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Introduction
The novel severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is a betacoronavi-
rus that is known to infect humans and other 
mammals such as bats. Its zoonotic nature is 
well proven.1 The outbreak of the dreadful coro-
navirus disease 2019 (COVID-19), caused by 
SARS-CoV-2, was first reported in December 
2019 in Wuhan, China.2 The outbreak currently 
ravaging the world was declared a pandemic on 
11 March 2020 by the World Health Organization 
(WHO).3 The pandemic has caused a devastat-
ing global health and economic burden,4 with 
over 3 million deaths as of 31 May 2021.5 
COVID-19 is a complex multisystemic disease, 
and the spectrum of manifestations can vary 
from asymptomatic disease to severe acute res-
piratory distress syndrome, renal dysfunction, 

hyperimmune state, and sepsis, eventually lead-
ing to death.2,6–8 The pathogenesis of COVID-
19 is not fully understood, and its complexity 
has evolved to the point where microbiota dys-
biosis could be implicated in the pathological 
process.9–12

The human microbiome refers to the entire 
microbial composition of an organ or system, 
including the microorganisms, their surrounding 
environmental conditions, genomes, and host 
interactions.13 Microbiota is the community of 
microorganisms colonizing the human body. The 
human microbiota plays a role in nutrient metab-
olism, fat store regulation,14 modulation of the 
immune response,8,15 and maintaining host 
homeostasis.16 The interplay between commensal 
microbiota and host immunity is important in 
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maintaining mutualism and homeostasis, and 
perturbation of this interaction could lead to 
disease.16,17

Microbiota dysbiosis has been associated with 
several respiratory diseases, such as chronic 
obstructive pulmonary disease,18,19 asthma,20,21 
cystic fibrosis,22,23 tuberculosis,24 and lung can-
cer.25 The nasopharynx is the primary site for 
pathogen colonization, a mechanism that contrib-
utes to the onset of respiratory diseases; any 
imbalance in the mucosal nasopharyngeal micro-
biota may play a vital role in susceptibility to viral 
respiratory infections.26,27 Studies on microbiota 
composition in a healthy person and patients with 
respiratory disease suggest that microbiota may 
play a crucial role in the genesis and clinical devel-
opment of the disease,26 including bronchiolitis in 
infants,28 and asthma.29 Edouard et  al. reported 
that the microbiota from a healthy nasopharyn-
geal swab was composed of aero-anaerobic bacte-
ria and was altered during a viral respiratory 
infection.26 COVID-19 patients are said to show 
significant alteration in the gut microbiota during 
the period of hospitalization and at an all-time 
point during intensive care.9,10 Similarly, Man 
et al. recently showed a strong correlation between 
viral and bacterial microbiota in the upper res-
piratory tract and the severity and presence of 
childhood respiratory infection later in life.27 
Thus, alteration of the microbiota profile during 
SARS-CoV-2 infection might be associated with 
disease severity.

Emerging and recent studies have shown that 
lung microbiota dysbiosis could be associated 
with pulmonary diseases such as pulmonary fibro-
sis,30 and this may impact the outcome of 
COVID-19 cases.31–33 The imbalance between 
gut and lung microbiota might compromise host 
immune response during episodes of SARS-
CoV-2 infection, leading to uncontrolled inflam-
mation.34 However, it is still unclear whether 
microbiota dysbiosis contributes to the inflamma-
tion or whether this is entirely the effect of 
COVID-19. The focus of this review is twofold. 
Firstly, to understand the role of lung microbiota 
dysbiosis on the pathogenesis of respiratory dis-
eases with emphasis on the maternal–fetal trans-
mission of COVID-19, and secondly, to elucidate 
the impact of SARS-CoV-2 infection on preg-
nancy, and maternal and child health.

Lung microbiota in respiratory diseases
Respiratory microbiota are often referred to as the 
gate-keepers to respiratory health, and their 
involvement in maintaining lung immunity and 
homeostasis has been studied widely .35 During 
the first few weeks of life, distinct lung microbiota 
exist.36 For example, the Staphylococcus aureus 
population in the nasopharyngeal microbiota 
niche declines gradually, and there is a simultane-
ous increase in potential beneficial commensals 
such as Dolosigranulum pigrum and Corynebacterium 
species.37 However, a decline in beneficial bacteria 
has been associated with the risk of pneumonia in 
children.38 Bosch et  al. reported that children 
delivered by caesarean section were more likely to 
have delayed development of nasopharyngeal 
commensals Dolosigranulum and Corynebacterium 
profiles early in life, and this might influence their 
respiratory health later in life.37 Abundance of 
nasopharyngeal Dolosigranulum (especially Dolosi
granulum pigrum) and Corynebacterium is an indi-
cation of a healthy respiratory microbiome.39 
Dysbiosis in this diverse microbiota profile was 
associated with several respiratory pathologies 
(Table 1).40–51 Dolosigranulum is a rare opportun-
istic pathogen that has been confirmed to cause 
different types of septicemia and pneumonia, 
while Corynebacterium is abundant in children free 
of Streptococcus pneumoniae.50 Lack of airway 
Corynebacterium might be associated with post-
influenza pneumonia.50,52 The consequences of 
lung microbiota dysbiosis contribute to the worst 
pathological outcomes during respiratory viral 
infection.53,54 This is further discussed with 
emphasis on COVID-19.

Lung microbiota dysbiosis in  
COVID-19 patients
Few studies have examined the role of lung 
microbiota in mild and severe COVID-19 
patients.31,55–57 A recent study on the analysis of 
lung microbiota from 20 deceased patients who 
had severe COVID-19 revealed that the lung 
microbiota was enriched with bacteria and fungi 
genera Acinetobacter and Cutaneotrichosporon, 
respectively,56 and that fatal COVID-19 episodes 
might be associated with complex microbial 
superinfection such as invasive pulmonary asper-
gillosis.58 In addition, gut Enterobacteriaceae were 
also found to predominate in the lungs of deceased 
COVID-19 patients.56 This finding might suggest 
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the possibility of intestinal to respiratory microbi-
ome crosstalk or migration. While the mechanism 
by which this could occur remains elusive,59 it is 
plausible that endotoxin secreted by pathogenic 
Enterobacteriaceae affect gut and lung epithelial 
cells, thereby leading to heightened pulmonary 
inflammation.56 De Maio et  al. reported that 
patients with mild COVID-19 showed no statisti-
cal difference in their nasopharyngeal bacterial 
profile compared with non-infected patients.60 As 
microbiota dysbiosis occurs in severe COVID-19 
patients, it is not surprising that disturbance in 
lung microbiota might play a role in SARS-CoV-2 
pathogenesis.

Pathogenesis of SARS-CoV-2 infection
Research on the pathogenesis of SARS-CoV-2 
infection in humans is still evolving. The use of 
animal models is vital for understanding SARS-
CoV-2 pathogenesis.61 Using transgenic mice 

expressing human angiotensin-converting enzyme 
2 (ACE 2), Jiang et al. reported that SARS-CoV-2 
viral particles were found in the lung and brain 
region.61 They also found that, between the fourth 
and seventh day of infection, there was significant 
body weight loss, host immune and cardiac dys-
function, respiratory distress, and even death.61 
Likewise, Israelow et  al. reported heightened 
inflammatory interferon signatures in the lungs 
similar to COVID-19 patients.62 Mechanistically, 
SARS-CoV-2 binds to angiotensin-converting 
enzyme 2 (ACE2), and it also utilizes transmem-
brane protease serine 2 (TMPRSS), both 
expressed on peripheral tissues, including lungs, 
to gain entry into the host,63–65 thereby affecting 
host physiological functions (Figure 1). Following 
this, SARS-CoV-2 can co-infect multiple organs 
apart from the lungs. The full understanding of 
human SARS-CoV-2 pathogenesis is currently 
incomplete and is a rapidly developing area of 
science.66,67

Table 1. The association of lung microbiota with respiratory diseases.

Model (species) Respiratory disease Major findings References

Human COPD Increased Firmicutes Proteobacteria Actinobacteria 
phyla, and Streptococcus, Corynebacterium, 
Haemophilus, Pseudomonas, Rothia, Moraxella, 
Lactobacillus genus in COPD lung microbiota

Erb-Downward et al.40, 
Huang et al.41, Pragman 
et al.42, Pragman et al.43, 
Sze et al.44

Human Asthma Increased eosinophils correlates positively with 
abundant Actinobacteria (Streptomyces and 
Propionicimonas)

Huang et al.45

Human Allergic rhinitis High IgE titer correlate with low nasal microbial 
biodiversity with relatively high Staphylococcus 
aureus and decreased Propionibacterium acnes

Hyun et al.46

Mice Allergy Commensal bacteria-derived signal limit lung 
allergic inflammation

Hill et al.47

Human Rhinitis Haemophilus, Neisseria, and Moraxella increased 
significantly in children with rhinitis. Moraxella spp. 
is associated with children with Rhinitis interacting 
mite sensitization. Airway Leptotrichia is found in 
amount in mite-sensitized asthma in children

Chiu et al.48,49

Human Allergic rhinitis Airway Haemophilus spp. are positively correlated 
with IgE levels

Chiu et al.49

Human Influenza Enriched Staphylococcus and Dolosigranulum taxa in 
the nasopharyngeal region

Ding et al.50

Human Acute respiratory 
tract infection (RSV or 
Rhinovirus)

Abundant airway Haemophilus in RSV-positive 
infants

Rosas-Salazar et al.51

COPD, Chronic obstructive pulmonary disease.
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SARS-CoV-2 receptors and target cells
ACE2 is the main entry receptor for SARS-
CoV-2. The virus utilizes TMPRSS2 as viral 
spike (S) protein priming.64 These receptor pro-
teins are expressed predominantly in pulmonary 
and extrapulmonary organs, including lung type II 
pneumocytes, nasal goblet cells, placenta,65 ileal 
absorptive enterocytes,68 intestine,69 liver, and 
heart.63 They are also expressed widely in specific 
cell types, such as decidual stromal cells, placen-
tal cytotrophoblasts, and syncytiotrophoblasts at 
the maternal-fetal interface.70,71 ACE2 is a car-
boxypeptidase that cleaves angiotensinogen into 
smaller angiotensin peptides. Early pathogenesis 
of COVID-19 requires the attachment of the viral 
S protein to epithelial ACE2, thereby inducing 
endocytosis, which is followed by priming the 
viral S protein by TMPRSS2 protease activity, 
facilitating SARS-CoV-2 entry into the host cell.63 
Apart from ACE2 and TMPRSS2, only a few 
other proteins, including transducin-like enhancer 

protein 3 (TLE3) and lysyl oxidase (LOX), which 
interacts with SARS-CoV-2, were found in an in 
silico analysis to be upregulated in early and term 
placental tissue, respectively.65 LOX is expressed 
highly in both human fetal membranes and mes-
enchymal cells of the placenta.65,72 LOX family 
proteins are extracellular enzymes that participate 
in reproduction, and an altered expression of 
LOX protein is associated with endometriosis,73 
impaired placental trophoblast migration, and 
preeclampsia.74 SARS-CoV-2 interacts with pro-
teins that are involved in placental function, 
implantation, and successful decidualization, 
thus implying a probable route of fetal infection.

Possible maternal–fetal transmission route
The transmission of SARS-CoV-2 from a preg-
nant mother to a developing fetus is quite rare but 
possible.70 With increasing research on the 
COVID-19 pandemic, more findings suggest that 

Figure 1. Representation of possible pathogenesis of SARS-CoV-2 and effects on mammalian organs. SARS-
CoV-2 binds to ACE2, and protease activity of TMPRSS2 facilitates entry into the lung epithelial cells. The 
pathogenesis of SARS-CoV-2 induces heightened inflammation, microbiota dysbiosis, and possible adverse 
outcomes such as respiratory distress, and cardiomyopathy, thus complicating host health. (Figure created in 
Biorender).
ACE2, angiotensin-converting enzyme 2; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TMPRSS2, 
transmembrane protease serine 2.
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vertical transmission of SARS-CoV-2 is possi-
ble.75 For instance, ACE2 and TMPRSS2 are 
expressed at the maternal–fetal interface, which 
indicates the possibility of in utero transmis-
sion.76,77 Similarly, Fenizia et  al. reported that 
SARS-CoV-2 genome was found in the umbilical 
cord blood, at-term placentas, breast milk, and 
vaginal mucosa in 1 out of 31 pregnant mothers 
involved in their study.70 Babies born to mothers 
who tested positive for COVID-19 have a detect-
able amount of the virus-specific antibodies in 
their sera.78 Vivanti et al. recently reported possi-
ble transmission of SARS-CoV-2 between preg-
nant mothers and their developing fetuses using 
comprehensive immunological and virological 
techniques.79 All samples collected, including 
amniotic fluid, were positive for SARS-CoV-2, 
and the developing fetuses showed irregular fetal 
heartbeats,79 accompanied by neurological defects 
such as encephalitic symptoms early in life.80 In a 
longitudinal study, mothers who tested positive 
for COVID-19 showed a positive serological test 
for IgM in breast milk between 3 and 68 days 
after the onset of COVID-19 symptoms.81 
Consecutively, others reported IgM at day 8 and 
IgG on day 28 in the breast milk of nursing 
infected mothers, cord blood, and neonatal 
serum.82 However, there was no detectable trace 
of SARS-CoV-2 found in breast milk.82 At the 
moment, the transmission of SARS-CoV-2 via 
breast milk remains inconclusive.70,78 It was sug-
gested that proper hygiene during breastfeeding 
might contribute to a low risk of transmitting 
SARS-CoV-2 in neonates.83

Microbiota dysbiosis during pregnancy and 
birth
Pregnancy is a physiological state that involves 
changes in hormonal homeostasis, immunity, 
metabolic processes, and microbiota composition 
in order to support fetal growth and develop-
ment.84 Until recently, there was speculation that 
developing fetuses are germ-free since the womb 
and placenta are sterile.84 However, the uterus is, 
after all, not sterile but home to most beneficial 
commensals, suggesting that fetuses are exposed 
to commensals during development, and this, in 
turn, might influence fetal immune develop-
ment.85 For the first time, Al Alam et al. reported 
possible traces of human fetal and placenta micro-
biome as early as the first trimester in pregnancy, 
and these microbiotas inhabit the fetal lung.86 

The placenta has also been shown to consist of a 
diverse microbiota profile.87 Using genomic DNA 
sequencing, Parnell et  al. reported that distinct 
microbiota diversities exist in the placenta.87 
Their findings also showed that Ralstonia insidiosa 
and Mesorhizobium spp. were abundant in both 
the placental villi and basal plate while the 
Lactobacillus spp. were abundant in the fetal 
amniotic membrane. The composition of micro-
biota early and later in life of these neonates might 
depend on the mode of birth (either via vaginal 
delivery or caesarean section) and maternal nutri-
tion.88–90 We postulate that distinct fetal lung 
microbiota might be established in the early 
phases of pregnancy.

The importance of microbiota in health has been 
well established.91 Lactobacilli and Prevotella 
dominate the vaginal microbiota,92,93 and 
Proteobacteria and Actinobacteria are abundant 
in gut microbiota. In contrast, Actinobacteria, 
Fermicutes, and Bacteroides dominate oral 
microbiota.94 Disturbance in the oral, intestinal, 
placenta, and vaginal microbiota during preg-
nancy either as a result of infection or stress such 
as hormonal imbalance might lead to complica-
tions for the baby, including metabolic program-
ming during development,95 preterm birth,96 and 
altered neurological development.94,97

Potential implications of COVID-19 in 
pregnancy
It is possible that COVID-19 might have an 
adverse impact on pregnant mothers and their 
babies, but the exact mechanism is still 
unknown.98,99 SARS-CoV-2 infection during 
pregnancy might affect placental morphology, 
thereby impacting the pregnancy adversely 
(Figure 2). The placenta is a unified organ 
responsible for mother to fetus nutrient transport, 
and it accommodates numerous commensal 
microorganisms. Placental microbiota dysbiosis 
during pregnancy might lead to undesired out-
comes.100–102 There is increasing evidence that 
SARS-CoV-2 is detected in placental tissue and 
amniotic fluid in preterm fetuses born to SARS-
CoV-2 infected mothers.103,104 Histological analy-
sis of placental morphology in neonates born to 
SARS-CoV-2 infected mothers revealed fetal vas-
cular malperfusion,105 maternal vascular malper-
fusion,106 heightened macrophage, and 
lymphocytes infiltration.103 Heightened placental 
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inflammation might result in early-onset of preec-
lampsia, poor maternal condition, and adverse 
birth outcomes.103

There are reports that describe the outcomes of 
neonates born to mothers with SARS-CoV-2.107 
COVID-19 affects successful fetal development 
and might cause preeclampsia, miscarriages, fetal 
growth restriction, and preterm birth.107,108 More 
pregnant women with COVID-19 are now opting 
for caesarean section during the third trimester 
because of the uncertainty of mother-child trans-
mission via vaginal delivery.107,109 However, 
babies delivered by a caesarean section might lose 
out on inheriting most of the beneficial vaginal 
microbiome. Pregnant women are in an immuno-
suppressed state and recent studies show that 
they are susceptible to respiratory diseases such as 
severe pneumonia.109 When infected with SARS-
CoV-2, they present with clinical symptoms such 
as fever, cough,83 myalgia, and rashes75 and labo-
ratory findings show elevated C-reactive protein 
and lymphocytopenia.110

Emerging research has also shown that SARS-
CoV-2 infection during pregnancy might cause 

miscarriages,111 small for gestational age, low 
birthweight (<2500 g), preterm births,70 and even 
fetal death.112,113 Of the 125 pregnant women 
admitted to an intensive care unit in a multicenter 
unit in Turkey, about 86.5% of neonates born to 
such mothers were isolated in the neonatal inten-
sive care unit for respiratory support.114 Symptoms 
associated with neonates born to SARS-CoV-2 
infected mothers include respiratory distress, gas-
trointestinal disturbance, fever, irregular heart 
rate, abnormal liver function, poor immune func-
tion, multiple organ failure,115 unexplained 
rashes, and facial ulceration.116 Data from a large 
cohort (n = 91,412) of women of reproductive age 
in the United States (US) with laboratory-con-
firmed COVID-19 revealed that the incidence of 
the disease might be higher in pregnant women 
(31.5%) than non-pregnant women (5.8 %),117 
and there was a possibility that these figures might 
continue to rise. In another smaller cohort study 
involving 46 patients, it was found that COVID-
19 patients with underlying medical conditions 
such as obesity had an increased risk for preg-
nancy complications.118 With the emerging find-
ings on possible maternal–fetal transmission and 
pregnancy outcome, more research is warranted 

Figure 2. Representation of exposure to SARS-CoV-2 infection during pregnancy and neonate/fetus outcome. 
SARS-CoV-2 infection in pregnancy may induce vascular malperfusion in the placenta. This might alters fetal 
growth and development, which may cause negative pregnancy outcome, as well as have adverse effects in 
neonates health later in life. (Figure created in Biorender).
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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on the effects of SARS-CoV-2 infection during 
pregnancy and neonatal health.

Conclusion and future direction
Lung microbiota dysbiosis is associated with res-
piratory distress and increases the risk of respira-
tory infection. SARS-CoV-2 infection during the 
gestational period affects maternal health and 
may cause severe complications for the develop-
ing fetus, such as metabolic programming and 
restricted growth leading to preterm birth. With 
the emerging findings on possible maternal–fetal 
transmission and adverse pregnancy outcomes in 
patients infected with SARS-CoV-2, we postulate 
that lung-gut microbiota crosstalk exists and 
maternal–fetal microbiota exchange during preg-
nancy and birth may be a signature for neonatal, 
infant, and child health. However, it is premature 
to speculate on the effect of SARS-CoV-2-driven 
lung microbiota dysbiosis and its eventual impact 
on pregnancy outcomes due to maternal infec-
tion. Future larger scale, longitudinal, population 
studies should further explore: (1) the mecha-
nisms whereby SARS-CoV-2 influences specific 
maternal lung microbiota during pregnancy, (2) 
whether such specific dysbiosis is transferred dur-
ing pregnancy to the developing fetus, and (3) 
whether there is a correlation between specific 
fetal microbiota profiles at different trimesters 
with pregnancy outcome and neonatal health. 
Results of these emerging studies might be useful 
in providing guidelines for managing SARS-
CoV-2 infection during pregnancy.
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