weights during

setup [56; 57], and this is commonly known as transfer learning or knowledge

transfer. An ImageNet-trained CNN often performs better than an image class

[57] CNN. Without further training in image extraction, the three ImageNet-

trained CNNs were applied and then used as an input in the Support Vector

Machine classification model [31]. Out of the three CNNs, the Support Vector

Machine (SVM) classification using the ImageNet pre-trained ResNet [54]

achieved the best accuracy of 89% on the 663-image trial sub-subset. However,

a 96.73% higher accuracy was achieved on the testing set relative to Fast-R-

CNN [33] and the face-recognition-method [30]. A ResNet+SVM combination

can obtain even better results, when examining the LCF-15 dataset [49; 50].

ResNet and SVM [31] focuses on classifying photos that have been detected

and correctly cropped externally (and manually). Only when combined with

automated fish detection and using comparatively accurate bounding-box

methods, can the high accuracy precision of ResNet and SVM be achieved. At

present, only [37; 42] has been calculated at 50% accurate.

The Seafloor Observatory (OBSEA) has documented an automated method

of counting fish in real-world videos to track remote coastal ecosystems [58].

In order to detect fish, 11,920 images obtained from the OBSEA test site [59]

in 2012 were used for training binary (fish/non-fish) classification, then tested

on 10,961 images taken at that site in 2013. Two separate steps were taken in
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the OBSEA method:

• In the first step, all training and testing images were taken from the

extracted Regions of Interest (RoI), i.e. the part of the image containing

a fish. The RoI stage is very similar to the MoG-type [47] method, so

the limitations of RoI are similar to those previously discussed for MoG,

specifically: a) there are a high percentage of false-negatives for fish if

the fish is stationary. b) the detection threshold is relatively low. Figures

and supplementary videos from [58] showcased this second argument,

in which the RoI step did not segment several fish in the images. In the

RoI step, sequential images are sorted by their retrieval time and the

image differences are extracted as RoIs.

• The second step is to use [58] to generate binary fish/no-fish classifica-

tions to ensure that the manually marked RoIs are correct for every seg-

mented RoIs. RoIs accuracy was 92% by the first step. In the same way,

as in the ResNet and SVM results [31], if the previous RoI/bounding box

segmentation process results in a low false-negative and false-positive

rate, then the accuracy of this method is on a per-fish/per-image basis;

however, [58] did not report false-negative and false-positive rates to be

compared between the two methods.

The previous paragraphs reviewed the available literature of recent studies

and provided intuition for the following working hypotheses:

• The labelling/annotation of bounding boxes/RoI for each training pic-

ture is required in all the checked classifiers.

• RoI extraction procedures in complicated reef habitats are just 50% -80%,

significantly less accurate than those of similar studies using different

methods in the same habitats.

• Due to a RoI or bounding boxes in a picture, a number of methods

for the correct classification of fish or fish/not-fish detection have been

reported, achieving 85%-95% precision.

• The accuracy of RoI/segmentation methods depends heavily on the

image’s background relative to the fish.
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• Trained CNN is extremely specific for fish and/or environmental habitat

and are unlikely to work as well on other species or backgrounds.

Figure 3.2: Examples of frames from mangroves habitat with: one Lutjanus argentimac-
ulatus adult (top row), one Chaetodon vagabundus (bottom row), and multiple Caranx
sexfasciatus juveniles (middle row). Top-left, middle-right and the bottom-row images
were all histogram equalized via CLAHE.
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Figure 3.3: Locations of video clip capture via unbaited remote underwater video
(UBRUV) along the near-shore island chain of the Great Barrier Reef (Queensland,
Australia).

3.3 Materials And Methods

3.3.1 Standardized Procedure for Dataset Preparation

A useful and labelling-efficient data preparation method that can be employed

in future fish surveys is the primal goal of this chapter. The following pro-

cesses were performed: 1) Video clips were chosen from 20 different locations

(see the typical Figs. 3.1 examples. 2) Video clips of the Great Barrier Reef

near-shore island chains have been recorded during a series of different en-

vironmental habitats and conditions (see Fig. 3.3). 3) These videos depict

the variety of conditions faced in a typical survey of tropical fish and belong

to field data provided during an evaluation of juvenile fish habitat [60]. 4)

Locations often include various 3D ecosystem architecture, natural lighting,

oceanic currents, suspended sediment levels (turbidity), and organic particles

("sea snow").

The video was annotated by an experienced and qualified marine biologist
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Figure 3.4: The distribution of all images in the dataset, across 20 different aquatic
habitats with the relative proportion of images containing fish (’valid’) and those
without fish (’empty’).

who was previously familiar with the habitats and videos, and they took

about two days (10 hours) to complete the annotations. The biologist checked

to see if there was at least one fish within the image. All clips containing fish

were then placed in a valid sub-folder, while all clips without fish were placed

in the empty sub-folder. At least one valid fish recording clip was recorded

in all but one habitat (the Sparse Algal Bed, see Fig. 3.4. The (first, 11th, 21st

etc.) frames (intervals of 10) were used for the training dataset (referred to as

FD10), wherein the remaining frames were saved for the testing set (referred

to as FD10-test). All clippings were then converted into individual frame

images. Overall, 40,000 frames were generated, with 1,764 (fish) positive and

2,253 (no-fish) negative images contained in the FD10 data-set. There were

16,000 positive and 20,000 negative images on the FD10-test dataset. This

video-level labelling is very useful for the creation of thousands of image-

level annotations for projects. However, only when video clips containing

fish and no-fish are recorded using the same RUVs is the suggested protocol

for labelling valid. It is necessary to know the fish features of a CNN model

(specific to ’valid’ video clips containing fish).

The FD10 and FD10-test collections of unprocessed original frames have
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been further processed with the use of the OpenCV [48] library and the

CLAHE [61] algorithm, to generate the FD10c and FD10c-Test data sets of

processed images. A limit value for the CLAHE standard clip was preserved

at 2 and 16 column tiles and 8 row tiles were set for the grid sizes of the

CLAHE tile. Each picture was first transformed by the associated OpenCV

function from RGB colour space to CIELAB space [62], and then the CLAHE

algorithm was used to determine the luminosity channel (L). The resulting

frames processed by CLAHE were visually better than untreated, unprocessed

frames, as shown in Fig. 3.2.

The initial videos in the project resolution were 1080× 1920, and the total

length was approximately 200 hours (600 clips, 20 mins/clip), demanding at

least a 200-hour time commitment/payment by dedicated marine biologists

to analyze all videos (or an compensation payment from a missed opportu-

nity cost). There are no fish species in more than half of the video frames,

which means that the original videos contain no fish recording in at least 100

hours of the footage. The inefficiency of the work for biologists is further

amplified when they must also determine which segments of video contain

fish vs. which can be ignored. Since these types of surveys using UBRUVs

are frequently carried out, the method of fish detection can be made more

efficient using an application of computer vision that is presented below.

3.3.2 The Dataset

This project is designed to learn a function which maps an input to an output

using input pairs as examples. It calibrates this function from labelled training

data in the process known as supervised learning. The best human-efficient

labelling for supervised learning is achieved by the [63] image-level class

labels. If the class label is annotated, this means that the computer will infer

that one or more class instances are visible somewhere within the image scene.

Xception [21] has been chosen as the base CNN of the current ImageNet-

trained model, and is available for Keras [64] CNNs. To create the expected

binary fish/non-fish classifier (referred as XFishMp), I replaced the Xception

1,000 class top by one spatial/global maximum pooling layer (hence the "Mp"

abbrevation for XFishMp), then added a 0.5 probability drop-out layer, and

32



finally a one-class dense layer using the previously-described sigmoid acti-

vation function. XFishMp has the smallest number of trainable parameters

(20.8 million parameters), compared with 23.5 million for ResNet50 and 21.7

million for InceptionV3-based XFish-based equivalents. Additional CNN con-

figurations denote XFishHmMp, which has shifted a final layer of XFishMp’s

global max pool and converts a dense one-class layer into a convolution layer.

XFishHmMp adds the "Hm" to its name because of the one-class convolution

layer yielding [0, 1]-ranged values that make up a two-dimensional heatmap.

The data set consisted of 4,017 colour pictures (1,764 with fish and 2,253

without fish), each with (1, 080 × 1, 920 shape) 1,080 pixel rows and 1,920

columns. The fish measurements were mainly within the range of [30, 300]-

pixels.

The FD10 data set is very small (4,017 images), in contrast to the over one

million frames in the ImageNet dataset used to train Xception. Additional

action was therefore anticipated to limit the overfitting of the XFish CNNs.

1) Training used only the greyscale versions of images for this project.

This is because fish species usually have a colour change larger than the fish

shape, the XFish CNNs were designed to learn (i.e. generalise) the fish forms

instead of memorising (i.e. overfitting) the pixel colours, so colour features

were removed. Furthermore, the colours in the underwater background vary

considerably (Figs. 3.1), so that the 4,017 images studied in FD10 could be

more efficiently classified when the coloured channels were added. Such a

colour fixture will, however, have a minimal to no overall value outside the

studied training data. Because the Xception trained models using ImageNet

expected three coloured channels for input, the XFish CNNs have been added

in order to accept single channel grey-to-RGB converted images.

2) In addition to the grey-scale input images, the following augmentations

were taken to reduce over-fitting (i.e. further regularisation), so that training

picture dimensions were limited to 512 × 512 to achieve practical training

and to fit training to common GPUs (Nvidia GTX 1080 Ti were used). Each

1, 080× 1, 920 original image has been converted to a grey scale and then a 5%

border with a 1, 188× 2, 112 shaped image has been zero-padded. The image

was then downsized to the form of 512× 512, randomly flipped horizontally,
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normalized to [0,1] range, randomly rotated, and then Gaussian normalized.

3.3.3 The CNN model and training setup

The training was conducted in 4-picture batches and twice restarted from the

highest model, if after 32 epochs, the exact validation did not increase and the

initial lr was multiplied with 0.9 upon each restart. The image validation sub-

set was not augmented, but was pre-processed, with 512× 512 resized, [0, 1]

standardised, and 5% zero-padded, as per the training set. The Tensorflow

[65] back-end trained all the considered models in Keras, where the Adam

[66] algorithm was used as a training optimiser. For training XFishMp, Adam

had a first learning rate (lr) at lr = 1× 10−5 and at 1× 10−4 for XFishHmMp,

where each time the accuracy validation increased after ten epochs, the rate

was halved.

3.3.4 General-Domain Image Datasets

Two listed fish-domains datasets were used for the weak supervision: the

classification challenge dataset LCF-15 [49; 50], with 22,400 fish images, and

the [67; 68] dataset. QUT2014 contains 4,000 fish images. Due to the lack

of public fishery domain/video datasets for the fish species examined and

due to the requirements for datasets of high quality images and quantity, I

decided to use the projects-domain datasets. There are however a number

of general-domain image data sets in which fish instances are labelled (e.g.

ImageNet [55]), or are missing (e.g. VOC2012 [69]).

The following training pipeline is suggested to preserve the weak nature

of the external mutli-domain datasets. A total of 4,000 images (known as FS10-

VLQ) was expanded by 2,000 images from VOC2012, which were marked as

containing no fish, as well as 1,000 images from each LCF-15 and QUT2014,

which were marked as containing fish. The FS10 was thus expanded to include

4,000 images. Then, this newly augmented FD10-VLQ dataset containing

8,000 images was divided into 80%/20% training/validation folds. Since

there are still many more images in all three domain-level data sets, all 4,000

additional external domain images from their corresponding datasets are
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randomly redrawn at each training stage.

Xception CNN was trained on more than a million images (including

some fish pictures). For modern high-performance CNNs such as Xception,

the FD10 project collection of 4,000 training images still was very little. This

study has consequently regularised XFish CNNs with negative general (i.e.

no-fish) domain images, which have been used to achieve weakly negative

supervision such that there are slightly more no-fish images than with-fish

images, the 17,000 VOC 2012 [69] no-fish images used in this study. At the start

of each video, when the camera was started manually before it was placed and

secured to its undersea destination, all the original videos (useful as a basis

of this project’s training videos) contains above-water segments. The negative

daily images of the VOC2012 type helped to reject these false-positives even

more robustly.

3.3.5 The Heatmap

You can easily convert XFishHmMp for any localization task by eliminating

your last max-pooling layer arriving at the XFishHm CNN. The grey input

image is thus converted from 512× 512 to 16× 16 heatmap of [0, 1]-ranged

values. The detection of fish usually involves localising within an image where

a fish is likely to have been detected. The careful annotation of the fish-

containing and missing-fish FD10 images from the same underwater sites

achieved a weak fish-localization. Note that the direct fish level monitoring by

means of a bounding box [70] to provide pixel level semantic segmentation or

point-level [63] annotation, was considered outside of the scope of this project

due to the increased time cost of labelling images.
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3.4 Results and Discussion

3.4.1 Training Baseline

In Tensorflow [65], the XFishMp and XFishHmMp were created using the

back-end in Keras [64], to establish a baseline in which the label-stratified

split was 80% (using a fixed seed) for the training and validation of FD10 and

FD10C datasets. Binary cross-entropy was used as the training loss function.

Applied to FD10-test dataset that had not been previously processed

through CLAHE [61], all FD10 and FD10c models (Table 3.1) have been evalu-

ated. The network processed 7-8 pictures per second (one image per batch) on

GTX 1080 Ti, which was marginally acceptable. For instance, through further

optimisation by running larger batches and/or only loading every second or

third frame, increased processing of greater volumes of sub-sea videos during

deployment is possible. Additional CLAHE pre-processing, however reduced

the test rate to 0.5-1 pictures per second and was therefore not considered to

be a viable deployment option.

Only the 10th frame was used for testing the accuracy of the model during

training (or validation). It can be assumed that the remaining test frames

were classified appropriately (zero false negative and zero false positive) from

the holdout FD10-test dataset. The 0.5 threshold was used to accept the posi-

tive/fish activation output of the CNN and to qualify negative/no-fish if the

output values were below this threshold. XFishMp (trained using FD10, see

Table 3.1) achieved the lowest baseline false-positive (FP/N = 0.73%), while

XFishHmMp was based on heat-maps (trained using FD10) and had the lowest

baseline False-Negative rate (FN/P = 1.67%). The total number of positive

(P) and negative (N) test pictures are displayed in Table 3.1, respectively.

Training using the FD10c picture cleaner, decreased the CNNs’ capacity

in general, with FP/N = 0.73% and 3.89% for the XFishMp+FD10c CNN,

while the best baseline false-positive performance deteriorated. [40] reported

conceptually similar results, in which training on the noisy LCF-15 dataset was

more precise than training on cleaner LCF-14 and then testing on noisy LCF-

15. Thus the image cleaning pre-processing is not necessary and may even be
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damaging to the CNN’s performance, despite being visually appealing.

3.4.2 General-Domain Image Datasets Supervision

In order to inspect the effect of additional weak domain level supervision, the

XFishMp and XFishHmMp CNN’s baseline-trained dataset were refined on

FD10-VLQ and FD10c-VLQ (see Section 3.3.4). However, no external image

was used for the CLAHE preprocessing. The training pipeline was virtually

identical, whereby the corresponding initial learning rate was reduced by a

factor of 10 and only one training phase was used. The training was therefore

not been restarted once it was being aborted.

All baseline cases (Table 3.1) were improved to some extent by the use of

general domain image datasets, with weak supervision. High false-positive

rates (FP/N = 0.50%) as well as false-negatives (FN/P = 0.90%) were

been achieved by heatmap-based XFishHmMp CNN (trained on raw FD10-

VLQ). There were only two cases of no improvement: false-positives (FP)

for XFishMp (trained on FD10-VLQ) and false-negatives (FN) for XFishMp

(trained on FD10c-VLQ).

For both valid (positive) and empty (negative) images, there was a stronger

separation of activation values achieved by the receiver operating character-

istics’ (ROC) area under the curve (AUC) [71] (see bottom right quarter of

Table 3.1). The further weak positive supervision could not significantly im-

prove the false negative rate (FN), where external datasets of fish were very

different from the images in the project-domain dataset (in LCF-15 [49; 50]

and QUT2014 [67; 68]). Furthermore, external negative, weak supervision may

improve the false positive rate (FP), which decreased significantly from 752

to 492 in XFishMp+FD10C (Table 3.1).

3.4.3 Heatmap Localization

The lowest FP and FN errors were achieved by the XFishHmMp heatmap-

based CNN (Table 3.1). XFishHmMp was converted to the XFishHm CNN

(see Section 3.3.5) after removing the last layer of max-pooling. For further

research into this localization task, annotated bounding boxes or segmentation
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Table 3.1: Confusion Matrix for Model Testing Fold Results using the FD10-Test
Dataset

Model Predicted
Actual

Train dataset Negative Positive
XFishMp TN FP (FP/N%)
FD10c 19352 752 (3.89%)
FD10c-VLQ 19612 492 (2.51%)
FD10 19958 146 (0.73%)
FD10-VLQ 19967 137 (0.69%)
XFishHmMp
FD10c 17954 2150 (11.98%)
FD10c-VLQ 17925 2179 (12.16%)
FD10 18875 1229 (6.51%)

Negative
(no-fish)
N=20,104

FD10-VLQ 20,004 100 ( 0.50%)
XFishMp FN (FN/P%) TP (AUC%)
FD10c 1027 (7.05%) 14574 (92.95%)
FD10c-VLQ 1154 (7.99%) 14447 (92.01%)
FD10 195 (1.27%) 15406 (98.73%)
FD10-VLQ 164 (1.06%) 15437 (98.94%)
XFishHmMp
FD10c 2304 (17.33%) 13297 (82.67%)
FD10c-VLQ 1758 (12.70%) 13843 (87.30%)
FD10 257 (1.67%) 15344 (98.33%)

Positive
(fish)

P=15,601

FD10-VLQ 139 (0.90%) 15462 (99.10%)
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masks for the FD10-Test images is required. However, XFishHm was used to

verify the consistency of the heatmap fish locations for all FD10 images, and

the results were visually inspected. In Fig. 3.5, typical heatmap segmenting

examples are shown, where the original training size of the heatmaps was

512× 512 (from the output XFishHm 16× 16).

The XFishMp Architecture was not consistently higher than XFishHmMp

and XFishMp (Table 3.1) could not be converted into heatmaps immediately.

Therefore, XFishHmMp may serve as the starting architecture for future work.

Note that in the XFishHmMp, the Xception CNN base could be easily and

quickly substituted with any other contemporary CNN where the trainable

grey-to-RGB convert layer takes care of any required image normalisation.

Figure 3.5: Typical examples of fish correctly detected and localized by XFishHm
(trained as in XFishHmMp), where the left two subfigures are the padded and re-
scaled original images in grayscale, the middle two subfigures are the same images
overlapped with the prediction heatmaps, and right-most two subfigures being the
generated prediction heatmaps.
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3.5 Conclusion

This work developed a new method for the successful labelling of a CNN

fish detector (the Xception CNN was used as a base) on a relatively small

number (4,000) of underwater fish/no fish project-domain images from 20

different habitats along the Great Barrier Reef of Australia. Moreover, the

general domain dataset (VOC2012) of 17,000 images with known negative

(missing fish) and over-water photographs have been used. A further 27,000

above-water and underwater positive/fish pictures were supplied by two

publicly available fish-domain datasets. With 0.50% false-positive and 0.90%

false-negative images, a trained Xception binary classification (fish/no-fish)

produced 20,104 negative and 15,501 positive images in the holdout test. The

area of the ROC (AUC) curve was 99.10%.

The novel training procedure developed can be used more effectively for

the training of a specific CNN fish detector, together with a significantly larger

pool of multidomain images to classify project-domain images. The models

were successfully tested using an efficient labelling technique involving a

small number of human hours for annotation. The regularising impact of

weak supervision on external large multi-domain image collections has been

reviewed. The model generality and performance on the test set can be

hindered somewhat by image cleaning pre-processing.

The next chapter is the second phase in the first part of the thesis project:

Underwater Fish Detection (see Figure 4.8).
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Chapter 4

Benchmark for Analyzing Fish

Habitats

This chapter is the second phase in the first part of the thesis project: Un-

derwater Fish Detection, specifically I present a benchmark called DeepFish

that is based on a large image dataset of remote underwater video collected

from remote coastal marine-environments of tropical Australia. The purpose

of this benchmark is to motivate specialized algorithms that can automate the

task of fish image analysis. The DeepFish dataset consists of approximately 40

thousand labelled images representing 20 fish habitats across Australia. As

baselines, I also evaluate a variety of deep learning methods across four tasks:

(1) classification, (2) counting, (3) localization, and (4) segmentation of fishes.

The structure of this chapter is as follows. Section 4.1 introduces the project.

Section 4.2 discuss the methods used for this project. Section 4.3 evaluate the

proposed methods on the DeepFish dataset across four tasks: classification,

counting, localization, and segmentation. Section 4.4 conclude the chapter.

The content of this chapter is written by the candidate in this thesis, and also he

wrote the code, annotated the dataset, performed the experiments.
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4.1 Introduction

Assessing fish habitats is an important step for maintaining sustainable fish-

eries. These assessments provide information about which areas require pro-

tection or restoration to maintain healthy fish populations for both human

consumption and environmental protection. However, such assessments re-

quire significant human effort. Reducing the labor cost involved in these

assessments could have an enormous economic impact and improve our abil-

ity to maintain ecosystem health. In Australia, seafood exports alone provide

1.2$ billions a year in revenue [72; 73]. Therefore, it is important to develop

tools that help in analyzing fish habitats requirements.

Many existing techniques used to understand fish habitats relationships

suffer from the problem of fish flight response, especially for habitats with

limited visibility [74]. For instance, a common surveying technique requires

divers to conduct visual census [75]. Unfortunately, this causes disturbance

to the fish leading to an inaccurate estimate of the fish dynamics. Further,

divers cannot access areas with predators such as crocodiles. Other techniques

include netting [76] and trawling [77] for catching then counting fishes. How-

ever, these methods are invasive and interfere with the behaviour of the fish

which can lead to inaccurate estimates. Further, they are limited to estimat-

ing fish count only without analyzing their dynamics. To accurately assess

fish-habitats in inaccessible and challenging environments, low-disturbance

techniques are required to collect video samples [60]. Thus we focus on meth-

ods that rely on images collected by a fixed camera that cause almost no

disturbance to the fish allowing for accurate long term monitoring.

Automatically analyzing fish footage using vision algorithms can signifi-

cantly reduce the human effort required to understand fish habitats. However,

automating this task is challenging due to the highly occlusive nature of the

environments which includes illumination changes, overlapping and size dif-

ferences of the fish. Existing methods that can automate computer vision tasks

are based on deep learning [78; 79]. Such methods have been successfully ap-

plied to many fish datasets. For instance, they were used for classifying fish

species on conveyor belts [80], for detecting and classifying fish in underwater
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Figure 4.1: A comparison of fish datasets. (a) image from QUT [3], (b) image
from Fish4Knowledge [4] and (c) image from Rockfish [5], (d) image from the pro-
posed dataset DeepFish. Other datasets are acquired from constrained environments,
whereas DeepFish has more realistic and challenging environments.

videos [81; 82; 83; 84] and for segmenting fish images [85; 19]. Therefore,

deep learning is a suitable approach for automating the task of analyzing fish

footage.

These methods need to be trained on large-scale realistic fish datasets.

Unfortunately, existing datasets consist of images where fish are present in

constrained environments [34; 36; 4; 3; 5]. For instance, some fish images

from the QUT fish dataset [3] are taken in "controlled" environments where

the background is white and the illumination is controlled (see Figure 4.1

(a)). Also, images collected for the Fish4Knowledge [4] and Rockfish [5]

datasets are underwater but they are cropped to have single fish shown at the

center (see Figure 4.1 (b,c)). However, Rockfish images have more occlusive

background than Fish4Knowledge. Deep learning methods trained on such

datasets will likely not perform well on unconstrained environments where

overlapping, lack of visibility, and occlusions are present such as in Figure 4.3

and 4.1 (d). Thus, it is important to have a dataset that contains training

images representing realistic challenging scenes as well as a diverse set of

environments.

In contrast, DeepFish images represent realistic snapshots for a wide va-

riety of fish habitats which often contain multiple fishes in challenging envi-

ronments (Figure 4.1 (d) shows an example of a DeepFish image). The images

come from 20 habitats from north-eastern Australia (Figure 4.3) that represent

almost the entire breadth of coastal and nearshore benthic habitats commonly

available to fish species in that area [7]. These diverse set of habitats cover

areas of the mainland, Hinchinbrook Island and the Palm Islands (Figure 4.2).
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It was shown that deep learning methods trained on a diverse set of images in

the wild can perform well in a wide variety of novel environments [86; 87; 88].

Given a dataset of fish images, deep learning methods can be used to

perform the following four tasks: classification, counting, localization and

segmentation. Each of these tasks can help in analyzing fish habitats from

different perspectives. Classifying images between those that contain and

do not contain fish allows experts focus their efforts by analyzing only those

images with fish. Further, having the fish count can help in monitoring

fish population to avoid the risk of overfishing. Localizing the fish can be

used for tracking fishes in order to analyze their dynamics. Moreover, by

segmenting the fish, details about their sizes, shapes, and weights can be

estimated [19; 20]. These are important statistics in applications such as com-

mercial trawling [89]. Thus a deep learning method that can perform all four

tasks has substantial advantages over many existing deep learning methods

that only contain classification labels and so are limited to a single task of

fish classification [80; 34; 36; 4]. Such a method provides the novel potential

to allow comprehensive analysis of fish habitat utilisation. Further, I present

deep learning methods trained on these labels in order to perform all these

four tasks.

In this work, I present a benchmark called DeepFish based on a large-scale

dataset of fish images consisting of classification, counting, localization, and

segmentation labels. In addition I present a variety of deep learning methods

as baselines for these 4 tasks. The dataset and the code will be made public,

hopefully inspiring further research into more powerful and specialized deep

learning models for analysing fish habitats.

4.2 Data and Methods

4.2.1 Dataset description

In the following sections I first summarize the data collection process, and

explain the additional annotations acquired for the DeepFish dataset. Then,

I describe the evaluation metrics used to evaluate the models trained on this
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Figure 4.2: Locations where the DeepFish images were acquired. DeepFish has been
acquired from the Hinchinbrook/Palm Islands region in North Eastern Australia.

dataset and how the dataset is split between training, validation, and testing.

4.2.1.1 Data collection

The images of DeepFish were collected for 20 habitats from remote coastal

marine environments of tropical Australia (Figure 4.2). A brief description

on the data collection process follows, but a detailed description is given in

previously published works [60; 90].

Videos were acquired using cameras mounted on metal frames, deployed

over the side of a vessel to acquire video footage underwater. The cameras

were lowered to the seabed and left to record the natural fish community,

while the vessel maintained a distance of 100m. The depth and the map

coordinates of the cameras were collected using an acoustic depth sounder

and a GPS, respectively. Video recording were carried out throughout daylight

hours, and in relatively low turbidity periods. The video clips were captured

in full HD resolution (1920 x 1080 pixels) from a digital camera. In total, the

number of video frames taken is 39,766. Examples of these frames are shown

in Figure 4.3.

Classification labels were acquired for each of these video frames, which in-

dicate whether an image has fish or not. These labels are useful for comparing

fish utilization between different habitats [84].
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Figure 4.3: DeepFish image samples across 20 different habitats.

Figure 4.4: Additional annotations. (a) original images, (b) images with count and
point-level annotations (c) the segmentation masks.

4.2.1.2 Additional Annotations

The original labels of the dataset are only suitable for the task of classification.

Thus, I acquired extra labels in order to enable the tasks of counting, local-

ization and segmentation, which I describe in more detail in the following

sections.

4.2.1.2.1 Counting and localization annotations. I annotated 3200 images

with point-level annotations. These annotations represent the x and y coordi-

nates of each fish within the images and they are placed around the centroid

of the corresponding fish (Figure 4.4(b)). These annotations were acquired

using Labelme [91], which is an open-source software graphical image anno-
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tation tool. These images have been also labeled with point-annotations for

counting task.

4.2.1.2.2 Segmentation annotations. Since collecting segmentation labels is

very time-consuming, only 620 images were labelled. To get these annotations,

I labeled each pixel in the image to distinguish between pixels that belong

to fish and those to the background (Fig.4.4(c)). This represents the size and

shape of the fishes in the image. I used Lear [92] to extract these segmentation

masks, which is a popular open-source image annotation tool commonly used

for obtaining segmentation labels.

4.2.1.3 Evaluation Metrics

In order to evaluate how well models perform on this dataset, I use standard

evaluation metrics for each task. For the classification task, I measure the

accuracy of the model in predicting which images have fish in them. This is

computed as,

ACC = (TP + TN)/N,

where TP and TN are the true positives (which represent the number of

correctly predicted images) and true negatives, respectively, N is the total

number of images.

For the counting task, I measure the model’s ability in predicting the fish

count by using the mean absolute error. It is defined as,

MAE =
1
N

N

∑
i=1
|Ĉi − Ci|,

where Ci is the true fish count for image i and Ĉi is the model’s predicted fish

count for image i.

For localization, I evaluate models on how well they locate fish in the

images using grid average mean absolute error (GAME). It is computed as

GAME =
4

∑
i=1

GAME(L), GAME(L) =
1
N

N

∑
i=1

(
4L

∑
l=1
|Dl

i − D̂l
i |),
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where Dl
i is the number of point-level annotations in region l, and D̂l

i is the

model’s predicted count for region l. GAME(L) first divides the image into a

grid of 4L non-overlapping regions, and then computes the sum of the MAE

scores across these regions. Note that GAME(0) is equivalent to MAE.

To evaluate our models for segmentation I use mean intersection over

union (mIoU), which is a popular metric for this task. This is computed as,

mIoU(P, T) =
1
N

N

∑
i=1

Pi ∩ Ti

Pi ∪ Ti
,

which is averaged over the two classes background and foreground, where P

is the predicted mask and T is the ground truth mask.

4.2.1.4 Training, validation, and testing splits

DeepFish is divided into three sub-datasets: (1) FishClf for the classification

task, (2) FishLoc for both the counting task and localization task, and (3)

FishSeg for the segmentation task. I partitioned each sub-dataset into 3 sets.

50% of the dataset was reserved for training, 20% for validation and 30%

for testing. Table 4.1 shows the statistics of these sub-datasets across the 20

habitats.

4.2.2 Deep Learning Methods

The second goal of this study is to present baselines that address four com-

puter vision tasks for the DeepFish dataset. These tasks are classification,

counting, localization, and segmentation. For each of these tasks, I showcase

the efficacy of current state-of-the-art deep learning methods, which I explain

in more detail in the following sections.

4.2.2.1 Classification

For classification, I used ResNet-50 [78], which is one of the most popular deep

learning architectures for image classification. I used two versions of ResNet-

50, CLF-1 which has weights initialized using Xavier’s method [93], and CLF-2

which has weights initialized by training on ImageNet [55]. ImageNet consists
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Table 4.1: DeepFish Dataset Statistics. Number of images annotated for each sub-
dataset: FishClf for classification, FishLoc for counting/localization, and FishSeg for
semantic segmentation

Habitats FishClf FishLoc FishSeg

Low complexity reef 4977 357 77
Sandy mangrove prop roots 4162 322 42
Complex reef 4018 190 16
Seagrass bed 3255 328 16
Low algal bed 2795 282 17
Reef trench 2653 187 48
Boulders 2314 227 16
Mixed substratum mangrove 2139 177 28
Rocky Mangrove - prop roots 2119 211 27
Upper Mangrove 2101 129 21
Rock shelf 1848 186 19
Mangrove 1542 157 33
Sparse algal bed 1467 0 0
Muddy mangrove 1117 113 79
Large boulder and pneumatophores 900 91 37
Rocky mangrove - large boulder 560 57 28
Bare substratum 526 55 32
Upper mangrove 475 49 28
Large boulder 434 45 27
Muddy mangrove 364 37 29

Total 39766 3200 620

of over 14 million images categorized across 1000 classes. By training on such

dataset the model can extract powerful features for unseen images that come

from new datasets. I also replace ResNet-50’s 1000-class output layer with

a 2-class output layer for both CLF-1 and CLF-2. This is because DeepFish

requires classifying images into either “fish" or “no fish", which is a binary

classification problem (see first row of Figure 4.5).

I train CLF-1 and CLF-2 by minimizing the binary cross-entropy objective

function [94]. I use Adam [95] as the optimizer with a learning rate of 1e-3

and a batch size of 16. Each image in the batch is resized to 224 x 224 which is
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the expected resolution for ResNet-50. At test time, the model outputs a score

for each of the two classes for a given unseen image. The predicted class for

that image is the class with the higher score.

4.2.2.2 Counting

Similarly for the counting task, I used the same two versions of ResNet-50

but modified them for regression. I refer to them as REG-1 for the ResNet-50

randomly initialized with Xavier and REG-2 for the ResNet-50 pretrained on

ImageNet. However, the output layer consists of one output node instead

of two as the model directly outputs the predicted count (see second row

of Figure 4.5). Further, I train the models by minimizing the squared error

loss [94], which is a common objective function for the counting task. At test

time, the predicted value for an image is the predicted object count. The rest

of the hyper-parameters are kept the same as with CLF-1 and CLF-2.

4.2.2.3 Localization

For the localization task I chose a deep learning architecture that can output

a heatmap representing where the objects are in the image. I use a state-of-

the-art localization-based method called LCFCN [96]. Its architecture is based

on FCN8 [97] which is a fully convolutional neural network that outputs a

probability for an object being present at every spatial location in the image.

Given a predicted probability map, the values are thresholded to become 1

if they are larger than 0.5 and 0 otherwise. This results in a binary mask,

where each blob is a single connected component and they can be collectively

obtained using the standard connected components algorithm. The number

of connected components is the object count and each blob represents the

location of an object instance.

LCFCN is trained using 4 objective functions: image-level loss, point-level

loss, split-level loss, and false positive loss. The image-level loss encourages

the model to predict all pixels as background for background images. The

point-level loss encourages the model to predict the centroids of the fish.

Unfortunately, these two loss terms alone do not prevent the model from

predicting every pixel as fish for foreground images. Thus, LCFCN also mini-
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Figure 4.5: Deep learning methods. Four different deep learning models used for
4 different tasks. These tasks are from top classification, counting, localization, and
segmentation.

mizes the split loss and false-positive loss. The split loss splits the predicted

regions so that no region has more than one point annotation. This results

in one blob per point annotation. The false-positive loss prevents the model

from predicting blobs for regions where there are no point annotations. Note

that training LCFCN only requires point-level annotations which are spatial

locations of where the objects are in the image.

As shown in Figure 4.5 (third row), FCN8 is divided into a backbone and

an upsampling path. The backbone extracts image features and can be chosen

to be any of the major feature extraction architectures such as ResNet-50. The

upsampling path uses the extracted features to obtain a per-pixel probability

map of where the objects are in the image. I compared FCN8 with ResNet-50

initialized randomly with Xavier as with CLF-1, and FCN8 with ResNet-50

initialized after training on ImageNet as with CLF-2. I refer to them as LOC-1

and LOC-2 respectively.

These models are optimized using Adam with a learning rate of 1e-3 and

weight decay of 0.0005, and have been run for 1000 epochs on the training set.

In all cases the batch size is 1, which makes it applicable for machines with

limited memory.
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4.2.2.4 Segmentation

For the segmentation task, I have two methods: SEG-1 and SEG-2 which have

the same initialization and architectures as LOC-1 and LOC-2, respectively.

The difference between them lies in the objective function used to train the

model. SEG-1 and SEG-2 are trained using the focal loss [98] which requires

annotations of the full segmentation masks (Figure 4.4(c)). While most seg-

mentation methods use per-pixel cross-entropy loss to train the network, it is

not suitable for images where most of the pixels are background pixels. In

other words, the imbalance between background pixels and pixels correspond-

ing to fish makes cross-entropy not suitable for training. On the other hand,

the focal loss can be effectively used to address such imbalance. SEG-1 and

SEG-2 use the same optimization hyper-parameters as LOC-1 and LOC-2.

4.3 Results and Discussion

In this section, I evaluate the proposed methods on the DeepFish dataset

across four tasks: classification, counting, localization, and segmentation. For

each of these tasks I present a strong baseline based on a state-of-the-art

deep learning method. These methods were evaluated on the test set by

selecting the model that performed best on the validation set. The hope is that

the DeepFish dataset will serve as a realistic benchmark to encourage more

specialized methods for analyzing fish habitats.

4.3.1 Classification

For the classification task, the goal is to identify whether images contain fish

or not.

In Table 4.3, I evaluate 4 different methods for the classification task.

‘always-0‘ and ‘always-1‘ are two baseline methods. ‘always-0‘ labels every im-

age as a background, whereas ‘always-1‘ labels every image as a foreground.

They fare poorly compared to CLF-1 and CLF-2, which are deep-learning

methods. In fact, CLF-2 achieved near-perfect classification results. This sug-

gests that deep learning has strong potential in helping practitioners analyze

52



Table 4.2: Counting and Localization results on FishLoc.

always-mean REG-1 REG-2 LOC-1 LOC-2

MAE 1.37 1.30 0.38 1.22. 0.21

GAME - - - 1.30. 1.22

habitats without having to annotate all acquired images. On another note,

CLF-2 performs better than CLF-1 because CLF-2 has weights initialized by

training on ImageNet. Therefore, the model can extract powerful features for

unseen images that come from new datasets.

Table 4.3: Classification results on FishClf.

always-0 always-1 CLF-1 CLF-2

ACC 0.44 0.56 0.65 0.99
Table 4.4: Segmentation results on FishSeg.

SEG-1 SEG-2

mIoU 0.49 0.93

4.3.2 Counting

The goal of the counting task is to predict the number of fish in an image.

Acquiring labels for such a task is more challenging than for the classification

task. This is because fish can be located in extremely occlusive areas (see

Figure 4.3). Thus, only 3200 were acquired, with 50% used for training and

20% for validation sets, and the rest for the test set.

Regression-based (REG) and localization-based counting (LOC) are consid-

ered for this task. Table 4.2 shows the results of 5 methods on the counting

task. The first method is ‘always-mean‘, which computes the mean of the fish

count on the training set and uses that value as the predicted count for the

test images. It performs poorly compared to the other 4 methods, which are

based on deep learning. This justifies the strength of using deep learning for

this task. Out of these 4 methods, only REG-1 and REG-2 require count-level

supervision. In contrast, LOC-1, and LOC-2 require point-level annotations,

which are more costly to acquire. REG-2 and LOC-2 performed better than
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Figure 4.6: Qualitative results on counting and localization with Reg-2 and Loc-2. (a)
Test images obtained from DeepFish, (b) Prediction results using localization-based
loss function. (c) Annotations represent the x and y coordinates of each fish within
the images and they are placed around the centroid of the corresponding fish.

REG-1 and LOC-1 because they have weights initialized by training on Im-

ageNet. Therefore, the model can extract powerful features for previously

unseen images that come from new datasets.

4.3.3 Localization

The localization task is about identifying the locations of the fish in the image.

Thus it is a more difficult task than classification and counting. Fortunately,

acquiring labels for localization is roughly the same cost as for counting. This

is because counting fish in an image often requires pointing at each fish, giving

us both localization and counting labels. As a result, the 3200 images collected

for localization are the same used for counting.

In this task, I used two methods LOC-1, LOC-2. Both methods use a

localization-based loss function that does not require defining the size and

shape of the objects. In fact, the model learns to estimate those two properties

during training (see Figure 4.6 for qualitative results). Another advantage

of using a localization-based method is that it provides a probability output

that can be thresholded to obtain the blobs. The threshold is based on the

required tradeoff between precision and recall. In our case, I thresholded the

probabilities by 0.5. Table 4.2 shows the results of LOC-1, and LOC-2. LOC-2

made a significant improvement over LOC-1. The reason behind this is that

LOC-2 was pretrained on ImageNet.
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Figure 4.7: Qualitative results for segmentation with Seg-2. (a) Test images obtained
from DeepFish, (b) Prediction results using the focal loss. (c) Annotations represent
the full segmentation masks of the corresponding fish.

4.3.4 Segmentation

The task of segmentation is to label every pixel in the image as either fish or

not fish (Figure 4.7). Combined with depth information, a segmented image

allows us to measure the size and the weight of the fishes in a habitat. This

vastly contributes to the accurate analysis of fish habitats. However, acquiring

segmentation labels is very costly. As a result, only 620 segmented images

were collected.

Similar to the localization task, I have two methods SEG-1 and SEG-2

which have the same initialization and architectures as LOC-1 and LOC-2 re-

spectively. Table 4.4 shows the segmentation results for SEG-1, SEG-2. For the

same reason as in the localization task (ResNet-50 backbone being initialized

by training on ImageNet), SEG-2 made a significant improvement over SEG-1.

This suggests that deep learning has promising applications in segmenting

fish.

4.4 Conclusion

In this work, I introduce DeepFish which is a large public image dataset

of remote underwater fish images collected entirely from coastal marine-

environments of tropical Australia. DeepFish dataset consists of approxi-

mately 40 thousand labelled images across 20 fish habitats. I present strong

deep learning methods that achieve good performance on the dataset across
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four computer vision tasks: classification, counting, localization, and segmen-

tation. For each of these tasks, I compared between a randomly initialized

ResNet-50 against a pre-trained ResNet-50. I anticipate that the DeepFish

dataset and our baseline results will inspire further research into further de-

velopments of specialized algorithms for these visual tasks for analyzing fish

habitats. Future work in this area includes: developing specialized models for

the DeepFish dataset, and field implementations of these models for generat-

ing critical data for the sustainable management of fisheries. The diversity of

the dataset including the real-life complexity of the 20 fish habitats can help

models achieve strong in-field performance when deployed in the wild.

The next two chapters will cover the second part if the thesis project -

Estimating Fish Weight from Images. This part carried out in two phases (see

Figure 4.8), the first phase is (Mass Estimation of Fish From Images). This

phase developed a Segmentation Convolutional Neural Network trained on

200 images and was used to automatically segment fish-body from a back-

ground in all of this study’s 1072 digital images of Asian seabass (barramundi,

Lates calcarifer ). The automatically extracted fish-body areas and the corre-

sponding manually measured weights were fitted to yield highly accurate

single- and two-factor mass-from- area estimation models. The second phase

is to continue developing methods for the automatic estimation of harvested

fish weight from images. I will discuss the details of the second phase in turn.
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Figure 4.8: Thesis structure and interconnection of chapters.
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Chapter 5

Mass Estimation of Fish From

Images

This chapter and the following chapter is devoted to the second part of the

thesis project: Estimating fish weight from images. In this chapter, a seg-

mentation Convolutional Neural Network (CNN) was trained on 200 hand-

segmented images from a total of 1,072 images of Asian seabass or barra-

mundi (Lates calcarifer). Each fish in the dataset was digitally photographed

and weighed. A subsample of 200 images (100 from two different locations

in Queensland, Australia) were manually segmented to extract the fish-body

area (S in cm2), excluding all fins. After scaling the segmented images to 1 mm

per pixel, the fish mass values (M, in grams) were fitted by a single-factor

model achieving the coefficient of determination R2 = 0.9819 and the Mean

Absolute Relative Error MARE = 5.1%

The content of this chapter is written by the candidate. He also wrote the code,

annotated the dataset, and performed the experiments.
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5.1 Introduction and Related work

Fish producers need to know the average weight of each fish over time so that

they can monitor the average fish weight and accordingly change the diet rou-

tine of fish to the right intake. Individual fish weights can assist in monitoring

the consistency and quality of the fish harvest. A good fish production system

with careful monitoring of fish weight will increase fish farm productivity

and profit for fish producers. An application that can estimate the fish weight

directly from images is highly valuable for fish producers, because it will save

the time and the cost of the manual weighing of the fish. Weighing each fish

manually is often economically not viable and the average fish weight can

thus not be obtained in order to monitor fish production. Additionally, the

economic value of an aquaculture species is mainly determined by weight

(M). While it is costly to manually weight fish, measuring the fish length from

digital images is much more feasible by measuring from the tip of the fish’s

nose to the middle of the tail. Mathematical models for determining fish mass

from length (L) have been established. The length-mass power model, for

example,

M = aLb (5.1)

is usually used when the species-dependent parameters a and b are empiri-

cally fit using least squares optimization [99; 100].

Digital cameras are one application that can be used to estimate fish weight,

because it is possible to automatically collect and use not only the length but

also other fish shape characteristics for mass estimation. The area of the fish

Figure 5.1: (left) Drawing of how fish total length (L) is measured; (right) drawing of
fish surface area (S) not including fins or the tailfin.
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(S) in the image (figure 5.1) can be used to predict fish mass, M, by using a

linear model. For example, for grey mullet (Mugil cephalus ), St. Peter’s fish

(Sarotherodon galilaeus ) and common carp (Cyprinus carpio) [101].

M = a + bS (5.2)

It was verified that the same linear area-mass model (Equation 5.2) was more

accurate than the length-mass power model (Equation 5.1) used on jade perch

(Scortum barcoo) [102]. Each model was used to obtain a coefficient of de-

termination, R2 = 0.99, and the mean absolute relative error, MARE = 6%.

Since the linear model (Equation 5.2) appeared to do better than Equation

5.1 [101; 102], the spectrum of larger fish is limited to every non-zero fitted

parameter a . The area-mass power model, on the other hand,

M = aSb (5.3)

does not show the same limitations as Equation 5.2, and has achieved R2 =

0.99 for Alaskan Pollock (Theragra chalcogramma) [103]. The model fitted b ≈
1.5 [103], and this was also consistent with proportional relations between the

fish length (L ∝
√

S), height (H ∝
√

S), width (W ∝
√

S) and between the

fish volume (V ∝ LWH) and fish mass (M), thus the equation:

M = aS1.5 (5.4)

from M ∝ LWH ∝ S1.5. For Atlantic salmon (Salmo salar ), a similar area-mass

power model was fitted as S ∝ M0.61 (or M ∝ aS1.64) with R2 = 0.97 by [104],

and S ∝ M0.629 (or M ∝ S1.59 ) with R2 = 0.998 [105].

Two objectives for this project have been set from the above arguments:

1) Establish an industrial area-mass power model to harvest Asian seabass

(Lates calcarifer) or barramundi in Queensland, Australia. I address this aim

by fitting Equations 5.3 and 5.4 below. 2) Develop a convenient image process-

ing method for extracting the fish body area, with the exception of fins, for

enhanced precision in the estimation of fish mass, and also discuss potential

applications in modern selective breeding programs [106; 107]. I address this
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using a neural segmentation network in Section5.2.2.
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5.2 Materials and Methods

5.2.1 Harvested Barramundi Datasets

In this project, two datasets have been used: 1) Barra-Ruler-445 (BR445) is

available to the public through [108], derived from an analysis of [107]. 2)

Barra-Area-600 (BA600) is available to the public through [109], upon the pub-

lication of [110]. Both datasets digitally captured and recorded each harvested

fish by recording the weight for each image file. All pictures had a millimetre

ruler next to the fish, see Figure 5.2 for examples. BR445 weighed fish between

0.2 kg to 1 kg and BA600 weighted fish between 1 kg to 2.5 kg. The picture

scales (in millimetres/pixel) have been measured manually, by measuring the

pixel count between the end-points of each 300 mm ruler in each picture. An

automatic ruler-scaling (RS2) algorithm [110] confirmed that the BR445 image

scales were true. The BA600 images were taken from the same distance, and

thus they had the same scale.

5.2.2 Segmentation of Fish Surface Area

Fins often add to the area of the fish (see illustrative examples in the figure 5.2)

despite fins having negligible fish mass. Thus, in theory, fish-body area alone

without fins should be used for determining fish mass. For example, when

the mass of Jade perch Scortum barcoo [102] was predicted, the use of the fish

area without taking into account the area of the tailfin was considered more

precise. In addition, the fins are highly flexible and more prone to changing

their shape or be lost due to damage or erosion during industrial production.

In the present study, 200 photos (100 from both datasets) have been used,

which were segmented manually into fish body (excluding fins and tailfins)

from the background using open-source GIMP software (see Figure 5.3). The

findings were calibrated independently for the same size of the fish-body

binary masks of 1 mm per pixel. All programs created to calculate fish-body

pixel area were written in the Python programming language. Equation 5.4

was applied to the fish areas collected to obtain the predicted weights of fish,

with the results of the two equations shown in figure 5.4. The fit was very
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Figure 5.2: Examples of images from the BR445 (left images) and BA600 (right)
datasets.

strong R2 = 0.9804 and MARE = 5.1%, which was similar to the results for

other fish species [102; 103; 104; 105]. Figure 5.4 clearly demonstrates how the

weight of harvested Asian seabass Lates calcarifer can be predicted with high

accuracy using fish body surface area. However, a robust automated body-

area extraction algorithm would still be required for large-scale use, which is

the focus of the remainder of this section, before such an assessment method

can be applied in aquaculture.

The second objective of this project is to design a practical computer vision

algorithm that can extract the fish body from pictures. As stated in section

5.1, CNN semantic segmentation [111] is very successful at addressing chal-

lenges such as classifying image pixels into pixel classes [110; 111; 112]. Deep

learning neural networks [32] have revolutionised modern machine learning

upon the introduction of many segmentation CNN models. However, com-

paring among many different and more common CNN segmentation models
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Figure 5.3: Examples of the 200 fish images that were manually-segmented into
fish-body and background.

was beyond the scope of this research. Instead, the FCN-8s [111] used in

this study were the most accurate fully convolutional network. They have a

relatively high number of citation relative to other CNNs (more than 4,000

Google scholar citations at the time of writing); thus, some would consider

FCN-8 CNNs as common CNN baseline segmentation models.

The FCN-8 model was coded in Python, using the high-level API known as

Keras [64] using the machine-learning Python package TensorFlow [65]. The

FCN-8s model is a common features-to-segmentation decoder CNN, that uses

an image-to-features CNN encoder. The original VGG16 [53] convolutional

layers of the FCN-8 [111] were constructed as encoders. In Keras, the model

VGG 16 was trained on 1,000 different objects in ImageNet [113] and was

generally known as ImageNet-trained. When CNN models have more training

by ImageNet in recognising new object classes, they are often more accurate

than random CNN models [114]. Thus, my version of the FCN-8 model,

referred to in this study as the Fish Area Segmentation (FAS) model, was

made using the convolutional layers in the ImageNet-trained VGG16 model.

In order to train the FAS, the 200 images were used along with the cor-

responding hand-segmented body masks. The 200 image-mask pairs were

randomly divided into 80%-20% training/validating sets. In order to facilitate
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Figure 5.4: Relation between the measured fish weight (M in g) and the manually-
segmented fish body image area (S in cm2) fitted by: Equation 5.4 as M = 0.1695×
S1.5, R2 = 0.9819, MARE = 5.13%; and Equation 5.3 as M = 0.1622× S1.5073, R2 =
0.9819, MARE = 5.06%. Higher densities of data points are denoted by lighter
coluors.

knowledge transfer [114], the FAS model was loaded with the corresponding

VGG16 weights, in which the remaining non-convolutional FCN-8 layers had

been initialised using a uniform distribution [115]. In comparison to the origi-

nal FCN-8 with 4,096 neurons in [111], the number of new neurons in the first

two FCN-8 decoder layers had been reduced to 512. The need to recognise

and segment only a single class of objects, i.e., fish body, explained this radical

decrease in neurons. In the last layer, the sigmoid activation function was used.

The VGG16 encoding layers in FAS are fixed and omitted from training, as

this training set has only a limited number of photos. A weight decay of

1× 10−4 was regularised for the remaining weights (with the exception of

biases). The photos and masks for training and testing were reduced to 1 mm

per pixel. For each training pass, the image-mask pairs were extensively aug-
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mented. In particular, python-opencv was used for augmentations (see Figure

5.5). For each fish image, I randomly shifted each colour channel in the ±12.5

range, randomly cropped, randomly rotated, and randomly flipped images

both horizontally and vertically.

In order to improve segmentation, the following loss function was adopted,

loss
(
Ygt, Ypred

)
= 1− dice

(
Ygt, Ypred

)
+ bc

(
Ygt, Ypred

)
(5.5)

where: Ypred and Ygt were the predicted and ground truth (i.e segmented- by-

hand) 480× 480 masks; bc
(
Ygt, Ypred

)
was the standard binary cross-entropy

loss function; and dice
(
Ygt, Ypred

)
was the Dice coefficient [116] ranging be-

tween 0 and 1 (the latter for identical Ypred and Ygt). The last layer used the

sigmoid activation function; thus Ypred predictions for each pixel ranged from 0

to 1. The ground-truthed data Ygt were encoded as 0s for the background pix-

els and 1s for the pixels within the fish body area. The losses for training and

validation sets were averaged across all pixels and all corresponding images

when obtaining the total loss for each epoch of training and validation.

Figure 5.5: Example of image augmentation: (left) the augmented image, (centre) the
corresponding augmented binary mask of the fish body (without fins), (right) both
the image and the superimposed mask.

As a training optimizer, Adam [66] was used. The Adam learning rate

(lr) was set to lr = 0.001, whereby the rate was halved after every sixteen

epochs when the total validation loss did not decrease. Training in batches

of eight images was stopped if the validation loss did not decline after 32

epochs, where the loss of validation was calculated using a series of images
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and masks that they did not use to train the FAS model. During training, the

FAS model has been continuously saved with the least running validation loss.

Also, if the training was aborted, the initial learning rates of lr = 0.5× 10−3

and lr = 0.25× 10−3 respectively were restarted twice (from the previously

saved FAS model). Notice that the previous augmentation steps were also

used to augment validation pictures and to avoid indirectly overfitting to the

validation set.
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5.3 Results and Discussion

On a Nvidia GTX 1080Ti GPU, it took two to three hours to train the FAS

model. Once the FAS model had been trained, it was able to process images

of size 640 × 640 at a rate of 30 images per second, using the same GPU.

The FAS model was used for multiple trainings with very similar results

and had negligible over-fitting, as shown in the comparable final values of

0.063 ± 0.001 and 0.072 ± 0.003 for validation and training sets (means of

equation 5.5). The accuracy of training and validation sets was 0.9945± 0.0005

and 0.9935± 0.0005, respectively. The trained FAS model was used to include

all available images (for detailed steps, see Figure 5.6). FAS can be used for

images of any size. However, the use of zero-value pads to fill the fixed

shape of 640 × 640 pixels prior to FAS prediction sped up the algorithm

in practise. The output heat-map of [0, 1] range pixel values was further

processed for each image, where values above 0.50 were set to 1 (i.e. the

body-pixels) and the remaining pixels to 0 (i.e. the background pixels). After

this segmentation process, the largest non-zero connected area within each

image and its associated area were calculated as pixel2 (i.e., mm2). Due to the

limited scope of this work, I did not include or examine images of multiple

fish or overlapping fish.

In Figure5.7, all projected areas have been compared to calculated weights.

In order to minimise the mean squared error between predicted and measured

weights, the results were matched with Equations 5.3 and 5.4. Some points

may be considered outliers, e.g. because of human weight errors or because

of fish with an odd shape due to poor nutrition, disease or deformity (Figure

5.7). Only about 1% of images from the BR445 set contained human errors,

and these were corrected using an automated picture scaling method [110].

A comparable human error rate of 1% could thus be assumed to be present

in the weight values as well, as these cannot, unfortunately, be monitored or

corrected based on the available data. A significant practical recommendation

for the future would be for researchers measuring fish weights to, where

possible, photograph both the measurement ruler and digital weight display

together in the same picture for each fish.
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Figure 5.6: Diagram summarizing the full process from training the FAS model to
fitting of model results.

The disparities between the fitted outcomes for Equations 5.3 and 5.4 are

open to discussion. A better fit certainly does not provide greater predictive

accuracy for future unseen samples; see [117] for a detailed discussion. The 5.4

equation was thus arguably more robust to errors because only one parameter

was used. The consistency of equation 5.4 has also been verified by applying

it in a hand-segmented image training set (Figure 5.4), with the results being

exactly the same, M = 0.1695× S1.5 and M = 0.170× S1.5, respectively, in over

1,000 automatically segmented photos.
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Figure 5.7: Relation between the measured fish weight (M in g) and the automatically-
segmented fish-body image area (S in cm2) as the red line using Equation 5.4: M =
0.17× S1.5 , R2 = 0.9804 , MARE = 5.128%; the dotted line is the fitted Equation 5.3,
M = 0.12× S1.5 , R2 = 0.9808 , MARE = 4.84%. Higher densities of data points are
denoted by lighter colours.

5.4 Conclusion

Using the 1,072 digital images of Asian seabass (barramundi, Lates calcarifer)

for this project, the segmentation CNN was trained on only 200 images in

order to automatically segment fish from the background. Figure 5.7 high-

lights the highly accurate one- and two-factor mass estimation models by

plotting the automatically-extracted areas of fish-body against the correspond-

ing manually-measured weights. Given the previously-documented automatic

scaling of fish images [110], the introduced automated segmentation approach

could considerably reduce fish mass estimation costs and the time required to

process them on the industrial scale.
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Chapter 6

Automatic Weight Estimation of

Fish from Images

This chapter is the second phase of the second part of the thesis project:

Estimating Fish Weight from Images. This chapter continues the development

of methods for the automatic estimation of harvested fish weight from images.

In three separate places in Queensland, Australia, about 2,500 weights and

associated pictures of fish have been collected for harvested Lates calcarifer

(Asian seabass or barramundi) . The segmentation Convolutional Neural

Network (CNN) of the LinkNet-34 has been trained on these datasets in two

instances. The first instance was trained on 200 manually-segmented fish

masks with the fins and tails omitted. The second instance was trained on 100

whole-fish masks. The two trained CNNs were then used on the rest of the

images, creating segmented masks automatically. Around 1,072 area-weight

pairs were fitted from both the first and the second places using one-factor and

two-factor simple mathematical weight-from-area models, where the values

for fish area were obtained from the automatically segmented masks. The one-

factor CNN that included fish masks with fins had the best mean absolute

percentage error (MAPE) MAPE = 5.84% when applied to 1,400 test pictures

from the third location. CNNs were also trained using direct weight-from-

picture regression, where the CNN trained for fish masks with no fins was

deemed the most accurate, with an associated MAPE = 4.77% for the test

image set.

The content of this chapter is written by the candidate in this thesis, and he also

wrote the code, annotated the dataset, performed the experiments.
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6.1 Introduction and Related work

The quality assurance of marine products is of high importance for both fish

farmers and their customers. The value, price and best before date is usu-

ally determined by the quality, freshness and authenticity of fishery products

[118; 119; 120]. Thus, fish farmers are interested in all possible ways of max-

imising their product’s quality and increasing their farm’s profitability [121].

Monitoring of fish and fish products at various stages may result in increased

productivity and profitability for farmers, and closer monitoring of farmed

fish can result in earlier detection of disease and stress in fish that often mani-

fest through the serious deformation or malformation of fish vertebrae [122].

In other words, by selecting an appropriate method for assessing the status of

fish and fish products, more effective management can be achieved at differ-

ent stages of fish growth and thus the quality of fish products in aquaculture

can potentially be improved. Normal testing and assessment methods for fish

health are usually time-intensive, intrusive, costly and permanent. Therefore,

it is important to use quick and cost-effective methods that avoid stress from

reared fish during various phases of cultivation.

Aquatic products may be categorized into two groups, namely external

physical attributes (e.g., morphology, size) and internal attributes (e.g., chem-

ical structure, taste, smell) [123; 124]. Physical attributes such as size, shape,

weight, colour and texture are very important and often easier to observe than

internal attributes, and shape the first visual impression of consumers that

the fish product is acceptable and satisfactory. Therefore, external attributes

need to be evaluated and measured closely by fish farmers. For effective aqua-

culture farm management, monitoring of fish mass is essential. Fishermen

can measure the regular feed ratio and fish inventory density by measuring

details regarding fish mass. The harvest and classification of fish depend also

on the mass of fish and the mass distribution of fish within the population.

Fish weight can also be calculated by determining fish length. On a linear

scale, fish length explains about 99% of the variation in fish weight ([125]).

Additionally, surface area obtained using SVM (support vector machine) can

also be used to predict fish weight [126]. For example, the weight of rainbow
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trout (Oncorhynchus mycosis) is predicted well by surface area [127]. Finally,

weight has also been estimated in Clupea harengus using Stereovision systems,

which use multiple 2D and 3D features within video and images in order to

accurately estimate weight and at high speed [128].

There has been a long interest in the interaction between fish body shape

and mass [129; 99; 130]. The weights (W) of fish based on their total length (L)

and a constant (q) that is associated with total fish volume and their specific

gravity were estimated by the equation W = qL3. However, due to allometric

growth (i.e. non-linear increases in fish weight relative to other portions of

the fish), [99] the Cubic function is replaced with a variable exponent (n):

W = qLn. The conventional lateral profile dimensions of salmon were mea-

sured manually by [131], using 52 parameters multi-factor model to accurately

predict fish weight. Additionally, the growing use of aquaculture image pro-

cessing in the mid-1980s [132] provided the opportunity for the automatic

evaluation of the weight of fish without the necessity to remove fish from the

water. Up to now, various techniques for automated mass assessments of fish

outside and within their aquatic environment have been used. Other methods

include [133], who used the projected trunk area for turbots, Scophthalmus

maximus, and a logarithmic relationship between weight and fish area. [134]

extracted computer vision measurements of the fish length from the binary

image of the fish moving on a conveyor. In comparison with manual mea-

surements, the error in the estimation of fish length using this application

of computer vision was ±3%. In [135], the fish mass from pictures was also

easily estimated. The correlation coefficients between weight and shape for

grey mullet, carp and st. Peter’s fish were 0.954, 0.986 and 0.986, respectively.

[136] used a SVM to describe to a bias of only ±3% for fish weight estimated

using fish shape/form parameters. The pictures were taken both from the

top and side perspectives, and the vector support system was trained using

13 form parameters. Both of [103; 126] used image processing to predict the

weight of different salmon species (Alaskan, Pink, Red, Silver, Chum) with

coefficients of determination ranging from 0.93 to 0.99 between weight and

shape. Therefore, computer vision is a powerful way of accurately and in

real-time, measuring the mass of fish. There is, however, no general method
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for estimating the mass of each species and the optimum relationship for each

individual species thus needs to be estimated.

Using weight and fish body surface area measurements from 120 jade perch

(Scortum barcoo), three mathematical relationships of mass were developed and

tested in [137]:

Polynomial: M = a + bS + cL + dH, (6.1)

Power curve: M = aLb, (6.2)

Linear: M = a + bS, (6.3)

Where S is the surface area of the fish body (with or without fins), H is the

height of the fish, and all lowercase symbols (a, b, c, d) are fit based on least

sum of squares methods according to the true measurements. The polynomial

model (eq. 6.1) performed the best on a testing set of 64 images, and reached

MAPE = 5% for the contours of fish with and without fins. The only other

comparable model that was found was the Power Curve (Eq. 6.2) that achieved

MAPE = 10% for without fins contours and MAPE = 12% for fine-tuned

contours. Similarly, [138]’s third-ground polynomial model (MAPE = 11.2%)

was consistent with and comparable to the power-curve model results of [137]

(Eq. 6.2, MAPE = 10− 12%).

Using only the surface area S (Eq. 6.3), Viazzia et al. [137] reported

MAPE = 5− 6%, while Konovalov et al. [19] fitted the following two math-

ematical models for harvested Asian seabass (Lates calcarifer, also known in

Australia as barramundi):

M = cS3/2, c = 0.170, (6.4)

M = aSb, a = 0.124, b = 1.55, (6.5)

Where the mass (M) was measured in grams and the surface area (S) of the

fish body was in cm2 for 1 mm-per-pixel image. For 1,072 different fish photos

of two distinct barramundi farms (Queensland, Australia)[107], the MAPEs

were 5.1% and 4.5%, both for the single-factor (Eq.6.4) as well as for the two-

factor (Eq. 6.5) versions. Generally, fitting parameters of a, b, and c appears to

be always species-dependent [139; 140].
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This project aims to expand methods for automatically estimating the

weight of harvested fish. The following two practical and technical issues

were dealt with, in particular:

1) Are models trained on datasets with fish masks excluding the fins and

tailfins better than models trained using whole-fish masks (e.g. in [19])? Entire

surface areas of the fish are easier to extract, rather than excluding fins that

are not easily defined in some videos and images [103; 137]. Therefore, fish

segmentation based on fish masks without fins and tailfins is only warranted

if the extra complexity in training the CNN provides a great improvement to

the mass estimation model [19].

2) The way in which Eqs. 6.4 and 6.5 are consistent in fish mass prediction

when the different barramundi photos are added is examined. They both used

semantic segmentation FCN-8s CNN [111; 97; 141], which are substituted here

by more modern LinkNet-34 CNNs [142; 22] and are compared to FCN-8s net-

works in [19] to check stability and precision of the automated segmentation

of fin and no-fin fish masks.

A pipeline for weight estimation is presented so that video frames could

be processed quickly as single pictures in real-time for frame sizes up to

480×480 pixels. Similar to [134], a standard conveyor can be fitted with a video

camera for weight estimate analysis to use within the aquaculture industry.

Conveyor videos can now be processed off-site, making the estimation method

financially viable and technological advancements have increased the accuracy

of these tasks by handling the frames in higher resolution, thus making this

method increasingly feasible. By placing or putting a measuring ruler (or a

known scale object) on or next to the conveyor, appropriate scaling of fish is

easily achieved.

Keeping in mind the importance of monitoring fish and the simplicity of

this measuring framework, this project is of great importance for potential

industry-level deployment purposes.
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6.2 Materials And Methods

6.2.1 Harvested Barramundi Datasets

Three data sets were first introduced in [107] and used in this chapter. The

first dataset was Barra-Ruler-445 (BR445), which included 445 images with

manual weights measured between 1 − 2.5kg. BR445 has previously been

used in [19; 110; 143]. The second data set was BW1400, and contains 1,400

harvested images of barramundi with weight values between 0.15 − 1.0kg.

The third dataset was Barra-Area-600 (BA600), containing over 600 pairs of

images and weights (used in [19])

In Figs 6.1 and 6.1, a couple of examples from each dataset are presented,

both originals and in greyscale.

The BR445 and BA600 images were taken outdoors in natural sunlight,

while the BW1400 images were taken indoors under artificial illumination.

Note that BR445 and BW1400 images have the same white holding plate

(Figs. 6.1a-d), with BR445 images having a slight blue tint (Figs. 6.1a-b). All

photographs were converted to grayscale prior to the computer vision tasks,

to reduce the importance of transient colours for training and testing (Fig. 6.2),

and normalized in [0,1] numerical values.

Figure 6.1: Samples of original images from the used datasets: BR445 (a) and (b),
BW1400 (c) and (d), BA600 (e) and (f).

Figure 6.2: The same samples as in Fig. 6.1 converted to grayscale and enhanced by
Enhance Local Contrast (CLAHE) [6].
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6.2.2 Segmentation of Fish Surface Area

In this project, together with the corresponding fish images, 100 mask pairs

from BR445 and 100 from BA600 have been scaled to 1 mm-per-pixel; see

an examples of the same 200 no-fins masks from [19] in Fig. 6.3. To exam-

ine the effect of fins/no-fins in the fish masks, 100 additional fin masks (50

from each BR445 and BA600) were manually segmented; see an example in

Fig. 6.3(h). The lower number of whole-fish masks (with fins) was justified by

the anticipation of the whole-fish segmentation being a much simpler learning

problem.

The Fully Convolutional Network from [111], FCN-8s, has been trained

and deployed on 200 with fin masks previously in [19]. Although FCN-8s were

a significant theoretical advance in the field ([111; 97]), FCN-8s are still less

accurate than the most recent CNN segmentation models using U-Net ([141]).

In addition, only 200 no-fin masks of 1,072 images were manually-segmented

([19]), thus, the exact accuracy of the FCN-8s segmentation process for other

non-segmented pictures was not evaluated. Therefore, in this chapter, I tried

to evaluate the accuracy of the original findings recorded using the FCN-8s

by relying on the U-Net family of CNNs, which are, at least in theory, more

accurate as a segmentation model.

Figure 6.3: An example of weight measuring error in the BW1400 dataset: (a-c)
the correctly measured reference images with y weight values; (d) the identified
recording/measuring error (predicted p = 751g); (e) the mask without fins (including
tailfin) for the fish in (d); (f) the whole fish mask for the fish in (d); (g) the mask
without fins and tail; (h) the whole fish mask.
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A variant of U-Net [141], LinkNet-34 [142], was chosen for this project,

which includes the feature encoder ResNet-34 [144] and the [22] implemen-

tation of PyTorch. The reasoning for selecting LinkNet-34 over other models

was twofold. First, CNN results are a challenge in many cases in terms of

reproducibility. This was alleviated by the use of the ResNet-34 CNN (which

can be found in the PyTorch distribution) together with the LinkNet-34-style

decoder [22]. The second critical factor was that, in the Endoscopic Vision

Sub-Challenge: Robotic Instrument Segmentation (MICCAI 2017), LinkNet-34

offered a high balance between speed (also tested within this project) and very

high accuracy [22].

6.2.3 Training Pipeline

A training pipeline [19] was maintained, to ensure the reproducibility of the

method.

• The first 200 no-fins masks and 100 with-fins masks were divided into

80% and 20% training and validation folds/sets

• ResNet-34 layers were loaded with ImageNet [11] weights they were

trained on, in order to speed up the training process through knowledge

transfer [114]. In the final output layer, the sigmoid activation function

was used

• 1× 10−4 weight decay was applied to all trainable weights

• All images and masks were scaled up to 1 mm-per-pixels

• To minimise overfit for both training and validation, all image-mask

pairs were randomly: rotated, cropped, flipped horizontally, and/or

flipped vertically.

• Training was done in batches of 8 images

• Adam [29] was used as a training optimizer
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Compared to [19], the following training steps were improved. As per [22],

the loss function (Eq. 6.6) was replaced by (Eq. 6.7):

loss(y, ŷ) = bc(y, ŷ) + (1− dice(y, ŷ)) (6.6)

loss(y, ŷ) = bc(y, ŷ)− ln(dice(y, ŷ)) (6.7)

where y was a target mask, ŷ was the corresponding LinkNet34 output, bc(y, ŷ)

was the binary cross entropy, and dice(y, ŷ) was the Dice coefficient [116]. Ad-

ditional grey-to-color trainable conversion layer on the front of the LinkNet-34

[145] has been added to reuse the ImageNet training ResNet-34 encoder. Im-

age blurring (kernel sizes 3 or 5 pixels) or Enhance Local Contrast (CLAHE)

[6] were applied with 0.5 probability each, in addition to the original augmen-

tations [19]. LinkNet-34 has eliminated the need for freezing the ImageNet-

trained encoders’ weights [19] for advanced segmentation CNNs (as compared

with FCN-8 CNNs) with grey scale images (and other augmentations).
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6.3 Results and Discussion

In this chapter, I developed an important benchmark practises to automati-

cally estimate the weight of harvested fish from images. This objective was

addressed using weight-from-area and weight-from-image models.

6.3.1 Estimating weight-from-area by mathematical models

The first step was to see if the mathematical models used to estimate fish

mass (M) from fish surface area (S) in the image were correct and reliable for

industry use (See Eqs. 6.4 and 6.5). Two mathematical models were examined,

see Eqs. 6.4 and 6.5.

6.3.1.1 Which is better, with or without fins?

I also examined whether model accuracy was improved by using only the

fish body (herein referred to as “no-fins“, see associated rows of Table 6.1 for

results), rather than using a whole fish mask that included all fins and the

tailfin (herein referred to as “whole”, see associated rows of Table 6.1). Results

for the one-factor model in rows 1 and 2 (cells highlighted in green) showed

that for no-fins models using Eq. 6.4, both the coefficient of determination (R2)

was higher (i.e. greater model fit), and the mean absolute percentage error

(MAPE) was lower (i.e. greater predictive accuracy) than other combinations.

Note that R2 increases based on the number of parameters included in the

model, and thus, will always be higher for models using more parameters,

and thus is best to compare only between whole and no-fins mask types based

on the same model equation. Thus, for models using masks with no-fins, the

two-factor model (Eq. 6.5) was most accurate, according to MAPE values.

6.3.1.2 The logarithmic scale approach

The original fit was not performed on a logarithmic basis in the previous

chapter (row 3 of Table 6.1), which implies that large weights contributed

more to model fit (compare top and bottom rows in Fig. 6.4) by reducing
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Table 6.1: Mass estimation models

Mask Model Fit Fit BW1400
type Fitted or trained on R2 MAPE MAPE

BR445 and BA600 [%] [%]

1. whole c = 0.12 0.963 6.15 5.84
2. no-fins c = 0.17 0.965 6.04 7.63

Eq. 6.4, log-MSE fit

3. no-fins c = 0.17 0.9804 6.128 9.21
Eq. 6.4, MSE fit [19]

4. whole a = 0.09, b = 1.5 0.964 5.42 7.47
5. no-fins a = 0.1, b = 1.5 0.971 5.31 11.34

Eq. 6.5, log-RANSAC fit

6. no-fins a = 0.12, b = 1.5 0.9808 6.84 12.17
Eq. 6.5, MSE fit [19]

7. whole LinkNet-34R 4.68 12.06
8. no-fins LinkNet-34R 4.57 4.77
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the mean squared error (MSE). Rows 1 and 2 were fitted to the logarithmic-

scale [137] (top row of Fig. 6.4) to decrease the MAPE from 6.128% to 6.04%

(rows 3 and 2, respectively, of Table 6.1). Thus, the MAPE improvement was

less noticeable between when MSE was done directly on the area and weight

values rather than their logarithms, for no-fin masks. Fig. 6.4 demonstrates

how the no-fins (top sub-figures) and whole (bottom sub-figures) distributions

were qualitatively comparable, where lighter (more yellow) colour indicates a

higher density. The results in Fig. 6.4 may help to explain why some previous

studies have not found differences when using no-fin masks [103].

6.3.1.3 Robust fit and Outliers

A number of outliers have also been found in Fig. 6.4. One solution to possible

outliers was the use of a robust [146] linear regression, which had been done

in the study by changing the two-factor model (Eq. 6.5) to the logarithmic

scale through the RANSAC algorithm [147] (top row of Fig. 6.4, see rows

4 and 5 of Table 6.1). The fitting of two factor coefficients of b differs by

1% between the models with-fins (b = 1.56) vs. no-fins (b = 1.57), which

indirectly confirms that the fit of the RANSAC is more robust to outliers. The

fit of automatically segmented fish shapes with no fins and tails also produced

the best MAPE = 5.31% of all models examined.

6.3.1.4 Image acquiring method

The no-fins MAPE = 5.31%, (see Table 6.1 cells filled with yellow), showed an

increase in MAPE values of around 0.11% relative to the one-factor model. The

image scales were precise to about 1-2% difference in MAPE value, where the

scales were taken from the rulers shown in each frame. The visual distortion

in the ruler (per ruler long) often produced up to 1% different pixels between

the top and bottom markings. If feasible, creating image masks that do not

include fins or tailfins may thus be better for the purposes of building more

accurate mass estimation models.
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Figure 6.4: Relation between the measured fish weight and the automatically seg-
mented fish area for the combined BR445 and BA600 datasets: no-fins (fish masks
without fins or tailfins) on top and whole fish (fish masks including fins and tailfins)
on the bottom.
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6.3.2 Direct weight-from-image estimation

In previous sections, I showed how a fish image can be segmented using

zero-values to indicate background pixels and one-values to indicate pixels

containing a fish body, by using CNN segmentation LinkNet-34 with or with-

out fins. The LinkNet-34 sigmoid output as a value of one (foreground pixels)

was not fine-tuned and the threshold was left at its default value of 0.5. Then,

the total number of non-zero pixels was used to obtain S for a fish area that

was fitted by Eqs.6.4 or 6.5 to a corresponding fish weight M. Each foreground

pixel of a fish was expected to contribute to the total fish mass equally. In 2017,

Standley et al. [148] reported one of the first CNN image-to-mass conversion

applications to achieve MAPE < 1% on more than 1,300 test images of generic

everyday objects and home objects, where there were about 150,000 images in

the training set. The direct converting of the segmented mask into weights via

the regression version of LinkNet-34, known as LinkNet-34R, was therefore

interesting and worth comparing to the previously-used methods. LinkNet-

34R obtains weights by adding all the sigmoid outputs (ys) from LinkNet-34

to the logarithmic scale without a threshold:

yr = log(ys + 1) (6.8)

Thus, when ys=1, the images without detected foreground fish masks are

added to assign a zero mass value. The fish images (not just masks) are also

automatically segmented, see examples in Fig. 6.3(e) and 6.3(f). To ensure

that weight values predicted from the CNN are associated with the fish and

not with something else in the image, segmented images are used as LinkNet-

34R inputs (with or without fins). The corresponding log-scaled fish weights

then replace ys by weights of M with the same Eq. 6.8. The LinkNet-34R

training pipeline stayed the same as in LinkNet-34, with the only difference

being that the images were not resized randomly. Specifically, the random

scaling of 80%-120% for LinkNet-34 was used, but not for LinkNet-34R. As the

LinkNet-34 had already been trained to correctly detect fish, the LinkNet-34R

version was fit with parameters of LinkNet-34 and trained from learning rates

reduced by 10 when fine-tuning the model.
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Model errors were examined using numerical experiments and some image

and/or recording/measurement errors were identified in around 1–2% of the

image weight pairs. For example, for analysis of images with identical scaling

(1 mm-per-pixel) in Fig. 6.3(a)-(d), the weight estimated for the case of image

(d) would exceed 615g and predicted to be 751g while it was reported to be

468g, likely due to a measurement error. These errors have been specifically

excluded from the data set BW1400, but not from the data sets BR445 and

BA600 to allow a clear comparison of the project’s [19] performance. As per

the image2mass study [148] and since some BR445 and BA600 data sets have

remained outliers (Fig. 6.4), the metric MAE was used as the loss function to

the LinkNet-34R regression training model. If MSE had been used, the outliers

would have affected the end fit more [146]. For training and validation subsets,

all the 1,072 available BR445 and BA600 segmented image-weight pairs have

been randomly divided into 80% and 20% folds, respectively, and the training

subset used for training LinkNet-34R models. In rows 7 and 8 of Table 6.1, the

MAPE values during validation using the testing fold are reported (4.68 and

4.57%, respectively).

Figure 6.5: Normalized distributions of automatically-segmented mask areas in the
BW1400 images
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6.3.3 Models predictive performance

The use of mathematical models and neural networks for estimating fish

weight has little practical value unless new fish weights from different loca-

tions can be predicted by the models. The predictive accuracy of the BR445

and BA600 models is reported in the last column of Table 6.1, and it is also

used with the previously-unseen BW1400 dataset. Metrics such as R2 are less

useful in practical industrial applications, so only MAPE has been reported

hereafter. The following is an interpretation of the somewhat conflicting re-

sults of these MAPE values.

6.3.3.1 Better MAPE values for Whole-fish mathematical model

For the unseen BW1400 images, as opposed to the corresponding MAPE

values for no-fins (7.63% and 11.34%), both one- and two-factor models using

whole-fish achieved substantially better MAPE values (5.84% and 7.47%). the

no-fins models (see rows 3 and 6 in Table 6.1). The results from [19] were

also consistent with this result, when developed models were applied to an

entirely new and previously unseen dataset.

6.3.3.2 Errors in no-fins masks had a larger effect

When attempting to understand why whole-fish models are better predicted,

it is important to consider that the lower (pelvic) fins had often overlapped

with the body area of the fish, and thus, the no-fins CNN subtracted this

area from the fish body (see Figs. 6.2(c), 6.2(d) and 6.3(b)). Fish mask with

no-fins were, on average, less than 20% of the corresponding entire-fish areas

(see Fig. 6.5). Consequently, incorrect reductions of no-fin masks were more

significant than variations in the whole-fish masks (e.g. due to overlapping

pelvic fins).

6.3.3.3 One-factor Vs Two-factor models

An analysis was carried out on how one-factor models were much better than

the two-factor models (one-factor models: 5.84% and 7.63% MAPE, rows 1

and 2 in Table 6.1; two-factor models: 7.47% and 11.34% MAPE, row 4 and
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5). The best fits for the two-factor models (5.42% and 5.31%, rows 4 and 5)

were possibly due to the overfitting of the training data sets, which were most

compatible with the one-factor model when refit according to all available

data in BR445 and BA600 samples in [19].

6.3.3.4 Direct weight-from-image CNN regression

Eqs. 6.4 and 6.5 were based on the hypothesis that each fish pixel was equally

allocated towards the total weight of the fish. The previous results showed that

these models could be very rough approximations. However, the LinkNet-

34R CNN models performed using a highly non-linear weight conversion

of the segmented fish images, but at the cost of an ease-of-interpretability,

in contrast to Eqs. 6.4 and 6.5. Nearly identical validation MAPE = 4.57%

and test MAPE = 4.77% were obtained using the no-fins version (row 8 of

Table 6.1). The whole-fish version, showed some indications of overfitting for

the two-factor model: MAPE = 4.68%, while predictions for the testing set

were much less accurate MAPE = 12.06% (row 7 in Table 6.1).

In the future, a comprehensive analysis may be needed to determine how

th LinkNet-34R CNN models determined weight predictions. In the no-fins

fish images, for example in Fig. 6.3(e), the contour was smooth, so the LinkNet-

34R was required to calculate the weight by using features from the fish in the

image. However, the contours using the whole-fish masks were more complex,

and were thus more likely to be specific to individual training images, indicat-

ing overfitting of the training set due to the more than 21 million parameters

set by LinkNet-34R (see Fig. 6.3(f)).
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6.4 Conclusion

The mass estimation of objects from images is an evolving computer vision

task with represents an important contribution to industrial use [148]. I

showed how typical CNN segmentation ("off-the-shelf") such as LinkNet-34

[22], can be trained effectively using: (i) image-mask pairs for as little as 100-

200 images in the training set; (ii) a schedule of linear learning rates; and (iii)

reduced ImageNet training encoder learning rates (ResNet-34). Fish masks

were automatically segmented and fitted with simple mathematical models

to achieve MAPE values between 5-11%. These MAPE values are comparable

to other studies, e.g. [138; 137]) on 1,400 test images not used in the fitting

procedure and from different geographical locations.

The main question of this research was to evaluate whether a fish mask

used in automatic segmentation by CNNs should include fin and tailfin of

fish or not. In particular, when models were used on unknown test images

from a different geographical area, the two basic mathematical models based

on the whole-fish silhouette, in general, performed best (lower MAPEs). The

question of model complexity was also addressed, as new test images were

best predicted by the simplest one-factor (one-parameter) mathematical model

relative to the two-factor model. In addition, models were relatively stable

and low MAPE = 5.84% for the experiments, compared to MAPE = 6.15% for

the training images.
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Chapter 7

Conclusion

In this thesis, practical computer vision applications capable of detecting fishes

in various fish habitats have been developed, and a large image dataset is

presented. The DeepFish consists of approximately 40,000 labelled images rep-

resenting 20 fish habitats collected from remote coastal marine-environments

across tropical Australia. Moreover, to evaluate a variety of deep learning

methods, I applied the DeepFish dataset across four different tasks: classifica-

tion, counting, localization, and segmentation of fishes. The second method

estimated fish weight from an image of harvested fish. I hope that the re-

sults from this thesis may contribute to large-scale applications of artificial

intelligence that reduces both the cost and time required to determine fish

mass within the aquaculture industry. The methods outlined in this thesis are

a step towards the development of valuable practical computer vision appli-

cations capable of classifying various fish species habitats, determining the

presence or absence of fishes, and measuring their weights and sizes. Thus,

they represent a valuable contribution to fisheries management, ecosystem

management and fish stock conservation programs. This chapter summarizes

the thesis’s approaches and contributions to the field, and discusses future

work (see figure 7.1).

7.1 Summary and contributions

The field of computer vision has witnessed rapid advances over the last few

years. For image classification (a core visual recognition problem), ImageNet’s

Large-Scale Visual Recognition Challenge serves as a highly-cited benchmark
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exemplifying this progress. The Challenge saw a decrease in the top-5 error

rates from 27% in 2010 to 2.25% in 2017. The top-5 error is the percentage of

test examples for which the correct class was not in the top 5 predicted classes,

and is a difficult task to achieve considering ImageNet has 1,000 classes. This

performance matches human recognition abilities and even exceeds it in some

more specialized categories, such as the recognition of different dog breeds

[11].

Figure 7.1: Thesis structure and interconnection of chapters
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In Chapter 3, a CNN-based fish-detector was developed to train to a project-

specific dataset of underwater fish/non-fish images from 20 different habi-

tats with relatively small numbers of images (4,000). Above-water photos

(VOC2012 [149]) were also used, along with 17,000 negative (i.e. missing fish)

images. An additional 27,000 overwater and underwater positive (i.e. hav-

ing a fish in the picture) were used from two publicly available fish-domain

datasets. The resulting CNN binary classifier (fish/not-fish) trained on a por-

tion of these images produced 0.17% false positives and 0.61% false negatives

in the 20,000 negative and 16,000 positive holdout test image set of the project.

In Chapter 4, a benchmark called DeepFish was developed based on a

large image dataset of remote underwater video collected from remote coastal

marine-environments of tropical Australia. The purpose of this benchmark

was to motivate specialized algorithms that can automate the task of fish im-

age analysis. The DeepFish dataset consisted of approximately 40,000 labelled

images representing 20 different fish habitats across Australia. As baselines, I

also evaluated a variety of deep learning methods across four tasks: (1) classi-

fication, (2) counting, (3) localization, and (4) segmentation of fishes. The goal

of the classification task was to identify which images contain fish. For the

counting tasks, the goal was to determine the number of fish in each image.

The goal of the localization task was to identify the locations of the fish in

the images. For the segmentation task, the goal was to extract the shape and

size of the fish that are present in the image. These tasks are important for

researchers assessing fish habitats. For instance, localization can help experts

find fish that are in highly occluded or turbid areas, whereas segmentation

can be used to estimate the size of fish passing into the camera’s range. The

experimental results show that the developed deep learning methods achieve

compelling results. This suggests that a tool built on deep learning may

be possible, which would significantly reduce the amount of human effort

needed to analyze fish habitats. The dataset and the code will be made public,

which will hopefully inspire further research into this area, through developing more

powerful and flexible algorithms

In Chapter 5, I developed a method using a Segmentation Convolutional

Neural Network trained on 200 images, which were used to automatically
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segment fish body area from the background in all of this study’s 1,072 digital

images of Asian seabass (barramundi, Lates calcarifer). The fish-body areas

were automatically extracted and used to predict weights of fish using one-

and two-factor mass-of-area estimation models achieving high accuracy, such

as model R2 = 0.9828, MARE = 5.58%, and R2 = 0.9834, MARE = 4.53%,

respectively.

Finally, the focus of Chapter 6 was to continue developing methods for the

automatic estimation of harvested fish weight from images. I showed how

CNN segmentation through typical "off-the-shelf" models such as LinkNet-34

[22] can be trained effectively using: (i) image-mask pairs of only 100-200

images; (ii) a schedule of linear learning rates; and (iii) by reducing the Im-

ageNet training encoder’s learning rate (ResNet-34). Fish masks were auto-

matically segmented and fit with simple mathematical models to achieving

MAPE values between 5-11% (these values are comparable with other studies,

e.g. [138; 137]) on 1,400 test images not used in the fitting procedure and

from an entirely different geographical location. The main question of this

research was to evaluate whether a fish silhouette automatically segmented

by the CNNs should include the fin and tailfin or not. In particular, when

used on unknown test images from a different geographical area, the two

basic mathematical models based on the whole-fish silhouette generalized

better (lower MAPEs) than fish masks using no fins/tailfins. Additionally, the

simplest one-factor (one-parameter) mathematical model performed better

than the two-factor model on the new test images. Finally, the results were

very stable, with low MAPE = 5.84% for the experiments, compared to the

MAPE = 6.15% for the training images.

7.2 Future Work

The research presented in this thesis demonstrates methods and techniques

that are developed to produce real-world applications for marine habitats

using computer vision. There are several extensions to the methods that were

beyond the scope of this thesis that can be considered. This section discusses

two of these extensions.
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When analyzing fish habitats, both a dataset and a method are required.

The dataset is a collection of videos of underwater fishes with different an-

notations for various computer vision tasks (e.g., classification, counting, lo-

calization and segmentation). The collection of an underwater fish data can

be used to help researchers in Australian fisheries and the rest of the fisheries

community in training and testing their computer vision methods on a public

dataset. This dataset will be unique if it covers the full diversity of different

aquatic habitats in the coastal/marine environment. These kind of habitats

and environments are common across the tropics; therefore, this could be done

anywhere in the world. It would be valuable if scientists and environmental

managers had this kind of data from a broad diversity of habitats. The dataset

utilizes remote underwater video (RUV) recordings and is thus a promising

tool for fisheries, ecosystem management and conservation programs [30; 31]

in coastal marine environments of tropical Australia.

The method involves the development of a computer vision system capa-

ble of classifying various fish species habitats, determining if contain fishes,

analyze where they are, how many, and measure their sizes. The output of this

application is to provide a knowledge of habitats that need to be protected,

and enhance our understanding of the impacts of environmental change on

fish populations. My proposed method would provide valuable information

(i.e. fish numbers, location and sizes) to fishery managers, ecosystem man-

agers and conservation officers to aid in maintaining the integrity of fish

stocks.

In the second method applied to Asian seabass (barramundi, Lates calcar-

ifer), phenotyping of fish via predictive modelling of features measured after

slaughter can be assessed using images of fish before being harvested, includ-

ing 3-dimensional images. Deep learning and computer vision are promising

fields for the creation of such models. The resulting models could then be

used to design a high-performance phenotyping technique.

In future work, video data may be automatically extracted regarding live

fish including morphometrics and weight measurements, as well as fillet yield

predictions. Existing fish spawning data collection schemes rely on manual

labour and are expensive, and are also susceptible to human error. Thus,
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computer vision can be used to develop new solutions for high-throughput

phenotyping in commercial environments. Researchers can then analyze char-

acteristics of harvested fish such as their body weight, viscera weight and

fillet weight. Most of these measurements can only be taken after slaughter,

and so these features can not be determined on live fishes prior to the estab-

lishment of predictive models. In addition to fish weights, three-dimensional

photographs of fish prior to harvest can be taken and used to build a pre-

dictive model. This will create a new phenotyping technique that aims to

enhance animal selection by accelerating the collection of data on fish and

eliminates the need for slaughtering fish unnecessarily in order to quantify

internal features.
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