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Abstract—The cerebellum plays a vital role in motor learning 
and control with supervised learning capability, while 
neuromorphic engineering devises diverse approaches to high-
performance computation inspired by biological neural systems. 
This paper presents a large-scale cerebellar network model for 
supervised learning, as well as a cerebellum-inspired 
neuromorphic architecture to map the cerebellar anatomical 
structure into the large-scale model. Our multi-nucleus model and 
its underpinning architecture contain approximately 3.5 million 
neurons, upscaling state-of-the-art neuromorphic designs by over 
34 times. Besides, the proposed model and architecture 
incorporate 3411k granule cells, introducing 284 times increase 
compared to a previous study including only 12k cells. This large 
scaling induces more biologically plausible cerebellar 
divergence/convergence ratios, which results in better mimicking 
biology. In order to verify the functionality of our proposed model 
and demonstrate its strong bio-mimicry, a reconfigurable 
neuromorphic system is used, on which our developed architecture 
is realized to replicate cerebellar dynamics during optokinetic 
response. In addition, our neuromorphic architecture is used to 
analyse the dynamical synchronization within the Purkinje cells, 
revealing the effects of firing rates of mossy fibres on the resonance 
dynamics of Purkinje cells. Our experiments show that real-time 
operation can be realized, with system throughput of up to 4.70 
times larger than previous works with high synaptic event rate. 
These results suggest that the proposed work provide both a 
theoretical basis and a neuromorphic engineering perspective for 
the brain-inspired computing and the further exploration of 
cerebellar learning. 

Index Terms—cerebellum model, supervised learning, motor 
learning, neuromorphic engineering, spiking neural network 
(SNN). 

I. INTRODUCTION 
deep understanding of the structural and dynamic 
complexity of the human brain is highly dependent on the 
development of large-scale, anatomically detailed models 

of the brain network, which can reveal the mechanisms of how 
neuronal and synaptic processes interact to generate the 

collective behaviors of the brain [1]. Large-scale network 
simulation is essential because even a simple human behavior 
involves several million neurons [2]. In addition, for the sake of 
further exploration of the neural information processing 
mechanism underlying collective behaviors of the brain, it is 
important to realize a large-scale biologically inspired model of 
the mammalian brain [3].  

The cerebellum, a critical part of the human brain, is 
responsible for motor control, sensorimotor coordination and 
adaptive learning. It is connected with the most vital parts of the 
central nervous system, such as the brain-stem, basal ganglia, 
spinal cord, limbic system, cerebral cortex and thalamus [4]-[6]. 
Learning implicit memory tasks is another cerebellum function 
with strong plastic modifications [7]-[8]. Cerebellum also 
participates in the regulation of somatic balance, muscle tone 
and coordination of voluntary movements. From the 
engineering perspective, the cerebellum is considered an 
adaptive control system [9]-[10] and is critical for computations 
involving daily manipulation tasks. It implements a 
feedforward, nonlinear regulator through learning the intrinsic 
dynamics of a robotic arm. It is also responsible for 
coordinating emotional and visceral functions, making sensory 
predictions, and elaborating certain aspects of cognition [11]-
[13]. The cerebellum contains several critical components, 
including granule cells (GrCs), Golgi cells (GoCs), deep 
cerebellar nucleus (DCN) cells, Purkinie (PKJ) cells, inferior 
olive (IO) cells, climbing fibers (CFs), mossy fibers (MFs) and 
parallel fibers (PFs). These components constitute a schematic 
of the neural circuit involved in OKR adaption presented by a 
previous experimental study [31]. GrCs and GoCs are 
responsible for processing signals from MFs to provide a sparse 
code and receiving excitatory input, respectively. PKJ cells are 
responsible for recognizing the activity pattern of GrCs. DCN 
and IO cells are responsible for receiving signals and outputting 
neural signals, respectively. CFs originate from IO neurons. 
CFs, MFs and PFs are responsible for transmitting the signals 
between each neural cluster. PFs are the neurons connecting the 
cerebellum to the outside. PKJ cells are a class of GABAergic 
neurons located in the cerebellar cortex. The overall input-
output function of the cerebellar network model is adaptive 
based on spike timing dependent plasticity (STDP) mechanisms 
at different sites [14]. STDP is a Hebbian-based learning rule 
that adjusts the synaptic weight of neuron connections using the 
timing information of the presynaptic and postsynaptic spikes. 
The STDP learning mechanism is widely used in building the 
biologically plausible SNN models for various brain regions, 
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and contains two major mechanisms known as long-term 
potentiation (LTP) and long-term depression (LTD). Although 
several sites in the cerebellar circuitry have self-learning 
processes, one of the most vital learning mechanisms is LTD at 
the parallel fiber-Purkinje cell (PF-PKJ) synapses that is closely 
related to cerebellar motor learning [15]-[16]. Another type of 
learning is LTP, which does not require CF activation and can 
compensate for the effect of LTD [20]. The LTP will induce a 
weight increase when it receives the firing spike from the GrCs, 
and the LTD is responsible for the teaching signals from IO 
cells. According to previous studies, the LTD and LTP will not 
occur at the same time [21]. In the learning process, the IO 
output can be regarded as an error-related signal that induces 
plasticity [17]-[19]. Due to strong plasticity characteristics, the 
cerebellum can be regarded as a learning machine. 

In this study, a non Von Neumann computing architecture is 
presented to emulate the large-scale cerebellar network model 
to provide more biologically plausible characteristics of the 
cerebellum based on large-scale conductance-based spiking 
neural network (LaCSNN) system, which is digital 
neuromorphic architecture designed for simulating large-scale 
spiking neural networks [22]. The LaCSNN includes six Altera 
EP3SE340 FPGA chips that can communicate with each other 
using a multicast router. The computational efficiency and 
scalability of LaCSNN are significantly higher than central 
processing unit (CPU), graphics processing unit (GPU) and 
multi-core systems [22]. Due to its powerful computational 
capability, it can bridge the gap between the cellular level and 
the network level of a large-scale brain, and is suitable to 
simulate conductance-based network models, hence, we use it 
for our large-scale cerebellar network emulations.  

Some progress has been made on simulating large-scale 
cerebellum network on other hardware platforms. Yamazaki et 
al. [23] presented real-time cerebellum network simulations 
using graphics processing unit (GPU), but its scalability is still 
limited and it is constrained by memory and bandwidth issues 
[24]. Another work simulated the cerebellum network based on 
the custom EDLUT platform [25], but the number of neurons 
on the platform is only 2100, which cannot be considered as 
sufficiently large considering the approximately 1011 granule 
cells in the cerebellum. Luo et al. used a FPGA chip to simulate 
the passage-of-time encoding in a large-scale cerebellar 
network [26], but it lacks learning mechanisms. Besides, it only 
contains GrCs and GoCs, which cannot reproduce the cognition 
functions of the cerebellum. Solinas et al. presented a realistic 
large-scale model of the cerebellum granular layer, but it does 
not have self- learning mechanisms, and cannot simulate in 
real-time, limiting its application [27]. Significantly advancing 
the previous efforts in simulating large-scale cerebellum 
networks, this paper focuses on the scalable modeling and 
implementation of large-scale spiking neural network with self-
learning mechanism that can simulate the relevant dynamical 
behaviors in real-time.  

The remainder of the paper is organized as follows. Section 
II describes our self-learning cerebellar spiking neural network 
model. In Section III, the detailed hardware implementation of 
the cerebellar network using the LaCSNN system is presented, 

and a set of designs are proposed to address the challenges in 
implementing the large-scale spiking neural network. 
Experimental results are presented in Section IV, including 
exploration of the system dynamics, hardware performance and 
precision analysis. Section V discusses the application of the 
presented cerebellar network, with comparisons to state-of-the-
art techniques. This Section also discusses the limitations of the 
implemented cerebellar network and suggests future research 
directions. Finally, the paper is concluded in Section VI. 

II. THE CEREBELLAR SPIKING NETWORK MODEL  

A. Cerebellar network architecture and motor control 
The proposed cerebellum architecture is shown 

schematically in Fig.1(a), which is based on the Marr-Albus-Ito 
theory of cerebellar function [28]-[30]. MFs are modeled to 
simulate individual Poisson spikes and provide excitatory 
signals to GrCs and VN cells. GrCs, GoCs and MFs transmit 
signals to each other through a structure called the cerebellar 
glomerulus, that are complex synaptic nests and closely packed 
collections of synaptic endings formed by the enlarged ends of 
the MFs, the dendrites of the GrCs and the axons or proximal 
dendrites of the GoCs. The PKJ cells receive synaptic current 
from GrCs groups through the PFs and from IO cells through 
CFs. The GrC neurons transmit the synaptic information to PKJ 
neurons through parallel fibers, where synaptic plasticity exists. 
Teaching signals are generated by the IO neuron and 
transmitted to PKJ neurons to change the synaptic weight of PF-
PC. The output of the cerebellar network is given by VN cells 
that connect to all the PKJ cells. It is worth noting that CFs 
originated from IO cells. 

There are two known pathways for updating synaptic strength 
during cerebellar learning. In the first pathway, MFs increase or 
decrease output responses using direct excitatory connections 
with the VN cells. In the second pathway, the excitatory 
synapses from GrCs to PKJ cells are modified based on the CF 
inputs, inducing synapses that activate before the weight of CF 
inputs decrease. The PKJ cells then reduce their activity when 
the same input occurs at the next time. The decrease in the 
activities of PKJ cells causes the weights of the excitatory 
synapses from MFs to VN cells to increase, resulting in more 
responsive VN cells to the same inputs of MFs. These 
modifications of synapses at the two sites are the basis of 
feedforward prediction and are considered to be the foundation 
of the capability of cerebellum to coordinate and fine-tune 
motor responses. 

Fig. 1(b) shows a schematic of the cerebellar neural circuit 
involved in horizontal optokinetic response (OKR) eye 
movements, which is fully described in [31]. Information of 
visual motion is transmitted from the retina via the pretectum 
and nucleus reticularis tegmenti pontis (NRTP) by MFs to the 
DCN and to the zone of flocculus that manages the horizontal 
movement of the eyeball. In addition, it is also transmitted to 
the flocculus via CFs by the IO, receiving inputs from the 
pretectum. The vestibular nucleus (VN) is inhibited by the 
floccullus, driving extraocular muscle motor cells. In this study, 
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the cerebellar cortex, i.e. flocculus, and VN, IO, and MFs, are 
modeled to explore the intrinsic dynamics of the flocculus and 
VN. The abbreviation of AN, ON, LR, and MR represent 
abducens nucleus, oculomotor nucleus, lateral rectus and 
medial rectus, respectively. 

 

Fig. 1. Cerebellar structure and its motor learning. (a) The structure of the 
cerebellum model. (b) Schematics of the neural circuitry for optokinetic 
response (OKR) adaption in rabbits.   

 

B. Network model 
A previous study [32] suggests that our cerebellar neurons 

including GrCs, GoCs, VN, and IO cells, can be modeled as 
conductance-based leaky integrate-and-fire, dynamics of which 
is given by: 

0

( ( ) ) ( )( ( ) )

            ( )( ( ) ) ( )( ( ) )
            ( )( ( ) )

leak leak AMPA exc
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ahp ahp app
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g t V t E g t V t E
g t t V t E I

= − − − −

− − − −

− − − +
,       (1) 

where C is the capacitance and V is the membrane potential at 
each simulation step, t. The parameter Eleak represents the 
leakage potential, and Eahp represents the post-
hyperpolarization potential. The parameter gx represents the 
resting conductance while Ex represents the resting potential 
where x can be either of leak, α-amino-3-hydroxy-5-methy1-4-
isoxazolepropionic acid (AMPA), N-methy1-D-aspartate 
(NMDA), inhibitory (inh), after-hyperpolarization (ahp). The 
term Iapp is spontaneous current that only exists in few types of 
cells. For synaptic currents, synapse conductance has an 
exponentially different time course, which is proportional to the 
probability of postsynaptic channel opening (P). The parameter 
t0 is the presynaptic spike time. For each type x, the current is 
calculated from conductance gx and reversal potential Ex, where 

subscript x∈{leak, AMPA, NMDA, inh, ahp}.  

 
Table 1 Summary of model parameters in the cerebellum network 

Parameters PKJ GrC GoC BS VN IO 
θ (mV) -55.0 -35.0 -52.0 -55.0 -38.8 -50.0 
C (pF) 107.0 3.1 28.0 107.0 122.3 10.0 
gleak (nS) 2.32 0.43 2.3 2.32 1.64 0.67 
Eleak(mV) -68.0 -58.0 -55.0 -68.0 -56.0 -60.0 
ĝAMPA (nS) 0.7 0.18 45.5 0.7 50.0 1.0 
ĝNMDA (nS) -- 0.025 30.0 -- 25.8 -- 
Eexc (mV) 0 0 0 0 0 0 
ĝinh (nS) 1.0 0.028 -- -- 30.0 0.18 
Einh (mV) -75.0 -82.0 -- -- -88.0 -75.0 
ĝahp(nS) 0.1 1.0 20.0 0.1 50.0 1.0 
Eahp (mV) -70.0 -82.0 -72.7 -70.0 -70.0 -75.0 
τahp (ms) 5.0 5.0 5.0 5.0 2.5 10.0 
Ispont (nA) 0.25 -- -- -- 0.7 -- 

 
Table 2 Parameter values of the exponential functions 

Cell types Exponential functions 
PKJ αAMPA(t)=e-t/8.3, αinh(t)=e-t/10.0 
GrC αAMPA(t)=e-t/1.2, αNMDA(t)=e-t/52.0, αinh(t)=0.43e-t/7.0+0.57e-t/59.0 
GoC αAMPA(t)=e-t/1.5, αNMDA(t)=0.33e-t/31.0+0.67e-t/170.0 
BS αAMPA(t)=e-t/8.3 
VN αAMPA(t)=e-t/9.9, αNMDA(t)=e-t/30.6, αinh(t)=e-t/42.3 
IO αAMPA(t)=e-t/10.0, αinh(t)=e-t/10.0 

 
The computation of conductance is defined by the 

convolution of the exponential function αj(t) and the spike event 
δj(t) of presynaptic neuron j at time t as follows: 

( ) ( ) ( )
t

x x j j
j

g t g w t s s dsα δ
−∞

= −∑ ∫ ,         (2) 

where xg  represents the maximum conductance and wj stands 
for the efficacy of signal transmission considered as the 
synaptic weight from the presynaptic neuron j. The neuron fires 
when the membrane potential reaches and exceeds the threshold 
θ, which is described by the after-hyperpolarization value and 
determines the refractory period. The after-hyperpolarization 
conductance is 

( ) ( )( )ˆ ˆexpahp ahpg t t t t τ− = − − ,         (3) 

where τahp represents time constant of after-hyperpolarization, 
and t̂  represents the last spiking time of the neuron. The 
parameter values used for our experiments are reported in Table 
1 and Table 2. These parameters were taken from previous 
known physiological experimental papers that are listed in 
Sections S1 and S2 in Supplementary material.  

C. Learning mechanism of the cerebellar network 
The synaptic conductance of the proposed cerebellar model is 

changed based on the spike-timing-dependent plasticity (STDP) 
learning rule. Unlike the previous studies such as [34], which 
used only one learning mechanisms to govern the cerebellar 
synaptic conductance, this work uses three different learning 
mechanisms to implement a more biologically faithful model. 
The first learning mechanism used is STDP that modifies 
synaptic connections between PF and PC and is vital for motor 
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learning. This STDP mechanism includes LTP and LTD. 
According to [35]-[36], LTP is the default response in the STDP 
of PF-PC connections and the switching between LTD and LTP 
is determined by the local calcium concentration. The synaptic 
weight between GrCj to PKJi at time t is represented by 
wPKJi→PFj(t), which is  

( ) ( )( ) ( )

( ) ( ) ( )

( )

50

0

1 0.0005

                0.005

                

j i j i

j i

j i

PF PKJ init PF PKJ j

PF PKJ j
t

PF PKJ

w t w w t PF t

w t CF t PF t t

w t

→ →

→
∆ =

→

+ = −

− − ∆

+

∑ ,  (4) 

where PFj(t) and CF(t) equal to PFj or CF spikes at time t, 
otherwise equal to 0. The first term is LTP by PF stimulation 
only [36]-[37]. The second term is LTD by conjunctive 
activation of a CF and a PF, which is activated 0-50 ms earlier 
than the activation by CF. The constant winit=1 denotes the 
initial synaptic weight. The parameter values are based on 
experimental findings of previous works that are listed in 
Section S1 in Supplementary material. 

The second learning mechanism used alters the MF-VN 
synaptic connections, which were proposed in previous studies 
to explore the effect of multiple plasticity sites on cerebellar 
learning [38] as 

( )

( ) ( )5

5
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10          if MF  active, 
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with the ancillary relationship 

( )
1    if  is active at time 
0    otherwise

i
MFi

MF s
sδ


= 


,      (6)  

and the kernel function  

( )
2

cos
z zK z e τ

τ
−   =   

  
,           (7) 

where tPKJspikej is the time when the corresponding jth PKJ cell 
spikes, and K(z) is the integral kernel function. The parameter 
values are based on experimental findings of previous works 
that are listed in Section S2 in Supplementary material. The 
constant τ is employed to normalize the arguments in the 
learning rule. The standard spike-timing-plasticity method 
between PKJ and VN nuclei defines the third learning 
mechanism [39]. The inhibitory synapses from the two PCs to 
the corresponding VN strengthen when a PKJ cell spikes after 
VN spiking within an LTP time window (20 ms). Otherwise, 
the LTD synaptic weight changes when the opposite 
chronological ordering of events occurs within an LTD time 
window (60 ms).  

D. Address event representation (AER) communication 
In neural systems of the mammalian brain, action potentials, 

i.e., spikes, are transmitted along axons carrying long-distance 
neural information that is projected onto a large number of other 
cells distributed over different spatial domains. It is not trivial 

to implement this mechanism of distributed communications 
with spike events to realize efficient and scalable computation 
of large-scale neural networks on neuromorphic systems. 
LaCSNN uses the AER principle as an efficient point-to-point 
communication method among neural populations, where the 
addresses of neurons are communicated asynchronously 
whenever they fire. The AER communication principle routes 
address events directly using a synapse routing table in memory 
to make the synaptic connections in a dynamically 
reconfigurable manner, mapping pre-synaptic source addresses 
to post-synaptic target addresses. The virtual routing of AER-
based synaptic connections among networks provides the 
flexibility to connect any pair of neurons. From a system 
perspective, AER-based synaptic connections allow multi-chip 
integration of neural cognitive systems based on spike events 
for various types of cognition tasks including object recognition 
and network learning. 

E. Evaluation criterion 
To determine the role of the network structure in the 

generation of cerebellar oscillations and PKJ fidelity, it is vital 
to repeat the simulations using regenerated networks based on 
the basic architecture described in Fig. 1. In order to explore 
how the activity patterns of GrC clusters evolves over time, the 
population average activity of GrC cluster i at time t is 
computed as 

( ) ( )( ) ( )
0 1

1 1exp
cNt

i PKJ ij
s jPKJ c

z t t s s
N

τ δ
τ = =

 
= − −  

 
∑ ∑ ,   (8) 

where Nc=100 is the number of GrCs in a cluster. The variable 
δi,j(t)=1 when GrCj in cluster i fires at time t, otherwise δi,j(t)=0. 
Parameter τPKJ=8.3ms is the time constant of AMPAR-mediated 
EPSPs at the PF-Purkinje cell synapses, and zi(t) represents the 
AMPAR-mediated EPSPs at a PKJ cell induced by the ith GrC 
cluster at time t. The autocorrelation of the activity pattern at 
time t and t+∆t is defined as 

( )
( ) ( )

( ) ( )2 2

i ii

i ii i

z t z t t
C t t

z t z t t

+ ∆
+ ∆ =

+ ∆

∑
∑ ∑

,      (9) 

which represents the normalized inner product of population 
vectors of GrC clusters at times t and t+∆t. Becausezi(t) only 
has positive values, the value of the correlation is between 0 and 
1. When the population vectors at time t and t+∆t are identical, 
the correlation C(t+∆t)=1. The correlation equals to 0 for 
orthogonal vectors with no overlap in active populations.  

The similarity index S(∆t) is defined as 

( ) ( )
0

1 ,
T

t
S t C t t t

T =

∆ = + ∆∑ ,             (10) 

where T represents the inverse of the oscillation frequency of 
MF inputs. The reproducibility index R(t) indicates how two 
activity patterns are differentiated in time as given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 3 12 ... K

t
R t C t C t C t

KT
−= + + +∑    (11) 

where 10 pairs of successive cycles, i.e., K=20, is used to 
calculate the reproducibility. 
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III. NEUROMORPHIC CEREBELLAR ARCHITECTURE 
The proposed digital neuromorphic cerebellar network is 

biologically meaningful and uses conductance-based leaky 
integrate-and-fire (LIF) neuron models to regenerate 
biologically plausible dynamic behaviors. Inspired by the 
computational architecture of the human brain, it is a multi-core 
digital neuromorphic system that is efficient, scalable and 
flexible. At the cellular level, the firing activities of cells for 
spiking information coding and processing is considered. At the 
network level, the large-scale cerebellar network can be 
realized using the neuromorphic architecture platform to 
comprehend the underlying mechanisms of cerebellar motor 
learning. At the synapse level, a key component is modeling the 
plasticity in different sites of cerebellum, which enables 
different nuclei to learn over time through changes in synaptic 
sensitivity and through modification of synaptic weights. In the 
following subsections, the architecture of the proposed 
CerebelluMorphic system is described in more details. 

 
Fig. 2.  The topology of the presented 3D BFT for large-scale neuromorphic 
realization. (a) The scalable connection structure for the proposed 3D NoC 
system. (b) The digital architecture on each chip. 
 

A. Network-on-chip (NoC) architecture 
As shown in Fig. 2(a), the large-scale spiking cerebellar 

network is implemented using butterfly fat tree (BFT) topology. 
The scalable structure can be divided into two parts: the 
horizontal and the vertical BFT layers. The horizontal BFT 
layers are realized using FPGAs, and the vertical layers are 
implemented using the high-speed Terasic connector (HSTC). 
Network data is transmitted as 24-bit data packets, containing 
1-bit AER data, 3-bit chip address, 2-bit region address, 2-bit 

network address, 2-bit population address, 2-bit region address 
and 12-bit timestamp. With a 12-bit timestamp, a maximum 
number of 4096 time-steps is coded. Therefore, each time-
stamp is roughly 224 ns. LaCSNN runs with the clock 
frequency of 50 MHz. Each digital neuron completes its one-
step computation within 10 clock periods (200 ns). Therefore, 
the utilized 12-bit timestamp is enough for the simulation of the 
time-multiplexed neurons, and will not limit the simulation 
maximum time. More spikes and longer time is not considered 
in this study, but will be investigated in our future studies. The 
synaptic connectivity is represented based on the AER 
communication protocol in a dynamically reconfigurable 
manner using routing address events from the synaptic routing 
tables, mapping the presynaptic source address to the 
postsynaptic destination address. The floor plan of a BFT 
topology in 3D NoC architecture is shown in Fig. 2(b), and the 
number of neuron units is determined by the available hardware 
resources; requiring three layers of BFT architecture for a 
network with 64 neuron units. 

B. Routing of the neuromorphic cerebellar architecture 
There are six internal input ports in the first-level router to 

interface with the second-layer neighboring routers or 
cerebellar neuron units (CNUs). Routers realize the routing and 
data flow control functions and are the key components of our 
digital neuromorphic system architecture. A new router for the 
digital neuromorphic cerebellum is shown in Fig. 3(a). Six 
bidirectional ports are contained in the proposed router, 
connecting two parent router nodes and four child router nodes 
respectively. A packetization process is initiated using the spike 
wrapper unit when the first-level router receives a spike event 
from a CNU. The spike wrapper unit is used to process a single 
spike event into a valid AER spike packet. It uses the 
information in the configuration processor for the data process. 
The configuration process can be reconfigured at any time 
according to the neural connectivity. The configuration 
processor contains four kinds of registers: chip address register, 
layer address register, node address register and timestamp 
register. Incoming spike events and the corresponding deliver-
at time are stored in the on-chip memory after the deliver-at 
time stamps are reached. The routing logic unit processes the 
AER packet according to the routing algorithm as shown in Fig. 
3(b). The crossbar switch in the first-level router is realized by 
multiplexers and is controlled by signals from the crossbar 
arbiter. The AER spike packets are then routed to the output 
ports with four AER spike events to the CNUs and two to the 
higher-level routers.  

The detailed routing algorithm is shown in Fig. 3(b). In this 
algorithm, layers, regions, networks and populations are the 
source addresses of each layer, region, network and population 
router, while layerd, regiond, networkd and populationd 
represent routers with the corresponding destination addresses. 
For each router at the population, network and region layer, the 
destination addresses of the population routers and its bottom 
layer routers are compared with the corresponding addresses. If 
they are equivalent, then the AER data is routed to the 
corresponding node in the downstream layer, i.e. the neuron 
processor. If they are not equivalent, then the AER data is 
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transmitted up to the corresponding network router. The same 
procedure is realized for the network and region routers. For the 
layer routers, the current router address is compared with the 
destination layer address. The AER data is transmitted to the 
downstream corresponding region router if they are the same; 
otherwise it will be transmitted to other layers according to the 
destination layer address. 

 
Fig. 3. Digital neuromorphic architecture of the routing unit. (a) Detailed digital 
architecture of the proposed router. It contains FIFO blocks, virtual channel 
arbiter, spike wrapper, router logic, configuration unit switch arbiter and 
crossbar switch. It is utilized for efficient routing of spike events from various 
neuron units. (b) Pseudo code of the routing logic for BFT architecture. 
Addresses of each layer, region, network and population router are considered 
in the proposed routing algorithm.   

C. Digital implementation of the cerebellar neuron 
The digital architectures of the nucleus processors are shown 

in Fig. 4, which includes GrC, GoC, PKJ, BC, IO and VN 
processors. Each router has six ports to communicate the AER 
event with the destination node of the BFT, using two up ports 
and four down ports. The AER spike event is transmitted by the 
router in each nucleus processor for the calculation of synaptic 
currents. In the PKJ processor, three kinds of spike events are 
required in the silicon synapse units: δGrC, δBC and δIO. The 
silicon synapse units calculate the synaptic currents IGrC→PKJ, 
IBC→PKJ, IIO→PKJ, respectively. The PKJ neuron unit calculates 
the spike event δPKJ and outputs it to the router. The 
configuration unit is responsible for the configuration of the 
router and silicon synapse units. The PKJ neuron unit uses time 
multiplexing technique and on-chip memory to achieve 9000 
virtual neurons with one physical unit. The digital realizations 

of other nucleus processors use the same method as the PKJ 
processor with only one silicon synapse for the network 
computation. 

 
Fig. 4. Digital neuromorphic architecture of the nucleus processors. Each 
nucleus processor contains one or several silicon synapse units, a neuron unit, 
a router and a configuration unit. The router has six directions of ports, 
including two up ports and four down ports. The nucleus processors include (a) 
GrC processor, (b) GoC processor, (c) PKJ processor, (d) BC processor, (e) IO 
processor and (f) VN processor. 
 

In order to realize different types of neurons in the cerebellar 
network, Euler method of numerical integration is used in the 
digital implementation to reduce the required computational 
resources compared to the Runge-Kutta method. The digital 
implementation for GrC neuron model shown in Fig. 5(a) 
includes one pipeline and one RAM module used for time 
multiplexing. Several RAM modules are used to store the 
variable values on FPGA. The RAM modules require SIV*Vb 
bits of on-chip memory, where SIV is the data size of variable V 
and Vb is the bit width for each data. The latency number of the 
pipeline is Vdelay, which has the relationship Vdelay=Vstage for 
pipeline synchronization. The detailed digital architecture of 
the V pipeline is shown in Fig. 5(b). The ADD and SUB blocks 
implement the addition and subtraction operations respectively. 
Detailed digital architecture of Gahp module is shown in Fig. 
5(c). The shift logic multiplier block, named SLM multiplier, is 
a dedicated digital circuit presented in this study for 
multiplication calculations without embedded multiplier 
resource on the FPGA as shown in Fig. 5(d). The SLM block is 
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used for multiplication between two variables in both neuron 
unit and silicon synapse unit.  

 
Fig. 5. Digital neuromorphic architecture of the neuron unit of the cerebellar 
GrC neuron, which is implemented based on a multiplier-less scheme. (a) The 
detailed "V" pipeline structure, which contains RAM array to store the transient 
variable values. (b) General overview of the neuron unit for GrC neuron, which 
uses SLM modules and shifter modules to replace multipliers. (c) The detailed 
digital architecture of "Gahp" module, which uses shifter modules to replace 
multipliers. (d) SLM module for digital multiplier-less realization. It uses bus 
splitter, multiplier, barrel shifter and a parallel adder to realize the 
multiplication between the neural variables. 

D. Digital architecture of the cerebellar synaptic plasticity 
The detailed digital architecture of the synapse unit is shown 

in Fig. 6(a). There are 100 parallel groups of synaptic current 
processors (SCPs) in the silicon synapse unit. The AER spike 
packet is input to a multiplexer with 100 outputs, with its ports 
selected by a regular counter for sequential selection. The AER 
spike packets are processed by decoders to obtain the event data 
and its corresponding timestamp. The timestamp is used as the 
write address of the buffer, and the read address is controlled 
by a counter. In each SCP, the connectivity Cij is determined by 
the configuration unit and all the multiplication operations use 
the SLM block. Cerebellar plasticity for the large-scale 
neuromorphic SNN is shown in Fig. 6(b)-(e). The ACC block 
represents the accumulator with two data ports and a 
synchronous clear port. The MUX block represents the 
multiplexer that selects the data path according to the control 
signal. In Fig. 6(d), the variable counter number (CN) 
represents the current number that is counted by a digital 
counter sequentially corresponding to the last firing activity in 
the fixed time window. The LUT block represents a look-up 
table to look up the prestored values when needed. The 
incoming information is the spiking activity of the jth neuron 
“Vj[n]”. The variable NCI stands for the network connectivity 
information. The ABS block outputs the absolute value of the 

incoming input. In Fig. 6(e), if the peak value of the spike is 
detected, the corresponding counter number is sent to the output 
register. The incoming information is the spiking activity of the 
jth neuron “Vj[n]”. The sclr signal represents synchronous clear 
signals to reset the counter at each period. The value of CN is 
obtained from the output register at the end of each time 
window and is then computed according to the STDP learning 
rule. 

 
Fig. 6. Digital neuromorphic implementation of the cerebellar synaptic 
plasticity. (a) Digital architecture of the silicon synapse unit, which uses the 
parallel computational architecture. (b) Synaptic weight computation from PF 
to PKJ. (c) Synaptic weight change from VN to MF. (d) STDP learning 
computation from PKJ to VN. (e) Computation of the value of CN. 

IV. EXPERIMENTAL RESULTS 
In this study, we use the LaCSNN neuromorphic system [22] 

to develop a detailed computational model of the large-scale 
cerebellar network with high biological plausibility and conduct 
dynamical analysis experiments of the proposed spiking 
network. The core component of LaCSNN is Intel Stratix III 
340 FPGA. Its hardware resource contains 338000 logic 
elements, 16272 kbits of memory, and 576 18 × 18-bit 
multipliers blocks. To that end, the performance of the 
neuromorphic cerebellar network is analyzed. In addition, 
dynamical analysis of the synchronization properties within the 
PKJ cells is conducted. The cerebellar mechanisms have 
typically been studied independently using OKR eye 
movements in the Pavlovian delay eyeblink [40]. In OKR 
adaption, MFs and CFs convey retinal slip information, which 
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oscillates periodically in time. From the start of a cycle of the 
oscillation, different populations of GrCs become active one by 
one, sequentially. In this way, the cerebellum can learn the 
complete waveform instructed by the CFs. In this section, the 
learning ability of both PKJ and VN cells is investigated, and 
the dynamic response of the GrC neurons is also explored under 
the OKR adaptation condition. 

A. Performance evaluation of the digital neuromorphic 
cerebellum 

The proposed CerebelluMorphic system uses six Intel Stratix 
III EP3SL340 FPGAs to realize the large-scale neuromorphic 
cerebellar network with approximately 3.5 million neurons and 
218.3 million synapses shown in Fig. 2(a). It contains 3411k 
GrC neurons, 1024 GoC neurons, 32 PKJ neurons, 128 BS 
neurons, 4 IO neurons and 8 VN neurons. Compared with 
previous studies [52], the proposed neuromorphic cerebellum 
model contains nearly 284.25 times more GrC neurons. As a 
result, the cerebellum divergence/convergence ratios can more 
closely approximate those ratios observed in biological 
cerebellums [14, 53].  

In order to demonstrate the real-time computational capability 
of CerebelluMorphic system, the outputs of the spiking 
activities are sampled by oscilloscope, which is shown in Fig. 
7. The input discrete spikes from the neuromorphic MFs are 
shown in Fig. 7(a), which is modeled by Poisson spikes. Fig. 
7(b) shows the output discrete spikes from the GrC neurons 
randomly chosen on the CerebelluMorphic system. Raster plot 
of the output discrete spikes of neurons are shown in Fig. 8. 

 
Fig. 7. The real-time spiking activities of the proposed CerebelluMorphic 
system on the oscilloscope. (a) The input discrete spikes from MFs. (b) The 
output discrete spikes from the proposed CerebelluMorphic network. 
  

Bit-level fixed-point evaluation is proposed to investigate the 
computational precision. The evaluation criteria include root 
mean square error (RMSE), mean absolute error (MAE), 
correlation coefficient (CORR) and error of spike timing 
(ERRTT), that are computed as follows 
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where xsof(i) and xhar(i) represent the software and hardware 
computational results at the ith iteration. Variables ∆Thar and 
∆Tsof are the spiking time intervals of the hardware and software 
results. CORR is defined as the ratio of the covariance to 
variance product of the two data sets where 
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and sofx and harx represent the average values of xsof(i) and 
xhar(i) respectively. As expected, the error evaluation results in 
Fig. 9 demonstrate that by increasing the bit width in the 
proposed digital neuromorphic cerebellar network the 
computational precision can be further enhanced. 
 

 

Fig. 8. Raster plot of the output discrete spikes of 200 neurons chosen randomly 
in the proposed neuromorphic cerebellar network. (a) GrC nucleus. (b) GoC 
nucleus. (c) VN nucleus. (d) PKJ nucleus. 
 

In order to evaluate the system performance of the proposed 
CerebelluMorphic, a comparison of the throughput is 
performed between the proposed system and three state-of-the-
art cerebellar digital neuromorphic systems [22, 54, 55]. In 
these comparisons, the CerebelluMorphic is configured to route 
neural events across the proposed architecture at different levels 
of synaptic events, from 20M synaptic outputs per second 
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(SynOPS) to 180MSynOPS. We use some typical destination 
distribution patterns, which include normalized traffic pattern, 
hotspot traffic pattern, and tornado traffic pattern, to evaluate 
the performance of the proposed system and compare it with 
state-of-the-art works. Fig. 10(a) shows the comparison of the 
system throughput with the normalized traffic pattern, and Fig. 
10(b)-(c) demonstrate the comparison of the system throughput 
with 10% and 30% hotspot traffic respectively. The comparison 
of the system throughput with the tornado traffic pattern is 
shown in Fig. 10(d), where the node #i sends information to 
node ((i+k/2-1) mod k), where k represents network diameter. 
The throughput of the proposed system is significantly larger 
than the other two systems with the increment of the injected 
synaptic event rate. At 160MSynOPS event rate, the throughput 
of CerebelluMorphic is 4.09 and 1.18 times larger than the other 
systems respectively under the normalized traffic pattern, 4.70 
and 1.26 times larger under 10% hotspot traffic pattern, 3.27 
and 1.55 larger under 30% hotspot traffic pattern, 1.78 and 1.33 
larger under tornado traffic pattern. This significant 
improvement is due to the BFT-based architecture of the 
proposed CerebelluMorphic digital neuromorphic system. The 
achieved throughput increase suggests that the 
CerebelluMorphic system can process larger information load 
within a certain period of time compared to the other two 
neuromorphic systems. 

 

Fig. 9. Precision analysis of the digital neuromorphic computation for each 
nuclei in the neuromorphic cerebellar model. Different types of nuclei are 
considered, including GR, GO, PKJ, VN, and IO. Here, the analysis of the 
impact of the bit width is shown on (a) RMSE (b) MAE (c) CORR and (d) 
ERRTT.  
 
 

B.  Dynamical analysis of the neuromorphic PKJ cells 
Cerebellar PKJ cells possess complex intrinsic biological 

behaviors, and can integrate numerous synaptic inputs. It is the 
sole output of the cerebellar cortex, thus understanding the 
dynamics of the PKJ cells is essential for the comprehension of 
cerebellar functions. Synchronization and resonance dynamics 
are essential mechanisms for neural information encoding and 
transmission. The coordination between neuron activities is 

featured with neural correlation in the population coding, and 
synchronization is a vital manifestation of the correlation 
between neurons. Resonance dynamics describe the firing 
output response to the input signal, which have been 
investigated in biological neural systems for years. In order to 
show the application of our CerebelluMorphic system, here we 
use it to explore the synchronization and resonance dynamics 
of the neuromorphic PKJ cells to study the impact of the 
synaptic weights on the PKJ population. The dynamical 
analysis of the PKJ cells were performed with active plasticity. 

 
Fig. 10. System evaluation and comparison of the CerebelluMorphic 
throughput in different conditions. Three architectures of neuromorphic 
systems are considered, including LaCSNN/Tianjic, SpiNNaker and 
CerebelluMorphic (this study). Here, (a) Throughput under the normalized 
traffic pattern, (b) 10% and, (c) 30% hotspot traffic pattern, and (d) the tornado 
traffic pattern are shown against event rate. 
 

In order to investigate the synchronization of the PKJ 
population, a network synchronization criteria is defined as 
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where E(t) represents the average spike events of PKJ neurons, 
and N represents the total neuron number within the PKJ 
nucleus. E(t) is defined as 
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  As shown in Fig. 11(a) and (b), the increment of the synaptic 
weight wBS→PKJ from BS to PKJ cells can increase the 
synchronization level of the PKJ population, while the weight 
increment of wGrC→PKJ from GrC to PKJ will decrease the PKJ 
synchronization dynamics. Furthermore, with the oscillation 
frequency of the MFs increasing, the synchronization will be 
enhanced, and larger synaptic weights from GrC to PKJ will 
remove this effect. With low weights from BS to PKJ and high 
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weights from GrC to PKJ, the network synchronization of PKJ 
cells is not directly affected by the MF firing rate. 

 
Fig. 11. Dynamical analysis of PKJ population. Different firing rates of MF is 
considered, which means the neuromorphic model receives different levels of 
stimulation. Here, different levels of MF are used to investigate the change in 
xs of PKJ neurons with the increment of (a) wBS→PKJ and (b) wGrC→PKJ. In addition, 
different levels of MF are used to investigate the change in xlr of PKJ neurons 
with the increment of (c) wBS→PKJ and (d) wGrC→PKJ 
 

In order to describe the dynamical behaviors of the neural 
system quantitatively, a linear response criterion xlr is defined 
as 
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where ω=2π/t is the angle frequency of the oscillation. 
The linear response criterion xlr reflects the resonance 

dynamics of a neural population and are depicted in Fig. 11(c) 
and Fig. 11(d). The resonance situation of the PKJ population 
is enhanced with synaptic weight decrement from BS to PKJ 
neurons, and with the increment from GrC to PKJ neurons. 
Interestingly, different levels of wBS→PKJ and wGrC→PKJ will 
influence the resonance dynamics conversely along with their 
increment. At low level of wBS→PKJ, the increment of MF firing 
rate will improve the resonance within the PKJ population, 
while it decreases the resonance at a high level of wBS→PKJ that 
is larger. The enhancement of MF firing can depress the 
resonance of PKJ neurons at low wGrC→PKJ, and improves it 
when wGrC→PKJ is larger. 

C. Neuromorphic learning of the PKJ and VN cells 
In order to explore the learning-induced change of PKJ cells 

and the corresponding VN responses, the firing rates of both 
PKJ cells and VN cells are investigated at the 1st, 50th, 100th, 
150th, 200th, 250th and 300th cycles of MF input oscillation in 
Fig. 12(a). With the cycle number increasing, the maximal 
firing rate has a moderate change from 88.5 to 75.62 Hz, and 
the minimal firing rate decreases significantly from 83.59 to 
34.7 Hz. Therefore, the firing modulation of the PKJ cell is 
caused by the decrease of the minimal firing rate, which is 
consistent with the firing rate change of PKJ neurons in OKR 
adaption [40]. The firing activities of the VN cells are shown in 
Fig. 12(b). Due to the modulation of the inhibition affects from 
the PKJ cells, the firing dynamics of the VN neurons are 
modulated in phase with the MF oscillation. The maximum 
firing frequency is increased from 60.37 to 109.6 Hz, and the 
minimum firing rate of the VN neuron changes from 23.17 to 
42.43 Hz.  

 
Fig. 12. Neuromorphic learning of OKR adaption experiment. Colored curves 
from top to bottom in turn represent the learning-induced firing rate change of 
(a) the PKJ cells and (b) the VN cells at the 1st, 50th, 100th, 150th, 200th, 250th 
and 300th cycles of MF signal oscillation. (c) Gain change ratio according to 
the MF train cycle number is shown. Here, the blue dots are discrete data of the 
gain ratio, while the red solid line represents a fitted curve. (d) Distribution of 
synaptic weights between PKJ cells and active GrC cells after 300 cycles of MF 
oscillation.  
 

In order to explore the VN modulation by the MF signals, the 
gain ratio is defined as the modulation of the VN spiking 
activities at each cycle divided by that at the first cycle. Due to 
the inhibition of the IO information, the neuromorphic learning 
is changed with MF oscillation, and the gain ratio reaches 1.791 
as shown in Fig. 12(c). The distribution of synaptic weights of 
active GrC neurons is shown in Fig. 12(d). The synaptic 
weights distribute uniformly from 0.175 to 1.0 at the beginning 
and the end of a modulation cycle, and most of the synaptic 
weights locate between 0.175 and 0.5 at the middle of a MF 
cycle with the largest MF and CF inputs. Therefore, the firing 
modulation of PKJ cells is induced by both the spatial 
distribution of the synaptic weights between PF and PKJ cells, 
and feedforward inhibition by the BC neurons. 
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D. Analysis of dynamic response in neuromorphic GrC layer 
In order to explore the mechanism underlying the response of 

GrCs to temporary oscillations, we use the proposed model to 
simulate an OKR adaption experiment using retinal slip signal 
inputs. As shown in Fig. 13(a), in the OKR adaption experiment, 
MFs and CFs transmit retinal slip information that oscillates in 
real-time. It is based on a schematic of the neural circuit 
involved in OKR adaption presented by a previous 
experimental study [31]. From the start of a cycle of the 
sinusoidal oscillations, various groups of GrCs are activated 
one by one sequentially. In this study, Poisson spikes that 
oscillate sinusoidally at 0.5 Hz are input to the MFs according 
to the previous biophysiological study [40]. LTD shapes the 
spatial distribution of PF-PKJ cell synapses in a sinusoidal form, 
inducing the response of the PKJ cells to gradually increase 
sinusoidal modulation, which is consistent with the previous 
experimental study [40]. As shown in Fig. 13(b), at the 
beginning and end of a cycle of signal oscillation of the MFs, 
the firing rate of MF is low, so that the GrCs spike uniformly in 
a random manner. With an increment of the MF firing rate, the 
GrCs are activated with firing rates that are basically 
proportional to the firing activities of the MFs. This reveals that 
the GrCs can transmit MF amplitude information to the PKJ 
cells effectively. Based on this mechanism, the PKJ cells can 
learn both the scalar information including timing and gain 
signals, and the complete waveform processed by the CFs, so 
that gain and timing control could be unified. 

 
Fig. 13. Dynamics of the GrCs in response to sinusoidally oscillating MF input 
information at 0.5Hz. (a) The simulation results of OKR adaptability 
experiment of retinal slip signal input using the model proposed in this paper. 
(b) Spike patterns and firing rates of 500 granule cells during a cycle of MF 
signal oscillation. Black dots indicate spike discharges. 

Because of the random recurrent connections between GrC 
and GoC cells, individual GrC neurons show a variety of 
temporal spiking activities as shown in Fig. 14(a), which shows 
the population of active GrC neurons gradually changes in time. 
It shows the firing rates of different GrC neurons are temporally 
fluctuating in response to MF signals, leading to the dynamics 
of passage-of-time in cerebellum. To evaluate this property, the 
similarity index S(∆t) between active GrC neurons is calculated. 
The experimental result shown in Fig. 14(b) illustrates that the 
similarity decreases monotonically with ∆t increasing. It 

reveals that the temporal change in the GrC layer is 
nonrecurrent, suggesting the one-to-one correspondence 
between an active GrC population and a time step under MF 
signal oscillation. 

Although the passage-of-time dynamics exist in the GrC layer, 
the generation of temporally fluctuating spikes is reproducible 
under MF signal oscillation. The reproducibility index R(t) 
between two spike patterns for all GrC neurons for two 
consecutive cycles is shown in Fig. 14(c). The value of R(t) 
increases towards 0.9 at the beginning of a cycle, and then 
decreases slowly towards 0.8, revealing that the spike activities 
of the GrC neurons are highly reproducible across MF 
oscillation cycles. The GrC layer is responsible for the 
generation of the same sequence of active GrC neurons during 
different trials and cycles for the reliable transmission of MF 
signals. Because the dynamical activities of a recurrent network 
are based on external inputs and the initial state, the GrC layer 
should reset its internal state at the beginning of each cycle. 
Therefore, slowly increasing MF signals may be enough to reset 
the internal state. 

 
Fig. 14. Dynamical activities of GrC neurons in response to sinusoidally 
oscillating MF inputs. (a) The averaged firing rate of five representative GrC 
neurons. (b) The similarity index S(∆t) for the spike patterns in GrC layer. (c) 
The reproducibility index R(t) for the spike patterns for all GrC neurons across 
two successive cycles of MF oscillation. 

E. Robustness analysis of the proposed model 
In order to analyze the robustness of the proposed large-scale 

cerebellar model, the delayed eye blink classical conditioning 
paradigm is employed, which is divided into two sessions of 
100 trials. As shown in Fig. 15(a), each session is composed of 
an acquisition phase with the presentation of conditioned 
stimuli-unconditioned stimuli pairs during 80 trials, and an 
extinction phase with the presentation of only conditioned 
stimuli for 20 trials. The inter-spike interval (ISI) is set to 300 
ms, 400 ms, and 500 ms, respectively. The conditioned stimuli 
lasted 50 ms, which equals to ISI plus the duration of 
unconditioned with 100 ms. Between these two consecutive 
trials, a pause of 100 ms is set to make the network silent. 
Conditioned stimuli is input from the MFs, and the 
unconditioned stimuli is input from the IO neurons. As shown 
in Fig. 15(b)-(d), the first 100 trials are the acquisition phase, 
and the second 100 trials represent the extinction phase. The 
criteria %CR means the probability of conditioned response 
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(CR) from VN neurons during stimuli. It is shown that, 
the %CR of the proposed network is robust even when the ISR 
increases. In addition, in the second 100 trials, the proposed 
model can learn to generate CR more rapidly with its intrinsic 
plasticity mechanisms. It is also able to characterize learning in 
a physiological number of acquisition trials, even though some 
disturbed phenomenon emerged. 

 
Fig. 15. Model robustness test. The behavioral CR outcomes with different eye 
blink classical conditioning protocols. (a) Eye blink classical conditioning 
protocol. (b)-(d) %CR with different ISI values from 300-500 ms. 

V. DISCUSSIONS 
The cerebellum has inspired a number of theoretical models 

focusing on the combinational properties of the SNN due to its 
regular structure [9], [28]-[30]. Large-scale cerebellar network 
can generate biological dynamical behaviors including motor 
learning and memory consolidation. The cerebellum, as a vital 
region of mammalian brains, operates efficiently, in parallel, 
performing highly complex motor learning. Emulating the 
dynamics of cerebellum in a large-scale hardware and utilizing 
it for replicating brain functionalities and structure can be 
beneficial to better understanding the brain. It can also be useful 
in addressing real-world engineering challenges and building 
smart machines.  

This study focuses on building a novel neuromorphic model 
with high biological relevance, which is inspired by the 
supervised learning in cerebellum. We developed a model that 
successfully maps the cerebellar physiological anatomical 
structure to a digital computing architecture. Real-time 

cerebellum model can provide a useful means to study a very 
slow neural process, as well as interact with external world for 
robotic control or brain-machine interface. As shown in Table 
3, compared to previous models with only PF-PC synapses [23, 
56, 59], we included more synaptic reversible plasticity sites, 
based on recent experimental observations at the cellular level 
[56-58]. The improvement of the proposed model enhances the 
neurophysiological plausibility and computational learning 
abilities of the cerebellar circuit. A previous study shows that 
the differential parts of multiple synaptic sites can reproduce 
more complex dynamical characteristics of supervised learning 
than when only a single synaptic plasticity site is considered 
[25]. 

  
Table 3. Comparison with previous real-time spiking cerebellum models 

Study Methodology #Nucleus 
types 

#Plasticity 
sites 

#Neurons 

Carrillo et al., 
2008 [25] 

EDLUT 8 2 2.1k 

Luque et al., 
2011 [56] 

EDLUT 7 1 2k 

Yamazaki & 
Igarashi, 
2013 [23] 

GPU Simulation 6 1 100k 

Luo et al., 
2016 [26] 

Frame-based 2D 
mesh 
architecture on 
FPGA 

1 None 100k 

Antonietti et 
al., 2016 [39] 

EDLUT 7 3 6.5k 

Xu et al., 
2017 [59] 

Frame-based 2D 
mesh 
architecture on 
FPGA 

6 1 10k 

Hausknecht 
et al., 2017 
[60] 

GPU Simulation 8 2 1M 

Naveros et 
al., 2018 [61] 

EDLUT 5 2 2.7k 

This study Event-driven 
neuromorphic 
3D BFT  
architecture  

6 3 3.5M 

  
Furthermore, in contrast to previous models [34-36], a novel 

neuromorphic methodology to model SNNs with a biologically 
meaningful mechanism is presented. Table 3 demonstrates that 
EDLUT is used in some previous studies [25, 39, 56, 61], which 
show high performance in real-time cerebellar motor control. 
GPU simulation is another powerful approach for real-time 
cerebellum modeling, which can scale up the network size to 
include 1M neurons [23, 60]. Neuromorphic computing is 
based on a non Von Neumann architecture inspired by the 
computational capabilities of the brain [62]. The brain has 
evolved to process neural sensory information in a highly 
parallel and asynchronous fashion, which is the computing 
principle of neuromorphic hardware. Luo et al. designs a frame-
based neuromorphic 2D mesh architecture on FPGA, which can 
realize 100k large-scale SNN with GrC neurons without 
synaptic plasticity [26]. Xu et al. further used this neuromorphic 
architecture to simulate more neuron types while reducing the 
network scale. This study presents a novel neuromorphic 
methodology with event-driven 3D BFT neuromorphic 
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architecture, which can realize 3.5M neurons with 6 nucleus 
types and 3 plasticity sites. Thanks to the proposed architecture, 
biologically plausible mechanisms can be reproduced in real 
time, which is critical in the supervised motor learning function 
in biological cerebellum. 

For our system design, we used a biologically constrained, 
bottom-up modeling approach for each cerebellar nucleus based 
on the Marr-Albus-Ito theory of cerebellar function [28]-[30]. 
By using this approach, the functional properties of the SNNs 
emerge from the properties of constitutional elements and the 
synaptic connections [42]-[43]. In order to verify the emergence 
of the cerebellar motor learning using the developed bottom-up 
model, several vital network dynamics related to the cerebellar 
motor learning, such as dynamic response of GrC cells during 
the OKR experiment, were investigated.  

Another significant feature of our model is its high 
convergence ratio. Our neuromorphic architecture enables 
biologically plausible cerebellar divergence/convergence ratios. 
Electrophysiological studies consistently indicate that the 
cerebellum comprises a network of cells with known sites and 
learning rules for synaptic plasticity, numerical ratios, 
convergence and divergence ratios, and geometry of projections 
[7]. Previous studies reveal that the convergence ratio in the 
cerebellum is vital for cerebellar cognition [41]. Our proposed 
cerebellar neuromorphic model achieves a convergence ratio 
closer to that of the human brain, which means that more 
biologically realistic dynamics can be achieved using our 
hardware. 

Apart from the above-mentioned benefits, our developed 
cerebellum hardware has limitations in a stand-alone setting. In 
order to address its limitations and expand its capabilities, 
additional brain regions can be combined with the proposed 
neuromorphic cerebellum to obtain a more complete and 
powerful model. These include the basal ganglia that are 
capable of reinforcement learning [43] and the cerebral cortex 
that is supposed to be responsible for unsupervised learning 
[44]. By combining these brain regions, deeper and more 
comprehensive knowledge of brain cognitive functions can be 
gained and brain structure could be much further explored. 

In summary, the large-scale neuromorphic cerebellar model 
developed in this work and based on a bottom-up modeling 
approach that explicitly takes the brain-inspired computing 
architecture into account, (1) provides a theoretical and 
computational basis toward elucidating motor learning 
mechanisms with multiple plasticity rules in cerebellar learning 
with supervised learning capabilities beyond the Marr-Albus-
Ito theory, (2) presents a novel perspective on reversely 
engineered large-scale cognition of the brain, and (3) develops 
a novel engineering framework for real-time motor learning. 

Our LaCSNN hardware can be considered a spike-based 
HPC platform, which can be used to implement a general spike-
based computational intelligence aided design framework. This 
framework can be utilized to implement various computational 
intelligence models such as our proposed cerebellar structure 
and its motor learning, to perform learning and computation in 
a biologically-plausible fashion. One possible future research 
direction is to find other performance-critical computational 

intelligence models, which cannot be efficiently run on 
conventional computers, and investigate their implementations 
on our neuromorphic platform. 

Other future works may involve further exploration of the 
motor learning mechanisms of the cerebellum during motor 
control tasks such as those performed in [47-50]. However, 
generalization of our model to implement various cerebellar 
motor learning mechanisms is not straightforward and requires 
significant changes in our architecture. Hence, we leave 
exploring other motor learning mechanisms of the cerebellar 
cognition to the future. 

VI. CONCLUSIONS 
In this study, we presented a large-scale neuromorphic 

spiking neural network model of the cerebellum that 
incorporates LTP and LTD mechanisms at the PF-PC synapses, 
synaptic plasticity at the MF-VN synapses and learning 
mechanisms located between PKJ and VN cells. A novel 
neuromorphic system CerebelluMorphic and its architecture is 
proposed in detail. The MF-VN synapses can update the 
synaptic weight based on correlations between presynaptic MF 
activities and postsynaptic VN activities. The digital 
neuromorphic model consists of approximately 3.5 million 
neurons, which is 34.6 times more than the state-of-the-art 
digital neuromorphic design [26]. Our model successfully 
reproduces experimental results for specifically vital properties 
in cerebellar motor learning, including motor control with 
supervised learning ability, dynamic response to OKR adaption, 
passage-of-time properties and gain control. These properties 
explain how cerebellar cortex processes the neural information 
with motor learning cognition. 

APPENDIX 
Table A1. Absolute values of the synaptic weights are shown in nS. 
However, the inhibitory and excitatory connections are negative and 
positive, respectively. 

Pre- Postsynaptic neuron 
 MF GrC GoC PKJ BC VN IO 
MF  4.0    0.002  
GrC   0.00004 0.003 0.003   
GoC  10.0      
PKJ      0.008  
BC    5.3   5.0 
VN        
IO    1.0    
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