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Abstract 

The cognitive load imposed by instruction is an important consideration for instructional 

designers. Theoretical models have traditionally divided total cognitive load into intrinsic, 

extrinsic, and germane load. The 10-item Cognitive Load Inventory (CLI-10) is designed to 

measure these three types of cognitive load. It is typically administered immediately following 

a discrete learning activity (e.g., a lecture). This study assesses the properties of the CLI-10 

when used to measure the “long-term” cognitive load experienced in a course, over a semester. 

To do this, the instrument was given to a group of students enrolled in a veterinary anatomy 

course (N = 94), toward the end of a 13-week semester. Students were asked to indicate the 

cognitive load they experienced across this course. Confirmatory factor analysis supported the 

instrument’s three-factor structure when used in this way. Further, the instrument’s three 

subscales performed well in terms of internal reliability and convergent and discriminant 

validity.  

 

Keywords: Cognitive Processes/Development; Factor Analysis; Higher Education;  
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Introduction 

In the context of instructional design research, cognitive load refers to the mental effort 

required to learn new material. Leppink et al.’s (2013) ten-item Cognitive Load Inventory 

(CLI-10) is a short measure designed to assess three types of cognitive load: intrinsic load 

(IL), extrinsic load (EL), and germane load (GL). Previous research has focused on assessing 

the psychometric properties of the instrument when administered immediately following an 

educational activity (e.g., immediately following a lecture). This study adds to the literature 

by assessing the properties of the instrument when used as a long-term measure of cognitive 

load. The CLI-10 being valid when used to assess the cumulative cognitive load experienced 

over a semester would allow for more flexibility in the way educational designers assess the 

cognitive load associated with a course.1  

Cognitive load theory (see Leppink & van den Heuvel, 2015) posits that a) for 

learning to occur information needs to be encoded into long-term memory via working 

memory, b) there are inherent limitations to working memory (in terms of both capacity and 

duration), and c) these limitations should be considered in instructional design in order to 

maximize learning. In cognitive load theory knowledge is assumed to be stored in long-term 

memory in the form of schemas: cognitive frameworks for organizing interrelated 

information elements (Sweller et al., 1998; van Merriënboer & Sweller, 2010). Schema 

construction brings information elements together (i.e., chunking) into something that can be 

treated as a single unit in working memory (thereby reducing load). Schemas which are 

frequently used become automated, such that they do not need to be consciously processed in 

working memory (e.g., learning to read).  

As mentioned above, total cognitive load has traditionally been divided into EL, IL, 

and GL (Sweller et al., 1998). IL refers to working memory load imposed as a result of the 

natural complexity of the material being studied. IL is also reflective of the prior knowledge 

of the learner. EL refers to mental effort resulting from the way material is organized and 

presented, with suboptimal instructional design imposing greater EL.  

Whereas IL and EL primarily concern the characteristics and presentation of the 

material to be learned, GL concerns the cognitive resources the learner applies to this 

material in order to create and automate schemas. This would include deliberate strategies 

that the learner applies to learning material. Originally, cognitive load theory distinguished 

 
1 By “course” we mean the equivalent to the Australian and UK term “unit”, that is, a unit of teaching on a 

particular topic area that lasts one academic semester (e.g., Introductory Psychology 101).  



between IL and EL only, with GL being added by Sweller et al. (1998) at a later point. There 

is currently debate as to whether GL should be considered a distinct form of cognitive load or 

merely a subcomponent of IL (see Kalyuga 2011; Leppink & van den Heuvel, 2015; Young 

& Sewell, 2015).  

Improving instructional design involves reducing EL, encouraging GL, and managing 

IL (van Merriënboer & Sweller, 2010). For example, EL can be minimized through the use of 

worked examples and the avoidance of split-attention (e.g., avoiding having the information 

needed to solve a problem dispersed over multiple documents). Although the inherent 

difficulty of material is thought to be largely immutable, strategies can also be applied to 

optimize IL (e.g., gradually increasing complexity of tasks, and ensuring material difficulty 

matches the prior knowledge of the learner). GL can by promoted by encouraging students to 

use meta-cognitive skills which promote schema construction (e.g., self-explaining 

information).  

Of course, assessing the quality of instructional design from a cognitive load 

perspective requires a valid measure of cognitive load. Approaches to the measurement of 

cognitive load include the collection of performance data (e.g., the accuracy of detecting an 

auditory signal), physiological indices (e.g., brain activity, pupil dilation), and subjective, 

self-report measures (Paas et al., 2003).  

One issue with older self-report measures of cognitive load (e.g., Paas, 1992)—and 

also physiological and performance-based measures—is that they produce an index of overall 

cognitive load only. As such, it is not possible to assess how changes to instructional design 

differently impact the types of cognitive load. Accordingly, Leppink et al. (2013) developed 

the CLI-10 to produce scores for IL, EL, and GL.  

Using factor analytic techniques, Leppink et al. (2013) demonstrated the CLI-10’s 

three-factor structure (representing IL, EL, and GL) and internal reliability, across multiple 

samples of social and health science students attending lectures on statistics and/or research 

methodology. Zukić et al. (2016) confirmed the instrument’s three-factor structure among 

their own sample of undergraduate psychology students learning statistics. The CLI-10’s 

three-factor structure has also been demonstrated outside of statistical instruction, among 

medical students engaging in a problem-based learning activity (Hadie & Yusoff, 2016), 

high-school students undergoing a medical simulation activity (Cook et al., 2017), and 

university students taking language classes (Leppink et al., 2014). The CLI-10 has also been 

successfully adapted and expanded (to 19 items) to assess cognitive load associated with 



performing colonoscopies among surgical residents (Sewell et al., 2016), while maintaining a 

clear three-factor structure. 

This said, a two-factor solution (consisting of EL and IL) was found to be more 

appropriate than a three-factor solution when measuring the cognitive load associated with e-

textbook use, among a large sample of undergraduate biology and anatomy/physiology 

students (Novak et al., 2018). Furthermore, attempts to adapt the CLI-10 to assess the 

cognitive load associated with patient-handover simulations among medical students failed to 

produce a clear three-factor solution (Young et al., 2016; Young et al., 2017). However, 

Young and colleagues’ Cognitive Load Inventory for Handovers used CLI-10 items as a 

starting point only. Thus, these findings may not necessarily reflect problems with the factor 

structure of the CLI-10 itself.  

In demonstration of the instrument’s predictive validity, CLI-10 scores have been 

found to correlate with various learning outcomes; showing moderate correlations with 

performance on post-lecture quizzes (Đapo, & Husremović, 2016), small-to-moderate 

correlations with course exam performance (Leppink et al., 2014), small correlations with 

course letter grades (Novak et al., 2018), and a moderate correlation with accuracy during 

patient handover simulations (Young et al., 2017). 

Current Study 

As can be seen, there are some inconsistencies within this literature as to whether 

items on the CLI-10 form three distinct factors (which one would expect if the CLI-10 really 

does index three distinct forms of cognitive load). Another limitation of this literature is the 

timing of the measurement of cognitive load. Typically, the CLI-10 (or one of its derivative 

instruments) is administered directly following a discrete learning activity (e.g., immediately 

after a lecture or directly following participation in a problem-based learning activity). This 

lack of delay between the learning activity and measurement of cognitive load has been 

identified as problematic by the instrument’s lead author (Leppink, 2017) and others (Young 

& Sewell, 2015), as schema construction and automation would be unlikely to occur 

immediately. This problem is especially relevant to the measurement of GL (which more 

directly relates to schema construction and automation).  

In the current study, a slightly modified version of the CLI-10 was administered to a 

sample of undergraduate veterinary science students in a veterinary anatomy course—a 

population to which, to the authors’ best knowledge, the CLI-10 has not previously been 

administered. The instrument was given toward the end of the 13-week semester, with 



questions being modified to assess the cumulative cognitive load experienced over the 

semester. This article aims to assess the psychometric properties of the CLI-10 among this 

population, when used as a long-term measure of cognitive load in this way. The instrument 

is assessed in terms of its factor structure, the convergent and discriminant validity of 

subscales, and the internal reliability of subscales.  

Method 

Procedure and Participants 

Data were collected as part of a larger longitudinal study tracking several cohorts of 

undergraduate veterinary students across their study of anatomy. The data for this study were 

collected in the first of three anatomy courses. At the time of data collection (the final week 

of a 13-week teaching semester), the course had covered locomotor anatomy (anatomy of the 

locomotor system, e.g., bones, joints, and muscles) and nervous anatomy (anatomy of the 

sensory organs and nervous system) in relation to multiple species. Locomotor anatomy was 

covered is Weeks 1-10 (with an additional lecture-recess week during this period), whereas 

nervous anatomy was covered in Weeks 11-12. 

Participation in the study involved completing a short, pen-and-paper questionnaire. 

Of the 119 students enrolled in the subject, 99 were present at the lecture in which data were 

collected. Ninety-six of these students consented to complete the questionnaire, resulting in a 

response rate of 80.7%. The sample had a mean age of 21.22 years (SD = 4.91, range = 17–

54). The majority of participants identified as female (80.2%) and Australian (94.8%).  

Measures 

The questionnaire assessed demographic information and the cognitive load 

associated with the course. As mentioned above, cognitive load was assessed using Leppink 

et al.’s (2013) instrument. The instrument consists of 10 11-point rating scales, anchored by 0 

= not at all the case and 10 = completely the case. The instrument is designed to produce 

scores for IL (measured by items 1, 2, and 3), EL (items 4, 5, and 6), and GL (items 7, 8, 9, 

and 10; see Leppink et al., 2013, for original item wording). The instrument was presented 

twice (but at the same point in time): once in relation to the teaching of locomotor anatomy 

and once in relation to nervous anatomy.  

As suggested by the instrument’s authors, items were modified to make them specific 

to the content areas being taught. For example, Item 8 reads “This activity really enhanced 

my knowledge and understanding of statistics.” Here statistics was altered to functional 



locomotor anatomy and functional nervous anatomy respectively. Items 2 and 9 of the CLI-

10 relate to understanding around formulas. These items were modified to ask about the 

clinical applications of anatomical concepts (a focus of the subject). Students were instructed 

that the questions related to the teaching activities across the semester (lectures and tutorials) 

associated with the respective content blocks.  

Data Analysis 

Given our a priori expectations of the scale’s factor structure, confirmatory factor 

analysis (CFA) was utilized over exploratory factor analysis (EFA; Fabrigar et al., 1999). 

CFA was performed using maximum likelihood estimation.  

Data cleaning (see Supplementary Material) left a final N of 94 and 93 for the analysis 

of the locomotor and nervous anatomy questions respectively. Larger sample sizes are 

preferred for factor analytic techniques. This said, smaller samples are permissible for 

simpler models, especially when factors are overdetermined (at least 3-4 items per factor) and 

communalities are high (an average of >.70; Fabrigar et al., 1999). Similarly, Hair et al. 

(2014) suggest a sample of around 100 is adequate in situations where measurement models 

contain fewer than five factors, each factor has more than three indicators and communalities 

are above .60. We note that the measurement models tested in the current study have three 

factors, with three to four indicators per factor and commonalities exceeding .70.  

Results 

CFA 

Two CFA models (one for the nervous anatomy data and one for the locomotor 

anatomy data) were specified. The models consisted of three first-order factors (to represent 

IL, EL, and GL), with items being treated as reflective indicators of their proposed factors 

(Items 1–3 for the IL factor, Items 4–6 for the EL factor, and Items 7–10 for the GL factor). 

Items were not permitted to cross-load on non-salient factors and item error terms were not 

permitted to covary. The three factors were permitted to covary (see Figure S1, 

Supplementary Material).  

Model fit was assessed based on the following indices: the model χ2 test, the 

comparative fit index (CFI), the Tucker-Lewis index (TLI), the standardized root mean 

square residual (SRMR), and the root mean square error of approximation (RMSEA). The 

RMSEA is reported along with its 90% CIs and the pclose-fit. Kline’s (2011) method of using 

the RMSEA’s 90% CI to inspect model fit was utilized. Correlation residuals and 

standardized covariance residuals were also inspected. In both models, very few correlational 



residuals had an absolute value greater than .10, and no standardized covariance residuals had 

an absolute value greater than 2.    

Nervous Anatomy. In terms of the nervous anatomy model, the χ2 test was 

significant, χ2(32) = 50.02, p = .022, so the exact-fit hypothesis was rejected. However, the 

hypothesis that the model exactly fits the data (i.e., all residual values are zero) is overly 

stringent. This, and other problems with this index, have resulted in many authors de-

emphasizing this fit index (Hoyle, 2011). Traditionally .90 has been suggested as the cut-off 

value for the CFI and TLI, however many authors now recommend a more stringent cut-off 

value of .95 (Hoyle, 2011). The CFI and TLI were both well above .95 (CFI = .98, TLI = 

.97), indicating good fit. It is recommended that the SRMR be below .08 (Hu & Bentler, 

1999), which was the case (SRMR = .050). The RMSEA was .078 [.030, .118]. As the lower 

bound of the RMSEA’s 90% CI was less than .05, the close-fit hypothesis (the hypothesis 

that the model closely fits the data) could not be rejected (this is supported by the non-

significant pclose-fit of .136). However, the upper bound of the 90% CI exceeded .10. Thus, the 

poor-fit hypotheses (the hypothesis that the model poorly fits the data) also could not be 

rejected. These RMSEA values are interpreted with caution, as the RMSEA is biased toward 

indicating poor fit for models with low degrees of freedom and small sample sizes (Kenny et 

al., 2015).  

In some of the CFA models outlined in Leppink et al. (2013), covariances were freed 

between error terms for Items 7 (which related to “understanding of the topics covered”) and 

9 (“understanding of the formulas covered”) and Items 9 and 10 (“understanding of concepts 

and definitions”), based on the theoretical rationale that, depending on the focus of the 

particular lecture, there could be significant overlap between “topics” and “formulas” or 

“topics” and “concepts and definitions.” Zukić et al. (2016) also found that freeing the errors 

for Items 9 and 10 to covary improved model fit. Modification indices were inspected to 

determine if freeing these parameters would improve model fit. This was not the case.  

Locomotor Anatomy. In terms of the model assessing the locomotor anatomy data, 

the model χ2 test was not significant, χ2(32) = 43.26, p = .088, so the exact-fit hypothesis was 

not rejected. Again, the CFI, TLI and SRMR all indicated good fit (CFI = .98, TLI = .98, 

SRMR = .051). The RMSEA was .062 [.000, .105]. Accordingly, the close-fit hypothesis 

could not be rejected (which, again, was supported by the non-significant pclose-fit of .322). 

However, once again the poor-fit hypothesis also could not be rejected.  

Inspection of modification indices indicated that freeing errors for Items 9 and 10 to 

covary would improve model fit (as was done in Zukić et al., 2016, and Leppink et al., 2013). 



The fit statistics for this model indicated very good fit, χ2(31) = 31.35, p = .499; CFI > .99; 

TLI > .99; SRMR = .048, RMSEA = .011 [.000, .079], pclose-fit = .759, with the upper-bound 

of the RMSEA’s 90% CI even dropping below .10.  

Correlations between within-factor errors indicate that the correlated items share 

variance that cannot be explained by their factor (GL in the case of Items 9 and 10). There are 

many potential causes for correlated within-factor errors (Gerbing & Anderson, 1984; Lucke, 

2005), the most problematic (from the perspective of trying to establish the factor structure of 

an instrument) being that the items are measuring an additional factor which was not, but 

should have been, included in the model.  

It is recommended (e.g., Schmitt, 2011) that researchers be open to performing 

follow-up EFA should a CFA model show a pattern of problematic fit. Given the covaried 

error terms observed here, and previously, a follow-up EFA was performed on the locomotor 

anatomy data (see Supplementary Material) to verify the three-factor solution proposed by 

Leppink et al. (2013). This analysis strongly supported the three-factor solution.  

Reliability and Validity 

Factor loadings for each model are presented in Table 1. All tested factor loadings 

where significant at p < .001. Squared multiple correlation (R2) values (also referred to as 

communalities in factor analysis) are also given in Table 1. These values indicate the 

proportion of variance in the item that is explained by that item’s factor. It is recommended 

that all items have large and statistically-significant standardized factor loadings (e.g., Hair et 

al., 2014, recommend standardized factor loadings be at least .50, and ideally > .70). All 

items had good factor loadings in both models apart from Item 9, which showed a marginal 

factor loading (.56) in the locomotor anatomy model. Given that the factors were freed to 

covary, structure coefficients are also reported. 

Table 2 reports correlations between factors, and McDonald’s omega (ω) and average 

variance extracted (AVE) values for each subscale (see Supplementary Materials for 

information on the calculation of ω and AVE values).  

ω is reported over Cronbach’s alpha, as not all of the assumptions of alpha—that 

factor loadings are equal across items (e.g., essential tau equivalency), that the test is 

unidimensional, and that error terms for items are uncorrelated (Flora, 2020)—would be 

tenable for all subscales. ω was greater than .88 across all constructs, in both models, 

indicating good reliability for all subscales. Hair et al. (2014) give the following 

recommendations for determining the convergent validity of a subscale (the degree to which 

all items on the subscale converge, i.e., measure the same construct): AVE > .5, reliability > 



.7, and standardized factor loadings for all items > .5. This was the case for all three 

constructs in both models. 

Leppink et al. (2014) suggests that if the three types of cognitive load are independent 

and additive, we might expect the correlation between them to be near zero. As can be seen 

from the table, correlations between IL and EL scores and IL and GL scores were close to 

zero. Significant negative correlations were observed between EL and GL scores (although 

this is consistent with previous research; Hadie et al., 2016; Leppink et al., 2014). However, 

these correlations were still in the small-to-medium range. The relatively small correlations 

would support the discriminant validity of factors. Additionally, all subscales across the two 

models meet Hair et al.’s (2014, p. 620) rule of thumb for establishing discriminant validity 

between two constructs: AVE values > the square of the correlation between the two 

constructs. 

Discussion 

This study investigated the psychometric properties of the CLI-10 when used to assess 

the cumulative cognitive load experienced in a course over a semester. CFA was used to 

evaluate the three-factor structure of the instrument in relation to the two areas covered in the 

course: nervous and locomotor anatomy. Although the CFA models did not meet all fit 

criteria, it is not unusual for goodness of model fit to differ across fit indices (Kenny et al., 

2015). We note that for indices which are biased toward indicating poor model fit in smaller 

samples (e.g., the upper-bound 90% CI of the RMSEA; Kenny et al., 2015) the models 

performed worse than on indices which are not bound to sample size (e.g., the CFI and TLI). 

Accordingly, we believe the data can be said to fit the proposed three-factor model in relation 

to both the nervous and locomotor anatomy learning blocks. Longer delays between a 

phenomenon and its measurement are known to impact response accuracy on surveys 

(Tourangeau, 1999). Accordingly, the performance of the instrument in relation to the 

locomotor anatomy content is especially noteworthy (given that there was a three-week delay 

between the end of the locomotor anatomy learning block and administration of the 

instrument).  

It should be noted that, in the locomotor anatomy model, model fit improved once 

error terms for Items 9 and 10 were freed to covary. Given that items were presented in 

sequential order, it is proposed that this may be the result of item bundling. Lucke (2005) 

describes an item bundle as “a cluster of items that share a common stimulus, contain 

common content, or possess a common structure” (Lucke, 2005, p. 110). We note that Items 



9 and 10 do start with the same stem. Furthermore, Items 9 and 10 were presented 

sequentially, potentially exacerbating this bundling effect. Other studies have similarly found 

that freeing error terms for Items 9 and 10 to covary improves model fit (Zuzik et al., 2016). 

Follow-up EFA (see Supplementary Material) did not indicate that Items 9 and 10 were 

loading on a fourth, previously-unspecified factor, giving us confidence in the three-factor 

solution. Future studies may simply want to separate these items to minimize potential 

bundling effects. 

Subscale items showed good internal reliability across both areas of anatomy. 

Furthermore, evidence was found for the convergent and discriminant validity of the three 

subscales. That is, the results were consistent with the notion that items on each subscale are 

measuring the same construct (convergence) and that these constructs are distinct 

(discrimination). However, it should be kept in mind that the convergent validity of a 

subscale does not necessarily mean that this subscale is measuring the construct we believe it 

to measure (i.e., IL, EL, or GL). This is a possibility that Leppink et al. (2014) investigated. 

The authors argue that it may be that those sampled in their earlier validation study of the 

CLI-10 (Leppink et al. 2013) responded to items to indicate their estimations of the three 

types of cognitive load required to learn the material, rather than the actual level of mental 

effort they invested in learning the material. Accordingly, the authors added three items to the 

CLI-10 which more closely assess the mental effort invested around each type of cognitive 

load. The authors then assessed if these new items were internally consistent with the existing 

items on each subscale, as it was argued that this would confirm that the items on the 

subscale measure the same latent construct, confirming the original interpretation of the 

subscale as measuring actual cognitive load. This was found to be the case for IL and EL 

(i.e., items on these subscales do appear to be assessing IL and EL, not just participants’ 

estimations of required IL and EL), but not GL. These findings have resulted in Leppink et al. 

(2014) endorsing the more recent conceptualizations of GL as a subcomponent of IL (see 

Kalyuga, 2011), rather than a distinct form of cognitive load. Accordingly, Leppink et al. 

(2014) and others (Hadie & Yusoff, 2016; Leppink & van den Heuvel, 2015) now refer to 

this subscale as a measure of “self-perceived learning”, as opposed to GL.  

As mentioned above, whether GL represents a distinct cognitive load type is currently 

an active area of debate. Although some authors have called for a reinterpretation of GL as a 

subcomponent of IL, not all agree. Young and Sewell (2015) contend that until further 

research indicates otherwise, there is still value in conceptualizing IL and GL as distinct 

entities. They note that multiple previous studies finding a three-factor solution for cognitive 



load type provides strong evidence for there being three distinct forms of cognitive load. This 

study adds to the literature which supports cognitive load having three separate components. 

In summary, the current study provides instructional designers interested in the 

measurement of cognitive load further evidence as to the psychometric properties of the CLI-

10 in terms of its three-factor structure, and the internal reliability, convergent validity, and 

discriminant validity of its three subscales. Importantly, the study also provides evidence that 

the CLI-10 performs well when used as a long-term cognitive load measure. In this way, the 

study opens the use of the CLI-10 in different kinds of instructional assessment scenarios 

(e.g., assessing the cognitive load experienced across a semester, as opposed to assessing the 

cognitive load associated with a particular task only), assisting instructional designers and 

researchers to address questions like Does including self-explaining activities in tutorials 

have a noticeable impact on GL? Does structuring lectures to gradually increase the 

complexity of material optimize IL across the semester? Is online lecture delivery associated 

with greater EL compared to in-person delivery? and Do these changes to my subject 

actually work to reduce students’ cognitive load, and does this positively impact students’ 

learning and/or satisfaction?  
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Table 1 

Means (Standard Deviations), Factors Loadings, and R2 for Items Across Models  

 

Model 
Mean 

(Standard 

Deviation) 

Unstandar

dized 

Factor 
Loading 

Standard 

Error 

Standardize
d Factor 

Loading 

R2 

Structure Coefficients  

IL EL GL 

Nervous Anatomy        

Factor: IL         

Item 1 8.38 (1.74) 1a  .86 .73 .86 .03 .02 
Item 2 7.73 (1.98) 1.24 .10 .93 .87 .93 .04 .02 

Item 3 7.69 (1.92) 1.22 .10 .94 .89 .94 .04 .02 

Factor: EL         
Item 4 4.88 (2.75) 1a  .86 .74 .03 .86 -.23 

Item 5 4.00 (2.62) 1.02 .08 .93 .86 .04 .93 -.25 

Item 6 4.48 (2.89) 1.12 .09 .92 .85 .04 .92 -.24 

Factor: GL         
Item 7 6.98 (1.92) 1a  .88 .78 .02 -.23 .88 

Item 8 7.09 (1.83) 1.02 .08 .94 .88 .02 -.25 .94 

Item 9 7.19 (2.00) 0.95 .10 .81 .65 .02 -.21 .81 
Item 10 8.38 (1.95) 0.98 .09 .85 .73 .02 -.23 .85 

Locomotor Anatomy        

Factor: IL         
Item 1 7.80 (1.76) 1a  .84 .70 .84 .09 .00 

Item 2 7.15 (1.92) 1.22 .10 .93 .87 .93 .10 .00 

Item 3 7.13 (2.16) 1.35 .12 .92 .84 .92 .10 .00 

Factor: EL         
Item 4 4.46 (2.59) 1a  .87 .75 .09 .87 -.25 

Item 5 3.39 (2.47) 1.03 .09 .94 .88 .10 .94 -.27 

Item 6 4.22 (2.87) 1.09 .10 .85 .73 .09 .85 -.24 
Factor: GL         

Item 7 7.69 (1.68) 1a  .90 .81 .01 -.26 .90 

Item 8 7.84 (1.83) 1.17 .08 .96 .92 .01 -.27 .96 
Item 9 7.66 (1.97) .73 .12 .56 .31 .01 -.16 .56 

Item 10 8.15 (1.62) .88 .08 .82 .67 .01 -.23 .82 

e9 to e10  .37b       
a Factor loadings fixed to 1 (unit loading identification; Kline, 2011). To test these loadings for 
statistical significance, additional models were run in which these loadings were freed ,while 

loadings on subsequent items were fixed to 1; all factor loadings significant at p < .001; b 

correlation not factor loading, correlation sig at p < .01 
IL = Intrinsic Load; EL = Extrinsic Load; GL = Germane Load 

 

  



Table 2 

Correlations between Subscales, McDonald’s Omega (ω), and Average Variance Extracted 

(AVE) Values 

 

 Correlations   

 IL EL GL  ω  AVE 

Nervous Model      

IL - .04 .02 .94 .83 

EL  - –.27* .93 .82 

GL   - .92 .76 

Locomotor Anatomy      

IL - .11 .00 .93 .80 

EL  - –.29* .92 .79 

GL   - .89 .68 

*p < .05; IL = Intrinsic Load; EL = Extrinsic Load; GL = Germane Load 

 

  



Supplement to 

“Psychometric Properties of a Cognitive Load Measure When Assessing the Load 

Associated with a Course” 

Missing Data 

Missing data was minimal across the cognitive load items. No item was missing more 

than 3.1% of responses and most items (17 out of 20) were missing no responses or one 

response only. One participant completed the locomotor anatomy section of the survey, but 

not the nervous anatomy section (which was presented on a separate page). This participant 

aside, Little’s test revealed the missing datapoints to be missing completely at random, 

χ2(113) = 121.88, p = .268. To maximize sample size, expectation-maximization was used to 

generate estimates for missing datapoints (excluding the participant who did not complete the 

nervous anatomy section of the questionnaire). Missing values were estimated following 

outlier Windsorization/deletion (see below).  

Data Screening 

Univariate outliers were assessed using the outlier labelling rule with a 2.2 multiplier 

(Hoaglin & Iglewicz, 1987). Across the dataset, 16 univariate-outlying datapoints were 

detected and Windsorized. Mahalanobis distances were used to identify multivariate outliers 

(using an α of .001). Two multivariate outliers were detected and deleted.  

CFA was carried out using maximum likelihood estimation. Maxmimum likelihood 

estimation is inappropriate when data are severely non-normal. Fabrigar et al. (1999) 

recommend |skew| < 2 and |kurtosis| < 7. For the locomotor anatomy data, the skew and 

kurtosis of items was below these recommended thresholds (skew range = –1.32 to 0.56; 

kurtosis range = –0.80 to 2.00). This was also the case for the skew and kurtosis of the 

nervous anatomy items (skew range = –1.29 to 0.50; kurtosis range = –1.05 to 1.86). 

Follow-Up EFA on Locomotor Anatomy Data 

Following Fabrigar et al. (1999), several methods were used in tandem to determine 

the number of factors to extract: the eigenvalue-greater-than-one rule (also called the Kaiser 

criterion), inspection of the scree plot, and parallel analysis. Parallel analysis involves 

comparing the eigenvalues obtained from the sample data to eigenvalues generated from 

either random datasets or permutations of a raw sample dataset (O’Connor, 2000). O’Connor 

(2000) recommends comparing the sample eigenvalues to the parallel eigenvalues which 

correspond the desired percentile (e.g., 99th) of the distribution of random/permuted-raw 

eigenvalues. A factor is retained if the observed eigenvalue for that factor is greater than the 

corresponding nth percentile parallel eigenvalue. This process was carried out using 



O’Connor’s “rawpar” script for SPSS 

(https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html).  

Using principal components extraction, three eigenvalues greater than one were 

identified (which together explained 82.49% of the variance in scores; see Table S1). The 

sample eigenvalues are plotted in Figure S2 along with the 99th percentile parallel 

eigenvalues. As can be seen, there is a precipitous drop going from the 3rd to 4th eigenvalue. 

Thus, the scree plot and the parallel analysis would also support a three-factor solution. Given 

the follow-up EFA results, the three-factor solution was retained, and it was concluded that 

Items 9 and 10 are likely not measuring an additional factor.  

Calculation of McDonald’s Omega (ω) and AVE values 

ω values were generated using the Hayes and Coutts’ (2020) OMEGA macro (version 

0.2) for SPSS (available from http://afhayes.com/spss-sas-and-r-macros-and-code.html). 

Specifically, the EFA-ML method of calculating ω was utilized. AVE values were 

constructed by summing the squared factor loadings for each subscale and then dividing by 

the number of items making up that subscale (Hair et al., 2014, p. 619). 
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Table S1 

Observed and Parallel Eigenvalues Based on the Locomotor Anatomy Data 

Component 
Observed 

Eigenvalues 

% of Variance 

Explained 

Cumulative % 

of Variance 

99th Percentile 

Parallel 

Eigenvalues 

1 3.60 36.01 36.01 1.78 

2 2.69 26.89 62.90 1.54 

3 1.96 19.59 82.49 1.36 

4 0.62 6.09 88.57 1.23 

5 0.29 2.86 91.44 1.13 

6 0.25 2.54 93.98 1.03 

7 0.20 1.95 95.93 0.93 

8 0.16 1.62 97.55 0.83 

9 0.13 1.25 98.80 0.76 

10 0.12 1.20 100.00 0.66 

 

  



 

Figure S1. Structure of the models tested as part of the CFA.  

Note. IL = Intrinsic Load; EL = Extrinsic Load; GL = Germane Load; e = Error 



 

Figure S2. Scree plot with observed and 99th percentile parallel eigenvalues.   

 

 

 

 

 

 


