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Abstract 

Schistosoma haematobium is the leading cause of urogenital schistosomiasis, which affects 

over 100 million people in tropical developing countries, and it is recognised as a class 1 

carcinogen due to the robust association of infection with bladder cancer. Proteins and other 

components, such as extracellular vesicles (EVs), present in the tegument and/or secreted by 

schistosomes enable the worms to survive in the host for years and studies documenting the 

proteomic composition of different helminths EVs have revealed many proteins involved in 

host-parasite interactions. Interestingly, crude EVs and EV membrane proteins, including 

tetraspanins (TSPs), of helminths can also be recognised by samples from infected animals, 

suggesting the potential usefulness of EVs for the development of novel diagnostic strategies. 

Moreover, EVs from helminths also contain vaccine candidate antigens, including TSPs, and 

immunisation of animals with EVs can reduce parasite burdens and pathogenesis in some 

models, demonstrating the vaccine potential of EV proteins. Herein, I have characterised the 

proteomic composition of S. haematobium adult worm EVs and assessed the vaccine and 

diagnostic potential of some of the characterised proteins. 

In chapter two, S. haematobium EVs, comprising both small EVs (sEVs) and medium/large 

EVs (m/lEVs), were purified from adult worms excretory/secretory products (ES). The size of 

each vesicle population was determined by qNano analysis; S. haematobium sEVs ranged from 

136 nm ± 12.4 to 191 nm ± 27.4 while the average size of m/lEVs was 249 nm ± 22.7. 

Following proteomic analysis, the most represented domains from sEVs were homologues of 

other helminths vaccine and drug targets, such as proteasome subunit, TSP family, ferritin-like 

and cytosol aminopeptidase domains. The most represented domains in S. haematobium 

m/lEVs were proteins involved in EVs biogenesis and release, including EF-hand, Ras family, 

TCP-1/cpn60 chaperonin family and TSP family domains. In addition, S. haematobium EVs 
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contained homologues of other helminth vaccine candidates, such as glutathione S-transferase 

(GST), TSPs, Saposin B domain-containing protein and calpain.  

In chapter three, six S. haematobium-TSPs (Sh-TSPs) (Sh-TSP-2, MS3_09198, MS3_01153, 

MS3_01370, MS3_05226 and MS3_05289) were selected from the proteomic analysis and 

further characterised. Based on their phylogenetic analysis, Sh-TSP-2, MS3_09198 and 

MS3_01370 grouped in the CD63 lineage of TSPs whereas MS3_05289, MS3_05226 and 

MS3_01153 clustered under the uroplakin family of TSPs. The expression levels of these 

Sh-TSPs were determined and all molecules were expressed throughout all life stages tested 

with different expression levels. The large extracellular loop (LEL) of each Sh-TSP was 

expressed in a bacterial expression system and polyclonal antibodies were raised to each 

molecule and used in localisation studies to determine the sites of anatomic expression. Sh-

TSP-2 and MS3_05289 were identified on the tegument of the worms, whereas MS3_01370, 

MS3_01153, MS3_09198 and MS3_05226 were identified both on the tegument and internal 

tissues of adult worms.  

In chapter four, the vaccine efficacy of three Sh-TSPs (Sh-TSP-2, MS3_09198 and 

MS3_01370) that clustered with known S. mansoni, S. japonicum and O. viverrini vaccine 

candidates was assessed using a homologous (hamster/S. haematobium challenge) model of 

infection. Furthermore, the cross-species protective efficacy of these Sh-TSPs was assessed in 

a heterologous (mouse/S. mansoni challenge) model of infection. Vaccination with Sh-TSPs 

did not significantly reduce adult worms burdens in the hamster model but significantly 

reduced the liver egg burden in both MS3_01370 and Sh-TSP-2 vaccinated groups (77.8% - 

P<0.01 and 52.27% - P<0.05, respectively). In two independent mouse trials, only the 

MS3_01370 vaccinated group (trial 1) displayed a significant reduction in adult worm burden 

(22% - P<0.05). Liver egg burden decreases were observed in groups vaccinated with Sh-TSP-

2 (trial 1, 32% - P<0.01; trial 2, 49% - P<0.001), MS3_01370 (trial 1, 39% - P<0.05; trial 2, 
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54% - P<0.001) and MS3_09198 (trial 1, 49% - P<0.001; trial 2, 27% - P<0.05). Similarly, 

intestinal egg burden decreases were observed in groups vaccinated with Sh-TSP-2 (trial 1, 

54% - P<0.001; trial 2, 27% - P<0.05), MS3_01370 (trial 1, 57% - P<0.01; trial 2, 36% - 

P<0.01) and MS3_09198 (trial 1, 51% - P<0.01; trial 2, 39% - P<0.05) 

In chapter five, the diagnostic efficacy of these Sh-TSPs was assessed by ELISA using serum 

from mice experimentally infected with S. haematobium and urine from infected individuals 

from an S. haematobium-endemic area of Zimbabwe. Sh-TSP-2, MS3_01370 and 

MS3_09198 were recognised by the serum of experimentally infected mice compared to serum 

from uninfected mice. To assess cross-reactivity with S. mansoni, an indirect ELISA was 

performed using the serum of mice experimentally infected with S. mansoni. Only 

MS3_09198, MS3_01370, MS3_05226 and MS3_01153 were recognised by antibodies from 

S. mansoni infected mice. The diagnostic efficacy of Sh-TSPs was further tested by their 

recognition of antibodies in urine from infected human subjects from an endemic area in 

Zimbabwe and all Sh-TSPs, each tested in isolation or combination, were recognised by 

infected individuals, including those with very low levels of infection (those positive for 

circulating anodic antigen but negative for eggs). 
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Chapter 1: Introduction and literature review 

1. 1. Schistosoma haematobium and extracellular vesicles from helminths 

Schistosomiasis is a parasitic disease caused by blood dwelling trematodes from the genus 

Schistosoma. Six species of schistosomes can infect humans, including Schistosoma 

haematobium, Schistosoma japonicum, Schistosoma mansoni, Schistosoma mekongi, 

Schistosoma intercalatum and Schistosoma guineensis [1, 2]. The three most important species, 

in terms of morbidity and prevalence that can infect humans are S. haematobium, which causes 

urogenital schistosomiasis, and S. mansoni and S. japonicum, both causing intestinal 

schistosomiasis [2, 3]. While S. mansoni is prevalent in Africa, South America and the Middle 

East, S. japonicum occurs in Asia (primarily the Philippines and China) and S. haematobium 

infection is endemic in Africa and the Middle East (Fig 1.1). 

Schistosomiasis is the second most important parasitic disease, only after malaria, in terms of 

social, economic and public health impact [4]. Two hundred and fifty two million people are 

already infected, and 700 million people live in areas at risk [5]. Most of the schistosomiasis 

burden is found in Sub-Saharan Africa (SSA) [6], where around 280,000 people die annually 

due to the disease, particularly school-age children, adolescents and young adults [5], having 

important effects in school performance and social and economic development [7].  
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Figure 1.1. Distribution of Schistosoma species. Adapted from [8]. 

Each schistosome species relies on a specific snail as intermediate host to complete its life cycle, 

and their dissemination is demarcated by their snail’s host territory [9]. The aquatic freshwater 

Biomphalaria and Bulinus snails are intermediate hosts for S. mansoni and S. haematobium, 

respectively, while Oncomelania species are the intermediate hosts for S. japonicum [8, 9]. The 

snails harbour different stages of the life cycle and liberate the infective stage (cercariae); while 

humans and other definitive hosts get infected when they come into contact with water 

containing cercariae during fishing, farming, swimming, washing and bathing [9]. 

Praziquantel is the only available drug for the treatment of schistosomiasis; however, it has a 

high cure rate by acting against the mature worms, but it is not effective against juvenile stages. 

A dose of 40 mg/kg is effective for the treatment of S. mansoni and S. haematobium infections, 

whereas 60 mg/kg is the recommended dose to treat S. japonicum and S. mekongi infection [10]. 

S. haematobium adult worms live in the perivesicular veins, whereas S. mansoni and S. 

japonicum adult worms live in the intestinal mesenteric veins [2, 11]. These worms can survive 
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in the host for years, using evasion strategies to remain undetected by the host immune system 

[12, 13], including the production of immunomodulatory proteins, which are present on their 

tegument and/or secreted by the worms. Due to the crucial role that proteins of the tegument 

and excretory/secretory (ES) products play in evading the host immune system, they have been 

the focus of different studies aimed at understanding host–parasite interactions and developing 

new therapeutic strategies [14-22]. The secretory products are substances that are secreted from 

parasite cells or glands and have defined biological roles whereas the excretory products are 

metabolic wastes that are released from the body [23]. Since schistosomes have a blind gut, the 

metabolic products are eliminated by regurgitation, therefore, the ES products consist of a 

mixture of secreted worm proteins and metabolic products occurring from physiological 

processes within the parasite [18].  

It has been recently shown that the ES products released by schistosomes, are not only a mixture 

of soluble proteins, lipids and glycans, but also contain extracellular vesicles (EVs) [24, 25], 

similarly to what happens in other parasites [26, 27]. EVs are membrane-bound structures of 

variable size (from 30 nm to 1,000 nm) that are released into the extracellular space by many 

different types of cells. They contribute to the transmission of bioactive molecules including 

proteins, lipids, DNA, and RNA between cells [28]. In mammals, they play a role in the 

maintenance of physiological processes and are also involved in the pathophysiology of 

diseases [29, 30]. Diverse parasites produce EVs, which can be internalised by host cells and 

can modulate the host immune response [26, 31]. These EVs are also involved in the pathology 

of parasitic disease and have great potential as new diagnostic tools and therapeutic agents 

against different parasitic pathogens [32]. 
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1.2. Schistosoma haematobium 

1.2.1. Epidemiology of Schistosoma haematobium infection  

S. haematobium, the causative agent of urogenital schistosomiasis, is highly prevalent in 53 

Middle East and African countries [2] and it is also sporadically seen in India [33] and France 

[34]. Urogenital schistosomiasis affects more than 90 million people, mostly in SSA, and 180 

million inhabitants live in endemic areas and are at risk [35]. Of these, around 70 million, 18 

million, 9.6 million and 32 million people suffer from schistosomal haematuria, bladder wall 

pathology, hydronephrosis, and dysuria, respectively; but, more importantly, urogenital 

schistosomiasis kills around 150,000 people per year [35]. 

1.2.2. Transmission and life cycle of Schistosoma haematobium  

Humans acquire urogenital schistosomiasis when they come into contact with water containing 

cercariae. Cercariae are shed by the snail host and once shed, cercariae survive for up to 1-3 

days [36]. They attach to and penetrate the human skin within 3–5 min [2], losing their tail and 

developing into schistosomula, which migrate through the bloodstream via the lungs to the 

liver and develops into mature worms in the portal vein. Finally, the adult worms migrate to 

the perivesicular veins and, after 4–7 weeks of infection, they start laying eggs [2]. The average 

survival time of the adult parasite in the host is 3–5 years, but they can survive for up to 30 

years [37]. Some of the eggs get excreted through urine while the rest of the produced eggs are 

carried away with the bloodstream and trapped in the tissues of different organs [8]. These 

trapped eggs in the tissues are the primary cause of pathology in humans. When the eggs are 

excreted into fresh water, they release the free-swimming miracidium stage, which locates a 

snail host using external stimuli such as snail-derived chemicals and sunlight. After they 

penetrate snails, miracidia develop into sporocysts, which undergo several rounds of asexual 

reproduction to finally develop into cercariae (Fig 1.2) [8]. 
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Figure 1.2. Life cycle of Schistosoma species. Adapted from.  

https://www.cdc.gov/parasites/schistosomiasis/biology.html 

1.2.3. Immunopathology of Schistosoma haematobium infection   

Cercariae enter into the human host and develop into schistosomula, which migrate through the 

bloodstream via the lungs to the liver and develop into mature worms in the portal vein [2]. 

During this time the host immune system is exposed to many antigens, however, in S. 

haematobium infections, the host immune response against cercariae, schistosomula and adult 

worm is limited compared to the response raised against the egg stage [38]. In non-human 

schistosomes, a hypersensitivity response against cercariae can cause swimmer’s itch [39] and 

in S. mansoni, the immune response against schistosomula can cause Katayama syndrome [40]. 

However, both symptoms are rare in S. haematobium infections, which is usually asymptomatic 

until egg production [41]. Cercariae activate the complement cascade when they enter the host. 
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Specifically, the membrane attack complex (C5–C9) acts against the cercariae, but they escape 

the immune response by rapidly discarding the glycoprotein cover (glycocalyx) from its 

membrane [42]. In S. mansoni, the schistosomulum covers itself with a new membrane, 

becoming resistant to the host’s immunological attack while developing into adult flukes [43]. 

Adult S. haematobium stimulates the host’s immune system eliciting an IgE antibody response, 

which is important against re-infection but cannot remove the parasite from the infected 

individuals [44]. Antibody response against S. haematobium infection is enhanced by drug 

treatment because S. haematobium worms killed by drugs such as praziquantel release antigens 

that motivate long-lived plasma cells to produce antibodies that can reduce S. haematobium 

fertility [45]. However, antibody production in S. haematobium infection is age-dependent and 

higher serum levels of IgM, IgG2 and IgG4 isotypes in children younger than 13 years block 

the protective effect of IgE [46]. 

Unlike the acute stage of the infection, eggs produced by adult S. haematobium stimulate a 

robust immune response within 24 h from local and recruited innate immune cells [47]. In an 

experimental animal model, at the early stage of egg production, the character of the initial 

immune response is mixed, with inflammatory mediators such as tumour necrosis factor (TNF-

α) as well as cytokines involved in T helper type 2 (Th2) responses [48]. Another mouse model 

of S. haematobium showed that cercariae infection combined with egg bladder wall injection 

stimulates local and systematic immune responses that are distinct from responses to egg 

injected bladder wall alone [49]. After 4-7 days of oviposition, eggs are engulfed by 

multinucleated macrophages, which are in turn surrounded by epithelioid macrophages and 

mixtures of eosinophils and neutrophils. Immune cells surrounding the eggs form a granuloma, 

which separates eggs from the surrounding tissue [48]. Then, a T helper type 1 (Th1) immune 

response ensues to eliminate the trapped egg, but the alteration of the immune response from 

Th1 to Th2 restricts this process [50]. In S. mansoni, IPSE/alpha-1 glycoprotein and omega-1 
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are responsible for the driving of a Th2 response [51-55]. The S. haematobium homolog of 

IPSE/alpha-1 glycoprotein has also been found in the mature eggs and it infiltrates HTB-9 

bladder cells and translocate to the nucleus [56] where it is thought to drive a Th2-biased 

immune response. IL-4 shifts the immune response by suppressing the differentiation of naive 

T cells to IFN-g producing cells and by stimulating differentiation of naïve T cells into IL-4-

producing cells [57]. IL-13 production stimulates activation of myofibroblast-like cells and 

accumulation of collagen, which ends up in tissue fibrosis [58]. Later on, IL-10 and regulatory 

T cells suppress the progression of chronic bladder fibrosis but in individuals with a 

polymorphism in the promoter gene for ficolin-2 the modulatory effect of IL-10 is suppressed 

[59], which may indicate that people with a polymorphism in the promoter gene for ficolin-2 

can suffer from bladder fibrosis during S. haematobium infection. 

The eggs trapped in capillary beds of urogenital organs stimulate the immune response. These 

immune responses against eggs trapped in the tissue lead to the formation of a granuloma that 

can lead to tissue fibrosis [48].Granulomas and sandy patches (small fibrotic nodules) cause 

inflammation (specially in the bladder) that lead to haematuria in some infected individuals 

[60]. The granuloma formed affects the bladder wall, leading to secondary urinary tract 

infection, renal infections, hydronephrosis, obstruction and general urinary dysfunction, which 

can progress to obstructive renal pathology [60, 61]. Furthermore, infected individuals can also 

develop squamous cell carcinoma [62].  

In female patients urogenital schistosomiasis can increase the risk of acquiring HIV infection 

[63]. Urogenital schistosomiasis has been suggested to be a risk factor for HIV infection for the 

following reasons: firstly, macroscopic tissue damage in female genital organs allows the virus 

to enter easily and facilitates the acquisition of HIV [64]; secondly, the inflammatory cells 

surrounding the eggs express CD4 T cell receptors, which are the target of HIV virus [65]; 

thirdly, the recruitment of immune cells to the male genital tract increases the viral load in 
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semen, which increases the risk of HIV transmission from male to female [66]; and, lastly, Th1 

cytotoxic responses are important in the initial control of HIV infection, and shifting of the 

immune response from Th1 to Th2 by schistosomiasis increases the risk of HIV infection [67]. 

1.2.4. Diagnosis of Schistosoma haematobium infection 

Microscopy examination of urine is the gold standard test for diagnosis of S. haematobium 

infection [68] and is necessary to determine the intensity of infection [41]. It is simple to 

perform and inexpensive [69] but cannot detect the acute stage of the disease (when no eggs are 

released) and consecutive examination of samples is required in light infections [11]. 

Detecting antibodies produced against the different developmental stages of S. haematobium is 

another diagnostic method for S. haematobium infections [70]. Antibody detection can help in 

the diagnosis of patients with a light egg load (or acute infection when microscopy examination 

is still negative) in low-level endemic areas [71], and can help determining re-emergence of 

schistosomiasis in certain areas and in the diagnosis of travellers [72]. However, one of the 

main limitations of this method is that it cannot differentiate between past and active infections 

[11, 41, 73]. 

The circulating cathodic antigen (CCA) rapid diagnostic test is an immunochromatographic 

dipstick that detects the presence of this schistosome glycan in patient urine [74]. For diagnosis 

of urogenital schistosomiasis, the sensitivity and specificity of this method is 88.2% and 96.4%, 

respectively [75]. However, the sensitivity of this technique is low in areas where S. mansoni 

and S. haematobium are co-endemic [76]. Similarly, a urine-based up-converting phosphor-

lateral flow circulating anodic antigen (UCP-LF CAA) assay is a highly sensitive and specific 

diagnostic method for S. haematobium infections in low endemic settings [77]. This technique 

is important to map distribution of schistosomiasis and assess drug efficacy [78]. In addition, 

the ability of the UCP-LF CAA test to detect a single pair of worms and its correlation with 

egg burden makes UCP-LF CAA the ideal measure of schistosomiasis infection [78]. However, 
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since it involves a centrifugation step, its applicability in field settings is limited [78]. 

Moreover, the CAA test is costly and not yet commercialised [77].  

Molecular techniques like PCR are highly specific and sensitive for S. haematobium diagnosis 

from patient serum, plasma or urine [79]. PCR is crucial to detect the parasite in the acute and 

chronic stage of the disease [80], essential to evaluate the efficacy of anti-schistosome drugs 

[81] and it is not affected by sample collection time, as is the case for urine samples [82]. 

However, DNA based diagnosis of helminths requires expensive equipment and reagents [83]. 

S. haematobium infection can also be diagnosed by taking cytology Papanicolaou (Pap) smears 

from infected female patients. This test method is simple to perform and cheap; however, its 

specificity is lower than real-time PCR for Schistosoma-specific DNA in vaginal lavage and 

urine samples, and urine microscopy [84]. 

1.2.5. Current status of Schistosoma haematobium vaccines 

The insufficient attention given to S. haematobium infection contributes to the widespread 

occurrence of the disease. Praziquantel treatment remains the cornerstone of control strategies; 

however, high reinfection rate requires frequent re-treatment and, in some infected people with 

high worm load, severe and irreversible pathology is usually diagnosed too late [85]. 

Furthermore, low efficacy of praziquantel has been reported from Egypt [86] and Senegal [87] 

and continuous use of praziquantel may lead to the development of resistance of S. 

haematobium to this drug. Hence, a vaccine is urgently needed for the control and elimination 

of urogenital schistosomiasis [85]. To alleviate this problem a number of trials have been 

undertaken to assess experimental vaccines. 

Irradiated cercariae and schistosomula have been tested as potential vaccine candidates [88]. 

Different groups of baboons were immunized repeatedly with 3 kRad- and 20 kRad-irradiated 

cercariae and schistosomula [88]. All vaccinated groups had reduced worm burden and faecal 

egg production rates (64-89% and 56-79%, respectively). The protective efficacy of cercariae 
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was higher than schistosomula, and 20 kRad-irradiated cercariae were more protective than 3 

kRad-irradiated cercariae [88]. Repeated immunisation of baboons with 20 kRad-irradiated 

schistosomula intramuscularly delayed and decreased faecal and urine egg production, reduced 

the size of granulomas, the gross pathology and the severity of inflammatory responses in the 

bladder and ureters; however, the proportion of tissue eggs in the liver of vaccinated animals 

didn’t decreased [89]. In another study 20- and 60- kRad-irradiated schistosomula protected 

baboons from S. haematobium infection by 85-90% and 56-50%, respectively [90]. The 

protective capacity of 20 kRad-irradiated schistosomula decreased over time [90].  

A schistosome glutathione S-transferase (Sh28GST) found in the schistosomula and adult 

stages of the parasite is the only vaccine candidate that has reached phase 3 trials against S. 

haematobium infection [91]. The vaccine efficacy of this antigen has been assessed in different 

Schistosoma species and this will be discussed later in this chapter.  

Calpain, a protein located on the tegument and underlying musculature of adult schistosomes 

[92], and its large subunit (Sm-p80) have been tested as recombinant vaccine candidates against 

S. mansoni infections in mice and non-human primates [93]. This S. mansoni vaccine also 

confers protection against S. haematobium infection [94] and this will be discussed later in this 

chapter.  

1.3. Extracellular vesicles 

EVs are membrane-bounded vesicles discharged from different cells. Based on their size and 

origin, three types of EVs can be differentiated: MVs, exosomes, and apoptotic bodies (Fig 

1.3) [95]. Exosomes are EVs produced from the endosomal system and they are formed as 

intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) [96]. Initially, endocytic vesicles 

fuse with early endosomes; contents to be recycled are then organized into recycling 

endosomes, which transform into late endosomes. Then, ILVs accumulate on the late 

endosomes forming the larger MVBs. Finally, ILVs become exosomes and are released when 
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the MVBs fuse with the plasma membrane [97]. Their sizes range from 30–150 nm in diameter 

[98].  

 

 

 

 

 

 

 

 

 

 
Figure 1.3. Types of extracellular vesicles. Adapted from [98]. 

MVs are EVs that are released from cell membranes of healthy cells. They are also called 

ectosomes, shedding vesicles or microparticles and their size ranges from 100-1,000 nm [99]. 

MVs are formed by direct external budding and fission of the cell membrane. The external 

budding is initiated by the dynamic interaction between phospholipid redistribution and 

cytoskeletal protein contraction [100]. The distribution of protein and phospholipid in the cell 

membrane is controlled by aminophospholipid translocase [100, 101] and this translocase 

transfers phospholipids from the inner leaflet to the outer leaflet, which induces membrane 

budding/vesicle formation. Finally, contraction of cytoskeletal structures by actin-myosin 

interactions completes vesicle formation [100]. External factors like calcium influx and 
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hypoxia promotes MV discharge [97]. Apoptotic bodies are released by dying cells and their 

size ranges from 50–5,000 nm [98]. During apoptosis cell and chromatin becomes shrieked 

and condensed, respectively. Then, extensive plasma membrane blebbing and nuclear 

fragmentation lead to the formation of apoptotic bodies [102].  

EVs play an important role in cell to cell communication [95]. EVs can also be involved in 

different pathological processes [103-105]. They are also involved in maintenance of 

homeostasis [106, 107] and can also serve as therapeutic agents [108]. 

1.3.1. Extracellular vesicles from helminths  

The characterisation of helminth proteomes is shedding light on the molecular basis of host–

pathogen interactions, with a view to discovering new diagnostic biomarkers and vaccine 

targets [109, 110], most of which are found at the external surface of the parasite and in the ES 

products [21, 111, 112]. Traditionally, the ES products were thought to comprise only soluble 

proteins, glycans, lipids, and nucleic acids [113]; however, recent literature has revealed that 

helminth ES products also contain EVs [26, 31]. Different parasites (including protozoans and 

helminths) have been shown to produce and secrete EVs which can be internalised by host cells 

and modulate the host immune response [26, 31]. These EVs are also involved in the pathology 

of parasitic disease and have great potential as new diagnostic tools and therapeutic agents 

against different parasitic pathogens [114, 115].  

The field of parasitic EVs attracted the attention of the scientific community very recently, 

when Marcilla et al. showed the first evidence of EV release from helminths in 2012 [116]. 

These EVs were identified from the tegument and ES products of the flukes Echinostoma 

caproni and Fasciola hepatica [116], and were shown to be internalised by intestinal cells, 

suggesting a role for EVs in host-parasite interaction and the development of infection [116]. 

Since then, EVs have been characterised in other parasitic helminths, including nematodes, 
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trematodes and cestodes, suggesting an important role for these vesicles in host-parasite 

interactions [24, 25, 117-126]. 

1.3.1.1 Nucleic acid and proteomic composition of helminth extracellular vesicles  

Since 2012, the number of “omic” resources to study helminth EVs has increased significantly, 

mainly due to the advancement of genomics and proteomics. The proteomes and genomes of 

several helminth EVs have been characterised [24, 25, 117-126], allowing for the identification 

of proteins and nucleic acids that could play an important role in host-parasite interactions. The 

nucleic acid composition of trematode EVs is complex, and different small RNAs and mRNAs 

have been characterised. Bernal et al. showed that EVs from Dicrocoelium dendriticum 

contains microRNAs (miRNAs) (eg: sma-let-7, sma-miR-2a-3p, emu-miR-71, emu-miR-190 

and sma-miR-61), demonstrating for the first time the presence of miRNAs in helminth EVs 

[124]. Similarly, molecular characterisation of S. mansoni schistosomula revealed 20 transfer 

RNAs (tRNAs) and 205 miRNAs [25], some of which (sma-bantam, sma-miR-10, sma-miR-

3479 and sma-miR-n1) have been detected in sera obtained from chronically infected hosts 

[127, 128] or within EVs from the sera of S. mansoni infected travelers (bantam and miR-2c-

3p) [129]. Similarly, Samoil et al. characterised the S. mansoni adult worm EVs and found 143 

miRNAs (eg: sma-miR-125b_R-1, sma-bantam, sma-miR-71a). Some of these miRNA were 

also detected in EVs isolated from mice serum suggesting a role of helminth EVs in host-

parasite interactions [130]. Likewise, EVs isolated from F. hepatica were shown to contain 

42 miRNAs, some of which were hypothesized to play a role in host manipulation [131]. In 

another study, EVs from S. japonicum adult worms were shown to contain a population of 

small RNAs associated with host gene regulation [119]. These EVs were internalised by 

murine liver cells in vitro and could downregulate the expression of the murine genes Gins4, 

Tysnd1 and Utp3 [119]. S. japonicum egg EVs have also been analysed, revealing different 
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types of RNAs such as rRNAs, small nuclear RNAs, repeat associated small RNAs, tRNAs 

and miRNAs [132].  

Similarly, the nucleic acid compositions of cestode EVs have been characterised [133]. The 

miRNA analysis of Taenia crassiceps EVs revealed 7 miRNAs (let-7-5p, miR-61-3p, miR-

190-5p, miR-219-5p, miR-4989-3p, miR-71-5p and miR-277-3p) whereas only one miRNA 

(let-7-5p) was detected in Mesocestoides corti EVs [133]. Based on an in silico miRNA target 

prediction approach, the most putatively regulated pathways in the mouse were those related 

to Wnt signalling, cadherin signalling, gonadotropin-releasing hormone receptor, inflammation 

mediated by chemokine and cytokine signalling and angiogenesis [133]. 

Like trematode parasite EVs, the nucleic acid composition of nematode EVs is also complex. 

For example, Heligmosomoides polygyrus EVs contain subpopulations of small RNAs 

miRNAs and yRNAs) that are involved in host gene regulation [125]; and Brugia malayi EVs 

contain miRNAs that down regulate the expression of host Let-7 [134], a gene involved in 

macrophage polarization and response to infection [135]. Trichuris muris EVs contain 475 full-

length mRNA transcripts involved in different roles such as signalling and signal transduction, 

transport, protein modification and biosynthetic processes, as well as in RNA processing and 

DNA integration [123]. Similarly, EVs from the same parasite also contained 56 miRNAs 

predicted to interact with genes involved in signalling, transcriptional regulation, metabolic 

and disease pathways and genes related with the host immune system [123]. In another study, 

the small RNA content of Nippostrongylus brasiliensis EVs were characterised and revealed 

52 miRNA (eg: miR-ev1, miR-ev2, miR-ev3, miR-ev4, miR-ev5) [122]. Based on a 

computational target prediction, these miRNAs were predicted to interact with genes involved 

with the immune system as well as in different processes such as signalling, metabolism and 

disease [122]. Analysing Ascaris suum EVs revealed 51, 40, 29, 39 and 42 miRNAs from L3 

larvae, L4 larvae, adult worm, adult worm body fluid and adult worm intestinal sections, 
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respectively [126]. These miRNAs were predicted to interact with genes involved in immunity 

such as IL-13, 1L-25 and IL-33 [126]. 

The proteomes of different trematode EVs have been characterised [24, 25, 117-119, 124, 125, 

134]. Proteomic analysis of E. caproni EVs revealed 51 different proteins including 

cytoskeletal proteins (actin, tubulin, myosin, paramyosin, tropomyosin), glycolytic enzymes 

(enolase, aldolase, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

Phosphoenolpyruvate carboxykinase (PEPCK), calcium-binding proteins (calmodulin, 

calponin), nuclear proteins (histones and elongation factors), stress-related proteins (eg: Heat 

Shock Proteins (HSPs)) and detoxifying enzymes (eg: peroxiredoxin). In addition to parasite 

proteins, vesicles from E. caproni adult worms also contained 36 host-derived proteins 

(including immunoglobulins, histones, partial sequences of mucins and metabolic enzymes) 

[116]. The presence of host proteins in the EV preparation is surprising and could be related to 

the method used for EV isolation, since only an ultracentrifugation was performed with no 

further gradient purification. In addition, the database used for matching peptides was not 

specific for the E. caproni genome (due to its unavailability), which could also affect the 

number and accuracy of identifications [116].  

Characterisation of the proteomes of S. mansoni adult worms and schistosomula EVs revealed 

83 and 109 proteins, respectively, including markers of exosomes such as TSPs, HSP, annexins 

and Rab11 as well as other proteins such as 14-3-3, cytoskeletal proteins and metabolic 

enzymes [24, 25]. Several proteins from S. mansoni adult worm EVs were homologous to 

proteins identified in the EVs from E. caproni (17, 20%), F. hepatica (24, 29%), D. 

dendriticum (17, 20%) and Opisthorchis viverrini (19, 23%), which allows researchers to 

speculate that there is a conserved mechanism for protein packaging inside trematode EVs. 

Interestingly, a total of 26 (31%) proteins found in S. mansoni adult worm EVs are homologues 

of previously described vaccine candidates [24] and they will be discussed later in this chapter. 



	 16	

The proteome of the S. mansoni adult worm EVs has been further characterised and 130 

proteins [130] were revealed. Of these 23 proteins including enolase, GAPDH, GST, 

calpain, leucine aminopeptidase, Sm20.8 and Sm22.6 were previously identified proteins 

from the adult worm EVs [24] and 25 of them such as taurocyamine kinase, enolase, GST, 

calpain, 14-3-3 epsilon and Sm20.8 were reported from schistosomula EVs [25]. Similarly, 

S. japonicum EVs contain 403 proteins from which 78 are homologous to exosomal proteins 

in other parasites. Proteomic analysis of the EVs secreted by the carcinogenic liver-fluke O. 

viverrini revealed 108 proteins including typical exosomal markers (TSPs, HSP-70), 

cytoskeletal proteins, regulatory proteins and trafficking proteins [117]. This study also showed 

the first evidence of exosome proteins in the tissues of an infected host (bile duct of infected 

hamsters and humans) [117]. EVs from F. hepatica were shown to be of a larger size range 

(30-200 nm in diameter) than other trematode EVs and contained some unique proteins, 

including helminth defense molecules (HDM), as well as known exosomal markers such as 

HSP-70, ALIX and TSPs [118]. In another study, the proteomic composition of the surface of 

adult F. hepatica EVs was characterised by using biotin to label the EVs surface [136] and 380 

proteins were identified including membrane transport proteins (pumps, channels and 

transporters), proteases (Cysteine peptidase, serine peptidase and metallo-peptidase), protease 

inhibitors (eg: Serpin7, serpin B6 and serpin B) and proteins involved in EVs biogenesis and 

release (ESCRT components, small GTPases, SNAREs and membrane structure and 

remodelling) [136]. Using a lectin microarray, the suface oligosaccharides were characterised 

and high mannose N-linked structures were present as well as N-or O-linked protein 

glycosylation and glycolipid structures [136]. Treatment of EVs with glycosidase blocked the 

internalisation of EVs by macrophages but treatment of EVs with serum from F. hepatica 

infected mice enhanced the internalisation of EVs by macrophages. Similarly, treatment of EVs 

with antibodies produced against surface proteins (CD63 receptor, DM9-containing protein 
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and myoferlin) enhanced the internalisation [136]. In another study, the proteomic composition 

of D. dendriticum revealed 84 proteins like metabolic enzymes (eg: catalase, GAPDH, enolase 

and aldolase), chaperons (HSP-70, annexins), metal-binding proteins (myoglobin-1 and 

MF6p/HDM-1), nuclear proteins (eg: histones, elongation factors and enzymes involved in 

RNA synthesis and processing) and signalling molecules (kinases, suppressor of 

tumorigenicity homologs and serpin homologs) [124].  

The proteomic composition of the different cestode parasites EVs has also been characterised. 

For instance, a proteomic analysis of Taenia crassiceps and M. corti EVs revealed 48 and 39 

proteins, respectively [133]. The most abundant proteins in the EVs secreted by Taenia 

crassiceps and M. corti were the immunodiagnostic proteins (H17g protein and a tegumental 

antigen) and proteins involved in EV transport such as receptor-mediated endocytosis family 

member and Ras GTPases [133]. In addition to these parasite proteins, host proteins such as 

immunoglobulins and complement factors were also found [133]. The proteomic content of 

EVs derived from Echinococcus granulosus hydatid cysts was characterised and 663 proteins 

were found [137]. Some of the most abundant proteins were antigen 5, alpha-mannosidase, 

malate dehydrogenase, gelsolin, lipid transport protein, antigen B subunit 4, expressed protein, 

syndecan binding protein syntenin, EG10 and antigen B 4/1 [137]. Among these proteins 

antigen 5, antigen B and EG10 are diagnostic antigens [138-140]. Proteins that are markers of 

EVs in mammalian systems like TSPs, transporters and channels (eg: ATPase and chloride 

channels and multidrug resistance associated protein) and proteins involved in EVs biogenesis 

and transport (eg: annexins, Rabs, ALIX and ubiquitin) were also identified [137]. Similarly, 

the proteome of EVs secreted by the protoscolex and the metacestode of E. granulosus were 

characterised by treating with loperamide. From the metacestode, 13 proteins were obtained 

including, gelsolin, HSP-70, TSPs and 14-3-3 protein, which are usually present in exosomes 

and 298 proteins were identified from the protoscolex including, exosomal markers (eg: 
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TSG101, TSPs, ALIX and annexin A6) [121]. The proteomic composition of EVs released by 

E. multilocularis metacestodes revealed 433 proteins including proteins involved in EVs 

biogenesis and release (eg: annexin, 14-3-3, tetraspanin, Rab and HSPs), cytoskeleton (actin 

and tubulin) and metabolism (eg: thioredoxin peroxidase, enolase and GAPDH) [120].  

In the case of parasitic nematodes, different proteomic studies have been performed [125, 134]. 

For example, EVs from H. polygyrus contained exosomal markers such as HSPs, TSPs, Rab 

proteins and ALIX [125], which are proteins involved in exosome biogenesis [97]. In another 

study, EVs from B. malayi were found to contain 32 proteins including markers of exosomes 

such as HSP-70, elongation factor-1α, elongation factor-2, actin, and Rab-1. Furthermore, more 

than 80% of these proteins were orthologous to mammalian exosome proteins [134]. The L3 

larvae and the adult male and female of B. malayi EVs were characterised and 31, 20 and 74 

proteins were identified [141]. Characterisation of Teladorsagia circumcincta EVs revealed 85 

proteins including proteins involved in EVs transport like Rab GTPases. EVs from this parasite 

were recognised by serum samples collected from T. circumcincta infected hosts, suggesting 

the usefulness of EVs for the diagnosis of helminth infection [142]. The proteome analysis of 

T. muris EVs revealed 364 proteins and the most abundant proteins were trypsin domain-

containing protein, sperm-coating protein (SCP)-like extracellular proteins, poly-cysteine and 

histidine-tailed protein and GAPDH. In addition, proteins typically found in EVs from 

helminths like 14–3–3, HSPs, GSTs and TSPs were found [24]. The proteomic analysis of N. 

brasiliensis EVs revealed a total of 81 proteins including proteins frequently present in 

exosomes like TSPs, enolase, 14-3-3 protein, HSPs and histones [122]. Characterising the 

protein composition of adult A. suum ES EVs revealed 268 proteins including, proteinases, 

peptidases, oxidases, reductases, kinases and HSPs [126]. Similarly analysing the proteomic 

composition of A. suum adult worm body fluid EVs revealed 125 proteins including HSPs, 
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peptidases, kinases and proteinases. Among these, 101 proteins were common to adult worm 

ES EVs [126]. 

In addition to exosome markers and vaccine candidates, it is worth noting the presence of other 

classes of proteins in the EVs of some helminths. For instance, saposin-like proteins have been 

detected in the EVs from S. mansoni and F. hepatica [24, 118]. These proteins are proposed to 

be haemolytic and play a role in the nutrient acquisition process of haematophagous parasites 

by disrupting red blood cell membranes to liberate haemoglobin [143]. EVs from different 

helminths also contain proteins that have been associated with immunomodulation, like 

annexins [24, 116, 117]. F. hepatica and B. malayi EVs contain cathepsin L [118, 134] that 

degrades host collagen to help parasite migration through host tissues [144] and peroxiredoxin, 

which shifts the host immune response from Th1 to Th2 by stimulation of M2 macrophages 

[118, 145]. The presence of these proteins in helminth EVs might indicate that the vesicles 

could be helping the parasite acquire nutrients, evade host immune responses and establish 

chronic infections and contribute to the associated pathogenesis.  

1.3.1.2. Vaccine candidates presented in helminth extracellular vesicles 

In addition to their role in pathogenesis and immunomodulation, EVs from helminths also 

contain vaccine candidate antigens (Table 1.1), which can be present in the cargo and 

membrane of EVs (Fig 1.4). The following vaccine candidates have been found in the EVs of 

different helminths. 
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Figure 1.4. Schematic representation of the most important vaccine candidates found in extracellular 

vesicles secreted by helminths [146]. 

1.3.1.2.1. Membrane proteins 

TSPs are membrane-spanning proteins that serve principally as membrane protein organizers 

[147]. The first members of this family were identified in humans [148] and in schistosomes 

[149]. Since then, this group of proteins has been found in both multicellular and unicellular 

organisms [150-152]. This family of proteins consists of four transmembrane domains, a small 

extracellular loop (SEL) and a LEL [147]. The LEL contains a conserved Cys-Cys-Gly motif 

(CCG motif), as well as other cysteine residues that facilitate the formation of disulfide bridges 

[153] and mediate specific protein-protein interactions with laterally associated proteins and 

a few known ligands [147]. The cytoplasmic regions provide links to cytoskeletal and 

signalling molecules. The four transmembrane domains stabilize individual TSPs during 

biosynthesis, and they promote associations between TSPs and other proteins, which are 
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crucial for the assembly and maintenance of the tetraspan web [147]. In addition, 

juxtamembrane cysteine residues in the cytoplasmic domains provide sites for 

palmitoylation, contributing to the clustering of TSP microdomains. In general, the tetraspan 

web provides a scaffold by which membrane proteins are laterally organized to coordinate 

the intracellular transmission of external stimuli for the activation of signalling cascades 

[147].  

TSPs contribute to cellular physiology by organizing molecules within the plasma membrane 

into microdomains. Indeed, the proposed function of TSPs is to organise the plasma membrane 

by facilitating the formation of what are termed tetraspanin-enriched microdomains (TEMs) 

[154]. TEMs consist of homophilic and heterophilic interactions amongst TSPs, interactions 

between TSPs and other membrane proteins, as well as interactions between TSPs and proteins 

at the membrane/cytoplasm interface [154, 155]. Furthermore, TSPs are involved in many 

cellular activities such as differentiation, adhesion and division [156].  

In some helminths, TSPs play an important role in the formation of the tegument, the outermost 

membranous surface of the parasite that is in intimate contact with host tissues, and seem to be 

key molecules for the survival of the parasites [157-160]. TSP LELs have been shown to be 

efficacious vaccine antigens in a range of helminth infection models. Immunisation of mice 

with the LELs of two S. mansoni TSPs (Sm-TSP-1 and Sm-TSP-2) significantly decreased adult 

worm and liver egg burdens after infection with schistosomes [161] and Sm-TSP-2 has 

completed phase I clinical trials [162].  Similarly, vaccination of hamsters with the LEL of O. 

viverrini (Ov-TSP-2, Ov-TSP-3 and Ov-TSP-2 + Ov-TSP-3) significantly reduced adult worm 

burden and only Ov-TSP-2 reduced the fecal egg burden significantly [160]. In other studies, 

immunisation of mice with a fusion of the Sj23 TSP with other vaccine candidates significantly 

reduced the worm burden and liver eggs in a subsequent S. japonicum challenge [163-165]. 

Analysing the proteomes of different helminth EVs revealed several TSPs [24, 25, 117-123]. 
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Cwiklinski et al. provided the only in-depth characterisation of the proteins present in the 

membrane of F. hepatica-secreted EVs [118], confirming the presence of TSPs (as well as 

other proteins) in the membrane of F. hepatica EVs. Moreover, antibodies produced against a 

TSP present in O. viverrini EVs blocked the internalisation of EVs by cholangiocytes and 

decreased both cell proliferation and production of cytokines that stimulate tumorigenesis in 

this carcinogenic infection [117, 160]. These kind of studies characterizing the proteins present 

in the membrane of EVs and analysing their importance in cell contact and uptake will be key 

for the development of helminth EV-derived vaccines [136].  

Sm29 is a tegumental antigen, present in the tegument of adult worms and schistosomula of S. 

mansoni [166] and was recently found in S. mansoni adult worm EVs [24]. DNA immunisation 

of mice with this vaccine candidate resulted in 17-22% adult worm reduction [167], while 

immunisation with recombinant protein decreased adult worm, intestinal egg and liver egg 

burden by 51%, 60% and 50%, respectively [168]. Fusing Sm29 with S. mansoni fatty acid 

binding protein (FABP) decreased adult worm, liver egg and intestinal egg burdens by 40.3%, 

68.2% and 57.9%, respectively [169], whereas fusion with Sm-TSP-2 resulted in 24-35% adult 

worm reductions [167, 170]. In another study, mice were immunised with Sm29 formulated 

with alum or monophosphoryl lipid A adjuvants and Sm29 formulated with alum significantly 

protected mice by 29%-37% in two independent trials against S. mansoni reinfection. This 

protection was associated with high levels of antibodies against the Sm29 + alum formulation 

[171]. 

Calpain is a calcium-activated neutral cysteine protease [172] located on the tegument and 

underlying musculature of adult schistosomes [92], and has also been found in the EVs of 

different helminths [24, 25, 117, 120, 121]. Sm-p80 is the large subunit of calpain and has been 

tested as a vaccine candidate against S. mansoni infections [93]. In mice, administration of Sm-

p80 DNA vaccine, boosted with recombinant protein, reduced worm burden by 49%, whereas 
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immunisation with proteins provided 50% protection [173]. This vaccine candidate reduced 

worm and egg burden by 70% and 75%, respectively, using oligodeoxynucleotide as adjuvant 

[174]. The vaccine efficacy of Sm-p80 (rSm-p80) emulsified with glucopyranosyl lipid A + 

alum was assessed in mice in three independent trials. In trials one and two, vaccination of mice 

with rSm-p80 emulsified with glucopyranosyl lipid A + alum reduced adult worm burden 

significantly by 33.3% and 53.1%, respectively following S. mansoni challenge. In the third 

trial, worm reduction was not significant but intestinal egg burden was significantly reduced by 

75.5% [175]. The same vaccine candidates reduced adult worm burden by 38.5% in baboons 

but there was no significant reduction in the tissue egg burden [175]. Similarly, vaccination of 

baboons with rSm-p80 formulated with glucopyranosyl lipid adjuvant-stable emulsion (GLA-

SE) significantly reduced liver egg burden and egg-hatching rate of S. mansoni by 67.7% and 

85.6%, respectively, which indicates the potential usefulness of this vaccine candidate in 

blocking disease transmission [176]. Moreover, this S. mansoni vaccine confers partial 

protection against S. haematobium and S. japonicum infection [94, 177]. Vaccination of mice 

with rSm-p80 emulsified with GLA-SE intramuscularly resulted in 46.75% reduction in adult 

worm burden but no significant reduction in tissue egg burden following S. japonicum challenge 

was observed [177]. Administration of recombinant Sm-p80 emulsified with GLA-SE in 

hamsters reduced S. haematobium adult worm and tissue egg burden by 48% and 64%, 

respectively [94]. Similarly, in baboons, the Sm-p80/GLA-SE vaccine produced a 25%, 64% 

and 53% reduction in adult worms, urinary bladder egg load and in urine egg output, 

respectively following S. haematobium challenge [94].  

Paramyosin is a protein present in the thick muscle myofilaments of invertebrates [178]. This 

protein is located on the granules of the post-acetabular glands of cercariae, within the tegument 

matrix and surface of schistosomula of S. japonicum [179] and on the teguments of adult S. 

mansoni [180]. Paramyosin is considered a promising vaccine candidate against S. japonicum 
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[181]. Immunisation of pigs with recombinant paramyosin resulted in 33-34% reduction in S. 

japonicum adult worm burden [181], whereas immunisation of mice with parasite-derived 

paramyosin resulted in 62%-86% reduction in adult worm burden following S. japonicum 

infection [182]. The vaccine efficacy of paramyosin emulsified with ISA206 adjuvant was 

assessed in three independent trials in water buffalos [183]. In the first trial, immunisation of 

water buffalos with recombinant paramyosin protein reduced worm burden by 51.5 % but the 

reduction was not statistically significant [183]. Increasing the dose in the second and third 

trial significantly reduced the adult worm burden by 57.8% and 57.8%, respectively [183]. 

Interestingly, this protein has been found in the EVs of O. viverrini [117]. 

1.3.1.2.2. Proteases and peptidases 

Leucine aminopeptidases are metallopeptidases that cleave N-terminal residues from proteins 

and peptides [184], and their vaccine efficacy against F. hepatica has been evaluated in animal 

models [185, 186]. Immunisation of sheep with native and recombinant leucine aminopeptidase 

resulted in 49-89% adult worm reduction in subsequent F. hepatica challenges [185, 186]. 

Furthermore, leucine aminopeptidase was shown to be abundant in the EVs from S. mansoni 

and F. hepatica [24, 118].  

Cathepsin L is a protease that has been found in the EVs of F. hepatica and B. malayi [118, 

134]. Immunisation of cattle and sheep with parasite-derived cathepsin L resulted in 42-69% 

and 34% reduction in F. hepatica adult worm burdens, respectively [186, 187], while in another 

study, immunisation of cattle with recombinant cathepsin L resulted in a 48% reduction in adult 

worm burden [188]. Immunisation of mice with recombinant cathepsin B resulted in 59%, 56% 

and 54% reductions in adult worm, liver egg and intestinal egg burdens, respectively, following 

S. mansoni challenge [189]. Furthermore, cathepsin B has also been found in F. hepatica and 

S. japonicum EVs [118, 119, 142]. 
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1.3.1.2.3. Cytosolic proteins 

Saposins are activators of sphingolipid hydrolases [190] that have been used in vaccine trials 

against different helminths [143, 191]. For instance, immunisation of rabbits with a 

recombinant saposin-like protein reduced adult worm burden and faecal and bile egg loads by 

81.2%, 83.8% and 73%, respectively, after F. hepatica challenge [191]. Similarly, vaccination 

of mice with recombinant saposin-like protein 1 (rFgSAP-1) from Fasciola gigantica 

emulsified with aluminium hydroxide gel (alum) stimulated the production of antibody 

responses that resulted in 73.2% and 74.3% protection when compared with non-vaccinated 

infected and adjuvant-vaccinated infected controls, respectively. Importantly, this vaccine 

candidate reduced levels of liver damage [192]. Saposin domain-containing proteins have been 

revealed in the EVs of several helminths, including S. mansoni, F. hepatica, N. brasiliensis and 

T. circumcincta [24, 118, 122, 142]. 

GSTs are group of enzymes that detoxify endogenous compounds and foreign chemicals [193]. 

This protein has been tested as a vaccine candidate against different helminth infections [194-

196] and has recently been found in the EVs of different helminths [24, 117-119, 121]. 

Immunisation of mice and baboons with Sm28GST as a recombinant protein affects both worm 

viability and fecundity [197] and the antibody produced against this enzyme blocks its activity, 

leading to a reduction in female worm fecundity and egg viability [194]. The S. haematobium 

homologue, Sh28GST, is a promising vaccine candidate against S. haematobium infections. In 

the animal model, the antibody produced against this vaccine candidate can deactivate 

Sh28GST action and downgrade egg-production, which decreased urinary tract pathology and 

the spread of the disease [198]. Clinical trials using Sh28GST indicated that this vaccine has a 

good safety profile and stimulates the production of IgG3 [199]. In naturally infected 

individuals, the cellular immune response against Sh28GST is boosted by praziquantel 

treatment, increases in younger age groups and increases with schistosome infection status 
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[200]. A Phase 3 trial was conducted from 2009 to 2012 in S. haematobium infected children 

to assess the efficacy of the vaccine candidate after treatment with praziquantel, but the 

protective efficacy was not significant [91]. In another study, administration of the S. japonicum 

homologue as a DNA vaccine (Sj26GST) with IL-18 significantly decreased worm burdens, 

liver and faecal eggs counts in a subsequent S. japonicum challenge in mice [195]. Furthermore, 

F. hepatica GST has been evaluated in different animal models with the mean protective 

capacity reported as 29% and 43% in sheep and cattle, respectively [196, 201]. 

FABP is a cytosolic protein that aids the parasite with absorption, transportation and sorting of 

host fatty acids [202]. This molecule has long been considered a potential vaccine candidate in 

different helminths [203-205] and it has recently been found in S. mansoni and F. hepatica 

adult worm EVs [24, 118, 133]. Immunisation of cattle with parasite-derived FABP from F. 

hepatica (FhFABP) resulted in a 55% adult worm reduction [203], while immunisation of 

sheep decreased adult worm, intestinal egg and bile fluid egg burdens by 24%, 40.3% and 

51.8%, respectively [206]. Immunisation of sheep with recombinant FhFABP resulted in a 43% 

adult worm reduction [207]. Similarly, immunisation of mice, rats and sheep by fusing SjFABP 

with GST decreased S. japonicum adult worm burdens by 34.3%, 31.9% and 59.2%, 

respectively [204], whereas administration of SjFABP DNA vaccine + IL-18 resulted in 38% 

and 45% S. japonicum adult worm and egg burden reduction [208]. Immunisation of mice with 

recombinant SmFABP resulted in a 67% S. mansoni adult worm reduction [205]. 

1.3.1.2.4. Extracellular vesicles as vaccines against helminths  

Since helminth EVs contain a significant number of vaccine candidates, using these EVs to 

immunize the host might be a good strategy for the development of vaccines against helminth 

infections. For instance, EVs from H. polygyrus stimulated the production of antibodies that 

significantly reduced faecal egg counts and intestinal worm burdens after subsequent H. 

polygyrus challenges [209]. In another study, immunisation of mice with EVs from E. caproni 
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produced both humoral and cellular immune responses, which reduced symptom severity and 

mortality induced by infection [210]. T. muris- and O. viverrini-derived EVs have also been 

shown to induce immunity and confer protection against subsequent infection [160, 211].  

While protective immunity has been shown with numerous helminth EVs in animal models, 

the specific proteins responsible for the induction of protective antibodies have not been 

characterized. Moreover, the immune response against EVs might differ between helminths, 

so further work is required to characterize the immunogenic proteins present in helminth EVs.  

These findings suggest that helminth EVs are important in host–parasite interactions, and they 

can also be used in the discovery of new vaccine candidates. Since the isolation and purification 

of EVs is time consuming and might not be feasible at a larger scale, the characterisation of 

the proteomic composition of EVs will be key for the development of new vaccines. In addition 

to well-characterised molecules, there is a large number of hypothetical proteins in helminth 

EVs, which, arguably play parasitism-specific roles and might be good vaccine targets [212]. 

For this purpose, a better annotation of genomes using different approaches such as in silico 

analyses and proteogenomic studies will be of invaluable help [110]. 

1.3.1.3. Role of helminth extracellular vesicles in immunomodulation   

EVs secreted by different helminths can modulate the host’s immune response. For instance, 

EVs secreted by the murine intestinal nematode H. polygyrus contain miRNAs and yRNAs, 

which suppress the host immune response [125]. Intranasal administration of H. polygyrus EVs 

together with the extracts of the allergenic fungus Alternaria decreased bronchoalveolar 

eosinophilia, suppressed the expression of the Th2 cytokines IL-5 and IL-13 by innate lymphoid 

cells and also decreased the expression of the IL-33 receptor in mice [125]. Internalisation of 

EVs by mouse cells transferred miRNAs which resulted in suppressed expression of Dusp1 and 

Il1rl1 [125]. Dusp1 is a key regulator of mitogen-activated protein kinase signalling and 
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inhibits type 1 pro-inflammatory reactions. IL1rl1 is, the ligand-specific subunit of the receptor 

for IL-33, a key alarmin cytokine required for protection against multicellular parasites, which 

is produced by innate cells to drive early Th2 immune responsiveness [213]. The above finding 

correlates with previous studies using ES products [214]. Intranasal co-administration of the 

ES products of the same parasite with Alternaria extracts suppressed IL-33 release, production 

of IL-4, IL-5, and IL-13, and localized eosinophilia [214]. Thus, this parasite targets IL-33 

production as part of its suite of suppressive effects, and thereby preventing the development 

of the Th2 immune response to infection and allergic sensitization [214]. Furthermore, EVs 

from the same parasite were internalised by macrophages and supressed their activation [209]. 

These studies showed that the ES products from H. polygyrus contains exosomes that facilitate 

the parasite’s ability to escape the host’s immune response. Similarly, EVs from N. brasiliensis 

prevent colitis induced by trinitrobenzene sulfonic acid (TNBS) in a mouse model of 

inflammatory bowel disease by suppressing pro‐inflammatory cytokines (IL‐6, IL‐1β, IFN‐γ 

and IL‐17a) and inducing the expression of the anti‐inflammatory cytokine IL‐10 [122]. 

The third stage larvae of B. malayi secrete EVs, which can be internalised by J774A.1 cells 

(murine macrophages), activating them and significantly increasing the production of G-CSF, 

MCP-1, IL-6 and MIP-2 levels. This indicated that the EVs produced by B. malayi generate a 

classical pro-inflammatory macrophage phenotype [134]. EVs from S. japonicum contain 

miRNAs and potential virulence factors [119]. Internalisation of these EVs transferred 

miRNAs to mice that downregulate expression of the Gins4, Tysnd1, and Utp3 genes [119]. 

The EVs released from S. japonicum modulate cytokine production in RAW264.7 cells. 

Treatment of RAW264.7 cells with EVs increased iNOS expression, TNF-a secretion and 

CD16/32 expression in vitro. In contrast, the expression of CD206, Arg-1, and IL-10 by 

RAW264.7 cells was decreased in cells treated with EVs. The increase in the surface 

expression of CD16/32, iNOS expression, TNF-a secretion and the decrease in the expression 
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of CD206, Arg-1, and IL-10 indicated that S. japonicum EVs modulate the phenotype of 

macrophages and skew macrophages to M1 polarization [215]. E. granulosus EVs can be 

internalised by murine dendritic cells and affecting expression of activation markers such as 

CD86 and MHCII, indicating that E. granulosus EVs could interfere with the antigen 

presentation pathway [121]. Similarly, EVs released by E. multilocularis metacestodes 

decreased nitric oxide (NO) secretion by down regulating inducible nitric oxide synthase 

(iNOS) in RAW264.7 macrophages [120]. These studies show that EVs from helminths can 

modulate the host’s immune response to escape the host mediated immune attack. 



	 30	

Table 1.1. Efficacy of different vaccine candidates present in the extracellular vesicles (EVs) from helminths. Table summarizing the most important proteins 

found in EVs from helminths that have been tested as vaccine candidates against helminth infections. Ns: not significant; RP: recombinant protein; GST: 

glutathione S-transferase; As: Ascaris suum; Bm: Brugia malayi; Dd: Dicrocoelium dendriticum; Ec: Echinostoma caproni; Eg: Echinococcus granuloses; 

Em: Echinococcus multilocularis; Fh: Fasciola hepatica; Hc: Haemonchus contortus; Hw: hook worm; Ov: Opisthorchis viverrini; Sh: Schistosoma 

haematobium; Sj: Schistosoma japonicum; Sm: Schistosoma mansoni; Tm: Trichuris muris 

Vaccine candidates Vaccine 
form 

Animal 
model 

Helminth in which 
vaccine trial was done 

Adult worm 
reduction 

Egg reduction Antigen present 
in EVs from 

Ref 

TSPs RP (Sm-
TSP-2) 

Mouse Sm 57% 64% Sm, Ov, Fh, Sj, 
Em, Eg, Hw and 
Tm 

[161] 
 

RP (Sm-
TSP-1) 

Mouse Sm 34% 52% 

RP (Ov-
TSP-2) 

Hamster Ov 34% 41% [160] 

RP (Ov-
TSP-3) 

Hamster Ov 30% Ns 

Calpain DNA Mouse Sm 70% 75% Sm, Ov, Sj and Eg 
 

[174] 

RP Hamster Sh 48% 64% [94] 

Saposin containing 
protein 

RP Rabbit Fh 81.2% 83.8% (fecal) and 73% 
(bile) 

Sm and Fh [191] 

RP Mouse Sm Ns - [143] 

Sm29 
 

DND Mouse Sm 17-22% - Sm [167] 
RP Mouse Sm 51% 60% (intestinal) 

50%(liver) 
[168] 

RP 
(Sm29+Sm

FABP) 

Mouse Sm 40.3% 68.2(liver) 57.9 % 
(intestinal) 

[169] 
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DNA 
(Sm29+Sm

-TSP-2) 

Mouse Sm 24-32% - [167] 
[170] 

RP 
(Sm29+Sm

-TSP-2) 

Mouse Sm 35% - 

22.6 kDa tegument 
antigen 

RP Mouse Sm 34.5% - Sm and Sj [216] 

Thioredoxin peroxidase RP Mouse Sj 37.02% 56.52% Sm [217] 
Syntenin RP Mouse Sm 30-37% - Sm, Ov and Fh [218] 

Dynein light chain (DLC 
12 and DLC 13) 

RP Mouse Sm 43% and 51% - Sm and Sj [219] 

Antigen Sm21.7 DNA Mouse Sm 56% 41.53% (liver) and 
55.63%  (intestine) 

Sm [220] 

 
 
 
 

 
 
 
 

HSP-70 

 
 
 
 
 
 
 
 

RP 

 
 
 
 
 
 
 
 

Mouse 

 
 
 
 
 
 
 
 

Sj 

 
 
 
 
 
 
 
 

35.98 

 
 
 
 
 
 
 
 

31.18% 

 
 
 
 
 
 
 

 
Sm, Ov, Dd, Ec 
and Fh 

 
 
 
 
 
 
 
 

[221] 

Leucine amino peptidase 
(M17 family) 

RP Sheep Fh 49-86% - Sm and Fh [185] 
Native 
protein 

Sheep Fh 89% - [186] 

14-3-3 protein RP  Sm 25-46% - Sm, Ov, Ec and 
Fh 

[222] 

Fatty acid binding 
protein 

Native 
protein 

Cattle Fh 55% - Fh and Sm [203] 
Sheep Fh 24% 40.3% (fecal) and 58.1% 

(bilefluide) 
[206] 

RP Sheep Fh 43% - [207] 
RP +GST Mouse Sj 34.3%, - [204] 

Rats Sj 31.9%, - [204] 
Sheep Sj 59.2% - [204] 
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DNA + IL-
18 

Mouse Sj 38% 45% [208] 

RP Mouse Sm 67% - [205] 
Cathepsin L Native Cattle Fh 42-69% - Fh and Bm [187] 

Sheep Fh 34% - [186] 
RP Cattle Fh 48% - [188] 

Goat Fh Ns  [223] 
Cathepsin B RP Mouse Sm 59% 56% (liver) 54% 

(intestinal) 
Fh and Sj [189] 

Kunitz type molecule Native Sheep Fh Ns - Fh [201] 
Enolase RP Mouse As 61.13% (larvae) - Sm, Sj, Dd, Ec, 

and Fh 
[224] 

Glyceraldehyde-3-
phosphate 

dehydrogenase 

DNA Goat Hc 37.73%, 34.9% Sm, Sj, Fh, Ec and 
Fh 

[225] 

Paramyosin 
 

RP Pig Sj 33-34% - Ov [181] 
Native Mouse Sj 62%-86%, - [182] 
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Introduction to the study 

There is no licenced and effective vaccine to control the transmission of S. haematobium 

infection. Similarly, there are also limitations within the current diagnostic modalities of S. 

haematobium infection. However, EVs from helminths contain vaccine candidate antigens and 

vaccination of animals with helminths EVs stimulates production of antibodies that 

significantly reduce egg counts and worm burdens. Furthermore, EVs from helminths also 

contain diagnostic marks of infection and can also be recognised by antibodies produced from 

infected animals. These observations demonstrated the usefulness of EVs in vaccine and 

diagnostic strategies. Hence, the main aim of my thesis will be characterising the proteomic 

composition of S. haematobium adult worm EVs and testing selected antigens as vaccine and 

diagnostic candidates. 

Aims of this thesis: 

1. Characterisation of the proteomic composition of S. haematobium adult worm EVs 

2. Characterisation of TSPs from S. haematobium EVs 

3.  Assessment of the vaccine efficacy of S. haematobium TSPs 

4. Evaluation of S. haematobium TSPs as potential novel diagnostic markers  
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Chapter 2: Characterisation of the proteomic composition of 
Schistosoma haematobium adult worm extracellular vesicles 

2.1. Introduction 

Adult Schistosoma worms survive in the host for years and proteins on the worm tegument and 

in ES products are vital to this immune evasion strategy. ES products are molecules released 

by worms and comprise different proteins, glycans, lipids, and nucleic acids [113]. They play 

a crucial role in evading the host immune system and have been the focus of different studies 

aiming at understanding host-parasite interactions and the development of novel therapeutics 

[18-20, 22]. Because of a blind gut, schistosomes metabolic products are removed by vomiting; 

therefore, schistosome ES products consist of a mixture of secreted worm molecules and 

metabolites [18]. 

Recently, it has been documented that the ES products from different helminths (including 

schistosomes) contain EVs [26, 115, 146]. EVs are membrane-bound organelles released by 

cells that can act as mediators of intercellular communication by transferring molecular signals 

mediated by proteins, lipids, metabolites, mRNAs, microRNAs and other non-coding RNA 

species [226, 227]. In addition to the transmission of information, EVs are also involved in the 

maintenance of normal physiology [228, 229] and in the pathological process [230].  

The first evidence of EV release from helminths was reported from the tegument and ES 

products of E. caproni and F. hepatica [116]. Since then, EVs have been characterised in many 

other helminths, including nematodes, trematodes and cestodes [24, 25, 117-126]. Studies have 

shown that EVs from helminths are heavily involved in host-parasite interactions [24, 25, 117-

126]. For instance, EVs from trematodes and nematodes can be internalised by host cells, 

modulate host immune responses [125, 134, 215] and are involved in pathogenesis [117]. In 

addition, EVs also have enormous potential as novel diagnostic tools to detect parasitic 

infections [142] as proteins on the surface of helminths EVs have been found to be potential 
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diagnostic candidates [159, 231]. Furthermore, EVs from helminths also contain vaccine 

candidate antigens. For example, EVs from S. mansoni contain molecules that have shown 

vaccine efficacy in animal models of schistosomiasis [24]. Vaccination of mice with helminth 

EVs stimulates the production of protective immune responses that significantly reduce faecal 

egg counts; worm burdens, symptom severity and mortality induced by infection in subsequent 

parasite challenges [31, 160, 210, 211]. Moreover, antibodies produced against recombinant 

forms of O. viverrini EV surface proteins hinders the uptake of EVs by cholangiocytes and 

suppresses the immune response that fuels pathogenesis [117, 160].  

In addition to their roles in pathogenesis and diagnostic and vaccine potential, EVs from 

helminths are also useful in immunotherapeutic applications [122, 125, 232]. For example, 

administration of EVs from H. polygyrus suppresses type 2 innate responses and lung allergen‐

induced eosinophilia and asthma in mice [125]. Similarly, EVs from N. brasiliensis prevents 

colitis induced by trinitrobenzene sulfonic acid (TNBS) in a mouse model of inflammatory 

bowel disease [122]. Furthermore, administration of F. hepatica EVs to mice decreases the 

expression of pro‐inflammatory cytokines, reducing disease severity in dextran sulfate sodium 

(DSS)‐induced colitis [232].  

These observations demonstrate the importance of EVs in helminth-host interactions and their 

usefulness in vaccine, diagnostic and therapeutic applications. This chapter aims to characterise 

the proteome composition of different EV populations obtained from S. haematobium adult ES 

products. Using a proteomic approach, combined with newly available S. haematobium 

genome and transcriptome resources, I have defined the protein composition of S. 

haematobium adult worm EVs.  
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2.2. Materials and methods 

2.2.1. Parasite materials and experimental animals 

Bulinus truncatus snails infected with S. haematobium (Egyptian strain) were provided by the 

Biomedical Research Institute, MD, USA. Snails were maintained in aquaria in a 27°C 

incubator. 

Male BALB/c mice were purchased from the Animal Resource Centre, Canningvale, 

Western Australia and maintained at the AITHM animal facility in cages under controlled 

temperature and light with free access to pelleted food and water. All experimental procedures 

performed on animals in this study were approved by the James Cook University (JCU) 

animal ethics committee (A2391). All experiments were performed in accordance with the 

2007 Australian Code of Practice for the Care and Use of Animals for Scientific Purposes 

and the 2001 Queensland Animal Care and Protection Act. 

2.2.2. Cercariae shedding and mice challenge 

Snails were removed from the tank with a pair of forceps and washed several times with water 

to remove debris and rotifers, transferred to a Petri dish and incubated without water at 27°C 

in the dark for 2 h. Water was added and the snails were placed under light for 1.5 h at 28°C. 

Cercariae were concentrated using a 20 µm pore size sieve and finally, each BALB/c mouse (6 

week-old) was infected with 1,000 cercariae by tail penetration [233]. 

2.2.3. Adult worm culture and ES collection 

S. haematobium adult worms were obtained by perfusion of mice at 16 weeks post-infection 

and parasites were washed several times with serum-free modified Basch media supplemented 

with 4´ antibiotic/antimycotic (SFB) and then incubated in SFB (50 pairs/5 ml) at 37°C in with 

5% CO2 [24]. Dead worms were removed and media containing ES products was harvested 
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every 24 h for 2 weeks. Every day, ES products were differentially centrifuged at 4°C (500 ´g, 

2,000 ´g and 4,000 ´g for 30 min each) to remove large parasite material such as eggs and 

tegumental debris and stored at -80°C. 

2.2.4. Purification of extracellular vesicles  

Stored supernatants were thawed on ice, concentrated at 4°C using a 10 kDa spin concentrator 

(Merck Millipore, USA) and centrifuged for 1 h at 15,000 ´g at 4°C. The resultant pellet 

(containing m/lEVs) was washed with 1 ml of PBS, centrifuged at 15,000 ´g for 1 h at 4°C, 

resuspended in 200 μl PBS and stored at -80°C. The supernatant was ultracentrifuged at 

120,000 ´g for 3 h at 4°C using an MLS-50 rotor (Beckman Coulter, USA) to collect sEVs. 

The resultant pellet was resuspended in 70 μl of PBS and subjected to Optiprep® density 

gradient (ODG) separation. The ODG was prepared by diluting a 60% Iodixanol solution 

(Optiprep®, Sigma-Aldrich, USA) with 0.25 M sucrose in 10 mM Tris-HCl pH 7.2 to make 

40%, 20%, 10% and 5% iodixanol solutions, and 1.0 ml of these solutions was layered in 

decreasing density in an ultracentrifuge tube. The resuspended sEVs were added to the top 

layer and ultracentrifuged at 120,000 ´g for 18 h at 4°C. A control tube was similarly prepared 

using PBS instead of sEVs to measure the density of the different sEV fractions recovered from 

the gradient. sEV fractions obtained from the ODG were diluted with 8 ml of PBS containing 

1 × EDTA-free protease inhibitor cocktail (Santa Cruz, USA), and concentrated using a 10 kDa 

spin concentrator to remove the excess of Optiprep® solution. All sEV fractions were kept at 

-80°C until use. 

The density of different sEV fractions obtained from the ODG was determined as follows. A 

total of 12 fractions each were collected from the sample and control tube. Then, 100 μl from 

each fraction obtained from the control tube was diluted (1:1) with water (twice). The 

absorbance of each fraction was measured at 340 nm using a POLARstar Omega (BMG 
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Labtech, Australia) and the density of each sEV fraction was determined by interpolating the 

absorbance in a standard curve as previously shown [24]. The protein concentration of 

sEVfractions and m/lEVs was quantified using the Quick Start™ Bradford Protein Assay Kit 

(Bio-Rad Laboratories, Inc. Life Science Research, USA) following the manufacturer’s 

instructions.   

2.2.5. Determination of the size and concentration of extracellular vesicles 

The size distribution and particle concentration of the different sEV fractions recovered after 

ODG and m/lEVs was measured using tunable resistant pulse sensing (TRPS) using a qNano 

instrument (Izon, New Zealand) following an established protocol [122]. A Nanopore NP150 

and NP400 (Izon, New Zealand) was used to measure sEVs and m/lEVs, respectively. Thirty-

five μl of measurement electrolyte (Izon, New Zealand) was added to the upper fluid well and 

maximum pressure was applied; the shielding lid was clicked 5 to 10 times to wet the 

Nanopore. Then, 75 µl of measurement electrolyte was added to the lower fluid well, maximum 

pressure and an appropriate voltage (0.1 V) was applied and Nanopore current was checked for 

stability. Thirty-five and 75 μl of filtered coating solution (Izon, New Zealand) was loaded in 

the upper and lower fluid well, respectively, and maximum pressure was applied for 10 min 

followed by maximum vacuum for another 10 min. The coating solution was flushed out of the 

upper and lower fluid wells two to three times with measurement electrolyte, maximum 

pressure was applied for 10 min and the voltage was increased until the current reached 

between 120 and 140 nA and the baseline current was stable. Then, 35 μl of calibration particles 

(CP200 carboxylated polystyrene calibration particles) (Izon, New Zealand) was loaded to the 

upper fluid well at a 1:200 dilution for sEVs and 1: 1,500 for m/lEVs, incubated for 2 min at 

maximum pressure and the stretch was reduced and the calibration particles were measured at 

2 different pressures (P10 and P5). The S. haematobium sEV fractions and m/lEVs were diluted 

1:5-1:10 and applied to the Nanopore and measured similarly to the calibration particles. The 
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size and concentration of particles were determined using the software provided by Izon 

(version 3.2).  

2.2.6. Proteomic analysis of extracellular vesicles 

2.2.6.1. In- gel trypsin digestion 

All S. haematobium sEV fractions and m/lEVs were resuspended in 1x loading buffer (10% 

glycerol, 80 mM Tris-HCl, 2% SDS, 0.01% bromophenol blue and 1.25% beta-

mercaptoethanol, pH 6.8), boiled at 95°C for 5 min and electrophoresed in a 15% SDS-PAGE 

at 100 V. The gel was stained with 0.03% Coomassie Brilliant Blue (40% methanol, 

10% acetic acid and 50% water) for 30 min at room temperature (RT) with gentle 

shaking and destained using destaining buffer 1 (60% water, 10% acetic acid and 30% 

methanol) for 1 h at RT with gentle shaking. Each lane was sliced into 6 pieces with a 

surgical blade and placed into a  fresh Eppendorf tube. Then, slices were further 

destained 3 times using destaining buffer 2 (50% acetonitrile (ACN), 20% ammonium 

bicarbonate and 30% milliQ water) by adding 200 μl of buffer to the gel slice, and 

incubating at 37°C for 45 min. Supernatants were discarded and, finally, gel slices were 

dried in a speedivac (LabGear, Australia) on low/high medium heat (< 45°C). One hundred 

(100) µl of reduction buffer (20 mM dithiothreitol, 25 mM ammonium bicarbonate) was 

added to each dried slice, incubated at 65°C for 1 h and supernatants were discarded. 

Alkylation was achieved by adding 100 µl of alkylation buffer (50 mM iodoacetamide, 

25 mM ammonium bicarbonate) to each gel slice, which were further incubated in darkness 

for 40 min at RT. Gel slices were washed with 200 µl of wash buffer (25 mM ammonium 

bicarbonate) and incubated at 37°C for 15 min twice after the gel slices were dried in a 

speedivac. For trypsin digestion, a total of 2 µg of trypsin (Sigma-Aldrich, USA) was 

added to each gel slice and incubated for 5 min at RT. Finally, 50 µl of trypsin reaction 
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buffer (40 mM ammonium bicarbonate, 9% ACN) was added to gel slices and incubated 

overnight at 37°C.  

2.2.6.2. Peptide extraction, cleaning and purification 

Supernatants containing digested peptides were obtained from each sample and placed 

in new Eppendorf tubes. Then, 50 µl of 0.1% trifluoroacetic acid (TFA) in 50% ACN 

was added to gel slices to recover extra peptides following an incubation at 37°C for 

45 min. Supernatants were combined with their corresponding fractions containing the 

digested peptides obtained before, dried in a speedivac and kept at -20°C for desalting.  

Before mass spectrometry analysis, samples were desalted as follows. Peptides were 

resuspended with 10 µl of equilibration buffer (0.1% TFA), applied to a C18 ZipTip® column 

(Merck Millipore, USA), washed several times using 0.1% TFA and eluted with 5 µl of elution 

solution (0.1% TFA, 50% ACN). Eluted peptides were dried in a speedivac and kept at -20°C 

until needed. 

2.2.6.3. Mass spectrometry  

Each sEV fraction and m/lEVs were reconstituted in 10 μl of 5% formic acid, added onto a 50 

mm 300 μm C18 trap column (Agilent Technologies, USA). The samples were then desalted 

for 5 min at 30 μl/min using 0.1% formic acid and the peptides were then eluted onto an 

analytical nano-HPLC column (150 mm × 75 μm 300SBC18, 3.5 μm, Agilent Technologies, 

USA) at a flow rate of 300 nL/min. Peptides were separated using a 95 min gradient of 1–40% 

buffer B (90/10 ACN/0.1% formic acid) followed by a steeper gradient from 40 to 80% buffer 

B in 5 min. A 5600 ABSciex mass spectrometer operated in information-dependent acquisition 

mode, in which a 1 s TOF-MS scan from 350–1400 m/z was used, and for product ion ms/ms 

80–1400 m/z ions observed in the TOF-MS scan exceeding a threshold of 100 counts and a 

charge state of +2 to +5 were set to trigger the acquisition of product ion. Analyst 1.6.1 
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(ABSCIEX, Framingham, MA, USA) software was used for data acquisition. Due to scarcity 

of the S. haematobium ES materials, EVs samples were analysed by mass spectrometry once 

2.2.6.4. Database search and protein identification 

All .wiff files acquired by Analyst 1.6.1 were converted into .mgf format files using 

MSConvert [234] and default settings. For database search and protein identification, a 

database was built using a concatenated target/decoy version of the S. haematobium predicted 

proteome downloaded from Parasite Wormbase (www.parasite.wormbase.org) [235, 236] and 

concatenated to the common repository of adventitious proteins (cRAP, 

https://www.thegpm.org/crap/), 116 sequences). Database search was performed using a 

combination of four search engines (X! Tandem version X! Tandem Vengeance (2015.12.15.2) 

[237], MS-GF+ version Release (v2018.04.09) [238], OMSSA [239] and Tide [240]) using 

SearchGUI version v3.3.3 [241]. The identification settings were as follows: Trypsin, Specific, 

with a maximum of 2 missed cleavages 10.0 ppm as MS1 and 0.2 Da as MS2 tolerances; fixed 

modifications: Carbamidomethylation of C (+57.021464 Da), variable modifications: 

Deamidation of N (+0.984016 Da), Deamidation of Q (+0.984016 Da), Oxidation of M 

(+15.994915 Da). Peptides and proteins were inferred from the spectrum identification results 

using PeptideShaker version 1.16.38 [241]. Peptide Spectrum Matches (PSMs), peptides and 

proteins were validated at a 1.0% False Discovery Rate (FDR) estimated using the decoy hit 

distribution. Only proteins having at least two unique peptides were considered as identified.  

2.2.6.5. Bioinformatic analysis of extracellular vesicles of Schistosoma haematobium 

proteomic data 

Protein family (Pfam) domains were classified using HMMER v3.1b1 [242] as follows. The 

full sequences of the proteins were obtained using the accession numbers of proteins from the 

PeptideShaker. The identified proteins were analysed by HMMER v3.1b1 using the Pfam 



	 42	

database (https://pfam.xfam.org/help) [243]. Then, proteins containing Pfam domains with an 

E-value < 1E-05 were selected. The most predominant protein domains were identified for both 

sEVs and m/lEVs by counting the numbers of proteins containing one or multiple copies of a 

specific domain.  

Protein gene ontology (GO) categories were classified using Blast2GO v5.2 [244] as follows. 

A fasta file containing identified proteins was loaded into Blast2GO and blast was performed 

against NCBI  non-redundant database [245]. Functional analysis of protein sequences was 

performed using InterPro. Mapping was used to retrieve GO terms associated to the hits 

obtained by the BLAST. GO terms were selected from the GO pool obtained from mapping 

and query sequences were assigned using annotation. The relationship between GO terms from 

different GO categories was performed using Annex. Finally, integrated annotation result was 

produced by merging GO terms with GO annotations. ReviGO was used to visualise GO terms 

using semantic similarity-based scatterplots [246] as follows. The GO terms from Blast2GO 

were exported and parent GO terms were filtered out to avoid redundancy. Children terms with 

their Nodescore were loaded to http://revigo.irb.hr/ and analysed using default parameters.   

Fasta files of each amino acid sequence were interrogated with TMHMM software [247] for 

the transmembrane domain prediction and SignalP 4.1 [248] to predict putative signal peptides. 
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2.3. Results 

2.3.1. Density, protein concentration, particle concentration and purity of small EVs and 

medium/large EVs from Schistosoma haematobium 

S. haematobium adult worm sEVs were purified using ODP. The density of the 12 sEVfractions 

obtained after gradient ranged from 1.039 to 1.4 g/ml (Table 2.1). Protein concentration of each 

sEV fraction and m/lEVs was measured by Bradford assay and the size and concentration were 

determined using a qNano. The protein and particle concentration of the 12 sEV fractions 

ranged from 1.6 to 25.35 µg/ml and 3.72´106 to 1.90´108 particles/ml, respectively, while the 

protein and particle concentration of m/lEVs was 18 µg/ml and 1.08´107 particles/ml, 

respectively. The size of the 12 sEV fractions ranged from 135 nm ± 19.3 to 342 nm ± 113.9 

and size of m/lEVs was 249 nm ± 22.7. sEV fractions having an appropriate purity and density 

[24] (fractions 5–9) were selected for further analysis (Fig. 2.1). sEV fractions 6 and 9 

contained the highest number of sEVs (1.9´108 and 1.21´108 particles/ml, respectively).  
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Table 2.1. Density, protein concentration, particle concentration and purity of Schistosoma 

haematobium adult worm medium/large EVs and small EV fractions after purification by 

Optiprep® density gradient.  

sEV 

Fractions 

and m/lEVs 

Density 

(g/ml) 

Protein 

concentration 

(µg /ml) 

Particle 

concentration 

(particles/ml) 

Purity of 

vesicles 

(particles/µg) 

Size 

1 1.039 5.29 2.26´107  4.27´106  190 nm ± 27.2 

2 1.04 1.6 5.31´107 3.32´107  216 nm ± 14.4 

3 1.05 1.8 6.96´107  3.72´107  135 nm ± 19.3 

4 1.06 3.4 3.72´106  1.09´106  150 nm ± 29.9 

5 1.07 3.29 9.13´107  2.77´107  136 nm ± 12.4 

6 1.08 8.4 1.90´108  2.26´107  146 nm ± 11.3 

7 1.08 8.09 9.58´107  1.18´107  153 nm ± 10.2 

8 1.13 8.69 8.91´107  1.02´107 173 nm ± 19.3 

9 1.16 11.64 1.21´108 1.04´107 191 nm ± 27.4 

10 1.24 18.86 1.53´108 7.95´106     342 nm ±113.9 

11 1.29 25.35 6.20´107 2.44´106 310nm ± 103.2 

12 1.4 23.35 1.02´107 4.36´105 233 nm ± 77.5 

m/lEVs - 18 1.08´107 6´105 249 nm ± 22.7 
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Figure 2.1. Tunable resistant pulse sensing analysis of small EVs and medium/large EVs from 

Schistosoma haematobium. Size and number of EVs secreted by S. haematobium was analysed by 

qNano (iZon). A) Size and concentration of particles in sEV-containing fractions (5-9). B) Size and 

particle concentration of S. haematobium m/lEVs.  
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2.3.2. Proteomic analysis of small EVs and medium/large EVs from Schistosoma 

haematobium 

The proteome composition of S. haematobium adult worm EVs was characterised by LC-

MS/MS. After combining the results from fractions 5-9 (fractions containing the highest purity 

of sEVs), a total of 133 proteins matching S. haematobium proteins and common contaminants 

from the cRAP database were identified. From these, 80 proteins were identified with at least 

two validated unique peptides and 57 of them matched S. haematobium proteins. From the 57 

identified proteins, 8 (14%) contained a transmembrane domain and 7 (12%) had a signal 

peptide. Similarly, 509 proteins were identified from m/lEVs. From these, 346 proteins were 

identified with at least two validated unique peptides and 332 matched S. haematobium 

proteins. From these identified proteins, 54 (16%) contained a transmembrane domain and 26 

(8%) had a signal peptide. Forty proteins were identified in both sEVs and m/lEVs. The identity 

of the most abundant proteins and proteins typically found in other helminth EVs are shown in 

table 2.2. 
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Table 2.2. List of proteins found only in each type of Schistosoma haematobium extracellular vesicle. 

Protein location Protein identity Protein accession numbers 
sEVs Proteasome subunit MS3_10249.1, MS3_05734.1, MS3_01483.1, MS3_06009.1, MS3_04526.1, 

MS3_08808.1, MS3_07240.1, MS3_02807.1, MS3_09236.1 and MS3_03070.1 
 GAPDH MS3_10141.1 
 Papain family cysteine protease  MS3_08498.1 
 C-terminal domain of 1-Cys 

peroxiredoxin 
MS3_08460.1 

 Ferritin-like domain MS3_08059.1 
S-adenosyl-L-homocysteine 
hydrolase 

MS3_04449.1 

Cytosol amino peptidase MS3_01749.1 
Trefoil (P-type) domain-containing 
protein  

MS3_00004.1 

sEVs and m/lEVs TSPs  MS3_09198, Sh-TSP-2, MS3_05226, MS3_05289 and MS3_01153 
Ferritin-like domain  MS3_07972.1 and MS3_07178.1 
14-3-3 protein  MS3_03977.1 and MS3_00047.1 
Elongation factor Tu C-terminal 
domain  

MS3_08479.1 

EF hand  MS3_08446.1 
Actin  MS3_07374.1 
GST, N-terminal domain  MS3_06482.1 
Cytosol aminopeptidase family, 
catalytic domain  

MS3_08450.1 

Lipocalin / cytosolic fatty-acid 
binding protein family  

MS3_04307.1 

Immunoglobulin domain  MS3_03208.1 
Saposin-like type B, region 2  MS3_02805.1 
Enolase, N-terminal domain  MS3_02425.1 

m/lEVs EF hand MS3_05735.1, MS3_00180.1, MS3_09846.1, MS3_05877.1, MS3_05317.1, 
MS3_04536.1, MS3_10043.1, MS3_05959.1, MS3_05150.1, MS3_04275.1, 
MS3_05958.1 MS3_05952.1, MS3_00361.1 and MS3_02003.1 
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Ras family MS3_10193.1, MS3_05953.1, MS3_05910.1, MS3_05976.1, MS3_07854.1, 
MS3_11139.1, MS3_02375.1, MS3_01653.1, MS3_04355.1, MS3_09110.1, 
MS3_09593.1 and MS3_03443.1 

TCP-1/cpn60 chaperonin family MS3_03054.1, MS3_06928.1, MS3_01627.1, MS3_10572.1, MS3_06669.1, 
MS3_07556.1, MS3_08399.1, MS3_00785.1 and MS3_08926.1 

TSPs MS3_01905.1 and MS3_01370  
Heat-like repeat MS3_08696.1, MS3_01642.1, MS3_09658.1, MS3_10590.1, MS3_05814.1, 

MS3_02928.1 and MS3_06293.1 
Calponin homology (CH) domain MS3_07481.1, MS3_05505.1, MS3_01744.1, MS3_00852.1, MS3_00361.1, 

MS3_03766.1 and MS3_10701.1 
Dynein light chain type 1 MS3_05351.1, MS3_08569.1, MS3_05345.1, MS3_01173.1, MS3_05342.1, 

MS3_04412.1 and MS3_05960.1 
Actin MS3_07374.1, MS3_04014.1, MS3_00351.1, MS3_02465.1, MS3_04907.1 and 

MS3_01922.1 
HSP-70 protein MS3_10713.1, MS3_11293.1, MS3_11411.1, MS3_10049.1, MS3_02688.1 and 

MS3_02787.1 
Immunoglobulin domain MS3_03027.1, MS3_01271.1, MS3_03208.1, MS3_07594.1 and MS3_01223.1 
Annexin MS3_08725.1, MS3_08723.1, MS3_04598.1, MS3_01964.1 and MS3_01952.1 
AAA domain MS3_03802.1, MS3_02581.1, MS3_01139.1, MS3_01650.1 and MS3_07031.1 
14-3-3 protein MS3_03977.1, MS3_05219.1, MS3_00047.1, MS3_01871.1 and MS3_03976.1 
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2.3.3. Protein families present in Schistosoma haematobium small EVs and medium/large 

EVs 

Identified proteins were subjected to a Pfam analysis using default parameters in HMMER 

v3.1b1 and proteins containing an identified Pfam domain with a E< 1E-05 were selected. A 

total of 70 and 387 domains were identified from sEVs and m/lEVs, respectively. In sEVs, the 

three most abundant domains were proteasome subunit domains (PF00227) (14%), TSP family 

domains (PF00335) (7%) and ferritin-like domains (PF12902) (4%) (Fig. 2.2A). The most 

abundant protein domains from m/lEVs were EF-hand domains (PF00036) (3%), Ras family 

domains (PF00071) (3%), TCP-1/cpn60 chaperonin family domains (PF00118) (2%) and TSP 

family domains (PF00335) (2%) (Fig. 2.2B). From these, TSP family domains, ferritin-like 

domains and 14-3-3 protein domains were common to sEVs and m/lEVs. 
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Figure 2.2. Pfam analysis of the most abundant Schistosoma haematobium vesicle proteins. X-axis 

represents the number of proteins containing at least one of those domains. (A) sEVs (B) m/lEVs. 

2.3.4. Gene ontology terms of Schistosoma haematobium small EVs and medium/large EV 

proteins  

The proteins of adult S. haematobium sEVs and m/lEVs were annotated using Blast2GO [244]. 

In sEVs, Blast2GO returned at least one biological process, molecular function or cellular 

function term for 70%, 81% and 65% of proteins, respectively.  In m/lEVs, Blast2GO returned 

at least one biological process, molecular function or cellular component term for 52%, 65% 
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and 48% of proteins, respectively. To avoid redundancy in the analysis and for a better 

comprehension of the represented GO terms in the sEVs and m/lEVs, the parental GO terms 

were removed. In sEVs, after removal of parental redundancy, 11, 9 and 7 GO terms belonging 

to biological processes, molecular function and cellular component, respectively, were 

identified. Similarly, for m/lEVs, 12, 4 and 8 GO terms belonging to biological processes, 

molecular function and cellular component, respectively, were identified. These children GO 

terms were visualised using ReviGO based on semantic similarity-based scatterplots [246]. The 

GO terms were ranked by the nodescore provided by Blast2GO and plotted using their 

nodescore and frequency. Semantically similar GO terms plot close together and increasing 

heatmap score signifies increasing nodescore from Blast2GO. The circle size denotes the 

frequency of the GO term from the underlying database. In sEVs, several biological processes 

were highly represented, such as the ubiquitin-dependent protein catabolic process, oxidation-

reduction process and gluconeogenesis and glycolytic process (Fig. 2.3A). Similarly, in 

m/lEVs, several biological processes were highly represented, such as the carbohydrate 

metabolic process, transport process, organonitrogen compound metabolic process and 

microtubule-based process (Fig. 2.3B). Oxidation-reduction process was common to both sEVs 

and m/lEVs. Six sEV proteins and 22 MV proteins were predicted to be involved in this 

process. 
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Figure 2.3. Biological process GO term categories of adult Schistosoma haematobium vesicle proteins. 

Biological processes were ranked by nodescore (Blast2GO) and plotted using REViGO. Semantically 

similar GO terms plot close together, increasing heatmap score signifies increasing nodescore from 

Blast2GO, while circle size denotes the frequency of the GO term from the underlying database. (A) 

sEVs (B) m/lEVs 



	
 
 
  

53	
 

 
In sEVs, several molecular functions were highly represented, such as threonine-type 

endopeptidase activity, protein binding activity, endopeptidase activity and transition metal ion 

binding activity (Fig. 2.4A). In m/lEVs, molecular functions such as protein binding activity, 

ATP binding activity, nucleoside-triphosphatase activity and calcium ion binding activity were 

highly represented (Fig. 2.4B). From these highly represented molecular function terms, 

protein binding was common to both sEVs and m/lEVs, with 5 proteins from sEVs and 83 

proteins from m/lEVs being involved in this process. All 5 sEV proteins involved in protein 

binding were also involved in protein binding from m/lEVs. 
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Figure 2.4. Molecular function GO term categories of adult Schistosoma haematobium vesicle proteins. 

Molecular functions were ranked by nodescore (Blast2GO) and plotted using REViGO. Semantically 

similar GO terms plot close together, increasing heatmap score signifies increasing nodescore from 

Blast2GO, while circle size denotes the frequency of the GO term from the underlying database. (A) 

sEVs (B) m/lEVs. 
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The most highly represented cellular component terms in sEVs were proteins associated with 

nucleus, integral component of membrane, non-membrane-bounded organelle and proteasome 

core complex (alpha-subunit complex) (Fig. 2.5A) and the most abundant cellular component 

terms in m/lEVs were proteins associated with integral component of membrane, cytoskeletal 

part, cytoplasmic part and non-membrane-bounded organelle (Fig. 2.5B). Integral component 

of membrane, cytoplasmic part and non-membrane-bounded organelle terms were common to 

both sEVs and m/lEVs. In sEVs and m/lEVs, 9 and 83 proteins, respectively, were integral 

membrane proteins. From sEVs, 5 TSPs are integral membrane proteins whereas in m/lEVs 7 

TSPs and calpain large subunit domain are integral membrane proteins. In m/lEVs, 33 proteins 

including, saposin-like type B protein are located in the cytoplasmic parts of the cell.  
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Figure 2.5. Cellular component GO term categories of adult Schistosoma haematobium vesicle 

proteins. Cellular components were ranked by nodescore (Blast2GO) and plotted using REViGO. 

Semantically similar GO terms plot close together, increasing heatmap score signifies increasing 

nodescore from Blast2GO, while circle size denotes the frequency of the GO term from the underlying 

database. (A) sEVs (B) m/lEVs. 
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2.4. Discussion 

This study showed that S. haematobium secretes at least two populations of vesicles (m/lEVs 

and sEVs) with a clear difference in size and proteomic composition. After separating them 

from m/lEVs, the sEV fractions were further fractionated by ODP to isolate pure vesicles by 

reducing contamination from soluble proteins [24]. The size of the purified sEVs ranged from 

136 nm ± 12.4 to 191 nm ± 27.4, while in S. mansoni, the size of sEVs ranged from 77.4 nm ± 

34.8 to 97.9 nm ± 28.5 [24]. The size of F. hepatica sEVs ranged from 30-100 nm [118], while 

in the nematode, A. suum, T. muris and N. brasiliensis, their size ranged from 80 nm to 200 

nm, 93 nm ± 41.5 to 165 nm ± 54.9 and 60 nm to 160 nm [122, 123, 126], showing the 

heterogenicity of EV size between helminths. 

Only a fraction of proteins from sEVs and m/lEVs were predicted to contain signal peptides or 

transmembrane domains, in agreement with similar reports from O. viverrini, S. mansoni, N. 

brasiliensis and T. muris [24, 117, 122, 123]. The presence of many proteins without signal 

peptides and transmembrane domains indicates the role of vesicles in the release of these 

leaderless proteins into the external environment [249].  

The most represented domains contained within sEV proteins were the proteasome subunit 

domains, TSP domains, ferritin-like domains, cytosol aminopeptidase family catalytic domains 

and 14-3-3 protein domains. The proteasome is involved in the biogenesis of EVs [250] and 

also controls protein homeostasis and degradation of damaged proteins [251]. Furthermore, in 

schistosomes, the proteasome plays an important role in the cellular stress response and 

survival of the parasite [252]. For example, treating mice with a proteasome inhibitor and 

infecting with S. mansoni cercariae significantly impaired parasite development [253], and 

treating schistosomula in vitro with siRNAs targeting a deubiquitinase subunit of the 19S 

regulatory particle significantly reduced parasite viability [254]. Proteasomes have also been 
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targeted in vaccine strategies; immunisation of mice with S. japonicum a5-subunit proteasome 

stimulated a strong antibody response and significantly reduced adult worm and egg burden in 

the subsequent challenge [255]. 

Ferritins are iron-storage proteins, involved in maintaining intracellular iron balance [256]. 

This activity of ferritins minimizes free-radical reactions and prevents cellular damage caused 

by iron accumulation in the cell [257]. Iron also plays an important role in eggshell formation 

of schistosomes and fer-1 is highly expressed in female worms in comparison to males [258]. 

Since, female worms produce many eggs per day and eggs are the primary cause of pathology, 

vaccination using ferritins could disrupt the formation of eggs and reduce egg-induced 

pathology [259]. Indeed, ferritins have been tested as vaccine candidates against schistosomes; 

immunisation of mice with the recombinant Fer-1 of S. japonicum caused 35.5% and 52.1% 

reduction in adult worm and liver egg burden, respectively [260]. Besides their role as vaccines, 

ferritins could also be drug targets for iron chelators in parasitic infection [261], and iron 

chelators have been shown to halt the growth of schistosomes and protozoan parasites in vitro 

[262, 263]. Ferritins have been identified in the proteomic analysis of other blood feeding 

helminths EVs [24, 118], suggesting a role for EVs in iron acquisition.  

In helminths, aminopeptidases cleave peptides to free amino acids before being distributed to 

the internal tissues of the parasite [264]. They are also involved in the egg hatching process of 

schistosomes [265] as RNAi-mediated silencing of S. mansoni egg aminopeptidase 

significantly decreased hatching [266]. Moreover, aminopeptidases have been tested as vaccine 

candidate antigens against F. hepatica infection in animal models; immunisation of sheep with 

native and recombinant leucine aminopeptidases resulted in 49-89% adult worm reduction in 

subsequent F. hepatica challenges [185, 186]. Interestingly, this vaccine candidate was also 

found in the EVs from other hematophagous helminths like S. mansoni [24, 118]. Like ferritin, 
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the presence of these proteolytic enzymes within the EVs of S. haematobium and other 

helminths suggests the involvement of EVs in nutrient acquisition processes. 

From GO analysis, the most represented cellular component of sEV proteins was the nucleus 

and integral component of membrane. This is consistent with the pfam analysis of sEVs, in 

which proteasome subunit-containing proteins, the most abundant protein family, is formed 

from the internal parts of the cell, whereas TSPs, the second most abundant protein family, is 

an integral component of the EV membrane. This supports the idea that sEVs are formed from 

endosomes and discharged when the MVB blends with the cell membrane [96] as occurs in 

other organisms [118].  

The second and fourth most abundant protein domains in sEVs and m/lEVs, respectively, were 

the TSPs. TSPs are involved in EV biogenesis [97] and they are present on the surface 

membrane of EVs from many different organisms and are considered a molecular marker of 

EVs [267]. TSPs are also found from the proteomic analysis of other helminth EVs [24, 25, 

117-123]. In trematodes, TSPs are involved in tegument development [157-159] and in 

schistosomes, TSP LELs have been tested as vaccine candidates [160, 161, 268]. Furthermore, 

antibodies produced against TSPs present in O. viverrini EVs blocked the internalisation of 

EVs by cholangiocytes and decreased pathogenesis [117, 160]. TSPs from other platyhelminths 

such as Taenia solium and S. japonicum are immunogenic and have potential as diagnostic 

candidates [157, 159, 231, 269-271].  

The most represented domains in S. haematobium m/lEVs were EF-hand, Ras family, TCP-

1/cpn60 chaperonin family, TSP family, heat-like repeat, calponin homology (CH), dynein 

light chain type 1 and actin domains. Proteins containing EF-hand domains are involved in a 

number of protein-protein interactions for the uptake and release of calcium [272]. The influx 

of calcium in the cell induces the redistribution of the phospholipids of cell membrane resulting 

in an increase of the release of m/lEVs [273]. EF-hand domains are the most predominant 
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protein domains found within other helminths EV proteins [117]. This is also in line with the 

GO analysis, in which proteins involved in protein binding and calcium ion binding are the 

highest represented molecular function terms. Ras proteins serve as signalling nodes activated 

in response to diverse extracellular stimuli [274] and Ras proteins are involved in biogenesis 

and release of m/lEVs [97]. In S. mansoni, Ras proteins are involved in the male-directed 

maturation of the female worms [275], which could suggest a potential role of EVs in parasite-

parasite communication. TCP-1/cpn60 chaperonin family proteins play an important role in the 

folding of proteins, including actin and tubulin [276], which bind and hydrolyse ATP using 

magnesium ions [277]. This is consistent with the molecular function GO terms, in which, ATP 

binding and nucleoside-triphosphatase was the most represented. The calponin homology (CH) 

domain is an actin-binding protein playing a major regulatory role in muscle contraction [278]. 

Contraction of cytoskeletal structures by actin–myosin interactions completes vesicle 

formation [100] and the presence of actin together with calponin helps the contraction of the 

membrane that facilitates the release of m/lEVs [97]. Dynein is involved in the transport of 

vesicles and organelles, as well as positioning the mitotic spindle and microtubule organizing 

centres with respect to the cell cortex [279]. This is also in line with the GO analysis of m/lEVs, 

in which transport is one the highest represented biological process terms.  

The proteomic analysis S. haematobium EVs (sEVs and m/lEVs), revealed many proteins 

involved in host-parasite interactions. Some of these proteins were homologues of other 

helminths vaccine and diagnostic candidates, including TSPs.  
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Chapter 3: Characterisation of tetraspanins from Schistosoma 

haematobium extracellular vesicles 

3.1. Introduction 

In chapter 2, the proteomic composition of S. haematobium adult worms EVs was 

characterised, revealing many different proteins, including TSPs. TSPs are a family of proteins 

expressed in many organisms [156] and involved in many biological processes, including 

membrane organisation [147], modulation of immunity [280] and cancer progression [281]. 

The first member of the TSP family to be identified in humans was CD81 [282]; since then, 

this family of proteins has been extensively studied in other organisms. To date, a total of 33, 

37 and 20 different TSPs have been found in mammals, Drosophila melanogaster and 

Caenorhabditis elegans, respectively [151].  

In parasitic helminths, TSPs are involved in host-parasite interactions and some of them are 

being tested as potential vaccines (reviewed in chapter 1.3.1.2.1) and diagnostic candidates 

[160, 161, 163, 268-270]. Sm23 was the first TSP reported from schistosomes [149] and, 

thereafter, other TSPs from S. mansoni and S. japonicum have been identified and characterised 

[161, 283-285]. In addition to their presence in the tegument of helminths [17, 157, 159, 161, 

286], TSPs have also been found on the membrane of EVs from many of helminths (including 

F. hepatica, T. muris, S. mansoni, O. viverrini, S. japonicum, E. multilocularis, E. granulosus 

and N. brasilensis [24, 25, 117-123]) and are considered a molecular marker of exosomes 

[267]. Antibodies produced against TSPs present in the membrane of O. viverrini EVs blocked 

the internalization of EVs by cholangiocytes and decreased the production of cytokines that 

initiate the pathogenesis [117, 160]. Although TSPs are well characterised in other 

schistosomes, no studies have been conducted on TSPs from S. haematobium. Therefore this 
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study aimed to characterise Sh-TSPs found from the proteomic analysis of adult worm EVs in 

terms of their potential as vaccine and diagnostic candidates for the control of urogenital 

schistosomiasis.  

There are 19 Sh-TSPs encoded in S. haematobium genome and, from these, 7 of them were 

found in S. haematobium EVs. Herein, I have selected a total of six Sh-TSPs that might be 

playing key roles in host-parasite interactions based on their presence in S. haematobium adult 

EVs. The expression level of each Sh-TSP in different stages of the parasite was analysed by 

qPCR and the anatomic sites of expression in adult worms was assessed using antibodies raised 

to recombinant Sh-TSPs to broaden understanding of this family of molecules. 
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3.2. Materials and methods 

3.2.1. Experimental animals  

Male BALB/c mice were purchased and maintained at the AITHM animal facilities on the 

Cairns campus as discussed previously (chapter 2.2.1). All experimental procedures 

performed on animals in this study were approved by the James Cook University (JCU) 

animal ethics committee (ethics approval number A2391 and A2395). 

3.2.2. Schistosoma haematobium material  

Adult S. haematobium worms were obtained as previously described (chapter 2.2.3). Freshly 

perfused S. haematobium adult worms were fixed in paraformaldehyde, embedded in paraffin 

and cryostatically sectioned into 7.0 µm sections [287]. 

S. haematobium cercariae were mechanically transformed into schistosomula as described 

previously [233]. Schistosomula were resuspended to a density of 1,000/ml in modified Basch 

media supplemented with 4x antibiotic-antimycotic and incubated at 37°C in 5% CO2. Media 

was changed daily and schistosomula (1,000) collected at 24 h, 3 and 5 days and immediately 

stored in 500 μl of TRI reagent (Sigma-Aldrich, USA) at -80°C until further use. 

3.2.3. RNA extraction, cDNA synthesis and real time quantitative PCR (RT-qPCR) 

Total RNA from S. haematobium schistosomula (24 h, 3 and 5 days) was extracted using TRI 

reagent as per manufacturer’s instructions. The RNA pellet was finally resuspended in 12 μl of 

RNAse-free water and incubated for 5 min at 55°C. First strand cDNA was synthesized using 

superscript III (Invitrogen, USA) and 11 µl of RNA according to manufacturer’s instructions. 

The cDNA of S. haematobium adult, miracidia, cercariae and egg stages were provided by BRI 

(Maryland, USA). 
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RT-qPCR was performed to determine the expression levels of S. haematobium TSP-encoding 

genes in different life stages (adult, egg, miracidia, cercaria and schistosomula (24 h, 3 days 

and 5 days)). Each qRT-PCR reaction consisted of 5 µl of SYBR premix EX Taq (2x) 

(Qiagen, Netherlands), 1 µl (10 mM) of each forward and reverse primer (Appendix Table 

1), 1 µl (50 ng) of the first–stand cDNA and sterile water to a final volume of 10 µl. The 

reactions were performed on a Rotor-Gene Q (Qiagen, Netherlands) using the following 

conditions: initial denaturation at 95°C for 10 min (1 cycle) followed by 40 cycles of 

denaturation (95°C for 10 sec), annealing (50°C for 15 sec) and extension (72°C for 20 sec). 

S. haematobium tsp expression was normalised to a housekeeping gene (a-tubulin, accession 

number XM_012938434.1) as described before [288] and relative expression levels were 

calculated using the 2−ΔΔCt method using eggs as a reference group [289].  

3.2.4. Phylogenetic analysis  

A phylogenetic analysis was performed on the 19 Sh-TSPs and 32 well-characterised TSPs 

from different organisms (Bos taurus, Danio rerio, Homo sapiens, Mus musculus, S. 

japonicum, S. mansoni and O. viverrini) belonging to 3 different groups of TSP families 

(uroplakin, CD81/CD9 and CD63). The sequences of these TSPs were obtained from the NCBI 

database. A multiple sequence alignment was carried out using the alignment program MAFFT 

(v7.271) [290].  Outliers with poor alignment (long unaligned regions) were detected and 

filtered out using ODSeq v1.0 

(https://bioconductor.org/packages/release/bioc/html/odseq.html) resulting in the removal of 

two sequences (XP_012793320 and XP_012797041). PhyML (v20160207) [291] was used for 

maximum-likelihood (ML) phylogenetic analyses of the amino acid sequences using default 

parameters. The tree was visualised with The Interactive Tree of Life (iTOF) online phylogeny 

tool (https://itol.embl.de/) [292] using default parameters. 
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3.2.5. Cloning of Schistosoma haematobium tetraspanins 

The cDNAs encoding for the open reading frames of the 5 Sh-tsps (ms3_09198, ms3_01370, 

ms3_01153, ms3_05226 and ms3_05289) were obtained from the cDNA library of S. 

haematobium (www.parasite.wormbase.org), while the cDNA encoding for the open reading 

frame for Sh-tsp-2 was obtained from Genbank (accession number MK238557). The LEL 

regions from the 6 Sh-TSPs were identified using Tmpred (https://embnet.vital-

it.ch/software/TMPRED_form.html) and amplified by PCR using oligonucleotide primers 

flanking these regions and S. haematobium adult cDNA as a template. The PCR reaction was 

performed as follows: 2 µl (50 ng) adult worm cDNA, 3 µl (10 µM) each of forward primer 

and reverse primer (Appendix Table 2), 10 µl MyTaq red reaction buffer (Bioline, UK), 31.5 

µl water and 0.5 µl MyTaq DNA polymerase (Bioline, UK). The PCR cycling conditions 

followed an initial cycle of denaturation at 95°C for 5 min, 35 cycles of denaturation at 95°C 

for 15 sec, annealing at 50°C for 15 sec and extension at 72°C for 30 sec and a final 

extension step at 72°C for 7 min. Finally, the PCR products of ms3_09198, ms3_01370, 

ms3_01153, ms3_05226 and ms3_05289 were NcoI/XhoI cloned into pET-32aΔHis such that 

they were in frame with the N-terminal thioredoxin (TrX) and C-terminal 6xHis tags. The 

vector pET-32aΔHis is an in-house modified version of pET-32a (Novagen, USA) which has 

the N-terminal 6XHis-tag absent to facilitate efficient purification after cleavage of the TrX 

tag. The Sh-tsp-2 PCR product was NdeI/XhoI cloned into pET41a (Novagen, USA) to 

facilitate native N-terminal expression without the GST fusion tag but retaining the C-terminal 

6xHis tag. Recombinant vectors were transformed into E. coli TOP10 strains (ThermoFisher 

Scientific, USA) and recombination confirmed by sequencing. 
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3.2.6. Protein expression  

Plasmids (pET32a recombinants) were transformed into E. coli BL21(DE3) (ThermoFisher 

Scientific, USA) and resultant colonies were inoculated into 10 ml of Luria broth containing 

100 μg/ml ampicillin (LBamp) and incubated overnight at 37°C with shaking at 200 rpm. 

Overnight culture was seeded (1/100) into 500 ml of fresh LBamp and incubated at 37°C with 

shaking at 200 rpm until OD600 = 0.5-1 (approximately 3 h), whereupon expression was 

induced by the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) (Bioline, UK). 

Cultures continued incubating for 4 h (MS3_09198, MS3_01370, MS3_05226, MS3_01153) 

or 16 h (MS3_05289) and were then harvested by centrifugation at 8,000 ´g for 20 min at 4°C. 

Sh-TSP-2 was expressed as for MS3_01370 except that LB supplemented with 50 μg/ml 

kanamycin was used instead of LBamp. 

Each harvested pellet was resuspended in 50 ml of lysis buffer (50 mM sodium phosphate pH 

8, 40 mM imidazole and 300 mM NaCl), freezed/thawed 3 times and then sonicated 10 times 

(5 s bursts) at 4°C. Then, for the soluble proteins (Sh-TSP-2, MS3_09198 and MS3_01370 – 

determined by a small-scale pilot expression) the bacterial lysate was centrifuged at 20,000 ´g 

for 20 min at 4°C and the supernatant decanted and stored at -80°C. In the case of insoluble 

proteins (MS3_01153, MS3_05226 and MS3_05289 – determined by small-scale pilot 

expression), Triton X-100 was added to a final concentration of 3% after sonication, the 

mixture incubated for 1 h at 4°C with gentle shaking and then pelleted at 20,000 ´g for 20 min 

at 4°C. The supernatant was removed, the pellet washed twice with 30 ml of lysis buffer (with 

centrifugation at 20,000 ´g for 20 min at 4°C after each wash) and the final pellet resuspended 

in 20 ml of solubilisation buffer (50 mM sodium phosphate, 40 mM imidazole, 300 mM NaCl 

and 6 M urea). The resuspension was incubated at 4°C overnight with gentle shaking, 

centrifuged at 20,000 ´g for 20 min at 4°C and the supernatant decanted and stored at -80°C.  
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3.2.7. Protein purification  

Recombinant proteins were purified by Ni2+ IMAC using an AKTA Prime UPC FPLC (GE 

Healthcare, USA). Each recombinant protein solution was diluted 1:4 in buffer A (1x PBS, 300 

mM NaCl (soluble proteins) or 1x PBS, 300 mM NaCl and 6 M urea (insoluble proteins) pH 

8) and filtered through a 0.45 μm filter. The solutions were then applied to a 1 ml His-Trap 

IMAC column (GE Healthcare, USA), equilibrated with buffer A (1x PBS, 300 mM NaCl 

(soluble proteins) or 1x PBS, 300 mM NaCl and 6 M urea (insoluble proteins) pH 8), at a flow 

rate of 1 ml/min. Bound proteins were washed with 10 column volume of buffer A for both 

soluble proteins or insoluble proteins and then eluted with an increasing linear gradient of 

imidazole (100-500 mM). Fractions containing purified recombinant proteins were combined 

and buffer exchanged into PBS (soluble proteins) or (1x PBS, 300 mM NaCl and 6 M urea) 

(insoluble proteins) using a 3 kDa MWCO Amicon Ultra-15 centrifugal filter. The identity of 

expressed proteins was confirmed by SDS-PAGE and Western blot using anti-His monoclonal 

antibodies. 

3.2.8. Polyclonal antibody production 

Three male BALB/c mice (6 weeks old) were immunised subcutaneously with 50 µg of 

recombinant protein emulsified with an equal volume of alum adjuvant (Thermo Fisher 

Scientific, USA) and boosted twice at two weekly intervals using same amount of protein as 

described previously [287]. Blood was collected from each mouse before immunisation and 

two weeks after the final immunisation. Sera was collected by allowing the blood to clot 

followed by centrifugation at 10,000 ´g for 10 min and storage at -20°C. 

3.2.9. Immunohistochemistry  

An immunohistochemistry analysis was performed to determine the anatomic sites of Sh-TSP 
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expression in adult worm sections. Adult worm sections from S. haematobium were de-

paraffinized using 2 x 3 min washes each of 100% and 50% xylene and rehydrated in an ethanol 

series. Antigen retrieval was performed by boiling the slides in citrate buffer (10 mM sodium 

citrate, pH 6) for 40 min followed by Tris buffer (10 mM Tris, 1 mM EDTA, 0.05% Tween, 

pH 9.0), for 20 min. Subsequently, sections were blocked with 10% goat serum for 1 h at RT. 

After washing 3 times with TBS/0.05% Tween-20 (TBST), sections were incubated with anti- 

Sh-TSP antisera (diluted 1:50 in 1% BSA/TBST) overnight at 4°C and then washed with TBST 

(3 x 5 min). Sections were finally probed with goat-anti-mouse IgG-Alexa Fluor 647 (Sigma-

Aldrich, USA) (diluted 1:200 in 1% BSA/TBST) for 1 h in the dark at RT. After a final washing 

step with TBST, slides were mounted with Entellan mounting medium (Millipore, Germany) 

and covered with coverslips. Images were acquired by Nuance software with an AxioImager 

M1 fluorescence microscope (ZEISS, Germany).
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3.3. Results 

3.3.1. General characteristics of Schistosoma haematobium tetraspanins 

A total of 19 TSPs were found in the genome of S. haematobium and out of these 7 of them 

were found in the S. haematobium EVs. Then, six Sh-TSPs (MS3_01370, MS3_05289, 

MS3_05226, MS3_09198, MS3_01153 and Sh-TSP-2) were selected based on the results 

obtained from the proteomic analysis of the adult worm EVs as discussed in chapter 2.3.3. 

The sequences of all Sh-TSPs were inspected and all contained four transmembrane domains, 

SEL, LEL and three intracellular regions. For Sh_TSP-2, MS3_09198 and MS3_01370 LEL 

contained four cysteine residues (forming two disulfide bonds) whereas MS3_05226, 

MS3_05289 and MS3_01153 LEL contained six cysteine residues (forming three disulfide 

bonds). All Sh-TSPs contained the CCG motif characteristic of TSPs [281]. Full-length 

cDNA and predicted amino acid sequences are shown in Table 3.1. The amino acid sequence 

identities between the Sh-TSPs described here and their S. mansoni homologs (across the 

entire ORF and the LEL alone) are shown in Table 3.2. Amino acid homology of Sh-TSPs 

with their respective S. mansoni homologs ranged from 83-93% (when entire ORFs were 

compared) and 69-84% (when just the LEL regions were compared) (Appendix Fig. 1A-F). 
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Table 3.1. Characteristics of Schistosoma haematobium tetraspanins. LEL: large extracellular loop, SEL: small extracellular loop, bp: base pair, 

kDa: kilodalton. 

TSPs Sh-TSP-2 MS3_05226 MS3_09198 MS3_05289 MS3_01370 MS3_01153 

cDNA length (bp) 660 882 654 888 675 837 

Number of amino acids 219 273 218 295 225 278 

Weight of encoded proteins (kDa) 24.4 30.4 24.2 32.9 24.9 30.9 

SEL position 34-53 31-79 36-56 32-66 36-54 36-76 

Inner loop position 71-88 97-109 72-81 87-95 74-82 100-108 

LEL position 106-184 128-239 103-184 118-266 108-190 130-250 

Cytoplasmic tail 207-219 265-273 205-218 283-295 212-225 272-278 
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Table 3.2. The amino acid sequence percentage identity of Schistosoma haematobium 

tetraspanin open reading frames (ORF) and large extracellular loop (LEL) with their 

respective Schistosoma mansoni homolog. 

Sh-TSPs Sm-homologs % Identity (similarity) with homolog S. mansoni TSPs 

ORF LEL 

MS3_05226 Smp_041460 86 (93) 84 (93) 

MS3_01370 Smp_173150 90 (96) 80 (91) 

MS3_05289 Smp_344440 83 (90) 81 (88) 

MS3_01153 Smp_140000 86 (94) 82 (92) 

Sh_TSP-2 AAN17276 84 (90) 69 (78) 

MS3_09198 AAA73525 93 (95) 84 (88) 

 

3.3.2. Phylogenetic analysis of Schistosoma haematobium tetraspanins  

A phylogenetic analysis between the Sh-TSPs and other well-characterised TSPs from 

related trematodes was performed. Sh-TSP-2, MS3_09198, MS3_01370 and MS3_02232 

grouped together in the CD63 ancestry of the TSP family and clustered together with other 

well characterised CD63-like TSPs from S. mansoni (AAN17276.1, AAA73525 and 

XP_018650438), S. japonicum (CAX70616.1 and AAW26928) and O. viverrini 

(JQ678707.1 and JQ678708.1) (Fig. 3.1). MS3_05289, MS3_05226, MS3_01153, 

MS3_07569, MS3_08458, MS3_01905, MS3-03452, MS3_03944, MS3_01557, 

MS3_03883 and MS3_01094 clustered under the uroplakin family of TSPs, together with 

other TSPs from S. mansoni (XP_018649476 XP_002577444 and XP-002575497) and S. 

japonicum (AAW26326, AAW24822, AAP05954 and AAW27174) (Fig. 3.1). MS3_09789 

and MS3_09698 clustered under the CD9/81 family of TSPs. 
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Figure 3.1. Phylogenetic analysis of Schistosoma haematobium tetraspanins and homologs from related organisms. A 

multiple sequence alignment was carried out using the Muscle alignment tool. The tree was visualized with The Interactive 

Tree of Life (iTOF) online phylogeny tool (https://itol.embl.de/) using default parameters. NP_991372=CD63 antigen, 

NP_776325.1=CD9 antigen, NP_776907.2=Uroplakin-1b, GAA49954.1=CD9 antigen, NP_955837.1=CD63 

antigen,NP_001003735.1=CD81 antigen, NP_001035332.1=Uroplakin-1a, NP_001771.1=CD63 antigen, 

NP_004347.1=CD81 antigen, NP_008883.2=Uroplakin-1b, NP_031679.1=CD63 antigen, NP_031683.1=CD9 antigen, 

NP_849255.2=Uroplakin-1b, JQ678707.1=Ov-TSP-2,JQ678708.1=Ov-TSP-3, JQ678706.1=Ov-TSP-1, 

XP_012800477.1=MS3_09198,XP_012792774.1=MS3_01153,XP_012796731.1=MS3_05289,XP_012796668.1=MS3_052

26,XP_012792980.1=MS3_01370,CAX70616.1=CD63 antigen, CAX70118.1=CD9/CD37/CD6, AAW26928.1=Sj-TSP-1, 

AAW24822.1=Sj-TSP-2, AAW24863.1= Sj-TSP-3, AAP05954.1= Sj-TSP-4, AAW27174.1= Sj-TSP-5, AAW26326.1=Sj-

TSP-6, AAN17276.1=Sm-TSP-2, XP_002580456.1=Sm-TSP-1, XP_002577444.1=Tspan-1,XP_002575497.1=TSP D76, 

AAA73525.1=Sm23, XP_018649476.1= TSP 18, XP_018650438.1= CD63 antigen-like, XP_018653608= Putative TSP, large 

purple circles= bootstraps (range (0.362 to 1)), small black dots=internal node symbols. 

CD63

Uroplakin

CD9/81
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3.3.3. Protein expression and purification 

The LEL region from each of the Sh-tsps was cloned into a bacterial expression system and 

sequences were validated by Sanger sequencing. The MS3_09198, MS3_01370 and Sh-TSP-

2 LELs were expressed as soluble proteins, while MS3_01153, MS3_05226 and MS3_05289 

were expressed as inclusion bodies and 6 M urea was used for solubilisation. The expected 

sizes of the expressed Sh-TSPs were confirmed by SDS-PAGE (Fig. 3.2A) and a western-

blot using a monoclonal anti-His antibody (Fig. 3.2B). 

Figure 3.2. Coomassie stained SDS-PAGE gel and Western blot analysis of Schistosoma 

haematobium tetraspanins. One µg of each protein was electrophoresed on an SDS-PAGE gel 

and stained with Coomassie blue: (A1) Sh-TSP-2, (A2) MS3_01153, (A3) MS3_05289, (A4) 

MS3_05226, (A5) MS3_09198 and (A6) MS3_01370. A western blot was performed using an 

anti-His monoclonal antibody: (B1) Sh-TSP-2, (B2) MS3_01153, (B3) MS3_05289, (B4) 

MS3_05226, (B5) MS3_09198 and (B6) MS3_01370.  

3.3.4. Schistosoma haematobium tetraspanins are expressed throughout all life stages  

The transcriptional patterns of all Sh-tsps were analysed in different life stages of S. 

haematobium: adult, egg, miracidia, cercaria and schistosomula (24 h, 3 and 5 days) by real 

Fig.	3.		
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time qPCR. All Sh-tsp genes were expressed throughout all life stages tested (Fig. 3.3A-F). 

Sh-tsp-2 expression peaked at 24 h schistosomula and decreased in subsequent 

developmental stages (Fig. 3.3A). Similarly, the highest expression levels of ms3_01370, 

ms3_05226 and ms3_05289 were identified in the miracidia while the lowest levels of 

expression were observed in 3 days schistosomula, adult and 24 h schistosomula, 

respectively (Fig. 3.3B, D, F). In the case of ms3_09198, the highest expression level was 

observed in cercariae and the lowest expression level was observed in miracidia (Fig. 3.3C). 

The expression level of ms3_01153 was highest in cercariae and lowest in adult life stages 

(Fig. 3.3E).  
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Figure 3.3. Expression levels of Schistosoma haematobium tetraspanin mRNAs at different 

life stages. Relative mRNA expression levels of (A) Sh-tsp-2, (B) ms3_01370, (C) ms3_09198, 

(D) ms3_05289, (E) ms3_01153 and (F) ms3_05226 were analysed by qPCR and normalised 

to a housekeeping gene (a-tubulin) using the 2−ΔΔCt method using the egg stage as a reference 

group. (G) The heat map shows the comparative expression levels of Sh-tsps in each life stage. 
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3.3.5. Schistosoma haematobium tetraspanins are expressed in the tegument and internal 

organs of S. haematobium adult worms 

To determine the location of Sh-TSPs in the adult worms, sections from S. haematobium 

adult worms were probed with mouse polyclonal antibodies produced against each of the 

selected Sh-TSPs (Fig. 3.4A-F). MS3_01153 (Fig. 3.4A) and MS3_09198 (Fig. 3.4C) were 

identified both on the tegument and gut of the worms, whereas Sh-TSP-2 (Fig. 3.4B) and 

MS3_05289 (Fig. 3.4D) were identified only on the tegument of the worms. MS3_01370 

(Fig. 3.4E) had a diffused expression whereas MS3_05226 (Fig. 3.4F) was identified both 

on the tegument and gastrodermis of adult worms. S. haematobium adult worm sections were 

not recognised by the negative control anti-TrX antibody (Fig. 3.4G). 
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Figure 3.4. Localisation of Schistosoma haematobium tetraspanins in adult worms. 

Immunolocalisations of Sh-TSPs in adult worm sections (A) MS3_01153, (B) Sh-TSP-2, 

(C) MS3_09198, (D) MS3_05289, (E) MS3_01370, (F) MS3_05226 and (G) TrX. Sections 

were probed with anti- Sh-TSPs followed by goat-anti-mouse IgG-Alexa Fluor. Fluo: 

fluorescent, BF: Bright filed, T: tegument, G: gut, GA: gastrodermis. 
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3.4. Discussion 

TSPs are a family of proteins that consist of four transmembrane domains, an SEL and an LEL. 

TSPs are involved in numerous activities of cells [156] and they can also be involved in host-

parasite interactions. Indeed, some of them are being tested as potential vaccine candidates 

against diverse trematodes [161, 163, 268]. The first TSP identified in S. mansoni was Sm23 

[149] and, since then, other TSPs have been found in the proteome of schistosomes [14, 16, 

17, 21]. Sm23 is one of the independently tested WHO vaccine candidates [293] and its S. 

japonicum ortholog (Sj23) has also been found to be an efficacious vaccine in animal models 

of schistosomiasis [163, 164]. Recently, the S. haematobium ortholog of Sm23 (MS3_09198), 

and 5 other additional TSPs were identified in the proteomic analysis of the EVs from S. 

haematobium adult worms and, in this chapter, we aimed to characterise them to increase our 

knowledge of this important family of proteins. 

Sh-TSP-2, MS3-09198, MS3_02232 and MS3_01370 are grouped together in the CD63 

clade of TSPs, together with known S. mansoni, S. japonicum and O. viverrini vaccine 

candidates [160, 161, 163, 293], suggesting the usefulness of these S. haematobium EV TSPs 

as vaccine candidates against urogenital schistosomiasis. On the other hand, MS3_05289, 

MS3_05226, MS3_01153, MS3_07569, MS3_08458, MS3_01905, MS3-03452, 

MS3_03944, MS3_01557, MS3_03883 and MS3_01094 are clustered under the uroplakin 

family of TSPs. MS3_09789 and MS3_09698 clustered under the CD9/81 family of TSPs. 

All Sh-TSPs formed a single clade distinct from vertebrate TSPs.  

All Sh-TSPs were expressed throughout all the assessed life stages of the parasite, albeit 

with differing expression patterns, as has been reported for S. japonicum [286] and S. 

mansoni [294]. Taken together with their detected presence in tegumental and ES proteomic 

studies [22] and in EVs, this data suggests that all Sh-TSPs are, upon infection, continuously 

exposed to the immune system. The highest levels of expression for ms3_01370, ms3_05226 
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and ms3_05289 were observed in miracidia, which implies that these Sh-tsps may have 

specific roles like hatching or host-finding in the intermediate snail. For ms3_1153, 

ms3_09198 and Sh-tsp-2, the highest levels of expression were observed in cercariae, 

cercariae and 24 h schistosomula, respectively. Similarly, the highest expression level of Sm-

tsp-2 was detected in egg [158]. On the contrary the highest expression level of Sj-tsp-2 and 

Sj23 were observed in adult male worms [268, 295]. Furthermore the highest expression level 

of CD63 tsps (Ov-tsp-2 and Ov-tsp-3) was observed in the egg stage [159]. This suggested that 

TSPs likely have different functions in different species of schistosomes.  

MS3_05226 is located on the tegumental syncytium as well as on the internal organs while 

MS3_01370 has a diffuse expression. Similarly, some S. japonicum TSPs (AAW27174.1 

and AAW26928) are also located on the tegument and internal organs of adult worms 

whereas others (AAW24863 and AAW26928) are located only in the internal organs of adult 

S. japonicum worms [286]. In contrast, Sh-TSP-2 and MS3_05289 are located exclusively 

on the tegument of adult S. haematobium worms and other TSPs from S. mansoni, O. 

viverrini and S. japonicum [17, 157, 159, 161, 286] also display this localisation pattern. 

These tegumental proteins might play an important role in tegument formation, maturation 

and stability [157-159]. Since the tegument is the most susceptible structure to host-mediated 

immune attack [296], the LEL regions of TSPs in schistosomes have been tested as vaccine 

candidates [161], and Sm-TSP-2 from S. mansoni has already completed phase I clinical trials 

[162]. MS3_09198 and MS3_01153 are identified on the tegument and gut of adult worms. 

Similarly, Sj-TSP-2 was also located on the tegument and gut of the adult worm [268]. The 

presence of these EVs TSPs in the gut of adult worms might indicate the involvement of 

these EVs TSPs in nutrient acquisition process.  
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The presence of Sh-TSPs in the tegument and gut of adult worm suggests the presence of, 

at least, two distinct populations of EVs, one originating from the tegument and another 

from the gut as occurs in F. hepatica [118]. 

S. haematobium EVs TSPs were expressed throughout all life stages. Some of the TSPs 

clustered with known other helminths vaccine and diagnostic candidates and these TSPs 

were identified on the tegument of the worms, and/ internal tissues of adult worms. This 

suggests the potential usefulness of characterising these TSPs from S. haematobium towards 

the development of vaccine and diagnostic candidates.  
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Chapter 4: Assessment of the vaccine efficacy of Schistosoma 

haematobium tetraspanins  

4.1. Introduction 

The current control program against schistosomiasis is aimed at reducing the morbidity caused 

by the parasite by regularly treating infected populations with praziquantel [297]. Despite the 

efforts made to control this devastating disease, schistosomiasis is still spreading to new 

geographical areas [298]. Furthermore, praziquantel treatment does not prevent reinfection [85] 

and is not effective against the immature stages of the parasite [299]. Hence, a vaccine that 

reduces disease severity and/or reduces transmission is needed to control and eliminate 

schistosomiasis [85]. Despite efforts over decades, there is no licensed and effective vaccine 

to control the transmission of S. haematobium infection [300]. The only vaccine candidate to 

have progressed into clinical trial is Sh28GST, however, a phase 3 trial conducted from 2009 

to 2012 in S. haematobium infected children did not report any significant efficacy due to the 

vaccine [91]. Therefore, it is important to continue identifying new target antigens in the effort 

to develop a vaccine against S. haematobium [300]. 

Proteins found on the tegument and ES products of schistosomes are integral to the survival of 

the parasites in the host [301]. The tegument of schistosomes plays an important role in 

protecting the worm from the host immune response [302] and it also helps the parasite to 

absorb nutrients and molecules [303]. Therefore, the tegument is crucial for infection, 

development and worm survival in the host and tegumental antigens could be useful vaccine 

targets [296]. Indeed, characterisation of the tegument and ES proteomes of adult S. 

haematobium has revealed many proteins of vaccine potential [22]. Helminth EVs are potential 

vaccine candidates and vaccination of mice with helminths EVs stimulates the production of 

the protective immune response that significantly reduces fecal egg counts; worm burdens, 

symptom severity and mortality induced by infection in subsequent parasite challenges [31, 
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210, 211]. Moreover, EVs from helminths also contain vaccine candidate antigens including 

TSPs [146]. The TSPs Sm23, Sm-TSP-1 and Sm-TSP-2, all found in the proteomic analysis of 

S. mansoni EVs [24], have been shown to be efficacious vaccines candidates against 

schistosomiasis [161, 284] and Sm-TSP-2 has completed phase I clinical trials [162]. In another 

study, vaccination of mice with Sj-TSP-2e reduced liver egg burden in the first trial but in trial 

2 and 3 this vaccine candidate had no effect in liver egg burden [268]. Similarly, Sj-TSP-2c 

had no effect in liver egg burden [283]. Immunisation of mice with Sj-TSP-2d decreased the 

liver egg and fecal egg burdens significantly [304]. Although the vaccine efficacy of TSPs in 

other schistosomes was well studied, no studies have been conducted on the vaccine efficacy 

of Sh-TSPs. Accordingly, the present study aimed to assess the vaccine efficacy of Sh-TSPs as 

a vaccine target against S. haematobium infection. Herein, I have selected three of the soluble 

Sh-TSPs characterised in chapter 3 (MS3_09198, MS3_01370 and Sh-TSP-2) and clustered 

together with known schistosome vaccine candidates [161, 268]. The vaccine efficacy of 

these Sh-TSPs were assessed in both a homologous (hamster; S. haematobium) and 

heterologous (mouse; S. mansoni) challenge model of schistosomiasis.
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4.2. Materials and Methods 

4.2.1. Parasite materials and experimental animals  

S. haematobium-infected B. truncatus and S. mansoni-infected Biomphalaria glabrata snails 

were provided by BRI (Maryland, USA). 

Male Syrian hamsters (Mesocricetus aureus) were used for the homologous challenge model 

as hamsters are a more permissive model for S. haematobium infection and literature supports 

the use of these animals [305]. Hamster vaccine trials were undertaken at BRI since hamsters 

are prohibited in Australia. Experiments were approved by the BRI Institutional Animal Care 

and Use Committee (protocol #18-01) and recognised by the Office of Laboratory Animal 

Welfare (assurance #A3080-01). Male Balb/c mice were used for the heterologous challenge 

model and vaccine experiments (approved under James Cook University Animal Ethics 

number A2391) were performed at James Cook University. 

4.2.2. Vaccine formulation and immunization schedule 

For the hamster vaccine trials, four groups of 8 male Syrian hamsters (6-8 weeks) were 

immunized intraperitoneally on day 1 with either recombinant Sh-TSP-2, MS3_09198, 

MS3_01370 or TrX control protein (50 μg/hamster), each formulated with an equal volume 

of Imject alum adjuvant (Thermofisher) and 5 μg of CpG ODN1826 (InvivoGen). 

Immunizations were repeated on day 15 and 29 and each hamster was challenged (abdominal 

penetration) with 200 S. haematobiumi cercariae on day 43. Blood was sampled at day 42 and 

126 (12 weeks post-infection) to determine pre- and post-challenge antibody titers. 

For the mouse vaccine trials, groups of 10 animals were immunised in the same way as 

hamsters and mice were challenged (tail penetration) with 120 S. mansoni cercariae on day 43. 

Blood was sampled at day 42 to determine pre-challenge antibody titers. 
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4.2.3. Necropsy and estimation of parasite burden 

Hamsters were necropsied at day 154 (16 weeks post-infection), mice were necropsied at day 

91 (7 weeks post-infection) and worms from both hosts harvested by vascular perfusion and 

counted. Livers were removed, weighed and digested for 5 h with 5% KOH at 37°C with 

shaking. Schistosome eggs from digested livers were concentrated by centrifugation at 1,000 

´g for 10 min and re-suspended in 1 ml of 10% formalin. The number of eggs in a 5 μl 

aliquot was counted in triplicate and the number of eggs per gram (EPG) of t h e  liver was 

calculated. Small intestines were removed and cleaned of debris before being weighed and 

digested as per the livers. Eggs were also similarly concentrated and counted to calculate 

intestinal EPG. 

4.2.4. Serum antibody response to vaccination in hamsters and mice 

An ELISA was performed to assess antibody titers to proteins (MS3_09198, MS3_01370 and 

Sh-TSP-2) using the serum collected at different time points during the experiment. Microtiter 

plate wells (Greiner Bio-One, Austria) were coated with 100 µl (2 μg/ml) of each protein in 

0.1 M carbonate-bicarbonate buffer (pH 9.6) and incubated overnight at 4°C. Plates were 

washed 3 times with phosphate buffer saline/0.05% Tween-20 (PBST) and blocked with skim 

milk powder (5% in PBST) at 37°C for 1 h. Then, plates were washed 3 times with PBST and 

100 µl of serially diluted mouse or hamster serum (1:5,000-1:1,280,000 in PBST) was added 

and incubated at 4°C overnight. After washing with PBST 3 times, 100 µl of HRP-conjugated 

anti-hamster or anti-mouse IgG (diluted 1:3,000 in PBST) (Sigma-Aldrich, USA) was added, 

incubated at 37°C for 1 h and washed 3 times with PBST. Finally, 100 μl of 3,3',5,5-

tetramethylbenzidine (TMB, Thermo Fisher Scientific, USA) was added and incubated for 12 

min at RT in the dark. The reaction was stopped with 3 M HCl and absorbance was measured 

at 450 nm using a POLARstar Omega (BMG Labtech, Australia).  
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4.2.5. Statistics  

All statistics were performed using GraphPad Prism 7.0. The worm number reduction and egg 

number reduction were analysed using a Student’s t test and results were expressed as the mean 

± standard error of the mean. For the hamster and mouse antibody titer, the reactivity cut-off 

values were determined as the mean + 3SD of the naive serum.   



	 86	
 

4.3. Results 

4.3.1. Antibody response of hamsters and mice following immunisation and parasite 

challenge  

Hamsters immunised with all S. haematobium proteins produced specific IgG responses (Table 

4.1). Pre-challenge IgG endpoint titers were > 1,280,000 for all hamsters vaccinated with 

MS3_01370. Pre-challenge IgG endpoint titers for hamsters vaccinated with MS3_09198 

ranged from 160,000-1,280,000 except hamster 4, which had no detectable IgG response 

against the protein. For Sh-TSP-2, all hamsters had pre-challenge IgG endpoint titers > 

1,280,000, except hamster 8 (320,000). At 12 weeks post challenge, IgG titers ranged from 

10,000-640,000 for hamsters immunised with MS3_01370 while the IgG titers for MS3_09198 

ranged from 5,000-80,000. For Sh-TSP-2, the IgG titers 12 weeks post challenge ranged from 

10,000-320,000. Only 1 and 2 hamsters immunised with Sh-TSP-2 and MS3_01370, 

respectively, had antibody titers above 100,000 at 12 weeks post challenge. 

Mice vaccinated with all Sh-TSPs produced specific IgG responses (Table 4.2). Pre-challenge 

IgG endpoint titers were > 640,000 for all mice immunised with MS3_01370 in both trials. For 

Sh-TSP-2, all mice had pre-challenge IgG endpoint titers were > 640,000, except hamster 2 in 

trial 1 (160,000).  Pre-challenge IgG endpoint titers for mice vaccinated with MS3_09198 

ranged from 40,000-320,000 in both trials.  
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Table 4.1. Pre-challenge and pre-necropsy serum antibody response of hamsters immunised with Schistosoma haematobium tetraspanins 

Hamster IgG titers 

MS3_01370 MS3_09198 Sh-TSP-2 

Pre-challenge 12wk post challenge Pre-challenge 12wk post 
challenge 

Pre-challenge 12wk post 
challenge 

1 >1,280,000 80,000 >1,280,000 10,000 >1,280,000 20,000 

2 >1,280,000 40,000 >1,280,000 80,000 >1,280,000 10,000 

3 >1,280,000 10,000 >1,280,000 80,000 >1,280,000 80,000 

4 >1,280,000 160,000 Not detected Not detected >1,280.000 80,000 

5 >1,280,000 640,000 >1,280,000 20,000 >1,280.000 10,000 

6 >1,280,000 40,000 >1,280,000 5,000 >1,280.000 320,000 

7 >1,280,000 40,000 >1,280,000 20,000 >1,280,000 20,000 

8 >1,280,000 No sample 160,000 Not detected 320,000 20,000 
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Table 4.2. Pre-challenge serum antibody response of mice immunised with Schistosoma 

haematobium tetraspanins. 

Mouse Pre-challenge IgG titers 

MS3_01370 MS3_09198 Sh-TSP-2 

Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 

1 >640,000 >640,000 80,000 80,000 >640,000 >640,000 

2 >640,000 >640,000 40,000 160,000 160,000 >640,000 

3 >640,000 >640,000 80,000 160,000 >640,000 >640,000 

4 >640,000 >640,000 160,000 160,000 >640,000 >640,000 

5 >640,000 >640,000 160,000 80,000 >640,000 >640,000 

6 >640,000 >640,000 160,000 40,000 >640,000 >640,000 

7 >640,000 >640,000 40,000 320,000 >640,000 >640,000 

8 No sample >640,000 160,000 No sample >640,000 >640,000 

9 No sample No sample No sample No sample >640,000 >640,000 

 

4.3.2. Parasite burdens in vaccinated and control hamsters 

Vaccination of hamsters with MS3_01370 and Sh-TSP_2 decreased worm burden by 22.46% 

and 8%, respectively. However, these reductions were not statically significant (Fig 4.1A). 

There was no difference in adult worm burden between hamsters vaccinated with MS3_09198 

and the control group. Interestingly, immunisation of hamsters with MS3_01370 and Sh-TSP-

2 significantly reduced the liver egg burden by 77.8% (P<0.01) and 52.27% (P<0.05), 

respectively when compared with the control group (Fig 4.1B). There was no difference in 

liver egg burden between hamsters vaccinated with MS3_09198 and the control group (Fig 

4.1B). Similarly, there was no difference in intestinal egg burden between hamsters vaccinated 

with Sh-TSPs and the control group (Fig 4.1C).		
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Figure 4.1. Schistosoma haematobium worm and egg burden reduction of vaccinated and control 

hamsters. (A) Adult worm reduction, (B) liver egg reduction, (C) intestinal egg reduction. Differences 

between groups was analysed with a student’s t-test. * P < 0.05, ** P < 0.01.  

4.3.3. Parasite burdens in vaccinated and control mice 

Vaccination of mice with MS3_01370, MS3_09198 and Sh-TSP-2 reduced the adult S. 

mansoni worm burden in trial 1 (trial 2) by 22 (14)%, 12 (5)% and 2% (no reduction), 

respectively. All these reductions were not statically significant (except MS3_01370 in trial 1 

(P<0.05))  (Fig 4.2A,B). In trial 1, vaccination of mice with MS3_01370, MS3_09198 and Sh-

TSP-2 significantly reduced liver egg burden by 39% (P<0.05), 49% (P<0.001) and 32% 

(P<0.01), respectively (Fig 4.2C). In trial 2, MS3_01370, MS3_09198 and Sh-TSP-2 

significantly reduced the liver egg burden by 54% (P<0.001), 27% (P<0.05) and 49% 

(P<0.001), respectively (Fig 4.2D). Similarly, immunisation of mice with MS3_01370, 

MS3_09198 and Sh-TSP-2 reduced the intestinal egg burden by 57% (P<0.01), 51% (P<0.01) 

and 54% (P<0.001) in trial 1, respectively (Fig 4.2E). In trial 2, MS3_01370, MS3_09198 and 

Sh-TSP-2 reduced the intestinal egg burden by 36% (P<0.01), 39% (P<0.05) and 27% 

(P<0.05), respectively (Fig 4.2F).  
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Figure 4.2. Schistosoma mansoni worm and egg burden reduction of vaccinated and control 

mice. (A) Adult worm reduction trial 1, (B) Adult worm reduction trial 2, (C) liver egg 

reduction trial 1, (D) liver egg reduction trial 2, (E) intestinal egg reduction trial 1, (F) intestinal 

egg reduction trial 2. Differences between groups was analysed with a student’s t-test. * 

P < 0.05, **P < 0.01, *** P < 0.001. 
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4.4. Discussion 

In this chapter, the vaccine protective efficacies of the three Sh-TSPs was assessed in a hamster 

(S. haematobium) and mouse (S. mansoni) model of infection. 

The majority of the vaccinated hamsters and mice produced a strong antibody response against 

recombinant proteins and the antibody titers observed were in accordance with previous 

vaccine studies on other schistosome TSPs [161, 268, 287]. In these studies, the antibody titers 

before challenge showed no correlation with worm burdens or egg counts; similarly, pre-

challenge antibody titers of Sh-TSPs had no association with worm and egg burdens.  

Worm burdens of any group of vaccinated animals were not significantly reduced in either 

model, compared to controls, except MS3_01370 in mouse trial 1. Similarly, result was 

obtained in a vaccine efficacy assessessment of a native 28 kDa GST and keyhole limpet 

haemocyanin (KLH) vaccines from Schistosoma bovis [306]. In another study, vaccination of 

mice with one of the subclass of Sj-TSP-2 (Sj-TSP-2e) was performed in three independent 

trials [268]. In the first trial, vaccination of mice with Sj-TSP-2e resulted in a 36.4% (P<0.001) 

reduction in worm burden. However, in the second and third trial the adult worm burden 

reduction was not statistically significant [268]. Similarly, immunisation of mice with Sj-TSP-

2c subclass showed no protection, while immunisation with a mixture of seven recombinant 

Sj-TSP-2 subclasses resulted in a 16.92% (P=0.0044) reduction for the adult worm burden 

[283]. In another study immunisation of mice with Sj-TSP-2d resulted in the reduction of adult 

worm by 56% (P<0.0010) [304]. Sj-TSP-2 was found to be highly polymorphic and a total of 

9 different subclasses of Sj-TSP-2 cDNA sequences have been revealed, which might be 

responsible for the inconsistent efficacy of Sj-TSP-2 in vaccine studies [268, 283]. On the 

contrary, vaccination of mice with a S. mansoni orthologue (Sm-TSP-2) resulted in the  

reduction of the adult worm burden by 57% [161] and 25-27% [287] when administered with 

Freund’s and alum + CPG adjuvants, respectively. Sm-TSP-2 has completed phase I clinical 



	 92	
 

trials [162]. The low efficacy of Sh-TSPs might due to the polymorphic nature of Sh-TSPs. 

Vaccination of mice with a DNA plasmid construct encoding Sm23 reduced adult worm burden 

by 21-44% in three trials [284]. In another study, immunisation of mice with plasmid DNA 

constructs of Sm23 by microseeding and gene gun delivery methods resulted in 31-34% and 

18% protection, respectively [307]. Furthermore, immunisation of buffaloes with an 

orthologue of S. japonicum (Sj23) DNA reduced worm burden by 45.5% and the level of 

protection increased to 50.9% when the protein was fused with HSP-70 [308]. In another study, 

immunisation of buffaloes with the same DNA vaccine did not protect against S. japonicum 

challenge while it reduced worm burden in sheep by 41.7% [309]. The difference in the adult 

worm reduction  might be due to the high levels of polymorphism in DNA sequences of 

MS3_09198 within and between different Schistosoma species [310]. 

In humans infected with S. haematobium, eggs trapped in the urogenital organs stimulate the 

immune response that leads to the formation of granuloma and, ultimately, tissue fibrosis [48]. 

However, in an animal model, S. haematobium fails to establish a urogenital disease [58]; the 

adult worms are recovered from the portal vein and eggs are trapped in the liver and voided in 

the feces, similar to animal models of S. mansoni and S. japonicum infection [81]. Vaccination 

of hamsters with MS3_01370 and Sh-TSP-2 significantly reduced liver egg burden but not the 

intestinal egg burden and vaccination of mice with MS3_01370, MS3_09198 and Sh-TSP-2 

significantly reduced the S. mansoni liver and intestinal egg burden in both trials. These S. 

mansoni tissue egg reductions imply that these vaccine candidates could be effective in 

reducing egg-induced pathology and transmission of infection by decreasing the amount of 

eggs released into the environment. Similarly, vaccination of cattle with 28 kDa GST and KLH 

significantly reduced liver egg burden following S. bovis challenge [306]. Immunisation of 

mice with Sm-TSP-2 reduced the liver and intestinal egg burden by 64% and 65%, respectively 

[161]. In another study with different adjuvant Sm-TSP-2 reduced the liver egg burden by 20–
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27% in 2 independent trials [287]. Vaccination of mice with Sj-TSP-2e resulted in 26.5% 

reduction in liver eggs burden in the first trial but in trial 2 and 3 this vaccine candidate had no 

effect in liver egg burden [268]. Similarly, Sj-TSP-2c had no effect in liver egg burden but 

combination of Sj-TSP-2 reduced liver egg burden by 27.04% [283]. Immunisation of mice 

with Sj-TSP-2d decreased the liver egg and fecal egg burdens by 55% (52%), 58% (46%) when 

compared with TRX (PBS) controls, respectively [304]. Since eggs are the primary causes of 

pathology egg reduction in hamsters following immunisation with MS3_01370 and Sh-TSP-2 

might reduce the pathology. Similarly, immunisation of buffaloes and sheep with Sj23 had no 

effect in fecal and tissue egg burden [309]. These difference in the tissue egg burden reduction 

might be due to the female worm burden reduction by Sh-TSPs. 

The significant reduction in liver egg burden in both the heterologous and homologous model 

of infection described here indicates these vaccine candidates are effective against the adult 

stages of both S. mansoni and S. haematobium and they could potentially be incorporated into 

a pan-schistosome vaccine due to the geographical overlap between the two species [1].   

Vaccination of mice with MS3_09198, MS3_01370 and Sh-TSP-2 significantly reduced the 

liver and intestinal egg burden. In the case of homologous model of infection only MS3_01370 

and Sh-TSP-2 significantly reduced the liver egg burden but none of these vaccine candidates 

reduced the intestinal egg burden. 
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Chapter 5: Evaluation of Schistosoma haematobium tetraspanins 

as potential novel diagnostic markers  

5.1. Introduction 

Schistosomiasis is endemic in 54 countries, affecting a round 240 million people and 700 

million people are at risk. The World Health Organization designed strategy to control the 

morbidity by 2020 and to eliminate schistosomiasis by 2025 [311]. To achieve this goal, 

developing a sensitive, accessible and inexpensive diagnostic screening test is essential [312]. 

Urine microscopy has been widely used as a standard diagnostic technique for S. haematobium 

infections [68], as this technique is simple to perform, cheap and requires little specialised 

training [69]. However, the eggs are not frequently voided through urine, which underestimates 

the prevalence of S. haematobium in light infections [68, 69] and the sensitivity is low in HIV 

infected individuals [313].  

CCA and CAA are proteoglycan antigens of schistosomes, can be detected in serum and urine 

samples [314, 315] and can be used to assess infection intensity and therapeutic responses 

[316]. However, the accuracy of CCA in detecting S. haematobium infection is low in areas 

endemic to both S. mansoni and S. haematobium [76].  

Molecular detection of parasite-specific DNA, such as the tandem-repeat sequence Dra I, is a 

sensitive and specific technique for the diagnosis of schistosomiasis [79]. However, it is costly 

and difficult to apply in the field [83].  

Antibodies produced against different life stages of schistosomes can be detected in humans 

and used for the diagnosis of infection [69]. Despite the inability of antibody detection to 

distinguish between a current and recent (but cured) infection [11, 41, 73], detecting antibodies 
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formed against the diverse life stages of S. haematobium is a sensitive technique for the 

diagnosis of infections in areas of low infection intensity [71]. 

For better control and, eventually, elimination of schistosomiasis, both sensitive and specific 

diagnostic tests are needed. Recently, the proteomic composition of the egg and adult ES 

products as well as the tegument [22] from S. haematobium adult worms revealed many 

different proteins of diagnostic potential, including TSPs. TSPs from other helminths such as 

T. solium and S. japonicum have been suggested as potential diagnostic candidates [269, 270] 

and I hypothesize that Sh-TSPs might be similarly efficacious. Herein, I test the ability of Sh-

TSPs characterised in chapter 2 to diagnose S. haematobium infection from the urine of 

individuals from areas endemic for urogenital schistosomiasis. 
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5.2. Materials and methods 

5.2.1. Experimental animals 

Male BALB/c mice were purchased and maintained at the AITHM animal facilities on the 

Cairns campus of JCU as discussed previously (chapter 2.2.1). All experimental procedures 

performed on animals in this study were approved by the JCU animal ethics committee 

(ethics approval number A2391). 

5.2.2. Human urine samples 

A total of 96 urine samples from S. haematobium infected individuals from an endemic area 

of Zimbabwe were collected on three consecutive days for parasitological examinations. S. 

haematobium infection was assessed by microscopic examination of the parasite eggs from 

10 ml of filtered urine [317]. These urine samples were kindly provided by Prof Francisca 

Mutapi from University of Zimbabwe. Fourteen urine samples from Australian volunteer 

donors that had never travelled to schistosomiasis endemic areas were collected as a 

negative control. In line with WHO criteria, the infection level of urine samples collected from 

the endemic area were classified as either high (>50 eggs/10 ml of urine) (n=30), medium (11-

49 eggs/10ml of urine) (n=28), low (0.3-10 eggs/10 ml of urine) (n=32) and egg negative (0 

eggs/10 ml of urine) (n=17). To confirm the presence or absence of infection, egg negative 

urines were also tested for the presence of CAA using the UCAA2000 (wet format) as 

described previously [318]. Of these samples, 6 were positive for CAA and 11 were negative 

(which were discarded for further analyses). The collected urine samples were aliquoted and 

placed at -80°C until further use. The collection of urine from Zimbabwean individuals was 

approved by the Medical Research Council of Zimbabwe; Approval MRCZ/A/1710. 
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5.2.3. Mouse serum samples 

Mice were infected with S. haematobium and S. mansoni cercariae as previously described 

(chapter 2.2.2). S. haematobium and S. mansoni infected mice were necropsied after 14 and 7 

weeks post infection, respectively and blood samples were collected. Blood samples from naive 

mice were collected as negative control. Sera was obtained by allowing the blood to clot 

followed by centrifugation at 10,000 ´g for 10 min and stored at -20°C. 

5.2.4. Enterokinase digestion 

The N-terminal thioredoxin from the cloned and expressed TSPs was cleaved using 

enterokinase following the supplier’s protocol. Briefly, after purification soluble TSPs were 

buffer exchanged with PBS followed by (20 mM Tris-HCl, 50 mM NaCl, 2 mM CaCl2, pH 8). 

Then, 2 mg/ml of TSPs were incubated with 2 µl of enterokinase (Biolabs, USA) at RT for 24 

h and re-purified as previously described (chapter 3.2.7). 

5.2.5. Indirect enzyme-linked immunosorbent assay 

An ELISA was performed to assess the diagnostic efficacy of the recombinantly expressed six 

Sh-TSPs using the serum of infected mice (pooled samples from four independent S. 

haematobium infections) and the urine from naturally infected Zimbabwean people. Microtiter 

plate wells (Greiner Bio-One, Austria) were coated with 50 µl (2 μg/ml) of protein, incubated, 

washed, blocked and washed again as discussed previously (chapter 4.2.4). Then, 50 µl of 

human urine (diluted 1:50 in PBST) or mouse serum (diluted 1:3,000 in PBST) was added, 

incubated and washed as described in chapter 4.2.4. Fifty µl of HRP-conjugated anti-human 

IgG or anti-mouse IgG (diluted 1:5,000 in PBST) was added, incubated at 37°C for 1 h and 

washed 3 times with PBST. Finally, 50 μl of TMB (Thermo Fisher Scientific, USA) was added 

and incubated for 12 min at RT, the reaction was stopped by 3 M HCl and the absorbance was 

measured as previously described (chapter 4.2.4).  
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5.2.6. Statistics  

All statistics were performed using GraphPad Prism 7.0. The urine diagnostic assay was 

analysed using a non-parametric Kruskal-Wallis test with multiple comparisons followed by 

Dunn’s post-test when comparing each infection intensity against the negative control at the 

same time. A non-parametric Mann Whitney test was used when the results from all infected 

individuals were combined and compared against results from the negative control. For both 

serum and urine ELISA, the reactivity cut-off points were determined as the average reactivity 

+ 3x standard deviations (SD) of the negative control. The diagnostic accuracy of Sh-TSPs was 

measured by calculating the area under the curve (AUC) of the Receiver Operating 

Characteristic (ROC) curve generated for each antigen and a frequency of recognition matrix 

(FoR). ROC curves were used to calculate sensitivity, specificity and the AUC. FoR was 

determined as a percentage by dividing numbers of OD450 values greater than the reactivity 

cut-off point to the total infected individuals for each TSP. 



	 99	
 

5.3. Results 

5.3.1. Schistosoma haematobium tetraspanins are recognised by the serum of infected 

mice 

As a first step towards the assessment of TSPs as diagnostic candidates, I performed an indirect 

ELISA to analyse the immunogenicity of these proteins in infected mice. Antibody levels 

against Sh-TSP-2, MS3_01370 and MS3_09198 were significantly higher in the serum of mice 

experimentally infected with S. haematobium compared to serum from uninfected mice, while 

MS3_05226 and MS3_01153 were only weakly recognised (Fig. 5.1A). TrX was used as a 

control and was not recognised by the serum of S. haematobium infected mice (Fig. 5.1A). 

To assess cross-reactivity with S. mansoni, an indirect ELISA was performed using the serum 

of mice experimentally infected with S. mansoni. Only MS3_09198, MS3_01370, MS3_05226 

and MS3_01153 were recognised by antibodies from S. mansoni infected mice (Fig. 5.1B). 

Figure 5.1. Recognition of Schistosoma haematobium recombinant tetraspanins by the serum 

of S. haematobium and Schistosoma mansoni infected mice. Bar graph showing the detection 

of S. haematobium tetraspanins using (A) S. haematobium infected and (B) S. mansoni infected 

mouse sera. The reactivity cut-off points were determined as the average reactivity + 3x 

standard deviation of naive mouse serum.  
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5.3.2. Schistosoma haematobium tetraspanins are recognised by antibodies in the urine of 

naturally infected individuals from an endemic area 

The diagnostic efficacy of Sh-TSPs was further tested by their recognition of antibodies in 

urine from infected human subjects from an endemic area in Zimbabwe. Antibody levels to all 

Sh-TSPs were significantly higher in a pool of infected subjects compared to uninfected non-

endemic subjects (Appendix Fig. 2A-F). All Sh-TSPs were significantly recognised by high 

egg burden individuals compared to negative controls (urine samples from a non-endemic area) 

(Fig. 5.2A-F). Except for MS3_05289, all Sh-TSPs were significantly recognised by 

individuals with a medium egg burden compared to the negative control (Fig. 5.2A-F). Only 

MS3_01370, Sh-TSP-2 and MS3_09198 were significantly recognised by individuals with a 

low egg burden (Fig. 5.2A-C) and only MS3_01370, MS3_05226 and MS3_09198 were 

significantly recognised by egg-negative but CAA-positive individuals (Fig. 5.2B, C and E). 

Since the recombinant LEL domains of MS3_01370, MS3_09198, MS3_01153, 

MS3_05226 and MS3_05289 were expressed in E. coli as fusion proteins with TrX, the 

effects of TrX on the accuracy of the diagnosis of these TSPs was also confirmed by indirect 

ELISA. TrX was not recognised by high, medium and low egg burden individuals (Fig. 5.2G). 

To confirm further the effect of TrX, the N-terminal TrX from TSPs that were strongly 

recognised by antibodies from infected individuals (MS3_09198 and MS3_01370) was cleaved 

using enterokinase following the supplier protocol. An indirect ELISA was performed using 

digested MS3_09198 and MS3_01370. However, there was no significant difference between 

digested and non-digested TSPs (Appendix Fig. 3A-D). Similarly, enterokinase digested TSPs 

were significantly recognised when comparing the uninfected non-endemic group with 

infected individuals as a pool (Appendix Fig. 4A and B). 
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Figure 5.2. Urine IgG recognition of six Schistosoma haematobium tetraspanins from 

Zimbabwean infected individuals with different infection status. The antibody level was 

measured by indirect ELISA and indicated by OD values: (A) Sh-TSP-2, (B) MS3_01370, (C) 

MS3_09198, (D) MS3_05289, (E) MS3_01153, (F) MS3_05226 and (G) TrX. All the data was 

entered in GraphPad Prism 7 and analysed using a non-parametric Kruskal-Wallis test with 

multiple comparisons followed by Dunn’s post-test. * P < 0.05, ** P < 0.01, *** P < 0.001, 

**** P < 0.0002. Urine of non-infected individuals from a non-endemic area was used as 

negative control. The reactivity cut-off points were determined as the average reactivity + 3x 

standard deviation of non-endemic negative individuals (indicated by broken lines). 
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5.3.3. Predictive accuracy of Schistosoma haematobium tetraspanins for the diagnosis of 

S. haematobium infection  

The diagnostic accuracy of Sh-TSPs was measured by calculating the AUC of the ROC curve 

generated for each antigen (Fig. 5.3A-F) and a FoR matrix (Appendix Fig. 5 lane (A-H)). The 

ROC curves were used to calculate sensitivity, specificity and the AUC. FoR was used to 

calculate the percentage of OD450 values greater than the reactivity cut-off point. When 

comparing the uninfected non-endemic group with infected individuals as a pool, the highest 

accuracy of diagnosis was obtained with Sh-TSP-2 (0.98) followed by MS3_01370 (0.97), 

MS3_09198 (0.95), MS3_05226 (0.89), MS3_01153 (0.78) and MS3_05289 (0.70) (Fig. 5.3A-

F). The highest accuracy of diagnosis for individuals with high infection intensity was obtained 

with Sh-TSP-2 (1.0) and MS3-05226 (1.0) followed by MS3_09198 (0.98), MS3_01370 

(0.97), MS3_05289 (0.85) and MS3_01153 (0.78) (Fig. 5.3A-F). In the case of medium egg 

burden individuals, the highest accuracy of diagnosis was obtained with Sh-TSP-2 (0.99) 

followed by MS3_09198 (0.98), MS3_01370 (0.97), MS3_05226 (0.95), MS3_01153 (0.95) 

and MS3_05289 (0.72) (Fig. 5.3A-F). For individuals with low egg burden, the highest 

accuracy of detection was obtained with Sh-TSP-2 (0.99) followed by MS3_01370 (0.96), 

MS3_09198 (0.93), MS3_05226 (0.73), MS3_01153 (0.63) and MS3_05289 (0.51) (Fig. 5.3A-

F). In the case of egg negative but CAA positive individuals the highest accuracy of detection 

was obtained from MS3_01370 (0.97) followed by MS3_05289 (0.88), Sh-TSP-2 (0.86), 

MS3_05226 (0.85), MS3_09198 (0.82) and MS3_01153 (0.76) (Fig. 5.3A-F).  



	 103	
 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Receiver operating characteristic (ROC) curves analysis of six Schistosoma haematobium 

tetraspanins. The diagnostic accuracy of S. haematobium tetraspanins to detect antibodies in the urine 

of infected individuals with differing infection status as well as using pooled urine from all individuals 

was measured by the area under the ROC curve. (A) Sh-TSP-2, (B) MS3_01370, (C) MS3_09198, (D) 

MS3_05289, (E) MS3_01153 and (F) MS3_05226. The urine from non-infected individuals from a 

non-endemic area was used as negative control. 

The FoR matrix was performed for each TSP (Appendix Fig. 5 lane (A-F)) and the highest 

values were obtained from Sh-TSP-2 (86.5%) (A) followed by MS3_01370 (83.5%) (B), 

MS3_09198 (80.4%) (C), MS3_05226 (79.2%) (F), MS3_01153 (44.8%) (E) and MS3_05289 

(39.6%) (D). For non-fused MS3_01370 and MS3_09198 the frequency of recognition matrix 

was 82.1% and 73.2%, respectively (Appendix Fig. 5 lane (G, H)). The sensitivity of Sh-TSP-

2, MS3_01370, MS3_09198, MS3_05226, MS3_01153 and MS3_05289 for the diagnosis of 
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S. haematobium infection was 86.5%, 83.5%, 80.4%, 79.2%, 44.8, and 39.6%, respectively 

while the specificity of all Sh-TSPs was 100%. 

5.3.4. Combining Schistosoma haematobium tetraspanins doesn’t affect sensitivity and 

predictive accuracy  

An indirect ELISA was performed using combinations of MS3_09198 and MS3_01370, as 

well as Sh-TSP-2 as described above by coating plates with equal amounts (50 ng/well) of each 

Sh-TSP, depending on the combination. All Sh-TSPs combinations (fused and non-fused) 

were also significantly recognised when comparing the uninfected non-endemic group with 

infected individuals as a pool (Appendix Fig. 6A-F). Sh-TSP-2 + MS3_01370, MS3_01370 + 

MS3_09198 and MS3_09198 + Sh-TSP-2 were significantly recognised by patients with a 

high, medium and low egg burden compared to negative controls (Fig. 5.4A, C and E). Sh-

TSP-2 + MS3_01370 and MS3_01370 + MS3_09198 were also significantly recognised by 

egg negative but CAA positive individuals (Fig. 5.4A and E). When comparing uninfected 

non-endemic group with infected individuals as a pool, the highest accuracy of diagnosis was 

obtained with Sh-TSP-2 + MS3_01370 (0.98) followed by Sh-TSP-2 + MS3_09198  (0.97), 

MS3_01370 + MS3_09198  (0.96) (Fig. 5.4B, D and F). The highest accuracy of diagnosis for 

individuals having high burden was obtained from the Sh-TSP-2 + MS3_01370 combination 

(1.0) and MS3_09198 + MS3_01370 (1.0) followed by Sh-TSP-2 + MS3_09198 (0.98) (Fig. 

5.4B, D and F). In the case of patients with a medium egg burden, the highest accuracy of 

diagnosis was obtained was obtained from TSP-2 + MS3_01370 combination (1.0) followed 

by MS3_09198 + MS3_01370 (0.98) and Sh-TSP-2 + MS3_09198  (0.95) (Fig. 5.4B, D and 

F). For individuals with a low egg burden, the highest accuracy was obtained from Sh-TSP-2 

+ MS3_09198 (0.99) followed by Sh-TSP-2 + MS3_01370 (0.98) and MS3_01370 + 

MS3_09198 (0.93)  (Fig. 5.4B, D and F), whereas for egg negative but CAA positive 

individuals, the highest diagnostic accuracy was obtained from Sh-TSP-2 + MS3_09198 (0.92) 
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followed by MS3_01370 + MS3_09198 (0.84) and by Sh-TSP-2 + MS3_01370 (0.76) (Fig. 

5.4B, D and F). Similarly, an indirect ELISA was performed using combinations of digested 

MS3_09198 and MS3_01370, as well as Sh-TSP-2 as described above and there is no 

difference between fused combinations (Appendix Fig. 7A-F). The frequency of recognition 

matrix was performed for the combinations of fused TSPs (Appendix Fig. 5 lane (I-K)) and the 

highest values were obtained for Sh-TSP-2 + MS3_01370 (86.6%) followed by MS3_01370 + 

MS3_09198 (84.2%), Sh-TSP-2 + MS3_09198 (77.2%). From combinations of non-fused 

TSPs the highest values were obtained for Sh-TSP-2 + MS3_01370 (87.6%) followed by 

MS3_01370 + MS3_09198 (86.6 %), Sh-TSP-2 + MS3_09198 (75.8%) (Appendix Fig. 5 lane 

(L-N)).  
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Figure 5.4. Urine IgG recognition and Receiver Operating Characteristic (ROC) curves analysis of the 

combination of three Schistosoma haematobium tetraspanins by Zimbabwean infected individuals with 

different infection status. The antibody levels were measured by indirect ELISA and indicated by OD 

values: (A) Sh-TSP-2 + MS3_01370, (C) TSP_2 + MS3_09198 and (E) MS3_01370 + MS3_09198. 

The diagnostic accuracy of the combination of the S. haematobium tetraspanins to detect antibodies in 

the urine of infected individuals with differing infection status as well as using pooled urine from all 

individuals was measured by the Area Under the Curve (AUC). (B) Sh-TSP-2 + MS3_01370, (D) Sh-

TSP-2 + MS3_09198 and (F) MS3_01370 + MS3_09198. All the data was entered in GraphPad Prism 

7 and analysed using a non-parametric Kruskal-Wallis test with multiple comparison followed by 

Dunn’s post-test. * P < 0.05 ** P < 0.01, **** P < 0.0002. The urine from non-infected individuals 

from a non-endemic area was used as negative control. The reactivity cut-off points were determined 

as the average reactivity + 3x standard deviation of non-endemic negative individuals (indicated by 

broken lines). 

COMBO	FUSED	20	
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5.4. Discussion 

In most of the sub-Saharan African countries mass drug administration is the only 

option to control schistosomiasis [319]. However, praziquantel treatment is not helpful 

in reversing complications caused by schistosomiasis [69] and praziquantel acts only 

on adult stage worms [299]. For better control and elimination, an effective diagnostic 

tools that can detect cases from areas with different transmission dynamics and different 

prevalence intensities are required to provide meaningful assessments of the efficacy 

of intervention programs [69]. However, urine microscopy, the most common 

technique for the diagnosis of schistosomiasis, has low sensitivity in HIV infected 

individuals [313]. HIV-AIDS and schistosomiasis are highly prevalent in sub-Saharan 

Africa and co-infection is common [320]. Therefore, it is imperative that new 

diagnostic tools that address these hurdles and accelerate schistosomiasis elimination 

efforts are developed. In this study the diagnostic potential of antibodies against S. 

haematobium EV TSPs has been evaluated. 

The diagnostic accuracy of 6 Sh-TSPs was assessed using antibodies from mouse sera 

and human urine. As a result, Sh-TSP-2, MS3_01370 and MS3_09198 were 

significantly recognised by serum antibodies from experimentally infected mice. Sh-

TSP-2, MS3_01370 and MS3_09198 were found in the proteomic analysis of adult S. 

haematobium tegument, and a tegument extract of S. haematobium was strongly 

recognized by urine from S. haematobium infected human subjects [22]. Similarly, 

TSPs from other platyhelminths such as T. solium, O. viverrini, S. mansoni and S. 

japonicum are also recognised by antibodies of infected humans and experimental 

animals [149, 157, 159, 231, 269-271]. This, together with the localisation studies and 

gene expression patterns (chapter (3.3.4 and 3.3.5)), suggests that at least some S. 

haematobium TSPs are accessible to antibodies and are immunogenic during natural 
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infections. Interestingly, Sh-TSP-2 was not recognised by antibodies from S. mansoni 

infected mice, implying the potential usefulness of Sh-TSP-2 in the diagnosis of S. 

haematobium infections where both species are co-endemic. Motivated by these 

results, I decided to test the utility of these antigens for the diagnosis of S. 

haematobium infection by using them to detect antibodies in the urine of individuals 

infected with the parasite. Urine, not serum, was selected as the diagnostic fluid due 

to the relative ease of sample collection compared to serum, especially in field 

conditions [321]. In certain infectious disease states, the use of urine over serum for 

diagnosis because of the ease of collection may be at the expense of sensitivity, but I 

posit that, for S. haematobium infections, any potential decrease in detection limits may 

be mitigated by an increased level of IgG present in the urine, relative to that produced 

by kidney excretion, due to the serum antibody leakage into the bladder as a result of 

egg-induced damage to the epithelium [322]. Each Sh-TSP showed statistically 

significant recognition by all cohorts, including egg negative but CAA positive urine 

samples, highlighting the increased diagnostic sensitivity over egg microscopy. 

Further, the use of Sh-TSP combinations in diagnosis doesn’t affect the predictive 

accuracy of infection. The sensitivity of Sh-TSPs was less than crude protein mixtures. 

On the contrary the specificity of all Sh-TSPs was higher than crude protein mixtures 

[323]. With regards to diagnostic use, preparations of defined, recombinant antigens 

can offer an advantage over crude protein mixtures (such as soluble egg antigen and 

soluble worm antigen preparation) in that they represent a more standardised and 

sustainable resource for diagnosis. Indeed, the defined antigen preparations described 

herein have AUC and FoR values which exceed that of SEA [22], making them a 

potentially effective, as well as rigorous, tool for the non-invasive diagnosis of S. 

haematobium infection.  
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MS3_09198, MS3_01370 and Sh-TSP-2 are potential diagnostic candidates for the 

diagnosis of S. haematobium. Moreover, Sh-TSP-2 is an ideal diagnostic candidate to 

discriminate S. mansoni from S. haematobium infection where both species are co-

endemic. 
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Chapter 6: General discussion and Future directions 

More than 100 million people are infected by S. haematobium [60]. The eggs released 

by adult female S. haematobium worms are associated with pathogenesis and infected 

individuals suffer from different urogenital abnormalities [35]. The genital ulcers 

caused by the infection results in sexual dysfunction and infertility in adults [324]. Most 

importantly, this parasite is responsible for the death of 150,000 people per year [35]. 

Efforts have been made to reduce the prevalence of schistosomiasis using praziquantel 

[298] but schistosomiasis is spreading to new areas [34] and is now the second most 

prevalent of the neglected tropical diseases [325]. 

The control strategy for schistosomiasis is shifting from targeting morbidity to 

elimination [326]. To eliminate the disease, effective drugs, a clean water supply, 

molluscicides to kill the intermediate snail hosts, sensitive diagnostic tools and a 

vaccine are indispensable [327]; however, the current diagnostic modalities of 

schistosomiasis have limitations (chapter 1.2.4) and there is no licensed and effective 

vaccine for this devastating disease. Moreover, praziquantel is the only drug available 

for schistosomiasis treatment, it doesn’t protect against re-infection and reports of 

resistance are emerging [328]. Therefore, there is an urgent need to develop both 

sensitive and specific diagnostic candidates, as well as vaccines, to eliminate urogenital 

schistosomiasis. 

Adult schistosomes use ES products and tegumental proteins to modulate the immune 

response and to escape host-mediated immune attack. [12, 13]. The ES and tegumental 

proteomes of different schistosomes have been characterised [14, 16-22, 329, 330] and 

have helped in the identification of molecules that play a key role in host-pathogen 

interactions. Since EVs are one of the components of ES products, the proteomic 

compositions of different helminths EVs have also been characterised [24, 25, 117-
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126], again revealing many proteins involved in host-parasite interactions. EVs and EV 

membrane proteins of helminths are also recognised by samples from infected animals 

[142, 159, 231], suggesting the potential usefulness of EVs for the diagnosis of 

helminth infection. In addition, immunisation of animals with helminth EVs have 

reduced parasite burdens and pathogenesis in subsequent parasite challenge [31, 160, 

210, 211]. Hence, I have characterised the proteomic composition of S. haematobium 

adult worm EVs to identify and evaluate EV-derived proteins, which could be effective 

as vaccine and diagnostic candidates. 

In chapter 2, S. haematobium EVs (sEVs and m/lEVs) were purified from adult worm 

ES products and their size and concentration were determined using an established 

procedure [24]. The most represented domains from sEVs were homologues of other 

helminth vaccine and drug targets such as proteasome subunits, TSPs, ferritin-like 

proteins and members of the cytosol aminopeptidase family [161, 185, 186, 255, 260, 

262]. Similarly, the most represented domains in S. haematobium m/lEVs were proteins 

involved in EV biogenesis and release: EF-hand, Ras family, TCP-1/cpn60 chaperonin 

family and TSP family proteins [97, 272, 278, 279]. In addition to these most abundant 

protein families, S. haematobium EV proteomics revealed homologues of other 

helminths vaccine candidates such as GST, saposin B domain-containing protein and 

calpain [91, 93, 94, 143, 191, 194-196].  

TSPs, markers of exosomes, are the second most abundant protein family in S. 

haematobium sEVs and fourth in m/lEVs. Similarly, TSPs are abundant members in 

different helminth EVs [24, 25, 117-123]. S. mansoni EV TSPs (Sm-TSP-2 and Sm23) 

have been found to be efficacious vaccine antigens [161]. Moreover, Sm23 was also 

found to be a potential diagnostic candidate [149, 231]. Therefore, six Sh-TSPs present 

in S. haematobium EVs were selected and further characterised with regards to their 



	 112	
 

vaccine and/or diagnostic potential. Based on their expression profile analysis (chapter 

3), six Sh-tsps were expressed throughout all the assessed life stages, albeit with 

differing expression levels. Similarly, tsps from S. japonicum [268, 286, 295], S. 

mansoni [294] and O. viverrini [159] were expressed throughout all the assessed life 

stages with differing expression levels. This result indicated that these Sh-tsps may 

have specific roles in the intermediate snail host and different life stages of the 

parasite.  

In chapter 3, the LEL regions from the Sh-TSPs were expressed in E. coli and 

antibodies to each protein were produced in mice to assess the sites of anatomical 

expression in adult worms. MS3_05226 was located on the tegument surface as well 

as on the internal organs while MS3_01370 has a diffused expression. Similarly, two 

S. japonicum TSPs were also located on the tegument and internal organs of adult 

worms while another two TSPs are located only in the internal organs of adult worms 

[286]. In contrast, Sh-TSP-2 and MS3_05289 are located exclusively on the 

tegument of adult S. haematobium worms, which is similar to TSPs from other 

schistosomes shown to be involved in tegument development [17, 157, 159, 161, 

286]. MS3_09198 and MS3_01153 are located on the tegument and gut of adult 

worms, which is similar to Sj-TSP-2 [268]. The presence of EV TSPs in the gut 

suggests the involvement of EVs in nutrient acquisition and the presence of these 

tegumental proteins in the EVs indicates that TSPs may facilitate changes in the cell 

membrane needed for the formation and release of EVs [331].  

The tegument is the most susceptible structure to host-mediated immune attack [296] 

and, as such, different tegumental TSPs from helminths have been effectively tested as 

vaccine candidates [160, 161, 163, 164, 268]. Herein, I selected three soluble Sh-TSPs 

(from those identified in chapter 2) that clustered together with known schistosome 
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vaccine candidates [161, 268] and assessed them for vaccine efficacy in both a 

homologous (hamster/S. haematobium challenge) and heterologous (mouse/S. 

mansoni challenge) model of schistosome infection (chapter 4). Immunisation of 

hamsters with MS3_01370 and Sh-TSP-2 significantly reduced the liver egg burden but 

not adult worm and intestinal egg burden following S. haematobium infection. 

Vaccination of mice with either of the three Sh-TSPs significantly reduced tissue egg 

burdens, suggesting the potential usefulness of developing these Sh-TSPs as anti-

pathology or transmission-blocking vaccines. 

The potential of Sh-TSPs to diagnose S. haematobium infection in individuals from 

an endemic population was examined in chapter 5 and this was motivated by 

localisation results (chapter 3) and a recent study documenting the diagnostic 

potential of molecules present in S. haematobium tegument and ES products [22], 

indicating that these molecules were accessible to the host immune system in a 

natural and active infection. As a proof of concept, Sh-TSPs were assessed for their 

recognition by sera from mice experimentally infected with S. mansoni or S. 

haematobium and three of the six Sh-TSPs (Sh-TSP-2, MS3_01370 and MS3_09198) 

achieved a positive result, an observation documented for other helminth TSPs, 

including the S. mansoni and S. japonicum orthologues of MS3_09198 [149, 157, 159, 

231, 269-271]. Interestingly, only Sh-TSP-2 was not recognised by antibodies from S. 

mansoni-infected mice, indicating the potential usefulness of Sh-TSP-2 in the 

diagnosis of S. haematobium infections in African and Middle East countries where 

both species are co-endemic [8]. The diagnostic efficacy of these TSPs was further 

assessed by testing urine samples from individuals naturally infected with S. 

haematobium for the presence of anti-Sh-TSP antibodies. All Sh-TSPs were 

significantly recognised by individuals with a high infection intensity and, except for 
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MS3_05289, all Sh-TSPs were significantly recognised by individuals with a medium 

infection intensity. Only MS3_01370, Sh-TSP-2 and MS3_09198 were significantly 

recognised by individuals with a low infection intensity and only MS3_01370, 

MS3_05226 and MS3_09198 were significantly recognised by egg-negative but CAA-

positive individuals. The recognition of these TSPs by egg negative but CAA positive 

urine samples indicates the higher sensitivity of Sh-TSPs over egg microscopy for 

the diagnosis of urogenital schistosomiasis. This might be due to the presence of IgG 

in urine of individuals infected with S. haematobium due to serum antibody leakage 

into the bladder as a result of bladder pathology caused by parasite eggs [322]. 

In this thesis, I have generated novel data on the proteomic composition of S. 

haematobium adult worm EVs and proteins found in the membrane of EVs (TSPs). 

This study provides a framework for characterisation of other proteins found in S. 

haematobium EVs which will undoubtedly play fundamental roles in host-parasite 

interactions. Furthermore, the compelling vaccine and diagnostic data generated herein 

provides a focus for intervention targets to help in the control and elimination of 

urogenital schistosomiasis. 

Future directions 

In chapter two of this thesis, the proteomic composition of S. haematobium EVs was 

determined. To allow for a better understanding of the role of S. haematobium EVs in 

host-parasite interactions, future studies will characterise the proteomic composition of 

different compartments as well as the nucleic acid composition of S. haematobium EVs.  

S. haematobium EVs were purified by ODG and the size distribution was determined 

by TRPS.  For further confirmation the size of S. haematobium EVs, future studies will 

use transmission electron microscopy images to complement the size distribution 

analysis.  
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In chapter 3 of this thesis, an immunohistochemistry analysis was performed to 

determine the anatomic sites of S. haematobium TSPs expression in adult worm 

sections using AxioImager M1 fluorescence microscope. To allow for a better 

understanding on the site of production and mechanism of release of EVs from the 

worms, future studies will perform immunogold labelling to see localisation of Sh-TSPs 

at the ultrastructural level. 

In chapter 4 of this thesis, Sh-TSPs showed significant vaccine potential, reducing 

tissue egg burden reduction in both homologues and heterologous models of infection. 

Additional research will aim at increasing the level of protection by performing vaccine 

experiments with the use of different adjuvants and a co-formulation of antigens.  

Sh-TSPs showed significant intestinal egg burden reduction in heterologous models of 

infection but not in homologues model of infection. Therefore, future studies will 

further explore the reasons for the non-reduction of intestinal eggs in homologues 

model of infection. 

Sh-TSPs significantly reduced the liver egg burden in both the heterologous and 

homologous model of infection. To see the effect of these egg reduction in the 

pathology, future studies will perform histological examination of liver tissue from 

these animals to see if the reduced egg count correlated to any difference in pathology. 

Furthermore, to understand the mode of action of the S. haematobium EVs-TSPs in 

reducing the egg counts will be further studied. 

In chapter 4 of this thesis, Sh-TSPs were recognised by antibodies from naturally 

infected human and experimentally infected mice. To determine whether the protective 

antibodies induced by the Sh-TSPs were actually targeting EVs or the tegument where 

they are also expressed, future studies will use antibodies from infected human/animal 
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to see if antibodies, from either infected humans or rodents, recognizing Sh-TSPs also 

label isolated S. haematobium EVs.  

I have assessed the diagnostic and vaccine potentials of EVs TSPs but due to scarcity 

of EVs materials I couldn’t assess the vaccine and diagnostic potentials of S. 

haematobium EVs. Therefore, future studies will assess the vaccine and diagnostic 

potentials of S. haematobium EVs. 

I have assessed the diagnostic potentials of Sh-TSPs by detecting antibodies from 

infected individuals. Future studies will assess the diagnostic potentials of these Sh-

TSPs by detecting antigens using the polyclonal antibodies raised against them.  
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Appendices 

Table 1. List of oligonucleotide primers used for qPCR analysis of Schistosoma 

haematobium tetraspanins  

Proteins  Forward primer Reverse primer  

a-tubulin 5’GGGCGCGTCTAGATCATAAG3’ 5’GTCAACACCAACCTCCTCGT3’ 

MS3_01370 5’TGCTGTGCTGAGAGACGAAG3’ 5’GGACGGTTTGTCCAGATGAT3’ 

MS3_05226 5’AGCCCGAAATGGAAGTGATT3’ 5’TGGTTTCAAGCATCCATTATGT3’ 

MS3_09198 5’GGCCAAACATTCCAGCTTCA3’ 5’GCGACCCAAACAACAAGCTA3’ 

MS3_01153 5’TCCTGTACCGTGTTGCAAAA3’ 5’TGTGAATAGAACAACGAGCAACA3’ 

Sh-TSP-2 5’CACCACCGGAATCCTGTTTC3’  5’CATCATCACCGCGCTTTACA3’ 

MS3_05289 5’AAATTCCTCCAGCTTGCTGT3’ 5’TATGAACGGGAGGGCTGTTT3’ 
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Table 2. List of oligonucleotide primers flanking the large extracellular loop (LEL) region of Schistosoma haematobium tetraspanins.  

Tetraspanins Forward primers Reverse primers 

MS3_01370 Ncol-NdeI-F 5’CGCCCATGGGTCATATGAGAGACGAAGTAAAATCTCAG3’ XhoI-R-5’CGCCTCGAGCTTTTCAAAGAAGGAGATTAC3’ 

MS3_05289 Ncol-Ndel-F 5’CGCCCATGGGTCATATGGGCACACAAAGTTTGTGGAAG3’ XhoI-R-5’CGCCTCGAGTGGAATAGCTATGAACGGGAG3’ 

MS3_05226 Ncol-NdeI-F 5’CGCCCATGGGTCATATGAGAAAACAAGTCCCTCATACA3’ XhoI-R-5’CGCCTCGAGTTGATGTAATGGTTTCAAGCA3’ 

MS3_01153 Ncol-NdeI-F -5’CGCCCATGGGTCATATGTCTCGTAAAGATGAGATTGGC3’ XhoI-R-5’CGCCTCGAGATAATCCATATATTTAAGGAA3’ 

MS3_09198 Ncol-NdeI-F 5’CGCCCATGGGTCATATGGTAGCAGTTGTTTACAAAGAT3’ XhoI-R-5’CGCCTCGAGGTTGCGTTTCAAGAATGCTCC3’ 

Sh-TSP- 2 Ncol-NdeI-F 5’CGCCCATGGGTCATATGGAAAAGCCAAAGGTAAAAAAA3’ XhoI-R-5’CGCCTCGAGGGTGCATTTTGCTTAGATCAC3’ 
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Figure 1. The amino acid sequence alignment of Schistosoma haematobium tetraspanins large extracellular 

loop with their respective Schistosoma mansoni homologs. (A) Sh-TSP-2 and Sm-TSP-2, (B) MS3_01370 and 

Smp_173150, (C) MS3_09198 and AAA73525, (D) MS3_05289 and Smp_344440, (E) MS3_01153 and 

Smp_140000 and (F) MS3_05226 and Smp_041460. 

 

Sh-TSP-2     1 EKPKVKKHVTDALREFVKEYSHDEHVSKVLDEVQQKLQCCGADSSKDYVTPPPESCFKDG 
AAN17276     1 EKPKVKKHITSALKKLVDKYRNDEHVRKVFDEIQQKLHCCGADSPKDYGENPPTSCSKDG 
 
Sh-TSP-2    61 QIFKEGCVKKVSDLSKMH 
AAN17276    61 VQFTEGCIKKVSDLSKAH 
 
 
MS3_01370    1 RDEVKSQFLSLVKSSVNEYSKNPDFKNFLDKIQQEFQCCGSESSSDYTSSGQTVPDSCKD 
Smp_173150   1 REDVKTQFLSLVRSSVSEYSKNPDIKKFLDKLQQEFQCCGSESSNDYTSSGQTIPDSCKN 
 
MS3_01370   61 TKTKAIYSDGCSYKVISFFEK 
Smp_173150  61 PNTKVTYSDGCSNKVISFFEK 
 
 
MS3_09198    1 VAVVYKDRIDSEIDALMTGALDKPTPEITEFMDLIQSSFHCCGAKGPQDYGPNIPASCRG 
AAA73525     1 VAVVYKDRIDSEIDALMTGALDKPTKEITEFMNLIQSSFHCCGAKGPDDYRGNVPASCKE 
 
MS3_09198   61 ETTVYHEGCVPVFGAFLKRN 
AAA73525    61 ENLTYTEGCVSVFGAFLKRN 
 
 
MS3_05289    1 GTQSLWKEDYEKSITSRFVSKYRGTFGAFAISEFEDYSLKMDQLMIELECCGLQGSQDFS 
Smp_344440   1 GTQSLWKQDYEKSMTVRFESNYRGTFGAFSISEFDDYSLKMDKLMIELECCGLNGYQDFS 
 
MS3_05289   61 NTKSRWYQEGRKYSDGTTGDAIKIPPACCKYTSKDFWRKADYEKFQDNLKDKDCVKTTNE 
Smp_344440  61 NTRSSWYLVGRKYPDGTSGDEIKIPPACCKYTSKDFLRNADYGKFQDNLKNKDCVKTTNE 
 
MS3_05289  121 SNMNVGCLAAAKNKTAKTALPFIAIP 
Smp_344440 121 SNMNVGCLAAVNNKIQQRALPFISIP 
 
 
MS3_01153    1 SRKDEIGNKAVEMFETSVKNYQSMEANTLDSLVVGLISPPLQCCGVDGGSDFKSSPNFWK 
Smp_140000   1 SRKDEIGNRAIDLFETSVKNYQSMAANTIDSLVVGLISPPLQCCGVNNGDDFTTSPNFWR 
 
MS3_01153   61 NDTYGGKTYTNIEYPVPCCKMNQNYAISDSTCPDKFDDNNSNYKNGCRGPLKEFFLKYMD 
Smp_140000  61 NDTYGGKTYNNIAYPVVCCKLNQNYAIIDSTCPDQFNENNSNYKTGCRGPLKELFLKYMD 
 
 
MS3_05226    1 RKQVPHTFLIQFLNYSIHDYISISSGDPNSILMGLIMMKLNCCGARNGSDFYHPVKFNRT 
Smp_041460   1 SKQHPHKFLIQFLNYSFHEYVSISSGDPNSILMGLIMMKLNCCGARNGSDFYHPVKFNRT 
 
MS3_05226   61 DVWNGVTYTHLKYPLPCCQFKDNLEIQGDTCPNSFRNSNVHNGCLKPLHQ 
Smp_041460  61 DVWNGVTYTNLKYPVPCCRFNGNLEIQDDSCPKSFKISNIHNGCLKPLHR 
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Figure 2. Urine IgG recognition of six Schistosoma haematobium tetraspanins from Zimbabwean 

infected individuals when comparing uninfected non-endemic group with infected individuals as a 

pool. The antibody level was measured by indirect ELISA and indicated by OD values: (A) Sh-TSP-2, 

(B) MS3_01370, (C) MS3_09198, (D) MS3_05289, (E) MS3_01153, (F) MS3_05226 and (G) TrX. 

All the data was entered in GraphPad Prism 7 and analysed using a non-parametric Mann Whitney test. 

* P < 0.05, *** P < 0.001, **** P < 0.0002. Urine of non-infected individuals from non-endemic area 

was used as negative control. The reactivity cut-off points were determined as the average reactivity + 

3x standard deviation of non-endemic negative individuals (indicated by broken lines). 
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Figure 3. Urine IgG recognition and ROC curves analysis of digested Schistosoma haematobium 

tetraspanins from Zimbabwean infected individuals with different infection status. The antibody level 

was measured by indirect ELISA and indicated by OD values: (A) MS3_01370, (C) MS3_09198. The 

diagnostic accuracy of enterokinase digested S. haematobium tetraspanins (TSPs) to detect antibodies 

in the urine of infected individuals with differing infection status was measured by the area under the 

ROC curve (AUC) (B) MS3_01370, (D) MS3_09198. All the data was entered in GraphPad Prism 7 

and analysed with a non-parametric Kruskal-Wallis test with multiple comparison by Dunn’s post-test. 

* P<0.05 ** P < 0.01, **** P < 0.0002. Urine of non-infected individuals from non-endemic area was 

used as negative control. The reactivity cut-off points were determined as the average reactivity + 3x 

standard deviation of non-endemic negative individuals (indicated by broken lines). 
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Figure 4. Urine IgG recognition and ROC curves analysis of digested Schistosoma haematobium 

tetraspanins from Zimbabwean infected individuals when comparing uninfected non-endemic group 

with infected individuals as a pool. The antibody level was measured by indirect ELISA and indicated 

by OD values: (A) MS3_01370, (B) MS3_09198. All the data was entered in GraphPad Prism 7 and 

analysed with a non-parametric Mann Whitney test. **** P < 0.0002. Urine of non-infected individuals 

from non-endemic area was used as negative control. The reactivity cut-off points were determined as 

the average reactivity + 3x standard deviation of non-endemic negative individuals (indicated by 

broken lines). 
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Figure 5. Frequency of Recognition matrix (FoR) analysis of Schistosoma haematobium tetraspanins 

for the detection of Schistosoma haematobium infection. The diagnostic accuracy of S. haematobium 

TSPs to detect antibodies in the urine of infected individuals was measured by the Frequency of 

Recognition matrix (FoR) (lane A) Sh-TSP-2, (lane B) MS3_01370, (lane C) MS3_09198, (lane D) 

MS3_05289, (lane E) MS3_01153, (lane F) MS3_05226, (lane G) MS3_01370 (non-fused), (lane H) 

MS3_09198 (non-fused), (lane I) Sh-TSP-2 + MS3_01370 (fused), (lane J) Sh-TSP-2 + MS3_09198 

(fused), (lane K) MS3_09198 +MS3_01370 (both fused),  (lane L) Sh-TSP-2 + MS3_09198 (non-

fused), (lane M) Sh-TSP-2 + MS3_09198 (non-fused) and (lane N) MS3_09198 +MS3_01370 (both 

non-fused). Urine of non-infected individuals from non-endemic area was used as negative control and 

FoR was determined as a percentage by dividing numbers of OD450 values greater than the cut-off 

point to the total infected individuals for each TSP. 
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Figure 6. Urine IgG recognition of combinations of fused and non-fused Schistosoma haematobium 

tetraspanins from Zimbabwean infected individuals when comparing uninfected non-endemic group 

with infected individuals as a pool. The antibody level was measured by indirect ELISA and indicated 

by OD values: (fused) (A) Sh-TSP-2 + MS3_01370, (fused) (B) Sh-TSP-2 + MS3_09198, (both fused) 

(C) MS3_09198 +MS3_01370, (non-fused) (D) Sh-TSP-2 + MS3_01370, (non-fused) (E) Sh-TSP-2 + 

MS3_09198 and (both non- fused) (F) MS3_09198 +MS3_01370. All the data was entered in 

GraphPad Prism 7 and analysed with a non-parametric Mann Whitney test. **** P < 0.0002. Urine of 

non-infected individuals from non-endemic area was used as negative control. The reactivity cut-off 

points were determined as the average reactivity + 3x standard deviation of non-endemic negative 

individuals (indicated by broken lines). 
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Figure 7. Urine IgG recognition and ROC curves analysis of the combination of three non-fused 

Schistosoma haematobium tetraspanins from Zimbabwean infected individuals with different infection 

status. The antibody level was measured by indirect ELISA and indicated by OD values: (A) Sh-TSP-

2 + MS3_01370, (C) TSP_2 + MS3_09198, (E) MS3_01370 + MS3_09198. The diagnostic accuracy 

of combination of non-fused S. haematobium TSPs to detect antibodies in the urine of infected 

individuals with differing infection status was measured by the area under the ROC curve (AUC) (B) 

Sh-TSP-2  + MS3_01370, (D) Sh-TSP-2 + MS3_09198, (F) MS3_01370 + MS3_09198. All the data 

was entered in GraphPad Prism 7 and analysed with a non-parametric Kruskal-Wallis test with multiple 

comparison by Dunn’s post-test. ** P < 0.01, **** P < 0.0002. Urine of non-infected individuals from 

non-endemic area was used as negative control. The reactivity cut-off points were determined as the 

average reactivity + 3x standard deviation of non-endemic negative individuals (indicated by broken 

lines). 
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