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Abstract—Neuromorphic computing is a promising technology 
that realizes computation based on event-based spiking neural 
networks (SNNs). However, fault-tolerant on-chip learning 
remains a challenge in neuromorphic systems. This study presents 
a scalable neuromorphic fault-tolerant context-dependent 
learning (FCL) framework with reinforcement learning 
mechanism, which integrates both learning and fault-tolerant 
capabilities in a unified system. We show how this system can learn 
associations between stimulation and response in context-
dependent tasks, which are inspired by the biological 
hippocampus-mPFC network. Furthermore, we demonstrate how 
our novel fault-tolerant neuromorphic spike routing scheme can 
avoid multiple fault nodes successfully, and can enhance the 
maximum throughput of the neuromorphic network by 0.9% to 
16.1% in comparison with previous studies. By utilizing the real-
time computational capabilities and multiple-fault tolerant 
property of the proposed system, the neuronal mechanisms 
underlying the spiking activities of neuromorphic networks can be 
readily explored. In addition, the proposed system can be applied 
in real-time learning and decision-making applications, brain 
machine integration, as well as the investigation of the brain 
cognition during learning.  

Index Terms—context-dependent learning, neuromorphic 
computing, spiking neural network (SNN), brain inspired, fault 
tolerant 

I. INTRODUCTION 
he encoding and remembering of an event context relies on 
the episodic memory of the brain when observing an object 

or item [1]. The context can be an absolute time, relative time 
based on other events that happened before or after, or a specific 
place [2-3]. Previous studies have shown that the interactions 
of neocortical and hippocampal circuits can enable contextual 
learning during an item-reward association task [4-5].   

The hippocampal firing activities are affected by the context 
at which a current task is performed [6]. In a sampling or an 
encoding phase of the task, the selectivity appears among the 
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hippocampal CA1 neurons during a discrete delayed nonmatch-
to-place task [7]. In addition, neural firing activities depend on 
the start or anticipated end location of a trajectory [8]. A 
previous experiment has revealed that neurons in hippocampus 
develop selectivity towards specific items in an abstraction of 
spatial context [4]. The generation of behaviors based on the 
contextual representations depends on both the hippocampus 
and medial prefrontal cortex (mPFC) [9]. These studies reveal 
that context encoding may involve the interaction between 
hippocampus and mPFC.  

The experimental setup and preparation for the above-
mentioned studies are usually time-prohibitive and involve 
interacting with live subjects. One approach to facilitate these 
experiments and improve our understanding of the context-
dependent learning is to build a computational model utilizing 
brain-inspired SNN models with neural spike representation. In 
this study, the concept of context-dependent learning refers to 
the field of neuroscience, and concept means the environmental 
sensory cues that are processed and learned in the hippocampus 
[53]-[58]. Gulli et al. used monkeys to complete an associative 
memory task in the virtual environment for the investigation of 
the context-dependent representation of objects and space in 
hippocampus [53]. The context was defined by a texture applied 
to the maze walls. Zhao et al. suggested that neurons in the 
hippocampus undergo context-dependent learning because they 
inherit different input patterns from pre-synaptic areas in 
different contexts, which occurs during decision making and 
navigation tasks [54]. Lee et al. pointed out that navigation, 
context-dependent learning and episodic memory are produced 
in a recurrent collateral circuitry in the hippocampus [55]. In 
addition, the mechanisms context-dependent learning are 
explored in a series of neuroscience studies, using both 
behavioral paradigm and physiological observation [56]-[58]. 
The proposed model with FCL framework can then be 
implemented on a neuromorphic architecture, not only to better 
understand the brain, but also to use it in various categories of 
applications such as robotics and brain computer interfaces.    
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Neuromorphic computing is a promising approach towards 
non-von Neumann systems for neuroscience and artificial 
intelligence applications including the formulation of 
hypotheses regarding the function of neural systems, validation 
of self-consistency in the description of neural phenomena or 
function, neural computation instead of traditional computing 
structures, and biologically inspired engineering applications 
[10, 12, 13, 46]. Some of the large-scale neuromorphic systems 
used in these applications include BrainScaleS, TrueNorth, and 
SpiNNaker [10-13]. In addition to these large-scale systems, 
several other neuromorphic systems have been developed in the 
literature [14, 44, 48]. We have previously developed large-
scale conductance-based spiking neural networks (LaCSNN), 
which is a digital neuromorphic system designed for simulating 
SNNs using multicasting address event representation (AER) 
with 3D network-on-chip (NoC) architecture [14]. Compared to 
state-of-the-art neuromorphic designs with similar capabilities, 
LaCSNN provides significant benefits in both biological 
accuracy and reconfigurability [14]. It is able to realize a large-
scale SNN with one million biologically plausible neurons in 
real time.  

When developing any large-scale neuromorphic system, 
such as those mentioned above, two main capabilities are 
required. These include online learning capability and fault-
tolerant operation capability. It is also important to implement 
a system that integrates these two capabilities. This study 
focuses on implementing a neuromorphic system named FCL, 
for modeling large-scale SNNs with online fault-tolerant 
context-dependent learning. It abstracts the mechanisms from 
both hippocampus and mPFC, and realizes the learning 
capability in a context-dependent task responding to item 
reward. To the best of our knowledge, this paper presents the 
first scalable fault-tolerant context-dependent learning 
framework.  

The remainder of the paper is organized as follows. Section 
II introduces the fault-tolerance considerations in neuromorphic 
systems. The implemented network model for context-
dependent learning is presented in Section III, while Section IV 
describes our digital neuromorphic architecture in detail. 
Section V proposes the fault-tolerant algorithm and 
methodology for the presented neuromorphic system.  
Experimental results of the digital neuromorphic system are 
presented in Section VI. Section VII discusses the advantages 
of the proposed neuromorphic model compared to state-of-the-
art. The paper is concluded with discussion on future works, in 
Section VIII. 

II. FAULT-TOLERANCE CONSIDERATIONS IN NEUROMORPHIC 
SYSTEMS 

State-of-the-art neuromorphic systems have used different 
architectures for the realization of SNNs, which are shown in 
Fig. 1. For the non-fault-tolerant neuromorphic systems, there 
are three conventional architectures, including shared bus, 2D 
NoC, and 3D NoC. The shared bus architecture can support 
both multicast and broadcast routing with low-cost SNN 

models, but is constrained by its limited scalability [15], [16]. 
A number of studies have focused on the 2D NoC architecture 
for neuromorphic systems, including H-NoC [17], Neurogrid 
[11], HiAER [13], and Truenorth [18]. The H-NoC architecture 
is based on the EMBRACE system using the leaky integrate-
and-fire neuron model [17]. Analog implementation is used to 
realize the calculation of the ionic dynamics in Neurogrid and 
HiAER systems [11], [13], while fully digital method is used in 
SpiNNaker, Truenorth and Tianjic [10], [18], [19]. To enable 
the implementation of larger scale SNNs, 3D NoC architecture 
is used in several works. In the first work, a multicast AER 
architecture is developed with biologically plausible 
conductance-based neuron models on LaCSNN system, which 
has the intrinsic mechanisms underlying the neuronal spiking 
activities within large-scale multi-nucleus networks [14]. In 
other works, a multicast routing scheme is used in 3D mesh 
NoC architecture in KMCR [20], and multi-compartment 
conductance-based neuron models are used in the IBFT-based 
CMN system, which can further enhance the system scalability 
in comparison with the previous works [21]. 

As more neuromorphic designs are developed, fault-
tolerance becomes essential and critical for reliable 
neuromorphic computing. Recently, a number of studies have 
focused on fault-tolerant neuromorphic designs. Notably, 
SpiNNaker system presents a novel routing strategy to deal with 
the problems of congested or broken links in its digital 
neuromorphic architecture [22]. FTSP-KMCR proposes a 
multicast fault-tolerant architecture to implement a neural 
engineering framework [23]. However, there is a lack of fault-
tolerant learning methodology for neuromorphic computing, 
especially based on brain-inspired learning mechanisms. To 
that end, this study proposes a fault-tolerant context-dependent 
learning (FCL) model as well as an AER multicast routing 
strategy on the IBFT architecture, which enables fault-tolerant 
context-dependent neuromorphic learning. 

 
Fig. 1. Overview of the current neuromorphic models considering fault-tolerant 
properties. 
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III. NETWORK MODEL FOR CONTEXT-DEPENDENT LEARNING 
The network model for the implemented context-dependent 

learning mechanism is shown in Fig. 2 (a). This network is 
composed of three layers including sensory, hippocampal and 
motor layer. The neurons and learning synapses in these layers 
are explained in the following subsections.   

A. Neuron Model 
The neuron model used in our implementation is based on the 

leaky integrate-and-fire (LIF) model. In this model, the 
membrane potential Vi is governed by capacitance C and driven 
by the input current Ij, and leaking current is affected by a leaky 
channel of conductance Gl. The membrane has the resting 
potential Vrest and is influenced by small fluctuations of a noise 
term η. The noise term here denotes a random variable η∈N(μ, 
σ) based on a Gaussian distribution with mean value μ=0 and 
standard deviation σ. The dynamic equation of the membrane 
voltage can be expressed as 

( )i
l i rest k

dV
C G V V I

dt
η= − + + ,                       (1) 

where i=1…nk and k∈{sensory, hippo, motor} is one of the 
network layers. The input current for the sensory layer is 
Isensory=1.00 nA, while it is Ihippo=0.98 nA for the hippocampal 
layer, and Imotor=0.96 nA for the motor layer. The model 
parameter values are listed in Table I, accordingly. The model 
parameter values fit the empirical behavioral data of the 
context-dependent task (Komorowski et al., 2009). 

TABLE I 

PARAMETER VALUES OF NEURON MODEL. 

Parameter Description Value 

C Membrane capacitance 5.5×10-9 F 

Gl Leaky membrane conductance 10×10-9 S 

Vpeak Peak membrane potential 0 mV 

Vth Threshold membrane potential -50 mV 

Vreset Reset membrane potential -70 mV 

σ Standard deviation of Gaussian noise 1 μV per step 

 

B. Synaptic connections and learning algorithm 
In order to realize weight adaptation for learning, spike-

timing dependent plasticity (STDP) rule for synaptic 
modification is used [24]. Synaptic weights between the 
sensory layer, the hippocampal layer, and the motor layer are 
modified. The rule employs the time difference Δ between the 
pre-synaptic and post-synaptic spikes. If the pre-synaptic spike 
occurs before the post-synaptic spike, it induces a positive time 
difference Δ>0, resulting in a synaptic long term potentiation 
(LTP). When the pre-synaptic spike happens after the post-

synaptic spike, this results in a negative time difference Δ<0, 
inducing a synaptic long term depression (LTD). This effect 
occurs within a small time window of ≈20 ms, with the weight 
dynamic range  between wmin=0 and wmax=1. The STDP 
learning rule can be implemented as a differential equation as 
follows 

( ) ( )

( ) ( )

max

min

exp

                exp

exc
ij exc

w ij

exc
ij

dW
w W A

dt
w W A

τ τ

τ

+ +

− −

= − ⋅ −∆

− − ⋅ +∆
,             (2) 

where i=1…nk, j=1…nl, k∈{sensory, hippo, motor}, 
l∈{sensory, hippo, motor} and k≠l.  Indices “i” and “j” 
represent neurons from two connected layers, for instance, the 
hippocampal layer with motor layer. The weight alterations, 
which may result in LTP and LTD are controlled by the time 
constants τw, τ+, and τ- respectively. The parameter values of the 
implemented STDP learning rule are listed in Table II. 

TABLE II 

PARAMETER VALUES OF SPIKE-TIMING DEPENDENT PLASTICITY (STDP). 

Parameter Description Value 

τ+ Pre- before post-synaptic spike time constant 10 ms 

τ- Pre- after post-synaptic spike time constant 10 ms 

A+ Pre- before post-synaptic spike amplitude +1.2 

A- Pre- after post-synaptic spike amplitude -0.4 

wmin Minimum activation for synaptic weight 0.0 

wmax Maximum activation for synaptic weight 1.0 

τw Learning rate for weight adaptation 10 ms 

 

Neural spikes are transmitted between layers via the 
excitatory weights Wexc and inhibitory weights Winh as shown in 
Fig. 2(a). Winner take all (WTA) rule is used at the receiving 
terminal to generate a current of Ihippo=0.98 nA for neurons in 
the hippocampal layer or Imotor=0.96 nA for neurons in the 
motor layer. The WTA rule is defined as follows 

( )

( )

1

*

1

 if * arg max

                       and 1...

k

k

n
exc

i reset ij
i

nj k j
inh

i reset ij
i
i j

l

V V W

I I j
V V W

j n

=

=
≠

 
− 

 = =  
 − −
 
 

=

∑

∑ ，       (3) 

where the input current Ij = 0. Similar to Eq. 2, here k∈{sensory, 
hippo, motor}, and l∈{sensory, hippo, motor}. 

C. Network architecture 
The presented SNN model is inspired by visual, odors, and 

tactile sensory inputs in the form of binary vectors [26]. The 
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sensory signals are delivered through six input neurons, i.e. 
nsensory=6. Four of them provide context-place information, and 
the other two provide item information. As shown in Fig. 2(a), 
the first input neuron is activated with context-place A1 and the 
second input neuron is activated with context-place A2, while 
the third and fourth neurons are activated with context-place B1 
and B2, respectively. The fifth and sixth neurons are activated 
with item information X and Y, respectively. The input neurons 
are connected to hippocampal neurons using adaptive weights 
Wexc to represent excitatory connections in an all-to-all setting. 
The hippocampal neurons have inhibitory connections Winh 
among them, but not inhibiting themselves. Fig. 2(a) only draws 
the connections of 1st hippocampal cell and the 1st output cell. 
The hippocampal cells are connected to two motor output 
neurons with adaptive weights using all-to-all connectivity. All 
the weights are uniformly randomly initialized with values in 
the range 0 to 1. The two cells in the motor layer represent the 
action “digging” and “moving”, respectively.  

 
Fig. 2. The proposed learning scheme for context-dependent task. (a) The 
schematic structure of the implemented SNN model for the context-dependent 
task. (b) The rewarded action sequence. (c) Rewarded action sequence leads to 
synaptic enhancement denoted by red solid arrow. (d) The non-rewarded action 
sequence. (e) Non-rewarded action sequence leads to synaptic depression 
denoted by blue dotted arrow.  

Fig. 2(b) shows a cartoon of the context-dependent learning 
at hand. Here, a model monkey can only move between place 1 
and 2 in either context A or B, without intermediary places. It 
can perform no action to change the context, but the context can 
change randomly between trials. Some trials can start the model 
in context A and others in context B. Table III lists the model 

parameters used in our experimentation. 

TABLE III 

PARAMETER VALUES OF THE SNN MODEL USED IN THE TARGETED CONTEXT-
DEPENDENT LEARNING TASK. 

Parameter Description Value 

Ttrial Maximum time interval for a trial 10 ms 

Treplay Maximum time interval for replay 400 ms 

Δt Time increment per simulation step +1.2 

Isensory Input current for sensory neuron 1.0 nA 

Ihippo Input current for hippocampus neuron 0.98 nA 

Imotor Input current for motor neuron 0.96 nA 

 

D. Learning of the context-dependent task 
The sequence of monkey actions can be represented using Fig. 

2(b) and Fig. 2(d). The two square areas in the figure represent 
place 1 and place 2 of context A. In each square area, there is a 
ball representing item, item X and item Y respectively. If there 
is a green check in the ball, it means that the reward is hidden 
under this item. If there is a red cross in the ball, it means that 
there is no hidden reward. As shown in Fig. 2(b), a case of a 
rewarded action sequence is A2Y, move, A1X, dig, and receive 
a reward. In the examples in Fig. 2(b) and Fig. 2(c), the learning 
in the first stage is assumed to occur to establish the correct 
connection to activate the first hippocampal neuron, inducing 
the synaptic activation of the neurons encoding the action 
“move”. This neuron spikes several times, inducing the action 
“move” executed by the monkey. After moving, the monkey 
can sense the place A1 and item X, which activates a 
hippocampal neuron because of the established connection, 
resulting in the activation of the neuron coding the action “dig”, 
and the monkey obtain the reward. Since in the first stage, the 
monkey has dug a reward, this action can be enhanced in the 
next stage, which is represented by the red solid lines as shown 
in Fig. 2(c). For the procedure without reward, the monkey is 
first located at A1X as shown in Fig. 2(d), and then moved to 
the location of A2Y and dug. Since the reward is at A1X, the 
monkey cannot obtain the reward. Thus, this action will be 
depressed in the next stage, which is represented by the blue 
dashed lines in Fig. 2(e). 

IV. DIGITAL NEUROMORPHIC ARCHITECTURE 

A. Network-on-chip (NoC) architecture 
The proposed FCL model is realized using FPGA and 

evaluated based on its average spike latency and throughput. 
Here, the FCL model for the targeted context-dependent 
learning task (shown in Fig. 2) is mapped onto the LaCSNN 
digital neuromorphic system in a layer-to-layer fashion, where 
our proposed routing algorithm is combined with the 3D mesh 
NoC topology. The mapping strategy of SNNs onto NoC-based 
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neuromorphic systems is critical for neuromorphic applications, 
because it significantly influences both the overall performance 
and the power consumption. Fig. 3 shows the mapping of the 
context-dependent task to the 3D NoC architecture, in which 
neurons in the same network layer are mapped onto the same 
architecture layer. In a previous study with fault-tolerant spike 
routing, neurons can only send spikes to the next layer [25]. In 
this study, this limitation is eliminated by using a novel 
mapping and NoC architecture. In the first layer, six neuron 
units representing the six neurons in the information sensory 
layer are distributed in parallel, and are fully connected with the 
neuron units in the second layer. In the second layer, the neuron 
units are implemented on an 8×8 NoC architecture, which uses 
mesh-based multicasting AER strategy. The moving and 
digging neurons are implemented digitally in the third layer. All 
the three network layers are fully connected. The spike event 
packet transferred in this network contains 22 bits, which 
include 3-bit layer ID, 1-bit AER data, 3-bit Y_dest address, 3-
bit X_dest address, and 12-bit Timestamp. 

 
Fig. 3. 3D NoC architecture of the proposed neuromorphic network. 

The detailed digital architecture of the neuron unit is shown 
in Fig. 4(a). It contains a neuron processor, a fault-tolerant 
router, a synapse unit, and a configuration unit. Each router has 
six ports including up, down, north, west, east and south to route 
the AER packets to another neuron unit. Compared to a 
previous study [27], the proposed architecture has three features 
including 1) computation using events with synaptic weighting; 
2) implementation of physical synapses; and 3) fault-tolerant 
neuromorphic routing capability. Therefore, the proposed 

architecture is more suitable for the neuromorphic SNN 
computation aiming at complicated cognitive behaviors, such 
as context-dependent learning. 

 
Fig. 4. The detailed digital neuromorphic architecture of the neuron unit and 
routers in the proposed decision-making spiking network. (a) Digital 
neuromorphic architecture of the neuron unit. (b) Digital neuromorphic 
architecture of the fault-tolerant router.  

B. Fault-tolerant router architecture of the proposed 
neuromorphic network 

Router is critical in the proposed neuromorphic architecture, 
because it plays vital roles in achieving the fault-tolerance 
targeted. The fault-tolerant multicast 3D router architecture 
implemented in the neuron units of our system is shown in Fig. 
4(b). At the first stage, the spike events are received from the 
four neighboring nucleus processors and their packets are 
stored in the input buffer before being processed. The spike 
wrapper unit is used to convert a single spike event into a valid 
AER spike packet using the information received from the 
configuration processor. This processor can be started at any 
time based on the neuronal connectivity. The configuration 
processor contains four types of registers, which are chip 
address register, layer address register, node address register 
and timestamp register. Incoming spike events and the 
corresponding deliver-at time are stored in the on-chip memory 
after the deliver-at time stamps are reached. Then the source 
address of the packet is extracted and calculated to determine 
the output port. The fault-tolerant routing calculation, which 
will be introduced in Section V, is then used to route the packet. 
The switch arbiter is used using least recently served priority to 
provide fast computation, inexpensive implementation and 
strong fairness as presented in previous studies [28]. Finally, 
the packet is sent to the desired output port through the crossbar. 
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The crossbar switch is controlled by the switch arbiter and 
implemented by multiplexers.  

C. Digital architecture of the conductance-based LIF neuron 
model 

In this study Euler method is used for the discretization of the 
neuron model since it can save hardware resources compared to 
Runge-Kutta method. Based on Euler method, the original 
equations can be transformed into the following equations: 

( ) ( )( ) ( )

( )
( ) ( )

( ) ( )
( )max

min

11

exp
1

exp

l i rest k

exc
ijexc exc

ij ijexc
ij

V n t G V V I V n
C

w W A
W n t W n

w W A

η

τ

τ

+ +

− −

  + = ∆ ⋅ − + + +   
  − ⋅ −∆  + = ∆ ⋅ +  − − ⋅ +∆  

  (4) 

The digital architecture of the neuron model in the 
information sensory, hippocampal and motor layers is shown in 
Fig. 5(a). Multipliers are extravagant hardware resources in 
digital design, and are usually avoided as much as possible to 
gain energy and hardware cost benefits. Thus, in the proposed 
digital architecture, shift logic multipliers (SLM) are used to 
replace multipliers to realize multiplication operations. Fig. 5(b) 
shows the detailed digital implementation of the SLM block, 
which is used to replace the multipliers in this study.  

 
Fig. 5. Detailed digital architecture of the neuron processor and the SLM block. 
(a) Detailed digital implementation of the neuron unit. (b) Detailed digital 
implementation of the SLM block. 

D. Digital architecture of the synapse module implementing 
STDP 

The learning capability of the proposed FCL model is based 
on STDP learning algorithm. The detailed digital 
implementation of this learning algorithm is shown in Fig. 6. 
As demonstrated in Fig. 6(a), the pre-synaptic and post-synaptic 
spike timings "Timepre" and "Timepost" are first calculated, 
which are then used in the digital implementation of the STDP 
learning rule shown in Fig. 6(b). Here, LUTs are used to 
calculate the exponential part in the STDP algorithm, and barrel 

shifters are used to replace the required multipliers. These 
components help to significantly cut down the hardware 
resource cost and power consumption.  

 
Fig. 6. Digital architecture of the synapse. (a) Detailed digital implementation 
for the computation of “Timepre” and “Timepost”. (b) Digital implementation 
of the STDP weight updating module. 

V. FAULT-TOLERANT SPIKE ROUTING 
Several previous studies have investigated fault-tolerant 

routing schemes for NoC topologies [22, 23]. These schemes 
are based on different approaches including virtual channels, 
path-finding, and bypass methods to perform efficient routing 
in the presence of faulty nodes. The virtual channels based, 
path-finding based and bypass-based routing schemes are 
different in terms of the hardware resource cost and circuit 
complexity. The routing schemes based on virtual channels 
divide a single physical link into several virtual channels, but 
they require complex control circuitry and cost large hardware 
resource and power consumption. The routing schemes based 
on path-finding methods need a large number of routing tables, 
which induce large hardware resource cost. Contrarily, bypass 
methods divide the fault nodes into non-overlapping fault areas, 
and make use of the normal nodes and links around the fault 
areas to form a new routing path. When the data packet reaches 
a fault area, it will be bypassed along a new routing path based 
on certain rules, thus avoiding the fault without deadlock. Here, 
we utilize the bypass method without virtual channels to 
perform fault-tolerant routing in the proposed neuromorphic 
architecture for the targeted context-dependent learning task. 
Built-in self-test (BIST) technique is used to get the location 
information of the fault node. Furthermore, the realization of 
the load balancing in the bypass loop and the reduction of the 
communication latency can be performed by optimizing the 
routing distance of the spike events. 
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A. Multiple-fault tolerant  neuromorphic (MFTN) algorithm  
In the proposed algorithm, XY routing strategy is used, 

which means the neural information is routed first along the X 
direction, then along the Y direction. So the proposed algorithm 
is divided into two parts, which are along X and Y directions 
respectively. In a previous study, Chen and Chiu have presented 
an essential fault-tolerant solution for NoC design [49]. 
However, Chen’s algorithm requires significant computations 
and a large area, with a low node utilization. In addition, its 
communication load is heavy and its latency is high. On the 
contrary, our presented MFTN algorithm modifies and expands 
the single-fault bypass method in Zhang’s algorithm [47] to 
improve the multiple-fault situation. The MFTN algorithm 
along both X and Y directions will be introduced and compared 
to Zhang’s algorithm to further illustrate its improvement based 
on Zhang’s algorithm in this section. The experimental results 
will be shown in Section VI and compared to Chen’s algorithm 
to demonstrate its performance improvement. 

In the case of multiple-fault tolerant schemes, there are two 
scenarios. In the first scenario, the source and destination nodes 
are located on different sides of the fault region and the source 
node is located in one of the rows of the fault region. For 
examples, see source 1 (S1) and Destination 3 (D3), or S2 and 
D5 in Fig. 7. In the second case, the source node is located 
within the rows of the fault region and the destination node is 
located in the columns of the fault region. For example of this 
case, see the positions of S1 and D2 in Fig. 7. As shown in this 
figure, we first delineate the fault regions that need to be 
bypassed, which include the fault nodes and the unsafe nodes 
surrounded by the fault nodes. The coordinate information of 
the four SW, NW, SE and NE nodes is transmitted to all the 
normal nodes in the corresponding column by all the nodes in 
the bypass loop, and stored in the on-chip memory to determine 
whether the routing process passes through the fault region. In 
Fig. 7, the solid arrow is based on Zhang's algorithm [47], and 
the dotted line arrow is based on the proposed MFTN routing 
algorithm. In comparison with Zhang’s algorithm, the proposed 
algorithm optimizes the bypass strategy, which decreases the 
routing distance accordingly. For example, in the case from S1 
to D4, Zhang’s algorithm will turn up at SE, which induces 
longer distance. In contrast, the proposed MFTN algorithm will 
provide a direct route to D4 node. The pseudo code of the 
proposed MFTN algorithm is shown in Fig. 8. In the proposed 
pseudo code, C and D represent the current and destination 
nodes respectively. In the XY algorithm, the neural information 
will be routed along the X direction at first, and then routed 
along the Y direction. It is majorly for the case where the source 
and destination nodes are located on east and west sides of the 
fault region, separately. The bypass loop is separated from the 
original pathway when certain conditions are satisfied, 
therefore the load of the bypass loop and the routing distance 
are decreased. 

 

Fig. 7. The bypass route of the spike event along X direction. 

 
Fig. 8. Pseudo code for MFNT algorithm along X direction. C and D represent 
the current and destination nodes respectively. In the XY algorithm, the neural 
information will be routed along the X direction at first, and then routed along 
the Y direction. 

The situation for the bypass along Y direction in the case of 
multiple fault nodes is that the destination and source nodes are 
located on south and north sides of the fault region respectively 
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and the destination node is located within the columns of the 
fault region. According to Zhang's algorithm, more change of 
routing direction is required along X direction, which induces 
the increment of the bypass distance and the load is majorly on 
the left side of the bypass loop. When current node (C), is on 
the north side of the bypass, the spike event is first routed to the 
nearest corner based on XY algorithm and then bypassed based 
on Zhang's algorithm. As shown in Fig. 9, if the current node is 
on the south side of the bypass loop, the spike event is first 
routed to the SW node due to the prohibition of the turning on 
the NE corner, and then bypassed based on Zhang's algorithm. 
The pseudo code for the proposed MFNT algorithm along Y 
direction is shown in Fig. 10. 

 

Fig. 9. The bypass route of the spike event along Y direction. 

 
Fig. 10. Pseudo code for MFNT algorithm along Y direction. 

B. Deadlock-free fault-tolerant routing  
According to a previous study [45], the necessary and 

sufficient condition for any routing algorithms to be deadlock-
free is that there is no loop in its corresponding Component 
dependency graph (CDG). 

In the case of networks without any fault nodes, since the turn 
from Y to X direction is prohibited, there is no cycle in the CDG 
of the mesh-based network. When the fault region is located 
inside the network, the proposed MFTN algorithm adds turns 
from Y to X direction on the northwest, southwest and southeast 
corners of the bypass loop, and removes the turn from X to Y 
direction on the northeast corner. Since this turn is removed, no 
cycle will exist and the proposed algorithm is deadlock-free.  

When the fault region is located on the edge the mesh 
network, the proposed algorithm adds the turns from Y to X 
direction on the vertex of the bypass loop in order to make spike 
events avoid the fault region. Since the bypass loop is not a 
cyclic link, it will not result in a deadlock. Therefore, the 
proposed MFTN algorithm is completely deadlock-free. It is 
also independent of the area and location of the fault region, and 
the NoC scale.  

VI. EXPERIMENTAL RESULTS 
In this section, we present experimental results implemented 

on the digital neuromorphic system LaCSNN [14], which is 
modified to include the proposed MFTN algorithm and 
implement the required context-dependent learning task. First, 
the experimental oscilloscope outputs are displayed in Fig. 11. 
This figure shows the firing activities of the neurons in the three 
different layers of the implemented neuromorphic network 
realizing the targeted context-dependent learning task. Fig. 11(a) 
shows the spiking activities of all the six neurons in the 
information sensory layer. The first four neurons spike 
alternatively due to the specific input combination, and the last 
two neurons fire alternatively due to the WTA mechanism. Fig. 
11(b) shows the spiking activities of eight neurons randomly 
chosen from the hippocampal functional layer. This figure 
shows that only one neuron spikes at any given time due to the 
WTA mechanism. Fig. 11(c) shows the firing activities of each 
neuron in the motor layer, in which the two neurons spike 
alternatively. These real-time millisecond-scale spiking 
activities reveal that biological behaviors can be reproduced 
accurately in real time. 

In addition to the behavioral analysis of the neurons firing 
patterns, their selectivity is also evaluated rigorously in 200 
runs, each with different weight initialization and random noise. 
In order to characterize the selectivity of the neurons in the 
proposed neuromorphic network, a criteria of selectivity index 
(SI) is defined as follows: 

( )
1

1
n

i pref
i

SI n nλ λ
=

 = − − 
 

∑                   (5) 

where n represents the stimulus events, λi represents the firing 
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rate in response to the ith stimulus event for a single neuron, 
and λpref represents the preferred stimulus event for the same 
neuron. The variable λpref is calculated based on the maximum 
firing rates of all the experienced stimulus events for each 
neuron. For the case of place selectivity, n=4 because the 
context-dependent task contains four physically different places, 
including A1, A2, B1, and B2. In order to implement the place 
selectivity, the mean firing rate for when the toy monkey 
encounters item X and Y is combined when the toy monkey is 
in each of these four places. In the case of item selectivity, n=2 
because two different items exist in the proposed context-
dependent learning task.  

 
Fig. 11. Experimental oscilloscope output results. The time division is set to ms, 
while the amplitude division is mV. (a) Firing activities in the information 
sensory layer. (b) Firing activities of eight randomly chosen neurons in the 
hippocampal functional layer. (c) Firing patterns of the two neurons in the 
motor layer. 

For the SI calculations, only neurons in the hippocampal 
functional layer are explored because this layer determines the 
selectivity capability. For all values of SI, the mean and 
standard deviation are calculated over four 50 trials as shown in 
Fig. 12. In this figure, four cases are investigated including (i) 
a neuromorphic network implementing the network shown in 
Fig. 2(a) but without the proposed fault-tolerant routing 
mechanisms and without faulty nodes (the first row of Fig. 12); 
(ii) the neuromorphic network without the proposed fault-
tolerant routing mechanisms but with faulty nodes (the second 
row); (iii) the proposed FCL framework without faulty nodes 
(the third row); and (iv) the FCL framework with faulty nodes 
(the fourth row). As shown in Fig. 12, the mean value of SI for 
place selectivity is around 0.8 and remains constant in the four 
different cases. The mean value of SI for item selectivity begins 
from around 0.8 and increases to around 1.0, while the mean 
value of context selectivity begins around 0.7 increasing to 
around 1.0. These values suggest that the place selectivity is at 
a continuous rate, but item and context selectivity improve 
during the context-dependent learning task. Overall, Fig. 12 
shows that, compared to a network without fault-tolerant 
routing, the proposed FCL network can solve the fault problems, 
successfully. Below, we present more experimental results, in 
all of which, the FCL framework with faulty nodes is used. 

 
Fig. 12. Selectivity of the neuromorphic network shown in Fig. 2(a) without the 
proposed MFTN algorithm in two cases of without and with faults (first two 
rows) and the proposed FCL framework with and without faults for different 
parts of the context-dependent learning task, i.e. place, item, and context 
selection. Here, the x axis shows four successive blocks each with 50 trials.  

A. Neuromorphic context-dependent learning capability 
In order to evaluate the learning performance of the proposed 

network, a criteria representing the weight change significance 
is defined as follows: 

( )2
4 0.5ij ijB W= −                               (6) 

where i∈1, 2,…, nsensory, and j∈1, 2,…, nhippo. The equation is 
defined so that the resulting value of Bij is large when the weight 
change is large, and it is small when the weight change has been 
small. Note that, the weight variation is larger when higher 
spiking activities occur within the network. 

In the performed experiments, the proposed neuromorphic 
network is trained in 100 epochs, each containing 130 trials. 
There are two phases in a trial. During the first phase, the model 
monkey explores the environment. After the first phase of a trial, 
the second phase replays the action sequence that is generated 
in the first phase. As shown in Fig. 13(a), the accuracy of the 
network is improved with increase in training epochs. In order 
to further enhance the learning capability, three improvement 
schemes can be investigated in the base network. The first 
scheme is to increase the number of layers in the proposed 
network. Full connections with excitatory synapses are then 
used between these layers, and lateral connections with 
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inhibitory synapses are used on each layer. By doing this, the 
deep learning capability of the proposed network can be 
investigated. The results of this change shown in Fig. 13(b), 
demonstrate that the learning accuracy drops and stays around 
60%. This means that the learning capability of the proposed 
neuromorphic network cannot be enhanced by increasing the 
number of layers of the hippocampal functional network. The 
second scheme is to increase the number of neurons within the 
hippocampal functional layer to explore whether the increasing 
neuron number will improve the learning capability.  

 
Fig. 13. Learning performance of the FCL framework with different network 
structures. (a) Learning accuracy of the original FCL framework trained in 100 
epochs. (b) Learning accuracy by adding another layer of spiking neurons. (c) 
Learning accuracy with 16 neurons in hippocampal functional layer. (d) 
Learning accuracy with 64 neurons in hippocampal functional layer. (e) 
Corresponding weight changes with the original FCL framework. (f) 
Corresponding weight changes  by adding another layer of spiking neurons. (g) 
Corresponding weight changes with 16 neurons in hippocampal functional 
layer. (h) Corresponding weight changes with 64 neurons in hippocampal 
functional layer. 

 
Fig. 13(c) and Fig. 13(d) show the learning accuracy of the 

networks whose hippocampal functional layers contain 16 and 
64 neurons, respectively. As shown in Fig. 13(d), the network 
with the hippocampal functional layer containing 64 neurons 
has the highest learning capability, which induces higher 
learning accuracy and higher learning speed compared to the 
other three schemes. As shown in Fig. 13(d) and Fig. 13(h), 
when the learning capability of the network is higher, the value 

of Bij is larger. In these figures, the first six neurons are in the 
information sensory layer, and the last two are in the motor 
layer. We randomly select eight synapses connected to the 
chosen neurons, and evaluate the value of Bij on those synapses. 
As shown in Fig. 13(h), when training does not actively happen, 
the proposed network does not experience significant weight 
changes. Thus the learning capability is not available in this 
network architecture. 

B. Context-dependent learning analysis 
In the implemented context-dependent learning task, there 

are eight input combinations according to the place, item, and 
context, which require eight hippocampal neurons to process 
the information. These eight combinations are shown on the x 
axis of Fig. 14(a). In this figure, each of the eight neurons (6 in 
the input sensory layer and two in the output motor layer) 
shown on the y axis, can only account for one input combination. 
The problem with this naive connectivity setting is that two or 
more neurons may learn the same combination, while others do 
not learn any combination. This results in the loss of useful 
information processed by the proposed network. In addition, 
with the combination number increasing, the network will be 
enlarged inducing larger hardware resource cost. Therefore, a 
different scheme with STDP learning rule is used. As shown in 
Fig. 14(b), each neuron can recognize two situations, and all the 
information can be learned. The neuron number of the 
hippocampal functional layer is increased to 16 and 40 
respectively as shown in Fig. 14(c) and Fig. 14(d). The network 
can recognize more combinations of situations, thus more 
information combination can be learned. In addition, as shown 
in Fig. 14(b-d), the activated neuron numbers are increased 
along with the increasing neuron number in the hippocampal 
layer, which results in the increasing learning accuracy as 
shown in Fig. 13(c) and Fig. 13(d). 

 
Fig. 14. Spiking situations with different inputs in the context-dependent 
learning task. 
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Fig. 15. Spiking activities of the proposed neuromorphic network with different 
layer number and neuron numbers in the hippocampal functional layer. (a) 
Raster plot with the original FCL framework without reward. (b) Raster plot 
with 2 layers in the hippocampal functional layer without reward. (c) Raster 
plot with 16 neurons in the hippocampal functional layer without reward. (d) 
Raster plot with 64 neurons in the hippocampal functional layer without reward. 
(e) Raster plot with the original FCL framework with reward. (f) Raster plot 
with 2 layers in the hippocampal functional layer with reward. (g) Raster plot 
with 16 neurons in the hippocampal functional layer with reward. (h) Raster 
plot with 64 neurons in the hippocampal functional layer  with reward. 

In order to analyze the difference in the learning accuracy of 
the various networks show in Fig. 14, the firing activities of 
these networks are assessed. In Fig. 15(a-d), the purple circles 
represent the number of spikes the digging neuron fires during 
training time without reward, and the light blue circles indicate 
the number of spiking activities with “moving” action without 
reward. The spike numbers of the “moving” and “digging” 
actions with reward are represented by yellow and dark light 
circles respectively in Fig. 15(e-h). As shown in Fig. 15(a), the 
number of false (unrewarded) “digging” actions are 
considerably large in the beginning of the learning (more purple 
circles). As the training continues, the unrewarded (false) 
actions begin to decrease. The same tendency occurs in Fig. 
15(e), in which the number of the “moving” actions (yellow 
circles) decreases with the training time increasing. Fig. 15(b) 
and 15(f) show the same results but for a larger network with 2 
layers in the hippocampal functional layer, respectively. These 
figures show that a larger network cannot improve the learning 
capability. The right and wrong actions occur alternatively 
without regularity in this case. Fig. 15(c-d) and Fig. 15(g-h) 
show the network with X neurons in its hippocampal functional 
layer, where X=16 for Fig. 15(c) and Fig. 15(g) and X=64 for 
Fig. 15(d) and Fig. 15(h). These figures suggest that the false 

actions can be reduced with the neuron number increasing. This 
enhances the context-dependent learning capability, which is 
consistent with the experimental results shown in Fig. 13. In 
addition, by comparing Fig. 15(a) and Fig. 15(b), it shows that 
the tendency towards firing of certain kinds of neurons in the 
network with reward will be stronger compared to the network 
without reward. 

C. Performance analysis of the proposed fault-tolerant 
algorithm 

The performance analysis of our proposed fault-tolerant 
algorithm for multiple fault nodes is presented in Fig. 16. Here, 
the northeast node on the bypass loop is defined as the reference 
node. As shown in Fig. 16(a), the performance of the proposed 
MFTN algorithm is better than Chen's algorithm [49] with 
different locations of faulty regions in the (8, 8) mesh network 
of neurons. As shown in Fig. 16, these algorithms follow a 
similar trend. The latency is the highest when the faulty region 
is in the network center, but it is the lowest when the fault region 
is located in the network vertex. This is because more nodes are 
affected when the fault region is in the network center, inducing 
the most influence on the data transmission latency. The figure 
shows that, no matter where the fault region is located, the 
latency performance with the proposed MFTN algorithm is 
better than Chen’s. When the communication latency is 80 μs, 
the improvements of the maximum event rate are 8.3%, 1.9% 
and 0.9% respectively when the reference node is located in 
network center (4, 4), network edge (5, 7) and network vertex 
(7, 2), respectively. Therefore, the best performance achieved 
using the proposed MFTN algorithm is when the fault region is 
located in the network center. This is because when the fault 
area is located in the network center, the number of source and 
destination nodes satisfying the optimization condition is the 
largest, therefore the improvement performance is the most 
obvious. When the fault nodes are located at the network vertex, 
the number of source and destination nodes satisfying the 
optimization condition is the lowest.  

With the enlargement of fault area, compared with Chen's 
algorithm, the proposed algorithm provides more significant 
latency advantage. In Fig. 16(b), the latency of the proposed 
algorithm is compared with Chen’s algorithm when the fault 
area is 2×2 (the location of the reference node is (4,4)), 2×3 (the 
location of the reference node is (4,4)), and 2×4 (the location of 
the reference node is (6,5)). Fig. 16(c) shows the same fault area 
size and reference node location as in part (b), but with fault 
regions changing along vertical direction. The results show that 
no matter the fault area enlarges along the horizontal or vertical 
directions, the network latency of the proposed algorithm is 
better than Chen's algorithm. 

When the network delay is 100 μs, compared with Chen's 
algorithm, the saturation injection rate increases by 5.2%, 11.7% 
and 16.1% respectively when the fault area enlarges 
horizontally (Fig. 16(b)); however, when the fault area enlarges 
vertically, the saturation injection rate increases by 5.2%, 5.5% 
and 6.1%, respectively (see Fig. 16(c)). This is because when 
the data encounters the fault region along the Y direction, the 
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proposed algorithm cannot reduce the distance from the source 
node to the destination node and the transmission length on the 
bypass. It also allocates part of the original data that needs to 
bypass along the left half of the fault region to the right half, to 
improve the load balance on the bypass loop. Furthermore, 
when the fault area enlarges along the horizontal direction, the 
number of nodes needed to bypass the fault area along the X 
direction decreases, and the number of nodes needed to bypass 
the fault area along the Y direction increases. Therefore, the 
network performance of the proposed algorithm is more 
prominent when the fault area increases along the horizontal 
direction. 

 
Fig. 16. Performance analysis of the fault tolerant algorithms for multiple fault 
nodes. (a) Communication latency with different locations of faulty regions in 
the (8, 8) Mesh network of neurons. (b) Communication latency with different 
areas of fault regions changing along horizontal direction. (c) Communication 
latency with different areas of fault regions changing along vertical direction. 

 

VII. DISCUSSIONS 
In this study, a neuromorphic context-dependent learning 

framework is proposed with a novel multiple-fault-tolerant 
spike routing scheme. In order to implement the targeted 
learning framework in hardware, the digital neuromorphic 
system LaCSNN is used, which uses FPGAs to implement 
neuromorphic models. With the advantages of low energy 
consumption, high reconfigurability, parallel processing 
capability, and fast time to market [29]-[36], field 
programmable gate array (FPGA) implementations show 
promising potential for high performance neuromorphic 

systems [50], [51]. In summary, there are three critical points to 
be discussed to highlight the contributions of the proposed 
framework, and to present potential directions for future studies.  

Firstly, a fault-tolerant neuromorphic architecture with a 
novel multicast routing scheme is presented, which is scalable 
and applicable to a variety of neuromorphic applications. The 
bypass method without virtual channels is used in the proposed 
fault-tolerant routing scheme implemented in the neuromorphic 
network in this study. In order to comprehensively compare our 
work with state-of-the-art, a multi-fault routing scenario is 
considered. As shown in Fig. 16, in comparison with a previous 
fault-tolerant routing scheme using bypass method [49], the 
improvements achieved in the event rate, when communication 
latency is 80μs, are 5.3%, 1.9% and 0.9% when the fault region 
is located in the network center, network edge, and network 
vertex, respectively. Furthermore, the event rate of the proposed 
fault-tolerant algorithm can be improved by 5.2%, 11.7% and 
16.1% when the fault area is enlarged along horizontal direction, 
and improved by 5.2%, 5.5% and 6.1% with the fault area 
increasing in size along vertical direction.  

Secondly, a digital neuromorphic context-dependent learning 
model inspired by hippocampus-mPFC pathway is proposed 
and implemented in this study. The neural mechanisms 
underlying the spiking activities of the hippocampus-mPFC 
network and context-dependent learning are fully investigated 
using the proposed neuromorphic FPGA framework. Fig. 12 
shows the neuronal selectivity of the network, which reveals 
that place selectivity rate remains constant during context-
dependent learning tasks, while item and context selectivity 
improve with learning. Fig. 13 shows that the learning 
performance can be enhanced by increasing the number of 
neurons in the hippocampal functional layer, while Fig. 15 
displays the spiking activities of the neurons underlying the 
context-dependent learning and confirms that more neurons in 
the hippocampal layer can lead to better context-dependent 
learning. 

Thirdly, our designed neuromorphic system integrates the 
proposed fault-tolerant routing capability with the 
hippocampus-mPFC pathway inspired context-dependent 
learning, in a unified framework. As shown in Table IV, 
although there are several digital neuromorphic systems with 
different types of neuron and synapse models and learning 
algorithms, none of them except Spinnaker [10], considers the 
important issue of faults and designing a fault-tolerant system 
[10], [14], [18], [21], [29]-[30], [36]-[44], [52]. Besides, to the 
best of our knowledge, there has been no previous 
implementation of a fault-tolerant framework for brain-inspired 
context-dependent learning. As shown in Fig. 12, Fig. 13 and 
Fig. 15, based on the proposed fault-tolerant framework, the 
context-dependent learning can perform flawlessly, while being 
affected by faulty nodes and regions of different sizes and 
locations. 

  
TABLE IV 
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COMPARISON OF THIS STUDY WITH STATE-OF-THE-ART DIGITAL 
NEUROMORPHIC SYSTEMS. 

Studies Contribution Learning  Fault-tolerant 

Kim et al., 2012 [43] Memristor synapse Yes No 

Ambroise et al., 2013 [37] Izhikevich network No No 

Moore et al., 2012 [39] Bluehive Yes No 

Furber et al., 2014 [10] SpiNNaker Yes Yes 

Merolla et al., 2014 [18] Truenorth Yes No 

Yang et al., 2015 [29] Basal ganglia No No 

Qiao et al., 2015 [44] ROLLS Yes No 

Cheung et al., 2016 [40] NeuroFlow Yes No 

Luo et al., 2015 [30] Cerebellar network Yes No 

Kim et al., 2016 [38] Neurocube Yes No 

Pani et al., 2017 [41] Izhikevich network No No 

Yang et al., 2018 [14] LaCSNN Yes No 

Yang et al., 2018 [36] Dopamine network No No 

Wang et al., 2018 [42] Cortex simulator No No 

Yang et al., 2019 [21] IBFT-based CMN Yes No 

This study FCL framework Yes Yes 

 

The proposed high-performance fault-tolerant digital 
neuromorphic system helps conveniently prove any 
neuromorphic study concept. However, other implementation 
technologies such as analog neuromorphic chips and 
memristive designs can be also investigated to implement the 
proposed FCL framework. Besides, due to its fault-tolerant 
capability, the proposed neuromorphic framework presents a 
versatile platform for the study of the neuronal mechanisms of 
many biologically inspired spiking neural networks for 
cognitive behaviors such as motor learning and visual 
recognition. It can also be explored to be applied in robotic 
decision-making tasks, and other applications including 
unmanned aerial vehicles, and brain-machine interfaces. 

VIII. CONCLUSIONS 
This study presented a brain-inspired framework for context-

dependent learning tasks implemented on the digital 
neuromorphic system LaCSNN. The proposed framework uses 
SNN models for information processing and STDP rule for 
learning. These are directly inspired by the mechanisms of 
biological hippocampus-mPFC networks. Experimental results 
show that the context-dependent learning can be conducted in 
real time. In addition, a fault-tolerant spike routing algorithm 
was proposed to make the proposed neuromorphic system for 
context-dependent learning prone to faulty hardware. We 

demonstrated that, various fault scenarios cannot impact the 
learning capability of the proposed system and the targeted 
context-dependent learning can be performed flawlessly. In 
addition, using the proposed novel routing method, the average 
latency and the maximum throughput of the system was shown 
to be significantly improved, compared to previous routing 
strategies. Furthermore, unlike many previous digital 
neuromorphic systems shown in Table IV, the proposed system 
in this work is one of the few neuromorphic systems that have 
fault-tolerant capabilities. The proposed fault-tolerant spike 
routing scheme will be applied to other brain-inspired 
computing tasks in neuromorphic systems. 

NOMENCLATURE 

Abbreviation Meaning Abbreviation  Meaning 
SNN Spiking neural 

network 
FCL Fault-tolerant 

context-dependent 
learning 

FPGA Field 
programmable gate 
array 

mPFC Medial prefrontal 
cortex 

LaCSNN Large-scale 
conductance-based 
spiking neural 
network 

AER Address event 
representation 

NoC Network on chip LIF Leaky integrate-
and-fire 

STDP Spike-timing 
dependent 
plasticity 

LTP Long term 
potentiation 

LTD Long term 
depression 

WTA Winner take all 

SLM Shift logic 
multipliers 

BIST Built-in self-test 

MFTN Multiple-fault 
tolerant  
neuromorphic 

CDG Component 
dependency graph 
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