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Abstract. Memristive devices including Resistive Random Access Memory
(RRAM) cells are promising nanoscale low-power components projected to
facilitate signi�cant improvement in power and speed of Deep Learning (DL)
accelerators, if structured in crossbar architectures. However, these devices
possess non-ideal endurance and retention properties, which should be modeled
e�ciently. In this paper, we propose a novel generalized empirical Metal-Oxide
RRAM endurance and retention model for use in large-scale DL simulations. To
the best of our knowledge, the proposed model is the �rst to unify retention-
endurance modeling while taking into account time, energy, SET-RESET cycles,
device size, and temperature. We compare the model to state-of-the-art and
demonstrate its versatility by applying it to experimental data from fabricated
devices. Furthermore, we use the model for CIFAR-10 dataset classi�cation
using a large-scale Deep Memristive Neural Network (DMNN) implementing the
MobileNetV2 architecture. Our results show that, even when ignoring other device
non-idealities, retention and endurance losses signi�cantly a�ect the performance
of DL networks. Our proposed model and its DL simulations are made publicly
available.
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1. Introduction

RRAM devices have attracted signi�cant attention for
use in next generation DL and neuromorphic archi-
tectures to perform in-memory computing operations,
which can reduce power usage and time complexity,
massively augmenting performance [1�4]. However,
RRAM is an emerging technology with a number of
limitations including endurance and retention losses, as
depicted in Fig. 1. Consequently, signi�cant research
e�orts are being made to e�ciently and accurately
model device limitations to improve the reliability and
robustness of RRAM-based DL architectures [5�7].

In this paper, we propose a generalized empirical
Metal-Oxide RRAM device endurance and retention
model. We compare our model to related works
and demonstrate its versatility by using it to �t
experimental data from several devices. We then
deploy the model within large-scale DL simulations
to implement the MobileNetV2 Convolutional Neural
Network (CNN) architecture to investigate how
device endurance and retention losses a�ect inference
performance using the CIFAR-10 dataset.

2. Related Work

Previous works have investigated Metal-Oxide RRAM
endurance and retention losses experimentally [8�15],
numerically [16], and analytically [17�23]. Table 1
compares the proposed model with previous numerical
and analytical RRAM device-level endurance and
retention models. Given the increasing popularity
of RRAM-based DMNNs, a number of works [8,
11�13, 17�20] speci�cally consider endurance and
retention loss e�ects on DMNNs performance. While
most models [17, 21�23] are inherently physics-
based and model various phenomena and internal
device mechanics using fundamental physics principals,
others [16, 18�20] adopt a generalized high-level
approach, and model device behavior empirically. Our
model �ts into the latter group, and is the �rst to:

1. Accurately model device endurance and retention
behavior, before and after the conductance
window begins to collapse; and

2. Model both gradual and sudden window collapse;
and

3. Model temperature, cell size, and when modeling
endurance, the voltage dependence, Vstop; and
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Figure 1: (A) The formation of a conductive
�lament within metal-oxide RRAM devices results in
low resistive states, whereas its partial destruction
increases the resistivity to high resistive states. (B)
When a voltage is applied, defects are gradually
created within the conductive �lament [24], which
cause endurance losses. (C) Oxygen ions return to the
previous thermal equilibrium state during the baking
process, which causes retention losses.

4. Model endurance and retention interchangeably
using a uni�ed methodology.

The proposed model is well suited toward DL modeling
using memristors, as the behavior of new devices
can easily be modeled using tools provided in our
supplementary materials ;, it is highly integrable ;,
and it is able to capture a large range of Metal-Oxide
RRAM device behavior, as depicted in Fig. 2, Fig. 3,
and Fig. 4.

Table 1: Comparison of RRAM endurance and
retention models. :Models are de�ned independently.

Model
Models

Endurance Retention

Endurance Statistical [16] 3
Statistical State Instability and Retention [17] 3

Reliability Perspective [18�20] 3: 3:

Endurance, Retention and Window Margin [21] 3
Retention Model for High-Density RRAM [22] 3
Voltage-Controlled Cycling Endurance [23] 3

Proposed 3 3
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Figure 2: Experimental endurance data from various Metal-Oxide RRAM device types, and the behavior of
our proposed model. (A) TiN/Hf(Al)O/Hf/TiN [25] devices with di�erent cell sizes, (B) Cu/HfOx/Pt [26]
devices, and results from the proposed model in gradual resistance convergence operation mode; (C)
TiN/Hf(Al)O/Hf/TiN [25] devices with di�erent cell sizes, (D) TiN/Electro-thermal Modulation Layer
(ETML)/HfOx/TiN [8] devices, and results from the proposed model in sudden resistance convergence operation
mode.
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Figure 3: Experimental retention data from various Metal-Oxide RRAM device types, and the behavior of
our proposed model. (A) Pt/Cu:MoOx/GdOx/Pt [27] devices operating at di�erent temperature points, and
results from the proposed model in sudden resistance convergence operation mode; (B) TiN/HfOx/TiN and
Ti/HfAlO/TiN devices [28] operating at di�erent temperature points, and results from the proposed model in
sudden resistance convergence operation mode; (C) TiN/HfOx/TiN [29] devices and results from the proposed
model in gradual operation mode, where the temperature was elevated from room temperature (25°C) to 125°C
depicted using a blue background segment between 1200s and 106s; (D) Relationship between the retention time
to failure, τR, and conductive �lament diameter, φ, of Au/NiO/Si [30] devices, and results from the proposed
model, where φ is substituted for the cell size, and τR9eth, i.e., τR � p0e

p1φ�p2Tc .: The conductive �lament size,
which can be representative of device dimension, was obtained using a piecewise linear �t of the mean activation
energy, EAC , as done in [30].

3. Proposed Model

The proposed model has two modes of operation. The
�rst mode assumes that resistance states gradually
converge after a device-speci�c threshold energy level is
exceeded, and can be used to model device endurance
and retention, as depicted in Fig. 2 (A,B) and Fig. 3
(B,C). The second mode, on the other hand, assumes
sudden failure, and can be used to model device
endurance, as depicted in Fig. 2 (C,D) and Fig. 3 (A).
The gradual convergence of resistance states is modeled
as

Rpx, s, T q �

$'&
'%
R0 x ¤ eth

10p3pp1s�p2Tcqlogpxq�logpR0q

�p3pp1s�p2Tcqlogpethq
otherwise,

(1)
and the sudden convergence of states is modeled as

Rpx, s, T q �

#
R0 x ¤ eth

R8 otherwise,
(2)
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where the device-speci�c threshold energy level, eth, if
exceeded, causes the resistance window of a device to
collapse either gradually or suddenly, is modeled using

eth � p0e
p1s�p2Tc . (3)

The temperature constant, Tc, is expressed as

Tc � min(
Tth
T

, 1), (4)

which is used to introduce temperature dependence to
the model. Using (1)�(4), the resistance state of a
device, R, is determined using four parameters, x, s, T ,
and Tth, and various �tting parameters, p. Here, R8,
the collapsed resistive state to which RON and ROFF

converge, is bounded to the range rRON, ROFFs [8,
15, 23, 25, 29, 31]. x denotes either the time (s), the
energy (J), or the number of SET-RESET cycles, s
denotes the device cell size (nm), when the depth and
width are �xed, or the �lament volume (nm3) when
they are not, T denotes the operating temperature
(K), and Tth denotes the temperature threshold, that
if exceeded, accelerates device failure. For both modes
of operation, p0 modulates the magnitude of eth, and
p1 and p2 modulate the strength of the dependence on
s and T , respectively. For instances where s is �xed,
p1 = 0, and for instances where T is �xed, p2 = 0.
When modeling the gradual convergence of resistance
states, p3 is used to modulate the rate of failure once
eth is exceeded. We believe that, given su�cient
data, all �tting parameters could be related to physical
device parameters, such as those determined using ab
initio calculations in [21], including formation enthalpy
energies, ∆H, migration barriers, Ed, and hopping
distances between sites during ion migration, dh.

The parameter p0 in (3) can be modulated using
(5) when modeling endurance to introduce dependence
to Vstop, the most negative voltage in the negative
voltage sweep during the RESET cycle [23].

p0 �
10Kp1�p2V̄stop�1q2q

ep1s�p2Tc
(5)

K is used to modulate the amplitude, and Vstop is
mapped to V̄stop P r0, 1s. Fig. 4 demonstrates the
inclusion of Vstop dependence in the proposed model,
where x is assumed to denote the number of SET-
RESET cycles, and the model to be used will operate
in sudden resistance convergence mode. In this �gure,
the optimal point corresponds to the optimal Vstop
value, i.e., the Vstop value for a given device that
maximizes eth. Given su�cient experimental data
observing the relationship between Vstop and eth, the
mapping bounds of Vstop can be determined, and the
K parameter can be determined using Nonlinear Least
Squares Regression (NLSR).

The following assumptions are made in our
modeling:

1. The waveform used to program each device is
constrained, and only Vstop is mutable; and

2. The impacts of the compliance current, Ic, and the
maximum set voltage magnitude are considered
negligible [23]; and

3. Resistance states converge to R8 when device
failure occurs; and

4. Resistance states are stable until a device-speci�c
threshold energy level, eth, is exceeded; and

5. (5) is constrained to be symmetrical around the
optimal point.

4. Model Validation

To validate the proposed model, we �t it to
experimental data from various fabricated devices,
indicative of a variety of use cases, as shown in Fig. 2,
Fig. 3, and Fig. 4. NLSR is used to �t the model
empirically to each device type. In Fig. 2 and Fig. 3
(C), two sets of parameters are used to model ROFF

and RON, respectively, for each simulated device. In
Fig. 3 (A,B), one set of parameters are used to model
RON. To the best of our knowledge experimental data
for ROFF is currently not available in literature.

In Fig. 3 (D), we model the relationship between
the retention time to failure, τR, and the conductive
�lament diameter, φ, of Au/NiO/Si [30] devices. The
conductive �lament size, which can be representative
of device dimension, was obtained using a piecewise
linear �t of the mean activation energy, EAC , which
accounts for metallic and semiconductor-like behavior,
as done in [30]. V̄stop dependence is validated in
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dependence. Experimental data is extracted from
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Figure 5: An overview of the mapping process of Linear (dense) and Conv2d (convolutional) layers onto a 3�2
tiled architecture with tiles constructed using 128 (2 � 8 � 8) devices. (A) Linear layers are mapped directly
onto crossbar tiles. (B) Convolutional layers are unfolded before being mapped onto crossbar tiles. (C) Tiled
architectures contain several modular crossbar tiles connected using a shared bus. (D) Modular crossbar tiles
consist of crossbar arrays with supporting peripheral circuitry, and can represent weights using a dual-array
scheme (as depicted), a dual row scheme, where double the number of rows are required, or a current-mirror
scheme, that is capable of operation using a singular device to represent each weight [32].

Fig. 4 using TiN/HfOx/TiN devices [23]. We note
that variations between experimental data and the
behavior of the proposed model could be further
reduced by simulating other device non-idealities, such
as conductance drift, evident in Fig. 2 (C) and Fig. 3
(A), however, this is beyond the scope of this paper.
In favour of reproducible research, our model, its
�tting parameters, and all of the information required
to reproduce the reported results are made publicly
available ;.

5. Large-scale Deep Learning Simulations

Exemplar large scale DL simulations were per-
formed that modeled the gradual and sudden
resistance state convergence on account of en-
durance and retention losses of TiN/Hf(Al)O/Hf/TiN,
TiN/ETML/HfOx/TiN, and TiN/Hfx/TiN RRAM de-
vices using the VTEAM model [33] within layers of
a DMNN employing 1-Transistor 1-Resistor crossbars.
These crossbars were constructed by converting linear
and unfolded convolutional layers from a pre-trained
MobileNetV2 CNN that achieved 91.93% accuracy on
the CIFAR-10 test set. In Fig. 5, we overview the map-
ping process of linear and convolutional layers onto a
modular tiled architecture. Batch-normalization, pool-
ing, and activation functions, which are simulated in
our experiments, should be implemented using addi-
tional circuitry to realize the other computations re-
quired for a DL task. Inputs are unfolded and scaled,
prior to being presented to the network. By generaliz-
ing this approach, modular crossbar tiles and digital

; https://github.com/coreylammie/SST-Reproducibility

Algorithm 1 Adopted simulation methodology.

1. Map Network Parameters

for each convolutional and linear layer do

Wmax � descending_orderpabspW qrsizepW qsq
Wmin � Wmax{pROFF{RONq
Wpos � W rW ¥ 0s, Wneg � W rW   0s
for each device, Rposri, js, Rnegri, js in Wpos,

Wneg do

Rposri, js �
pRON�ROFFqpWposri,js�wminq

|w|max�wmin
�

ROFF

Rnegri, js �
pRON�ROFFqpWnegri,js�wminq

|w|max�wmin
�ROFF

end for

end for

2. Tune Memristive Layers

for each converted memristive layer do

if the layer is convolutional then

P � p8 � in_channels� 32 � 32q
else if the layer is linear then

P � p8 � in_featuresq
end if

determine β0 for Ỹ � β0X̃, where Ỹ denotes the

legacy layer's output and X̃ denotes the converted

layer's output when a randomly generated tensor

of size P is propagated.

end for

3. Model Device Endurance and Retention

for each value of x to simulate do

for each converted memristive layer do

for each device, Rposri, js, Rnegri, js in

Wpos, Wneg do

Rposri, js,Rnegri, js �
Rpx, s, T, V̄stopq

end for

end for

determine the test set accuracy for the given x
value

end for

https://github.com/coreylammie/SST-Reproducibility
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Figure 6: Large-scale DL simulations of TiN/Hf(Al)O/Hf/TiN, TiN/HfOx/TiN, Pt/Cu:MoOx/GdOx/Pt,
TiN/HfAlO/TiN, and Au/NiO/Si devices. (A,E) gradual endurance failure; (B,F) sudden endurance failure;
(C,G) gradual retention failure; (D,H) sudden retention failure.

circuitry can be used to perform inference of any
arbitrary Deep Neural Network (DNN) [34].

Algorithm 1 details our simulation methodology,
in which a double-column scheme is used to represent
network weights within memristive crossbars, i.e., a
dual-array scheme is adopted. All RRAM devices are
assumed to operate as fully analog devices, and other
device non-idealities are ignored. Analog to Digital
Converters (ADCs) are assumed to have a bit-length
of 8, and modular crossbar tiles are constructed using
two arrays of 128 � 128 devices, representing positive
and negative parameters, respectively. Unfolded inputs
are scaled and encoded using voltage signals between
�0.3V [35].

After network parameters are mapped, to tune
each memristive layer, random inputs of variable
size that are sampled from uniform distributions
between �1.0 are presented to each layer. The
readout currents of each column associated with
each layer are linearly related to each layer's desired
output. Prior to endurance and retention losses,
our RRAM-based networks achieved 91.69% accuracy
on the CIFAR-10 test set. We attribute the
small performance degradation to quantization noise
introduced from ADCs and the non-ideal mapping and
tuning methodologies employed. The results from six
exemplar large-scale DL simulations are presented in
Fig. 6. Each surface plot is constructed from the results
of 100 individual simulations (one per point).

In Fig. 6 (A,B,E,F), the CIFAR-10 test set accu-
racy is reported after each SET-RESET cycle to in-
vestigate the performance degradation on account of

endurance losses, i.e., we assume massive reprogram-
ming in the DNN accelerator is performed. vstop was
extrapolated using (5), where maxpvstopq was arbitrar-
ily chosen to be 1.6, due to the unavailability of ex-
perimental data on vstop. K and the mapping bounds
of vstop were determined using operational points from
each device. In Fig. 6 (C,D,G,H), the CIFAR-10 test
set accuracy is reported at each time-step to investi-
gate the performance degradation on account of reten-
tion losses. TiN/Hf(Al)O/Hf/TiN devices from Fig. 2
(A) are modeled to achieve the results in Fig. 6 (A)
and Fig. 6 (E), for devices with cell sizes of 10nm
and 20nm, respectively; TiN/Hf(Al)O/Hf/TiN devices
from Fig. 2 (C) are modeled to achieve the results in
Fig. 6 (B) and Fig. 6 (D), for devices with cell sizes of
20nm and 40nm, respectively; Ti/HfOx/TiN devices
from Fig. 3 (B) are modeled to achieve the results in
Fig. 6 (C); Pt/Cu:MoOx/GdOx/Pt devices from Fig. 3
(A) are modeled to achieve the results in Fig. 6 (D);
Ti/HfAlO/TiN devices from Fig. 3 (B) are modeled to
achieve the results in Fig. 6 (G), and Au/NiO/Si de-
vices from Fig. 3 (D) are modeled to achieve the results
in Fig. 6 (H). From Fig. 6, it can be observed that the
proposed model is capable of robustly modeling en-
durance and retention losses of Metal-Oxide RRAM
devices within large-scale DL simulations.

6. Discussion and Conclusion

We proposed a novel generalized empirical Metal-
Oxide RRAM device endurance and retention model
for use in large-scale simulations. We demonstrated
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its versatility by �tting it to experimental data from
various devices, and using it for large DL simulations.
Our �ndings show that, even when other device non-
idealities are ignored, endurance and retention losses
signi�cantly a�ect the reprogrammability of DMNNs,
degrading their learning and inference accuracy. A
limitation of the proposed model is the lack of a
clear link between its parameters and physical device
parameters. This is mainly due to unavailability
of experimental data, which resulted in developing
an empirical, rather than a physics-based model.
Additionally, while this work only focuses on endurance
and retention and their impact on memristive deep
learning networks performance, future improvements
of our model can account for modelling a �nite
number of conductance states and other device non-
idealities [32,36].
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