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ABSTRACT 

Australia was among the first countries to report the emergence of viral encephalopathy and 

retinopathy (VER), observed as mass mortality of larval fish from marine aquaculture during 

1987-1990. The viral aetiology of the disease was not identified until 1997 by which time 

nervous necrosis virus (NNV) became one of the first aquatic pathogens considered significant 

by the OIE. Unfortunately, the disease emerged during a period when transboundary 

biosecurity controls governing the transport of live aquatic organisms was poor. Today, the 

almost global distribution of the virus, led to its exclusion as a notifiable disease within the 

modern OIE framework in 2003/2004. In Australia, VER remains a notifiable disease of finfish 

and is the major impediment to the expansion and development of grouper aquaculture. Gaps 

in bodies of knowledge that are critical to understanding the disease hinder the management 

of VER in grouper aquaculture in Australia. A review of the literature is discussed in Chapter 1 

and formed the platform for defining the aims of this thesis. This project aimed to improve 

knowledge about NNV in North Queensland and develop strategies to prevent the severe 

economic losses NNV causes grouper aquaculture in Australia.  

At the commencement of this project, there were no complete genome sequences of NNV 

collected from grouper in Australia. The National Centre for Biotechnology Information (NCBI) 

database contained only two complete sequences from VER outbreaks in Australia. Neither 

strain originated from Queensland, which is the region of Australia with sufficient 

infrastructure and environmental parameters to support a grouper aquaculture industry. Only 

one sequence was from a tropical species.  

This project has improved the knowledge of Betanodavirus strains present in Northern 

Queensland. Complete mRNA sequences of NNV were collected from three naturally occurring 

VER outbreaks in marine aquaculture farms of barramundi Lates calcarifer, gold-spotted 

grouper Epinephelus coioides and giant Queensland grouper, Epinephelus lanceolatus (Chapter 

3) herein referred to collectively as the North Queensland Australia (NQAus) NNV strains.  

Phylogenetic comparison of the NQAus NNV genome sequences to reference strains from the 

four recognised Betanodavirus species determined all three strains were members of the 

Redspotted grouper nervous necrosis virus species (RGNNV) (Chapter 3). With this finding, 

RGNNV continues to be the only Betanodavirus species known to be associated with VER in 

Australian fish species. Comparative analysis of the NQAus NNV strains with other strains 

sourced from Australian fish species indicated remarkable conservation of the RGNNV genome 

both temporally and geographically. The RNA 1 and RNA 2 segments of the NQAus NNV strains 

collected in this study retained more than 97% homology to other NNV strains collected from 
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tropical species in Australia and 97-98% homology to the genome of the original RGNNV strain 

isolated from Japan (SGwak97) in 1997. The significant genetic conservation of the RNA 2 

segment across all of the Australian strains of NNV, provided confidence that a vaccine that 

targeted the capsid protein would be applicable across a broad geographic range in Australia. 

The high level of conservation of capsid protein sequence in the RGNNV species also suggested 

that a vaccine effective against any of the three strains studied in this project could have a 

potential global market. The low variance of RNA 2 temporally, indicates there is potentially 

low risk of viral mutation and vaccine escape over time. 

A comprehensive review of the literature discussing the functional motifs of the Betanodavirus 

was conducted (Chapter 4). Positions of the functional motifs to Protein A and the capsid 

protein were mapped on schematic diagrams. Review and identification of the multiple motifs 

across an entire genome have not been reported previously from any strain of Betanodavirus. 

The motifs that have been identified as critical for viral replication and associated with 

virulence were retained by the NQAus NNV strains. Confirmation of the motifs ensured the 

strains used in this study retained the virulence factors reported in the literature and were 

suitable strains for future studies within a context of ensuring that any successful outcomes 

from this study should be translatable to industry.  

Examination of the genome sequences of the NQAus NNV strains collected in this study also 

indicated the RT-qPCRs developed by Hick & Whittington, (2010) would theoretically be 

acceptable to monitor the viral genome copy number throughout this study. PCR amplicons 

produced from RNA 1 and RNA 2 segments of the viral extracts were cloned to produce 

standard control plasmids for the qR1T and qR2T RT-qPCR assays described by Hick & 

Whittington (2010). The RT-qPCR assays of Hick & Whittington (2010) were implemented 

within the laboratory to support the subsequent project activities (Chapter 5).  

Two prophylactics, namely a vaccine and a dsRNA construct were prepared to target and 

prevent disease caused by the NNV strain obtained from a VER outbreak in farmed gold spot 

grouper, Epinephelus coioides (Ec2NQAus) (Chapter 6). The vaccine was based on expressed 

capsid protein produced from the recombinant insertion of the mRNA of RNA 2 of Ec2NQAus 

NNV into a bacterial expression system. The dsRNA targeted nucleotide (nt) region 722 to 738 

of the RNA 2 segment. 

An experimental exposure model for application to test the efficacy of the prophylactic 

measures was tested (Chapter 7). Exposure models that are representative of the natural 

infection route are preferred to test the efficacy of prophylactic measures. In a novel study, 

waterborne challenge via co-circulation with diseased fish along with co-infection with the 

marine leech, Zeylanicobdella arugamensis was tested as an infection model. During a 40-day 
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trial, despite habitation within a shared recirculation system containing ten fish that displayed 

VER following exposure to Ec2NQAus RGNNV via IM challenge, none of the juvenile 

groupers E.lanceolatus exposed by co-circulation succumbed to VER. Furthermore, the viral 

genome was not detected by RT-qPCR from leeches collected from any tank or from tissues 

collected from E.lanceolatus that were exposed by co-circulation. The inability to induce VER 

via waterborne challenge despite the addition of leech infestation, lead to the adoption of 

intramuscular injection of viral extract as a challenge model for subsequent studies. 

The prophylactic measures, including vaccine and dsRNA constructs, were tested for efficacy 

to prevent VER in juvenile E.lanceolatus (~18 g body mass) following IM challenge with 

Ec2NQAus NNV viral extract (Chapter 8). In an initial trial, the dsRNA appeared to have no 

impact in preventing the severity of disease following challenge. The initial trial indicated that 

improvement in survival with vaccination was modest. The vaccinated groups of fish displayed 

between 43-53% cumulative morbidity compared to 88% morbidity in dsRNA exposed groups. 

This modest improvement of 35-45% reduction in morbidity indicated the vaccine formulation 

presented some potential as a preventative measure. Also, the RT-qPCRs qR1T and qR2T were 

applied to trace the viral copy number of RGNNV during the progression of disease following 

experimental challenge (Chapter 8). Both RT-qPCR assays detected viral genome before the 

onset of clinical signs at a cycle threshold value range of 31.8-36.8 (qR1T) and 29.9-45 (qR2T). 

Both RT-qPCR assays detected viral genome with a cycle threshold range of 12.9 to 19.5 (qR1T) 

and 11.1 to 19.0 (qR2T) during the peak period of morbidity. Fish that did not display signs of 

disease were positive for the detection of viral genome indicating the vaccine may improve 

tolerance to the infection rather than preventing infection. However robust conclusions 

regarding fish resistance or tolerance cannot be determined based on RT-qPCR analysis. There 

was relatively few vaccinated fish over 50g that succumbed to VER.  

A mass spawning event with eight potential parents produced the cohort of fish used in the 

experimental challenge trials. Multilocus sequence analysis (MLSA) using microsatellite 

markers was applied to vaccinated fish to investigate the influence of parentage on 

survival/mortality (Chapter 9). Parentage did not coincide with improved survival or increased 

mortality within the studies conducted.  

Assessment of vaccine efficacy on juvenile fish can be flawed if conducted before the 

development of essential components of the fish immune system, therefore E.lanceolatus 

larger than 50g body weight were used to reassess the efficacy of vaccination (Chapter 10). An 

additional vaccine based on heat killed cell culture Ec2NQAus NNV was also evaluated. The 

refined strategy indicated improved protection against VER in the slightly larger fish. Only 20%-
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23% of the E.lanceolatus that were vaccinated displayed signs of VER which was a marked 

improvement compared to the placebo vaccinated groupers (93% morbidity). 

Unfortunately, an investigation into the mechanism of improved protection is beyond the 

scope of this study. RT-qPCR analysis detected NNV genome in all three groups of groupers 

challenged with viral extract. NNV genome was detected in groupers that did and did not 

display signs of VER. Because detection by RT-qPCR does not indicate viability of virus further 

conclusions regarding the protective effect of the vaccines are not proposed.  

 

This work has filled significant gaps in understanding the management of Betanodavirus in 

aquaculture of grouper in Australia, namely:  

 the acquisition of the complete mRNA of three strains of NNV collected from VER 

outbreaks in aquaculture systems in North Queensland;  

 compiling the collection of works that describe the functional motifs of the 

Betanodavirus genome; 

 the preparation of a vaccine that reduced expression of VER to 20%-23% following 

experimental challenge with Ec2NQAus NNV strain; 

 noting there is a mechanism that relates to body weight that affects vaccine efficacy 

and 

 extending the fit for purpose application of two RT-qPCR assays developed by Hick & 

Whittington (2010)to track the pathogenesis of NNV in grouper.  

 

Legacy outcomes from this project are the continued contribution to research into the 

management of disease in tropical aquaculture systems. Specifically, towards FRDC project 

2018:098 which is field trials to test the efficacy of expressed recombinant capsid protein 

vaccine to prevent VNN in the grow-out aquaculture of Epinephelus lanceolatus. In addition, 

the application of the RT-qPCRs of Hick & Whittington (2010) in this project extended the fit 

for purpose of those assays beyond those initially described on tissues from barramundi and 

Australian bass and was applied to support NATA accreditation of a laboratory, JCU AquaPATH, 

to ISO17025 in the field of animal health. The establishment of the AquaPATH laboratory 

ensures that aquaculture industries in Northern Queensland have access to quality assured, 

rapid, high throughput, and quantitative molecular detection assays to help manage the risk 

posed by pathogens of aquaculture species. 

 “From little things, big things grow” (Kelly and Carmody, 1991). 
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CHAPTER 1. LITERATURE REVIEW 

Background  

 

Aims of this Chapter  

 

 

 In Cairns, North Queensland, The Company One is one of the most efficient commercial 

grouper hatcheries in the world, with annual production of several million fingerlings.  

 

 Commercial production of grouper in grow-out aquaculture production in Australia is 

restricted by the severe economic losses caused by Viral Encephalopathy and 

Retinopathy (VER) syn., Viral Nervous Necrosis (VNN) disease outbreaks. 

 

 Groupers do not have the restricted period of susceptibility and VER outbreaks have 

been reported in fish up to 3 years old.  

 

 In recent years, as the industry has attempted to expand, the rapid mass mortality of 

grouper in grow-out pond production have occurred with sufficient frequency to 

threaten the economic viability of the industry in Australia.  

 

 Vaccines that protect against virulent strains of viruses are widely adopted as an 

effective strategy to prevent losses due to viral diseases in many fish aquaculture 

systems.  

 

 Despite reported success in experimental systems, there are no commercially available 

vaccines to prevent VER in Australia.  

 Provide current state of knowledge of Betanodavirus  

 Discuss aspects of host biology that have an association with VER 

 Discuss options for the management of Betanodavirus infections in aquaculture 

 Define the research questions and aims of this thesis 
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1.1 Introduction 

Grouper, Epinephelus spp., are an important marine fish aquaculture species in many 

countries, particularly Asia (Rimmer and Glamuzia 2017). In 2017 the global aquaculture 

production of grouper was 147 379 tonnes (value 0.7 US$ Billion) (FAO, 2018). The majority of 

the world’s aquaculture production of grouper is from China and Indonesia (Rimmer and 

Glamuzia 2017). However, due to their rapid growth rates and strong market value, grouper 

have potential to be a profitable aquaculture species in Australia (Knuckey, 2015). In Cairns, 

North Queensland, The Company One is one of the most efficient commercial grouper 

hatcheries in the world, with annual production of several million fingerlings. However, the 

majority of the fingerlings produced are exported into Asia for grow out aquaculture 

production (Knuckey pers. comm. 2019).  

 In recent years, as the industry has attempted to expand into grow out production, the rapid 

mass mortality of grouper due to Viral Encephalopathy and Retinopathy (VER) syn., Viral 

Nervous Necrosis (VNN) have occurred with sufficient frequency to threaten the economic 

viability of the industry in Australia. Commercial production of grouper in grow-out 

aquaculture production in Australia is restricted by the severe economic losses caused by VER 

disease outbreaks (Knuckey pers. comm. 2019). Management of VER in grouper hatchery 

systems can be achieved through the implementation of strict biosecurity protocols that 

prevent the entry of Betanodavirus into the culture system. The strategies impose increased 

costs to production but are not practical to prevent VER outbreaks in grouper grow-out 

farming systems such as sea cage or pond cultures. 

Other management strategies must be developed for grouper grow out and pond systems.  

Forty years of research into VER has resulted in the development of cell culture replication 

systems, serological and molecular detection techniques and vaccination and novel anti-VER 

preventatives (Hick et al., 2010; Hick et al., 2011; Tanaka et al., 2001) . However, in Australia, 

there is no commercially available preventative or treatment to manage VER outbreaks. 

Pharmaq™ and HIPRA recently commenced commercial sale of a VNN vaccine in the 

Mediterranean to protect European sea bass against NNV. However, neither vaccines are 

approved for import into Australia and the suitability of the vaccine to prevent VER in grouper 

is untested.  

Vaccines that protect against virulent strains of viruses are widely adopted as an effective 

strategy to prevent losses due to viral diseases in many fish aquaculture systems. However, 

despite the long history of VER in Australia, knowledge of the strains of Betanodavirus that 

cause VER in Northern Australia is limited. The paucity of knowledge of Betanodavirus in 
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Australia along with gaps in the knowledge about critical aspects of grouper biology, including 

antiviral immunity, creates a situation whereby evidence-based management of VER is very 

difficult. This review will discuss the emergence of VER; characteristics of viral taxonomy and 

replication; and host/environmental factors that are believed to associate with VER outbreaks. 

Knowledge of such aspects can be applied to develop evidence-based strategies to manage 

VER in grouper grow out systems in Australia. 

1.2 Emergence of VER in Australia 

Members of the genus Betanodavirus cause the disease Viral Encephalopathy and Retinopathy 

(VER) syn. Viral Nervous Necrosis (VNN) (OIE, 2018). The disease emerged in Australasia, 

Europe and North America during 1985 to 1989 and has been reported from wild and cultured 

freshwater and marine fish in all continents except South America and Antarctica. The National 

Centre for Biotechnology Information (NCBI) database contains 1200+ nucleotide accessions of 

Betanodavirus sourced from over 220 fish species and 30+ countries (Condon et al., 2019). Ten 

gene sequences of Betanodavirus have been published in NCBI from Australian fish 

(www.ncbi.nlm.nih.gov accessed 12.2.2019). In Queensland, VER outbreaks occur in 

commercial larval barramundi, Lates calcarifer (Bloch, 1790) and giant grouper, Epinephelus 

lanceolatus (Bloch, 1790) hatcheries. The World Organisation for Animal Health, Office 

International des Epizooties (OIE) delisted VER in 2004, as notifiable disease, due to the 

worldwide distribution failing to meet one of the defining criteria of a restricted geographical 

host range (OIE, 2004). Despite the de-listing, VER is notifiable in Australia and an impediment 

to successful culture of a number of highly susceptible fish species worldwide. 

1.3 Viral Taxonomy 

The Nodaviridae consists of the genera, Betanodavirus, which infect fish and Alphanodavirus, 

which infect insects. Members of the Nodaviridae also infect crustaceans but taxonomic 

divisions recognising the crustacean-infecting species have not occurred. Four species of 

Betanodavirus are officially recognised by the International Committee for the Taxonomy of 

Viruses (ICTV) namely Striped jack nervous necrosis virus (SJNNV), Barfin flounder nervous 

necrosis virus (BFNNV), Tiger puffer nervous necrosis virus (TPNNV) and Red spotted grouper 

nervous necrosis virus (RGNNV) (ICTV//www.ictvonline.org./virustaxonomy.asp). The species 

names represent the host species of the original viral isolate and are supported by variation in 

the viral genomic sequence. An additional viral strain isolated from Turbot, proposed as a new 

Betanodavirus species, Turbot Nervous Necrosis Virus (TNNV), displays variation in genomic 
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sequence from the four recognised species however formal recognition of TNNV as another 

species has not occurred (Johansen et al., 2004,ICTV//www.ictvonline.org./virustaxonomy.asp)  

The viral species were originally proposed to have strong host specificity. However, excluding 

TPNNV, the different genotypes can infect a variety of fish species (Thiery et al., 2004). The 

viral species were also originally observed to have species-specific temperature dependency 

(Iwamoto et al., 1999) however, variation from the original temperature distributions are 

known to occur and RGNNV exhibits the greatest temperature tolerance (Panzarin et al., 

2016). The taxonomic distribution of the 1400+ sequences published in NCBI nucleotide 

database includes SJNNV (182), RGNNV (389) BFNNV (76), TPNNV (5) and other strains which 

have not been formerly classified into species divisions (www.ncbi.nlm.nih.gov. accessed 

18.8.19).  

1.4 Viral genome characteristics 

Nodaviruses possess a small linear single stranded bi-segmented positive sense RNA (+ss RNA) 

genome contained within an approximate 25 to 35 nm un-enveloped capsid of icosahedral 

symmetry (Venter and Schneemann 2008). Nodaviruses replicate exclusively in the cytoplasm. 

Virions are stable between pH 2 to 9 and resistant to heating at 56 °C for 30 min (Frerichs et 

al., 2000). The Nodaviridae possess one of the smallest animal infecting viral genomes. 

Genomes are approximately 4.5 kb nucleotides (nt) consisting of a Segment 1 (RNA 1) of 3.1kb 

nt and Segment 2 (RNA 2) 1.4kb nt. Both segments possess a 5’ end methylated cap that 

assists in recruiting the eukaryotic translation machinery to translate viral proteins (Mori et al., 

1992). Both segments lack a 3’ poly a tail but the RNAs are protected by an unknown moiety 

(Venter & Schneemann 2008).  

The RNA 1 (3.1kb nt) contains the mRNA for the ~ 1000 amino acid (aa) Protein A encoded by 

nt 79 to 3027( ). A sub-genomic RNA, termed RNA3, not packaged into virions, is synthesised 

from the 3’ end of the RNA 1 segment. RNA 3 consists of ~387 nt and encodes the B1 (111 aa) 

and B2 (72 aa) proteins (Venter & Schneemann 2008; Toffolo et al., 2007). The B1 protein is 

translated in the same reading frame as Protein A and is encoded by the 336nt of the 3’ 

terminus of the RNA 1(nt 2688 to 3027). The B2 protein requires a +1-reading frame shift for 

translation compared to B1 and is encoded by 227 nt on the RNA 1 (nt 2753 to 2980) 

(Biacchesi 2011; Venter & Schneemann 2008). RNA 3 also acts as a transactivator in the 

replication of RNA 2. Paradoxically, the replication of RNA 2 results is the cessation of 

replication of RNA 3 (Venter & Schneemann 2008). RNA 2 (1.4kb nt) contains the mRNA for the 

capsid protein. In the Alphaviruses the capsid protein is ~ 430 aa compared to 338 aa of the 

Betanodaviruses (Venter & Schneemann 2008). How the nodavirus Viral RNA interacts to 
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infect and cause disease in vertebrates is not completely understood. Knowledge of viral 

replication processes will aid in developing novel anti-viral therapies to limit disease. 

1.5 Phylogenetic comparison of Betanodavirus 

Phylogenetic studies are useful to identify virulence factors and produce epidemiological 

models to understand viral transmission pathways. Initial phylogenetic studies of the 

Betanodaviruses were based on the viral capsid protein or RNA 2 and indicated strong nt and 

aa distinction between the species (Nishizawa et al., 1997). However, the presence of 

reassortments between RGNNV, SJNNV and BFNNV suggests the phylogenetic studies should 

consider both the RNA 1 and RNA 2 (Toffan et al., 2017 and Oliveira et al., 2009).  

Phylogenetic comparisons between the Betanodavirus strains initially occurred through 

analysis of the nt sequence of RNA 2 or its translated capsid protein sequence. The RNA 2 of 

TPNNV and SJNNV regions are identical in nt length. BFNNV and RGNNV lack 6 bases at 

position 713 to 718 nt of the RNA 2 strand. Comparative similarity of a T2 region (nt 155 to 

1030) within the RNA 2 strand between the different species was 75.8 % or more at nt and 

80.9 % or more at aa level. Within T2 a highly conserved (>93 %) 134 aa region and highly 

variable T4 (62 %) 81 aa region was identified (Nishizawa et al., 1995). The T4 (nt 604 to 1030), 

T2 and base insertion or deletion at nt 713 to 718 were proposed as a site for species 

differentiation of the Betanodaviruses. The conclusions of that analysis supported the division 

of the 4 species originally defined by host species (Nishizawa et al., 1995).  

Comparison of the T4 region in a phylogenetic analysis of 25 Betanodavirus isolates collected 

in Japan resulted in the divergence of the Japanese isolated Betanodaviruses into 4 clusters 

containing 95 % or greater nt sequence similarity (Nishizawa et al., 1997). The clusters were 

defined as TPNNV, SJNNV, BFNNV and RGNNV. The majority of NNV isolates from Japanese 

flounder aligned within the RGNNV species and only a single isolate (JF95Hok) aligned with the 

BFNNV species (Nishizawa et al., 1997). Japan remains the only country to report VER isolates 

from all four of the recognised Betanodavirus species. Phylogenetic analysis of the region 

consisting of RNA 2 nt 169 to 987 was conducted on Betanodaviruses isolated from cultured 

fish in Korea (Cha et al., 2007). The classification supported the 4 species previously identified 

and proposed an additional 5th group consisting of a single isolate from a Turbot from Norway 

(TNNV-Norway AJ608266) (Johansen et al., 2004).  

Using deduced aa analysis encoded by the T4 region of 44 Betanodavirus isolates from various 

countries in Europe, Asia and the Mediterranean, a different classification nomenclature was 

proposed (Thiery et al., 2004). The classification consisted of 4 clusters and 5 subtypes namely 

Ia and Ib (RGNNV); IIa, IIb, IIc (BFNNV); III (TPNNV) and IV (SJNNV). The clustering within each 



33 

 

group was more related to the geographical source of the isolate than the host species (Thiery 

et al., 2004). Cherif et al. (2009) applied the phylogenetic clusters of Thiery et al. (2004) to 

investigate a number of NNV isolates in D. labrax and sea bream Sparus aurata from Tunisia. 

All isolates clustered within the RGNNV genotype. Four of the isolates were obtained from 

temperatures 15 to 19 °C, which is outside that typically observed for the RGNNV. In a novel 

report, nine different sequences were observed within a single farm. In contrast to previous 

observations, geno-grouping of the fish Betanodaviruses appeared to reflect an adaptation to 

a range of temperatures rather than geographic location or host specificity (Cherif et al., 2009). 

Recognising some discrepancy in the classification of Betanodavirus strains based on T4, some 

researchers report phylogenetic analysis including both RNA 1 and RNA 2 of the Betanodavirus 

genome (Toffolo et al., 2007). Analysis of the RNA 1 nt 121 to 1050 of SJNNV identified 25 

unique RNA 1. Analysis comparing RNA 2 from nt 388 to 894 of SJNNV that contained the 

species-specific 6 nt insert region identified 22 unique sequences. Phylogenetic division of the 

Betanodaviruses was possible using either RNA 1 or RNA 2 however, the divisions strongly 

contrasted (Toffolo et al., 2007). Using the RNA 1 strand the SJNNV, BFNNV and RGNNV or 

clades IV, II and I phylogenetic groupings were statistically well-supported (Toffolo et al., 

2007). A sister group relationship was proposed for the TPNNV, BFNNV and SJNNV or clades III, 

II and IV. Two of the Iberian isolates clustered within the SJNNV/IV when grouped by analysis 

of RNA 1. The same two were positioned in the RGNNV/I cluster when grouped by analysis of 

RNA 2. There was an absence of any evidence of recombination between different RNA 1 

segments however; recombination in RNA 2 between different isolates was observed. Toffolo 

et al. (2007) proposed both RNA 1 and RNA 2 must be considered for phylogenetic purposes 

with RNA 1 possibly being a better marker to assess the origin of a single isolate.  

Phylogenetic relationships between VER strains detected in the Iberian Peninsula, collectively 

termed IBNNV, indicated the presence of re-assortment between Betanodavirus species 

(Olveira et al., 2009). Comparing RNA 1, all IBNNV isolates clustered within 97 % nt sequence 

homology to the RGNNV species (Olveira et al., 2009). Comparison of RNA 2 indicated 

divergence with only 1 of the IBNNV strains aligning within the RGNNV isolates and the 

remaining 6 displaying stronger similarity to the SJNNV species. Genomic analysis of 

Betanodaviruses from cultured fish species in Malaysia also considered RNA 1 and RNA 2 

(Ransangan & Manin, 2012). All of the studied Betanodaviruses from Malaysia presented as 

nine clusters within the RGNNV species. Unlike Toffolo et al. (2007) the clustering was 

consistent between RNA 1 and RNA 2 analysis, which is expected in the absence of 

reassortment between multiple NNV species. 



34 

 

The limitations of the T4 region as a classification tool were not recognised until after 2004. 

Many of the sequences contained in the NCBI (1999 to 2004) are not complete and make 

retrospective phylogenetic studies with newly detected NNV strains difficult. A recent 

phylogenetic study was conducted comparing 189 RNA 1 Betanodavirus sequences (32 

RGNNV, 154 BFNNV, 1 TPNNV and 2 SJNNV) and 73 RNA 2 Betanodavirus sequences (54 

RGNNV, 8 BFNNV, 1 TPNNV and 10 SJNNV) (He & Teng, 2015). During the period the isolates 

were collected, the RNA 1 had a mean nt substitution rate of 3.60 per 10 000 nt per year 

compared to RNA 2 of 3.69. Within the RGNNV types substitution rates of 4.28 and 3.79 per 10 

000 per year were calculated for the RNA 1 and 2 respectively (He & Teng, 2015). Taxonomic 

divisions proposed by Nishizawa were supported by the analysis with the identification of 

subclades within the genotypes. Using the RNA 1, the RGNNV could be divided into 3 

subclades compared to 6 subclades using RNA 2 (He & Teng, 2015). 

To develop more effective means to understand the epidemiology of VER a greater quantity of 

genomic sequence information of the isolates is required. An understanding of the 

contributions the genomic sequences make in the progression of disease (pathogenesis) of 

VER could assist in developing strategies to overcome the disease. 

1.6 Viral Nervous Necrosis: The Disease 

1.6.1 Emergence of VER:  

VER, originally termed Whirling disease or Summer disease, emerged as a disease causing up 

to 88 % mortality in intensive larval fish hatcheries during 1983 to 1989 (Gallet de Saint Aurin, 

Raymond & Vianas, 1989). Clinical signs of VER in larval fish include loss of appetite, darkened 

colour, erratic and spiral swimming and hyperinflation of the swim bladder. In larval rearing 

systems, clinical signs are usually followed by mass mortality over 2 to 14 days (Moody & 

Crane, 2012).  

Histopathology of VER disease involves extensive vacuolation of the brain and retinal tissues. 

Viral particles were reported in association with VER histopathology in larval production 

systems of, Dicentrarchus labrax in the French Caribbean Islands (Gallet de Saint Aurin et al., 

1989), turbot, Scopthalmus maximus in Norway (Bloch et al., 1991), Japanese parrotfish, 

Oplegnathus fasciatus in Japan (Yoshikoshi & Inoue 1990), and barramundi, Lates calcarifer in 

Australia and Tahiti (Glazebrook et al., 1990) (Renault et al., 1991).  

Purification and partial characterisation of viral particles from striped jack Pseudocaranx 

dentex suffering VER was reported in 1992 (Mori et al., 1992). Based on the viral 

characteristics VER was proposed to be caused by new member of the Nodaviridae designated 
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Striped Jack Nervous Necrosis Virus (SJNNV) (Mori et al., 1992). SJNNV was the first nodavirus 

to be purified from a vertebrate during a time when no member of the Nodaviridae had been 

isolated from outside Australasia (Johnson et al., 2000). Experimental infection trials 

confirmed SJNNV as the aetiological agent of VER in P.dentex (Arimoto et al., 1993). Nishizawa 

(1995) provided viral genome and aa analysis to support the classification of NNV as a member 

of the Nodaviridae. Betanodavirus was officially accepted as a new genus in the family 

Nodaviridae in 1997 (ICTVonline.org/proposals/Ratification_1997.pdf). SJNNV became the 

type species of the Betanodavirus genus. Other species include Barfin Flounder Nervous 

Necrosis Virus (BFNNV), Redspotted Grouper Nervous Necrosis Virus (RGNNV) and Tiger Puffer 

Nervous Necrosis Virus (TPNNV).  

1.6.2 Host range:  

Betanodavirus isolates have been collected from larval and juvenile stages of over 157 marine 

and freshwater fish species in tropical and temperate climates (www.ncbi.nih.gov/). VER 

disease outbreaks have been reported from farmed cultures and wild fisheries (Koohkan et al., 

2012) (Breuil et al., 2000). In experimental infection trials, susceptibility of fish species has 

been classified as highly susceptible, less susceptible or resistant to NNV (Furusawa et al., 

2007). A similar pattern occurs in wild fisheries. The highly susceptible species display 

mortalities of 80 to 100 % in either larval or larval and later life stages. Most of the highly 

susceptible species are only susceptible to VVN during early larval stages. Except, the groupers, 

Epinephelus sp. and European seabass, Dicentrarchus labrax, are susceptible beyond the larval 

stages. Groupers up to 3 years old have been recorded with VER (Tanaka et al., 1998). Notably, 

there have been no reports of VER in Atlantic salmon, Salmo salar, despite the geographical 

presence of NVV where they are cultured and the fish being reportedly susceptible to 

experimental infection with BFNNV via intraperitoneal injection (Korsnes et al., 2005). Also 

notable in the Northern Australian aquaculture context is the absence of reported disease 

outbreaks in cobia, Rachycentron canadum which are being experimentally grown within 

marine systems in the same geographic range as barramundi and grouper. Chu et al. (2013) 

reported a case study of mortality exceeding 80% in cobia from 3 farms in Malaysia during 

2007. Fish displayed signs of VER which included the mass mortality and abnormal spiral 

swimming behaviour and “flashing” and were positive for the detection of NNV by RT-PCR 

(Chu et al., 2013). No similar reports have occurred from cobia aquaculture despite, in some 

circumstances in Australia, cobia being cultured in pond cages immediately adjacent to 

grouper suffering a VER outbreak (unpublished data). 
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Betanodaviruses have also been detected from a number of non-piscine hosts including the 

spiny lobster Panulirus versicolor (Gomez et al., 2006), Artemia sp, Copepod Tigriopus 

japonicas, shrimp Acetesinte medius, Charybdid crab Charybdis bimaculata, Southern 

humpback shrimp Pandalus hypsinotus , Mediterranean mussel Mytilus galloprovincialis 

(Gomez et al., 2008) and Japanese common squid Todarodes pacificus (Gomez et al., 2010). 

The detections were not associated with any clinical signs of disease and the role these 

alternate hosts play in the transmission of Betanodaviruses to fish species has not been 

demonstrated. There is increased awareness of the biosecurity threats posed by the 

bioaccumulation of NNV in molluscs as a reservoir for infection to cultured fish (Volpe et al., 

2017). Re-isolation of RGNNV from the hepatopancreas and detection of virus in surrounding 

water following experimental exposure to RGNNV was recently demonstrated from the Manila 

clam Ruditapes philippinarum (Volpe et al., 2017).  

1.6.3 Transmission of Betanodavirus 

VER has been experimentally induced in susceptible fish species through exposure to viral 

extracts via multiple routes including intramuscular injection (IM), intraperitoneal injection 

(IP), intranasal inoculation (IN), water bath exposure and co-habitation with infected 

individuals. Betanodavirus RNA was detected in developing embryos of E. coioides by PCR and 

in-situ RT-PCR suggesting a vertical transmission pathway within the hatchery system (Kuo et 

al., 2012). Likewise, BFNNV with a copy number of 103 per sample was detected from the 

gonads, eggs and fertilized eggs of Pacific cod Gadus macrocephalus (Mao et al., 2015). In the 

same study, food sources including Artemia, Chlorella and enhancer limacinum were negative 

for detection of Betanodavirus by PCR. In contrast, Whittington (2012) reported NNV was 

transmitted horizontally, from unknown source but not vertically in a larval barramundi 

hatchery system. Individual fish from susceptible species which survive Betanodavirus 

infection have been demonstrated to carry the virus. The sub-clinically infected fish are 

believed to act as a reservoir source for horizontal transmission of the virus to other fish. 

Within hatchery systems, VER has been effectively managed through strict management 

protocols which involve the quarantining larval fish production by disinfection of incoming 

water, fertilised eggs, hatchery equipment and workers. In the fish species that are only 

susceptible during larval stages, this strategy is very effective. For species, including groupers 

and European sea bass, which have a longer period of susceptibility that are cultured in 

outdoor pond or cage systems, the management of VER continues to be an issue.  

1.6.4 Progression of Betanodavirus infection  
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 In natural infections, the pathways involved in the spread of Betanodavirus from the site of 

infection to the nervous tissues have not been determined. Brain-infecting viruses can spread 

to the brain by either axonal transport from the skin or muscle to dorsal root ganglion or 

anterior horn cells and then to neurons and the CNS or can spread to the brain via the blood 

(Lu et al., 2008). Betanodavirus has been detected in the epithelial cells of skin and in the 

intestinal epithelium with concurrent detection in the nerve cells of the brain in the early stage 

of NNV infection (Chi, 2011). Infection via intranasal swab was reported to proceed through 

the nasal epithelium, pass through the olfactory nerve and olfactory bulb and invade the 

olfactory lobe (Chi, 2011). The pathway of Betanodavirus spread in zebrafish is proposed to 

occur via the blood (Lu et al., 2008). In contrast, no RGNNV or SJNNV was detected in blood 

samples in experimentally infected fish despite positive detection in the brain, spinal cord and 

eye of E. moora and Striped Jack, P. dentax (Banu et al., 2007). Ikenaga et al. (2002) observed 

SGNNV injected into the retinal ganglion cells was transported in the optic nerve to the axon 

terminal of the brain, where the virus proceeded to spread various regions of the brain. The 

virus can be consistently isolated from the eye and brain and with varying success from fin 

tissue, spleen, liver, stomach and heart (Chi, 2011). Brain and eye are the target tissues for 

virus isolation procedures in disease investigations (Moody & Crane, 2012). Histopathological 

changes in fish displaying clinical disease symptoms involve vacuolation of the nervous tissues 

with the absence of any notable inflammatory immune response (Tanaka et al., 2004). For 

specific descriptions of histopathology refer to the descriptions by Tanaka et al. (2004). 

1.6.5 Pathogenesis of Betanodavirus Infection and VER disease 

A number of factors reportedly modulate the expression of VER disease. Age of fish, salinity, 

water temperature and water sediment load are proposed to influence the development of 

disease. How the factors influence progression to disease is unknown. Environmental 

conditions are proposed to play a play a key role in switch form a carrier-state to acute phase 

mortality (Kara et al., 2014).  

1.6.5.1 Age of fish 

Larval fish are particularly susceptible to VER (Moody & Crane, 2012). In larval stages of highly 

susceptible marine species, mortalities of 80 to 100 % occur over 4 to 6 days from the onset of 

clinical signs (OIE, 2019). The period of larval susceptibility varies between species. Although 

other stressful age-dependent developmental events may contribute, presumably an 

immature immune system in the fish contributes to the mass deaths in the presence of 

Betanodavirus. Jamarillo et al. (2017) reported an age susceptibility pattern in juvenile 
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barramundi whereby only larval stages are highly susceptible to NNV. Juvenile barramundi, 

older than 5 weeks of age, develop a subclinical infection, whereas younger cohorts suffer 

clinical disease and mass mortality (Jaramillo et al., 2017). The immune pathway that may 

confer this change is susceptibility is unknown. The report of Jaramillo et al. (2017) is the only 

study to demonstrate the age-related conversion from susceptibility to a tolerance of RGNNV. 

Few studies encompass the development of immune function and Betanodavirus infection and 

VER disease. Some studies have detected and monitored changes in specific immune factors. 

In grouper, E. coioides, Down syndrome cell adhesion molecule (DSCAM) A and B and 

Myxovirus resistance protein (Mx) were monitored by qPCR for 27 days post-hatch (dph). 

DSCAM A and B displayed a modulating 7-day cycle peaking at 4- and 11-days post-hatch (Yew 

et al., 2012). Mx was detected at minimal levels until 6 dph whereby it continued to increase 

until 9 to 12 dph before reaching relatively stable levels for the next 14 days (Yew et al., 2012). 

Interferon-α was not detected in larval zebrafish during the time they display high 

susceptibility to VER disease (Lu et al., 2008). In Epinephelus bruneus, although primary 

lymphoid organs are present from days 1 to 12, the development of the immune system in is 

incomplete until 30 dph (Huang & Han, 2015). “Complete” immune system development was 

determined by histology of tissues rather than demonstration of functional capability (Huang 

& Han, 2015). The age-related factors which favour VER disease outbreaks require further 

investigation. 

1.6.5.2 Water Temperature 

1.6.5.2.1 Temperatures associated with natural disease outbreaks: 

In vitro the four Betanodavirus species display temperature range specificity.  

Disease outbreaks in the wild and experimental infections with strains of Betanodavirus 

indicate temperature is a modulating factor in VER disease (Ciulli et al., 2006). The modulating 

effects of temperature occur at ranges which were beyond those reported for in vitro growth. 

In the wild, a BFNNV strain has caused disease at temperatures between 4 to 15 °C (Tanaka et 

al., 1998). A SJNNV strain induced disease in striped jack larvae in water temperatures ranging 

from 18 to 27 °C (Tanaka et al., 1998). Natural outbreaks of disease caused by RGNNV disease 

tends to occur at both increased and decreased temperatures. In grouper species, increased 

mortalities from VER have been reported to occur with temperature decreases below 22 °C 

even though the RGNNV strain does not replicate well at this temperature range in vitro (Kara 

et al., 2014). A sudden drop in temperature induced VER in D. labrax which displayed no 

clinical signs when held at higher temperatures (Thiery et al., 1999). Vertical transmission of 

VER can occur in D. labrax at temperature below 15 °C (Breuil et al., 2002). In vitro growth of a 
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RGNNV strain isolated from the Adriatic Sea displayed growth over a temperature range of 15 

to 30 °C (Ciulli et al., 2006). Conversely in the Asian continent, grouper mortalities due to VER 

were noted in Japan and Taiwan when water temperatures exceeded 25 °C and 29 °C 

respectively (Kara et al., 2014). In an outbreak of VER caused by a RGNNV strain in Italy, the 

highest mortalities were observed in fish held at highest temperatures (28 to 30 °C). Lower 

mortalities were observed and ceased when the farmer lowered the temperature below 23 °C 

(Bovo et al., 2011).  

1.6.5.2.2 Temperatures associated with experimental challenge: 

In experimental infections some variation from temperatures has occurred in SJNNV and 

RGNNV and recombinants of these strains (Souto et al., 2015b). Immersion exposure of 

Senegalese sole to a RGNNV RNA 1/SJNNV RNA 2 natural re-assortment at a dose of 105 TCID50 

had reduced mortality and clinical signs at 16 °C compared to fish held in 18 °C and 22 °C 

(Souto et al., 2015b). Only 8.3 % mortality was recorded in infected fish held at 16 °C 

compared with >80 % at the other temperatures (Souto et al., 2015b). The detection of RNA 1 

indicated significantly greater copy number at 22 °C and 18 °C (1010) compared at 16 °C (106 to 

108) over the 30-day trial. Groupers infected at 16 °C and subsequently exposed to 

temperature increased to 22 °C displayed mortalities approaching 100 % (Souto et al., 2015b). 

Hyperactivity increased in fish 4 to 5 days after a temperature increase and earlier for fish 

which had been acclimated to 16 °C for longer than 15 days. Viral copies were detected in all 

fish infected at 16 °C however, viral load displayed changes over time and decreased from 2.7 

x 109 at 45 to 66 days post-challenge (dpc). Viral copy number in fish at 22 °C was in the 109 to 

1010 range depending on the period of time which the fish had originally been held at 16 °C 

(Souto et al., 2015b). Viral loads of 107 to 108 were observed in fish which died at 16 °C 

indicating that increased viral load did not cause the mortality. 

Challenge of larval fish with RGNNV at 28 °C induced 100 % mortality at 50 to 80 hpi (Lio-Po & 

de la Pena 2004). An experimental challenge of E. akaara juveniles with RGNNV caused 100 % 

mortality at 24 to 28 °C. At 16 to 20 °C mortality was reduced to 57 to 61 % and the time to 

onset of clinical signs was delayed. In addition, viral antigen was detected among survivors 50- 

dpc (Lio-Po & de la Pena 2004). Similar results were reported when juvenile sevenband 

grouper, E. septemfasciatus, were experimentally exposed to a RGNNV extract at different 

temperatures (Tanaka et al., 1998). In the experiment of Tanaka et al. (1998) none of the fish 

which survived RGNNV and were later held at 20 or 24 °C displayed a positive result using 

fluorescent antibody testing (FAT) against the capsid protein at 50 days post-challenge (dpc). 

In contrast, fish held at both the higher or lower temperatures were positive for VER by FAT. 
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 Experimental exposure to a greasy grouper NNV (GGNNV) strain induced 100% mortality in 

larval grouper at temperatures ranging from 24 to 32 °C (Chi et al., 1999). Fish held at a 

constant temperature of 28 °C displayed 100 % mortality by 50 hours post-challenge (hpc). In 

contrast, fish held at ambient temperature which ranged from 28 to 24 °C displayed 100 % 

mortality after 80 hpc (Chi et al., 1999). An RGNNV strain caused increased mortality in larval 

Australian bass M.novemaculata reared at 22 °C compared to 17 °C (Jaramillo et al., 2015). 

Testing on older resistant fish revealed no change in mortality occurred with increased 

temperature (Jaramillo et al., 2015).  

Temperature is a major factor for stimulating asymptomatic carriers to become symptomatic 

fish (Kara et al., 2014). VER was induced in sub-clinically infected zebrafish by increased water 

temperature (25 to 32°C) and crowding (10 to 40 fish/L) (Binesh 2014). The changes in 

mortality rate could be due to an alteration in fish anti-viral immunity induced by temperature 

rather than temperature modulated alterations on Betanodavirus replication (Tanaka et al., 

1998). Breuil et al. (2000) reported the detection of antibodies to nodavirus in the serum of 

adult D.labrax for 2 years post infection with antibody levels declining over winter. The effect 

of age and temperature on antiviral immunity was investigated in zebrafish (Dios et al., 2010). 

In larval Zebrafish, known to be susceptible to VER, anti-viral immune response genes 

including Mx, MDA-5, Interferon- (IFN-1), Toll-like Receptor 3 (TLR-3), Interferon regulatory 

factor 3 (IRF3) and Interferon- ϒ (IFN-ϒ), were very sensitive to low temperature (Dios et al., 

2010). Further investigation is required to elucidate the relationship between temperature and 

VER disease events. 

1.6.5.3 Salinity:  

VER occurs in freshwater, brackish and marine environments indicating a large salinity 

tolerance of the Betanodaviruses. Two strains of VER isolated from D. labrax in the 

Mediterranean lost infectivity after 6 months storage at 15 °C in freshwater compared with a 

TCID50 of 104 to 4.5 when stored in seawater of 20 or 37 ppt (Frerichs et al., 2000). An RGNNV 

strain caused varying levels of disease when injected into freshwater fish (Furuzawa et al., 

2007). According to some grouper farmers, mortality due to VER can be downregulated by 

decreasing the salinity of the sea water (Chi, 2011). In an experimental infection with a 

grouper NNV strain, mortality was reduced in fish acclimated at 15 ppt compared to those held 

at 30 ppt (Chen, 2014). 
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1.6.5.4 Organic load and Sediment 

Verbal reports from hatchery workers suggest VER outbreaks are preceded by periods of high 

sediment in inlet water (unpublished pers comms numerous aquaculturists). The association 

has not been investigated but could involve a number of mechanisms. Firstly, Betanodavirus 

particles shed by wild fish may directly attach to estuarine sediments which then enter the 

hatchery system during periods of high turbidity. The adsorption and detachment of enteric 

viruses in estuarine sediment is influenced by salinity and organic matter (LaBelle & Gerba, 

1979). No similar studies have been conducted on Betanodaviruses. In addition, higher 

sediment loads may induce stress in larval fish which could downregulate components of the 

antiviral immune system which protect against infection. High sediment loads negatively affect 

the efficacy of ozone and UV sterilisation protocols used to prevent VER. Levels of pesticides or 

other environmental contaminants are known to have adverse effects on the immune 

functioning of fish (Bols et al., 2001). The pesticides diuron, atrazine, hexazinone, tebuthiuron 

and ametryn have been detected in the Great Barrier Reef waters with greatest concentration 

in estuarine waters which are the intake waters for the vast majority of tropical finfish 

aquaculture systems in Northern Queensland (http://reefrescueresearch.com.au/news/183-

pesticide-dynamics-in-the-gbr.html). 

1.7 Managing VER in grow out fish aquaculture 

A major impediment to the successful management of VER in the grow-out culture of some 

fish species, groupers and D. labrax, is caused by the lack of understanding into the initiation 

of the disease. It is unknown if VER disease outbreaks on grow-out farms are caused by 

exposure of naïve individuals to Betanodavirus or a result of changes in the sub-clinical fish-

virus dynamic to favour progression of disease. The noting of factors associated with VER 

disease suggests some form of immune modulation must be involved. Regardless, considering 

the wide host range, presence of sub-clinical carriers and the wide environmental tolerance of 

the virus, if the first scenario is the cause of VER outbreaks on grow out farms it is unlikely 

exposure to Betanodaviruses can be prevented in open pond systems. Hence, managing the 

culture conditions to favour fish survival in the presence of Betanodavirus may be a more 

appropriate strategy. Attempts to manage Betanodavirus, and generally fish viral infections, in 

grow out aquaculture systems can be broadly categorised as either the production of: 

 anti-viral compounds which target virus replication or  

 Immuno-modulators which target fish immune function.  
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1.7.1.1 Anti-Viral Compounds  

The study of anti-viral compounds for application to fish aquaculture is very limited. With the 

exception of ribavirin, the anti-viral compounds which have been reported have only been 

investigated in vitro and none have been approved for use as commercially available and 

registered for use in aquaculture in Australia. Considering the lengthy process involved in 

registering compounds for aquaculture applications and the negative regard consumers have 

for chemical compounds in food, it is unlikely an anti-viral therapy will be available to 

aquaculture in the near future. In addition, considering the long culture period (6-10 months) 

of some grow out systems, it is likely multiple doses of any effective compound would be 

required. Nonetheless, research into such therapies may contribute towards improved 

understanding of the host-virus dynamic.  

Some compounds which inhibit endosomal acidification have been reported to inhibit RGNNV-

induced CPE e.g. NH4Cl, chloroquine and bafilomycin A1 (Adachi et al., 2007). Neuraminidase 

and tunicamycin blocked the attachment of DGNNV to SSN-1 cells (Liu et al., 2005).  

Ribavirin is a known inhibitor of RNA viruses and used as an anti-viral drug to combat human 

viral infections. Ribavirin (25 µM) inhibited Betanodavirus induced CPE by 54 % in GF-1 cells 

(Huang et al., 2015). Expression of RNA 1 and RNA 2, detected by RT-PCR, were decreased by 

approximately 80 % (Huang et al., 2015). The interaction between ribavirin and Betanodavirus 

was hypothesised to occur with Protein A at the region between AA 585 to 744. Based on 

comparisons of ribavirin binding with foot and mouth disease virus Protein A specific RGNNV-

ribavirin binding residues were proposed to be aa K586, F589, D590, N655, S646 and G647. All 

of the residues except N655 are located on the conserved motifs of the viral RNA dependant 

RNA polymerase motifs (Huang et al., 2015). Ribavirin was demonstrated to reduce mortality 

in Salmo salar caused by infectious salmon anaemia virus (ISAV) by 90% (Rivas-Aravena et al., 

2011). However, the drug is not approved for use in aquaculture. 

The development of a cell-based screening platform to assess anti-Betanodavirus compounds 

allowed the detection of forty-three compounds which reduced RGNNV–induced CPE by at 

least 50% (Huang & Han 2015). Only proadifen hydrochloride, which is a known inhibitor of 

neuronal nitric oxide synthase (NOS1) and cytochrome P-450, was further investigated. 

Effective compounds were listed and broadly categorised as antibacterial, antifungal, 

antimalarial, enzyme inhibitors, hormones, membrane transport modulators, neurotransmitter 

agents, phytochemicals, sterols, peripheral nervous system agents and the colouring agent 

erythrosine sodium. Interestingly, erythrosine sodium, syn. erythrosine B (FD&C Red No. 3) has 

been demonstrated to be a non-discriminant potent inhibitor of the protein-protein 
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interactions between: Tumor Necrosis Factor (TNF) -Receptor-TNFα, epidermal growth factor 

receptor (EGF-R–E) and cluster of differentiation (CD) CD40-CD154 (Ganesan et al., 2011). The 

mode of action of erythrosine sodium on Betanodavirus replication has not been determined. 

Considering erythrosine sodium is approved for use as a food dye this compound may be a 

promising anti-viral compound for aquaculture. 

Although the expense and unfavourable acceptance by consumers may limit the application of 

anti-virals to aquaculture applications, the knowledge gained from studies using anti-virals 

contribute to a greater understanding of the host-Betanodavirus dynamic. 

1.7.1.2 Immuno-modulation of the Fish host 

In open pond or cage aquaculture, options that modulate the fish immune system will be more 

achievable than attempts to directly managing the virus to prevent VER. Unfortunately, this 

study is being attempted when there is limited knowledge about the grouper anti-viral 

immune system. Nonetheless, there is some reported success in preventing VER via 

modulation of the fish immune system.  

1.7.1.2.1 Stimulation of the Non-specific (Cellular) immune pathway 

Early attempts to improve survival of fish following Betanodavirus challenge using immune 

stimulating compounds reported success. The compounds were essentially “mimics” of 

pathogens which stimulated the non-specific immune pathways recognition by pathogen 

recognition receptors (PRRs). The intramuscular (IM) delivery of poly I:C and interferon have 

been reported to prevent VER if delivered during “appropriate time frames” (Kuo et al., 2016). 

Unfortunately, the “appropriate time frames” were a short period prior to Betanodavirus 

exposure or the appearance of clinical signs which could be unknown in a fish culture 

situation. Additionally, the protective period provided by such compounds was a short lived, 

24 to 48 hours (Kuo et al., 2016).  

1.7.1.2.2 Stimulation of the specific (Humoral) Immune pathway  

Many report the successful reduction in mortalities due to NNV infection with an experimental 

vaccine. Vaccination is discussed in greater detail in Chapter 6. However, it is important to 

note that despite a long history of reported success in experimental systems, there are no 

vaccines commercially available in Australia or Asia. Pharmaq™ and HIPRA commenced the 

sale of the only vaccine against NNV available to Europe in 2018. Considering the demand and 

sizeable commercial value, the absence of a commercially available vaccine against NNV may 

indicate that the management of VER is more complicated than vaccination alone. 
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1.8 VER in Grow-Out Aquaculture systems. What determines 

Betanodavirus infection vs VER disease? 

An increasing body of data indicates changes or differences in immune function in the fish host 

contribute to the expression of clinical VER disease. Reports noting histopathological 

differences in carrier and diseased fish suggest a role of immunity. Vacuolation of the nervous 

tissue is invariably associated with fish displaying disease symptoms. The abundance of 

vacuolation of the nervous tissues and the absence of notable inflammatory response in the 

neural tissues is associated with other vertebrate diseases. Spongiform encephalopathy (SE), 

caused by prions PrPsc, is also characterised by histopathology by the vacuolation of neurons 

and adjacent glial cells, and the absence of any inflammation or immune response to the agent 

(Murray et al., p.599). One of the earliest descriptions of VER pathology noted the similarity 

with the histopathology induced during SE (Gallet de Saint Aurin et al., 1989). The observation 

that vacuolation, associated with an absence of any inflammation or immune response, leads 

to death is also reported in Semliki Forest Virus (SFV) infections (Fazakerley et al., 2006). 

Experimental inoculation of immuno-competent mice with an avirulent strain of SFV (avSFV) 

results in a strong inflammatory immune response (Fazakerley et al., 2006). Early necrotic cell 

death of oligodendrocytes, followed by apoptotic cell death of uninfected cells lead to the 

clearance of the virus within 18 days pi and the absence of vacuolation of the nervous tissues 

(Fazakerley et al., 2006). However, athymic nu/nu mice, which are deficient in the production 

of cytotoxic-T cells, display vacuolation of the nervous tissue and die when injected with AvSFV 

(Fazakerley et al., 2006). In such cases, priming of the immune system by IP injection of poly 

(I:C) abrogates viral infection in the neural tissues. Experimental exposure of mice to Herpes 

Simplex Virus (HSV) also involves immune v non-immune histopathology, which reflects death 

vs survival (Grubor-Bauk et al., 2008). Mice which are deficient in the expression of natural 

killer T-cells (NKT) display vacuolation of neurons (Grubor-Bauk et al., 2008). The brains of 

immune-competent mice display a mononuclear inflammatory infiltrate (Grubor-Bauk et al., 

2008). Treatment with activated CD8+T cells abrogated the infection in immune-incompetent 

mice (Grubor-Bauk et al., 2008).  

Similarly, with VER, there are a small number of reports in which “healthy fish” are verified to 

be VER positive but not displaying vacuolation in the brain. Gjessing et al. (2009) reported 

histopathological changes in the nervous tissues from “healthy” Atlantic cod that included a 

“diffuse cellular reaction”, few vacuoles, and VER immune-positively staining macrophage-like 

cells near nervous tissue. E. septemfasciatus which survived experimental VER challenge when 

sampled 2 months post-infection did not display vacuolation in the brain or retina, but the 
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tissues reacted positively by FAT (Lopez-Jimena et al., 2011). Similar results were reported 

from an RGNNV outbreak in Italy (Bovo et al., 2011). Hybrid bass (Morone saxatilis x Morone 

chrysops), held on a farm that experienced VER displayed low-level mortality (20 %) and 

inconsistent results for the detection of the virus. Whittington (2012) detected VER in 

subclinical carriers by qPCR and stated “histopathology can no longer be used as the sole 

screening test” for VER due to the absence of histopathological changes in subclinical carrier 

fish. However, this conclusion is challengeable because the detection of NNV by qPCR does not 

necessarily indicate the presence of a viable virus. 

 

Comparative analysis of the expression of immune factors also demonstrates a correlation 

between the development of immune competence and survival from Betanodavirus infection. 

Differential immune responses to VER in zebrafish juveniles compared to adults has been 

reported (Lu et al., 2008). Acute VER disease in larvae and juveniles is reportedly due to 

inactive interferon response in contrast to an active innate immune response during persistent 

infection in the adult stages (Lu et al., 2008). Interferon-α (IFN-α) and Mx were expressed in 

adult zebrafish brains within 4 to 20 hpi following injection with VER (Lu et al., 2008). In 

contrast, neither gene was expressed in larval fish with the same exposure. Adult fish were 

refractory to VER infection, and larval fish displayed 100 % mortality within 72 to 96 hpi. 

Injection of 1000U of IFN-α2a (Roche) into larval zebrafish 48 hours before VER injection 

protected against VER infection for 48 hpi (Lu et al., 2008). In developing human embryos, 

neuronal differentiation is associated with improved cellular responses to IFN1 and also an 

increase in type 1 interferon pathway components namely interferon regulatory factor (IRF-9) 

and interferon-α/β receptor βchain IFNAR2 (Farmer et al., 2013). The overexpression of signal 

transducer activator of transcription-2 (STAT 2) and interferon-α/β receptor βchain (IFNAR2) 

recapitulates the neuronal differentiation-dependant changes involving IFN-1 (Farmer et al., 

2013). Farmer et al. (2013) also noted that these developmental events might contribute to 

the age-dependent encephalitis caused by SFV. Regarding Betanodavirus, Huang et al. (2015) 

and Lu et al. (2008) noted changes in the expression of STAT-1/3 but neither measured STAT-

2.  

Additional studies report transcriptome analysis of the immune responses of carrier vs 

susceptible fish. Poisa-Beiro et al. (2008) investigated the interferon response to VER 

infected D. labrax and S.aurata. In S.aurata, which are not highly susceptible to VER, NNV was 

detected at high levels by RT-PCR in the blood but declined 3 dpi. High levels of NNV were 

detected in the brain 3 dpi. Up-regulation in the expression of TNF-α and Interleukin 1 (IL-1) 
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were detected in the brain of sea bream 3 dpi once the virus reached the target organ. 

Expression of Mx was 1300-fold in brain 3 days pi. Measurements from D. labrax exhibited a 

similar pattern; however, a lower expression of Mx (10x) was noted compared to controls.  

Thanasaksiri et al. (2014) investigated the effect of temperature on the expression of Mx and 

survival of sevenband grouper E.septemfasciatus to experimental infection with RGNNV. 

Rearing fish at temperatures between 15 to 30 °C for 2 weeks before experimental infection 

did not affect RGNNV (JN662462) RNA 2 copy number. However, there were differences in the 

relative levels of Mx mRNA expressed in the head kidney with rearing temperature and also in 

survival of fish for 14 days post-exposure to RGNNV. How the Mx expression levels in the head 

kidney compare to those in the brain, which is the target organ for NNV replication is 

unknown. Survival of fish was not improved at any temperature other than 25 °C (compared to 

15, 20 and 30°C) even though RGNNV copy numbers were 10 to 100-fold lower at the other 

temperatures.  

Nie et al. (2015) measured the involvement of Retinoic Acid Inducible Gene (RIG)-1 in Nuclear 

factor-kappa light chain enhancer of activated B cells (NF-ĸB) and IFN signalling in antiviral 

signalling. A RIG-1 homolog from zebrafish larva (DrRIG-1) was stimulated by poly I:C resulting 

in the significant activation of NF-kappaB, TNF-α, IL-8, Mx, Interferon Stimulate Gene -15 (ISG-

15) and viperin. However, the knockdown of Tripartite motif-containing protein-25 (TRIM 25) 

which is a pivotal activator for RIG-1 receptors suppressed the induced activation of the IFN 

signalling. (Nie et al., 2015). TRIM 25 has 3-N terminal domains, a coiled-coil domain (CCD) and 

a C-terminal domain (SPRY). To avoid IFN production, the NS1 of influenza virus interacts with 

the CCD domain of TRIM 25 to block RIG-1 ubiquitination. Another TRIM, TRIM 21 also 

stimulates the transcription factor pathways of NF-kappaB, AP-1, IRF3, IRF5 and IRF7. 

Antibody-coated viral particles activate TRIM 21, which binds to the Fc receptor and targets 

virions for degradation. The targeting of TRIMs by Betanodavirus would successfully mitigate 

both a humoral (antibody) and innate immune response. However, there are no published 

reports relating to TRIM and Betanodavirus infection. 
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1.9 Modulation of the fish immune system. What other mechanisms 

could Betanodaviruses employ to combat the host immune 

response?  

A review of the immune response to Betanodavirus infections of marine fish was recently 

published (Chen et al., 2014). NNV is initially recognised by the innate immune system which 

through the detection of pathogen-associated molecular patterns (PAMPS), activates a range 

of intracellular signals to stimulate both an innate and cell-mediated immune response. The 

detection of antibodies with specificity against RGNNV in healthy fish indicates the humoral 

immune pathway is also activated. A neutralising antibody, RG-M18 mAB, required aa 195 to 

202 (VNVSVLCR) of the capsid protein as the minimal epitope for NNV recognition (Chen et al., 

2015). In the case of groupers and D. labrax, the immune responses, although ensuring 

survival, are insufficient to remove the virus, suggesting Betanodaviruses possess additional 

unknown mechanisms to avoid a functional immune response. The B1 and B2 proteins have 

been demonstrated to manipulate some components of immune pathways. However, 

mechanisms which allow Betanodaviruses, within the limitations of a small viral genome and 

the absence of other translated viral proteins, to avoid all of the immune pathways and persist 

in sub-clinical carrier fish have not been determined.  

The importance of viral encoded microRNA (V-miRNA) is recognised as a potent mechanism 

used by viruses to achieve viral replication, persistence, immune evasion and cellular 

transformation (Cullen 2009; Grundhoff & Sullivan 2011; Tycowski et al., 2015). V-miRNAs 

represent a genomically efficient way for viruses to regulate host immune responses. A V-

miRNA could target multiple genes in the same host or a highly conserved gene in multiple 

hosts (Weber et al., 2004). Additionally, V-miRNAs are known to target the expression of viral 

replication process and are involved in the Singapore grouper Iridovirus which encodes at least 

16 V-miRNAs the functions of which are being studied (Guo et al., 2013). In addition, nine v-

miRNAs have been detected during replication of the fish-infecting Megalocytivirus (Zhang et 

al., 2014). 

Nodavirus V-miRNAs have not been reported. However, the replication of short incomplete 

copies of Differential interfering-RNA (DI-RNA) by the RdRp has been detected in the early 

phases of nodavirus replication in vitro. During RNA replication, Flock house virus (FHV) 

produces, ~ 400bp dsRNA (DI-RNA) from the 5’ terminus of RNA 1 which serves as a Dicer-2 

substrate (Aliyari et al., 2008). Pyrosequencing of the dsRNA formed 4 days post-FHV infection 

detected 4371 small RNAs the majority of which have strong homology and presumably target 
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a region comprising the first 400nt of RNA 1 (Aliyari 2008). No functional roles for the DI-RNAs 

have been demonstrated. 

I propose the mass replication of the DI-RNAs could be an intermediate step in the production 

of V-miRNA which could serve to downregulate specific host genes such as those which 

regulate immune function or to regulate nodavirus replication. The lower expression of Protein 

A from RNA 1 compared to the capsid protein of RNA 2 despite both strands being transcribed 

in equal amounts supports the concept the RNA 1 transcripts could have functions beyond 

translation to protein A. 

1.10 Concluding comments  

The management VNN infections in grouper grow out culture is difficult. There are critical gaps 

in knowledge in many areas of the Betanodavirus-fish-environment dynamic that hamper 

progress towards preventing VER. Nonetheless, many fish diseases have been effectively 

managed by vaccination prior to the attainment of understanding of the mechanics of a 

specific pathogen-host dynamic (Gravningen et al., 2008). However, with the data presently 

available, there is poor understanding of the variation of strains of NNV that cause VER in 

tropical fish species in Australia. Insufficient knowledge of NNV strains represents a risk to the 

successful development of vaccines to prevent VER. Also, the paucity of information about the 

development of the grouper immune system creates a degree of uncertainty around the 

scheduled delivery of vaccines or other prophylactic measures. Finally, there has been no 

assessment to determine if the current RT-qPCRs that have been used to study NNV in 

barramundi and Australian Bass in Australia are fit for purpose to study NNV in groupers.  

This project aims to improve knowledge about the VNN strains that cause VER in North 

Queensland and apply this knowledge to the development of therapies to limit the impact of 

VER on grouper aquaculture. The project also aims to determine if the RT-qPCR (qR2T) (Hick & 

Whittington 2010) that is the current Australian New Zealand Standard Protocol for the 

detection of NNV, and an additional assay RT-qPCR (qR1T) (Hick & Whittington, 2010) are fit 

for purpose to study NNV in grouper. Finally, the project aims to test the efficacy of 

vaccination and dsRNA as treatments to prevent VER outbreaks in the Queensland giant 

grouper Epinephelus lanceolatus. 
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The research questions posed by this study: 

1. What strains of Betanodavirus are associated with VER outbreaks of tropical marine 

fish species in Northern Queensland? 

2. Is RT-qPCR a useful tool to assist in the management of VER in giant Queensland 

grouper, Epinephelus lanceolatus in Australia? 

3. How effective is vaccination or dsRNA designed against the endemic strains of NNV in 

preventing disease? 

 
How the project aims were achieved: 

1. Positioning this research, an overview of VER disease in finfish. 

Achieved in Chapter 1: Literature Review 

2. Develop the laboratory skills required to complete project activities. 

 Achieved in Chapter 2: General Material and Methods 

3. Obtain full sequence of the Betanodavirus strains and determine the level of variation in 

strains that cause VER in Northern Queensland.  

Achieved in Chapter 3: Phylogenetic analysis of NNV strains in Australia. 

4. Investigate the genome sequences of the Betanodavirus strains and identify the presence of 

motifs that are critical for the development of prophylactic measures. 

Achieved in Chapter 4: Review of functional motifs of the Betanodavirus genome 

5. Implement qPCR analysis as a tool for the quantitative detection of Betanodavirus.  

Achieved in Chapter 5: Development of qPCR Standard controls.  

6. Develop prophylactic measures of experimental vaccine and dsRNA to confer protection 

against Betanodavirus that is present in NQ. 

Achieved in Chapter 6. Development of prophylactic measures against NNV 

7. Determine if exposure to RGNNV by cohabitation with/without co-exposure to a marine 

leech, Zeylanicobdella arugamensis leads to VER  

Achieved in Chapter 7: Experimental challenge via co-habitation with marine leech  

8. Measure the efficacy of the therapies to prevent VER via experimental challenge.  

 Achieved in Chapter 8: Measuring efficacy of prophylactic measures against NNV 

9. Determine if survival to experimental challenge is related to parentage assignment 

Achieved Chapter 9: Role of family in survival of VER in E.lanceolatus  

10. Refine the vaccination strategy to prevent VER via experimental challenge 

Achieved in Chapter 10: Refinement of experimental vaccination against NNV 
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CHAPTER 2. GENERAL MATERIALS AND METHODS 
 

Background 

 This thesis is a culmination of three years of investigation. 

 Some of the procedures were conducted as a single task that align with multiple 

chapters of work. 

 Some procedures that were repeated many times were standardised as an 

operational procedure. 

 

Aims of this Chapter  

 Describe the laboratory protocols that align with multiple chapters of work. 

 Describe the protocols that were conducted as standard operational procedures 

throughout this thesis. 

 

2.1 Introduction 

This thesis is a compilation of three years of research. Throughout the project there were a 

number of protocols that were repeated many times. Standard operational protocols and 

laboratory worksheets were prepared for tasks that were repeated many times. In addition, 

one procedure, namely the preparation of viral extract, was completed once, yet utilised many 

times. The aim of this chapter is to describe the protocols that were performed as standard 

operational procedures and preparation of the viral extract used throughout this study.  

 

2.2 Molecular biology 

2.2.1 Collection of Betanodavirus positive material 

Betanodavirus extract was prepared from 3 separate, natural VER outbreaks that occurred in 

North Queensland fish farms during 2015-2016. Whole fish including gold spot grouper, 

Epinephelus coioides (Hamilton, 1822), juvenile barramundi, Lates calcarifer, and sub-adult 

giant grouper Epinephelus lanceolatus were supplied from commercial fish farms suffering VER 

outbreaks.  
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Moribund fish were euthanized by lethal overdose of AQUI-S® and frozen at -20˚C. The 

Biosecurity Sciences Laboratory (BSL), Queensland Government Veterinary Laboratory, 

subsequently diagnosed VER. Eye tissue, up to a maximum of 500mg, was aseptically removed 

from fish displaying clinical signs and subjected to total viral nucleic acid extraction using the 

High Pure™ Viral Nucleic Acid kit (Roche) according to the manufacturer’s instructions. 

Remaining tissue was stored at -20˚C. 

2.2.2 Reverse transcription reaction/ cDNA synthesis 

Complementary DNA (cDNA) was reverse transcribed (RT) from RNA 1 and RNA 2 segments in 

nucleic acid extracts. cDNA was synthesized using a Maxygene thermal cycler (Axygen) in a 20 

µL reaction using random hexamers with the Tetro™ cDNA synthesis kit (Bioline) according to 

the manufacturer’s instructions. The reverse transcriptase (RT) thermal cycle consisted of 

incubation of 10 min at 25⁰C; 30 min at 45 ⁰C and an RT deactivation of 5 min at 85⁰C.  

2.2.3 Nucleic acid extraction 

Nucleic acid purification was conducted on 400 µL of viral extracts or dissected eye and brain 

tissue (maximum of 400mg) from clinically diseased fish. Extraction was completed using the 

High Pure™ Viral Nucleic Acid kit (Roche 11858874001) according to the manufacturer’s 

instructions. Purified nucleic acid was eluted into 100 µL RNAse free water and stored at -20°C. 

2.2.4 Polymerase chain reaction 

Multiple PCRs were performed using a Maxygene thermal cycler (Axygen). PCRs were 

performed as a 20 µL reaction with 2.5 µL of cDNA and 100 nM primer (Hick & Whittington 

2010) (see Table 1) in a MyFi™ DNA Polymerase Mix according to the manufacturer’s 

instructions ( BIO-21117 Bioline, NSW). The thermal cycle profile consisted of a 3 min 

incubation at 95⁰C followed by 45 cycles of 15 s denaturation at 95⁰C, 30 s of annealing 

temperature (Table 2-1 Tm primer), a 30 s extension at 72⁰C; and a final extension step of 5 

min at 72⁰C. 
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Table 2-1: Description of the primer and probe sequences used in this thesis. Including PCR 
assay type, primer name, primer nt sequence, RNA segment target, nt binding position the 
and melt temperature of primer and probe.  

Source of all primer and probe sequences Hick &Whittington (2010). * indicates 
amplicon product was used to prepare positive control standards for RT-qPCR. ~ 
Position is with reference to NCBI records GQ904198 (RNA 1) or GQ904199 (RNA 2). 

PCR 

format 

Primer 

Name 
Sequence (5'-3') 

RNA 

segment 

Target 

Position~ 

Tm 

Primer 

(°C) 

RT-qPCR qR1T-F GCTACCGCCTGTTGACCTC 1 140 61 

 qR1T-R TTGTTTCTTCTCAGCGATGATGC 1 219 64 

 qR1T-Probe TGGCGAATCCTCAACACGTCC 1 171  

RT-PCR R1F1* CACTTACGCAAGGTTACCG 1 48 60 

 R1 F2 CACGGGTCACGTCAGTTCTA 1 419 63 

 R1R4 TCAACTCATGCATGTCCAC 1 523 60 

 R1F3 CACGGGTCACGTCAGTTCTA 1 935 63 

 R1R3 CTCAGAGATGTAAGTGACTG 1 998 52 

 R1R5* TCTGCTGCTCCTCGACATAC 1 1527 63 

 R1F5 AGCAGACCAAGCCGTTACAG 1 1541 64 

 R1F4 CGTGCAGTCGCCATTAAG 1 2295 63 

 R1R2 AATCTCTGACTGGGTATCAC 1 2339 55 

 R1R1 GAAGCGTAGGACAGCATAAAGC 1 3022 60 

RT-qPCR qR2T-F CTTCCTGCCTGATCCAACTG 2 401 62 

 qR2T-R GTTCTGCTTTCCCACCATTTG 2 476 61 

 qR2T-Probe CAACGACTGCACCACGAGTGG 2 454  

RT-PCR R2F1* CATATGGTACGCAARGGTGA 2 3 59 

  R2R1* CTCGAGTTAGTTTTCCGAGTCA 2 1023 59 

      

  



53 

 

2.2.5 Gel Electrophoresis 

PCR amplicons were visualized by agarose gel electrophoresis. Agarose (Cat. 9010B, Scientifix, 

Victoria) gel was prepared and run in 1x TAE (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA) 

buffer was stained with 0.05 μL ml-1 Gel Red (Cat. 41003, Biotium, Fisher Biotec, Australia). 

The gels were loaded with 20 μL of PCR product and subjected to 60 min at 100 volts with a 

Hyper Ladder 1 kb DNA ladder (BIO-33025, Bioline, NSW) (1 % gel). The gels were visualised on 

a UV transilluminator.  

2.2.6 Preparation of viral extract from natural VER outbreaks. 

Viral extract for experimental challenge was prepared from the E.coioides VER outbreak. 

Figure 2.1 displays image of pond culture and fish collected during the VER outbreak. The fish, 

of average body mass of ~600 g were cultured in cages in commercial earth ponds in North 

Queensland, Australia. Viral extract was prepared by separately pooling the brain and eyes 

from several fish into sterile phosphate buffered saline (PBS) (Sigma Aldrich®). Brain tissue (8.3 

g) was suspended in 57 mL and eye (18.9 g) was suspended in 100 mL of sterile PBS. Tissue in 

PBS was frozen and thawed thrice from -25˚C to 4˚C, and homogenized using an Ultra-Turrax T 

25 (IKA works) at 20,000 rpm for 5 min. Tubes of tissue were held in crushed ice throughout 

the homogenization. Tissue homogenate was clarified in a Sorval RC 6+ centrifuge (Thermo 

Scientific) using a F12s-6 x 500 LEX rotor for 10 min at 610 g at 4˚C. The supernatant was 

removed and further clarified by centrifugation for 10 min at 3 803 g at 4 ˚C. The supernatant 

was filtered through 0.45 µm and 0.22 µm filters (Sartorius). The extract was confirmed free of 

culturable bacteria by inoculation onto sheep blood agar and overnight incubation at 28 ˚C. 

Separate filtered supernatants from each tissue, herein termed  viral extract, was stored in 

sterile 50 mL centrifuge tubes at -20˚C.  

 

Figure 2-1: Pond culture and E.coioides collected from a natural outbreak of VER used to 
prepare viral extract. (a) Fish were held in cages within 1-hectare earthen ponds containing 
estuarine water. (b). Euthanased gold-spotted grouper, E.coioides, that exhibited signs of 
VER. Fish displayed erratic swimming and hyperinflation of swim bladder but appeared 
otherwise healthy. 
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2.2.7 Cloning and sequencing of PCR products 

PCR amplicons were excised from gels using individual scalpel blades (SBLDCL, Livingstone, 

NSW) and purified using an Agarose Gel DNA Extraction Kit (Bioline). Purified amplicons were 

cloned into competent Escherichia coli JM109 cells (A1360, Promega, NSW) using the pGEM-T 

Easy Vector System (A1380, Promega, NSW), or One shot TOP10 chemically competent E. coli 

using the pCR4-TOPO TA vector (K4575-01, Life Technologies, VIC) as per manufacturer’s 

instructions. Transformed E. coli were grown for 16 - 18 hours at 37 °C on lysogeny broth (LB) 

(Bertani, 1951) agar (Appendix 1) supplemented with 100 g mL-1 or 50 μg mL-1 ampicillin (Cat. 

A9393-5G Sigma-Aldrich, NSW) for pGEM™ and TOPO™ clones respectively. Three white 

colonies were selected from each agar plate and cultured at 150 rpm (Bioline incubator shaker 

8500 Edwards Instruments, NSW) for 16 - 18 hours in lysogeny broth (Bertani, 1951) (Appendix 

1) supplemented with 100 g mL-1 or 50 g mL-1 ampicillin (A9393-5G, Sigma-Aldrich, NSW) for 

pGEM™ and TOPO™ cells respectively. Plasmid DNA was extracted using a High Pure™ Plasmid 

Isolation kit (11754777001 Roche, NSW) as per manufacturer’s instruction. Plasmid extracts 

were submitted for Sanger sequencing to Macrogen Inc. (Seoul, Korea) or the Australian 

Genome Research Facility (Brisbane, Australia) for sequencing analysis. Bioinformatic analysis 

was conducted to confirm Betanodavirus genome sequence and assess suitability of the 

plasmids for application in subsequent qPCR analysis. 

2.2.8 Bioinformatics analysis 

Sequencing data was analysed using Geneious 9.1 or Geneious Prime (created by Biomatters, 

available from http://www.geneious.com), and the tools available at National Centre for 

Biotechnology Information (NCBI). These included Basic Local Alignment Search Tool (BLASTn 

and BLASTx) and Open Reading Frame (ORF) finder tool using the default parameters of all of 

the programs (http://www.ncbi.nlm.nih.gov).  

2.2.9 Real-time PCR of viral extract  

All cDNA reactions were performed as previously described in 2.1.3. For quantification of viral 

copy number, real-time PCR was performed using a Rotor Gene 6000 system (Qiagen®). All 

qPCRs were performed as separate assays in 20 µL reactions using SensiFAST™ Probe No ROX 

master mix (Bioline) according to the manufacturer’s instructions including 2.5 µL of cDNA the 

primer (200 nM) and probe (5 nM) sequences ( Hick & Whittington, 2010; see Table 1). The 

thermal cycle profile consisted of a 3 min incubation at 95 ⁰C followed by 45 cycles of 15 s 

denaturation at 95 ⁰C, 30 s annealing and extension at 60 ⁰C. 
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2.3 Husbandry and handling of groupers  

2.3.1 Husbandry of groupers 

For experimental challenges, juvenile giant Queensland grouper, Epinephelus lanceolatus, 

were provided by a commercial hatchery, The Company One (Cairns, Australia). Fish were held 

under the conditions approved within the JCU institutional animal ethics permits outlined in 

the declaration of ethics (page iv). Experimental animals were held in recirculation systems 

that consisted of 10 replicate systems of 2 x 300 L tanks with aeration, water circulation and 

connected to a biological filter containing 200L of filter material and bio-wheels. The entire 

system was housed in an experimental room with 12/12h controlled light/dark cycle and water 

temperature was maintained between 24-28˚C. Saltwater was obtained from the Australian 

Institute of Marine Science. Water was collected from the ocean and subjected to 5 

treatments which included 5mm screen within a high-density polyethylene basket; a timex 

hydroclone that removed particles down to 120 µm; Arkal spin filter 120 µm discs; 

fractionation and a final ultrafiltration to 0.04 µm. Seawater concentration ranged from 26 to 

35 ppt. Fish were fed twice daily ad lib on commercial fish feed pellet appropriate to the size of 

the fish (Ridley AgriProducts Pty Ltd). Fish were acclimated for two weeks prior to 

commencement of any experimental procedures. 

2.3.2 Anaesthesia of groupers 

2.3.2.1 Sedation of groupers 

Fish were sedated to Stage 2 of fish anaesthesia (Coyle et al., 2004) using AQUI-S® anaesthetic 

(AQUI-S® New Zealand Ltd). 

Briefly fish were placed in a 40L Nally®Bin containing 30ppt seawater containing a working 

solution of 15-20mg/L of AQUI-S®. For sedation, fish were held for sedation until they reached 

a state of reduced swimming and breathing and partial loss of equilibrium. Fish retained 

reaction to touch stimuli. Fish were sedated with AQUI-S® (AQUI-S) during all procedures that 

were assessed as causing minor distress, which were principally all processes involving 

injection.  

For recovery fish were placed into a 40L Nally®Bin containing 30ppt seawater and gently 

assisted to swim in a figure 8 direction ensuring they were always moving in a forward-facing 

motion. When fish escape behaviour progressed beyond gentle, they were released into the 

secondary container in the recovery tank. The secondary container consisted of a 20 L plastic 

container with numerous small holes drilled into the container to allow water flow. When an 

entire tank consignment had been subject to procedures, they were transferred to their 
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experimental holding tank using the secondary container. Aeration of water was provided 

throughout the procedure. 

2.3.2.2 Euthanasia of groupers 

Fish were sedated to Stage 4 of fish anaesthesia (Coyle et al., 2004) using AQUI-S®. Briefly fish 

were placed in a 10L Bucket containing 30ppt seawater containing a working solution of 15-

20mg/L of AQUI-S. For euthanasia, fish were held until death. Aeration of water was provided 

throughout the procedure. 

2.3.3 Intramuscular injection of groupers 

All injection procedures, including vaccination and challenge with viral extract, were 

conducted as intramuscular (IM) injection on sedated fish. Fish were injected into the dorsal 

musculature using a sterile 25g x 5/8” Microlance™ needle (Becton Dickinson Ireland) attached 

to a 1mL Terumo® syringe (Terumo Philippines). The site of injection was at the posterior 

dorsal junction between the white and black marking on the juvenile E.lanceolatus (Figure 2.2). 

To prevent possible skin infection, a drop of Betadine® solution (10% povidone-iodine) was 

placed on the injection site immediately prior to and following injection. To reduce irritation to 

skin, fish were handled with clean wet hands and placed on a clean wet cotton clot during 

injection. The approximate length from the anterior end of the bottom jaw to the end of the 

tail was measured with a ruler. (Figure 2.2). Approximate weight of fish was measured with a 

portable 2kg digital kitchen scale (Propert).  

. 

 

Figure 2-2: Sedated juvenile E.lanceolatus with location of IM vaccine injection site indicated 
(Red arrow) and reference points of body positions (jaw to tail) used to determine 

approximate body length. Image from fish used in experimental trial described in Chapter 8. 
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2.3.4 Pre-trial experiments 

Prior to the commencement of each experimental challenge discussed in Chapters 7, 8 and 10, 

two experimental procedures were conducted namely: 

1. Confirmation of VNN free status of experimental fish. 

2. Confirmation of pathogenicity of the viral extract. 

Confirmation of VNN free status was determined by conducting RT-qPCR (as discussed in 2.1.9) 

analysis on two pools of brain and eye tissue from ten fish using qR2T i.e. four RT-qPCR 

samples including two samples each of pooled brain from five individual fish and pooled eye 

from five individual fish.  

Confirmation of pathogenicity of the viral extract was confirmed by challenging ten fish from 

each experimental cohort with 100µl IM injection of RGNNV extract prepared as described in 

2.1.6. Viral extract was injected in the approximate position of the vaccine injection indicated 

in Figure 2.2. The ten fish were held in the same experimental circulation systems under the 

conditions described in 2.2.1. Fish were monitored twice daily for signs of adverse health and 

euthanized by overdose to Aqui-S when more than one sign of VER, including erratic 

swimming, hyperinflation of swim bladder, disorientated floating, absence of feeding or severe 

lethargy became evident. Analysis by RT-qPCR was conducted on pooled brain and eye tissue 

as described in 2.1.9 to confirm detection of high copy number of RGNNV genome.  

2.4 Results 

2.4.1 Cloning and sequencing of PCR products 

Results of cloning and sequencing of PCR products are discussed in Chapter 3: Phylogenetic 

comparison of Betanodavirus genomes collected from North Queensland. 

2.4.2 Real-time PCR of viral extract 

Analysis of viral extract by RT-qPCR detected RGNNV with a Ct value of 13.95 (qR1T) and 10.64 

(qR2T) which equates to an estimated calculated viral copy number of 1.99 x 107 and 1.07 x 108 

copies mL-1 respectively. The average between each of the two copy number calculations, 6.36 

x 107 copies mL-1 was accepted in subsequent calculations for preparing viral extract for 

challenge studies. Viral extract was diluted to an approximate copy number of 6.36 x 104 mL-1 

in sterile PBS for challenge studies. Further discussion of RT-qPCR analysis is provided in 

Chapters 7, 8 and 10. 
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2.4.3 Pre-trial experiments 

All cohorts of experimental fish were negative for the detection of RGNNV by RT-qPCR prior to 

the commencement of experiments. In all three pre-experimental pilot trials, IM injection with 

the viral extract lead to 100% morbidity in the challenged fish within 14 days post injection. 

The clinical signs of VER appeared suddenly at days 7-10 post challenge, followed by rapid, 

mass morbidity during the subsequent 1 to 3 days (Figure 2-3).  

 

Figure 2-3: Cumulative Morbidity (%) of E.lanceolatus v days post challenge during the three 
pilot studies conducted prior to challenge trials to confirm viability of viral extract. 
 

 

2.5 Conclusion 

The aims of this chapter were met in the following manner: 

 

 

 

 

 

 

 The methods that were used as standard operational procedures namely husbandry 

and handling of fish, pre-trial experiments and a range of molecular biology 

protocols were described. 

 The protocols that were completed once but apply to multiple chapters of this 

thesis were described.  
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CHAPTER 3. PHYLOGENETIC COMPARISON OF BETANODAVIRUS 

GENOMES COLLECTED FROM VIRAL ENCEPHALOPATY AND 

RETINOPATHY OUTBREAKS IN NORTH QUEENSLAND 
 

Background  

 

Aims of this Chapter  

 

 At the commencement of this study there were 2 complete sequences of 

Betanodavirus RNA 1 and RNA 2 from Australian species, neither of which originated 

from North Queensland. 

 The capsid protein, which is encoded by RNA 2, has been demonstrated as the 

antigenic target of grouper antibodies to protect against VER. 

 There is variation in the capsid protein across the Betanodaviruses.  

 Knowledge of the genome sequences and level of variation in the RNA 2 of 

Betanodavirus strains that cause VER in Northern Queensland is required to guide 

decisions of vaccine development and design of dsRNA. 

 Knowledge of the genome sequences of RNA 1 is required to guide decisions for 

dsRNA design to attempt NNV knockdown. 

 PCR amplicons from RNA 1 and RNA 2 are required to prepare synthetic positive 

controls for the RT-qPCRs. 

 Obtain a viable viral extract from a natural VER outbreak in Northern Queensland. 

 Obtain RT-qPCR amplicons from the NNV strains associated with VER outbreaks in 

North Queensland. 

 Determine the complete sequence of both mRNA segments of Betanodavirus 

associated with natural VER outbreaks in marine finfish grow-out systems in 

Northern Queensland. 

 Compare the complete sequences of mRNA 1 to other sequences in the NCBI 

database to determine the species of Betanodavirus associated with VER in North 

Queensland. 

 Compare the complete sequences of RNA 2 to other sequences in the NCBI 

database to determine conservation of the capsid protein temporally and 

geographically. 
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3.1 Introduction  

Knowledge of the RNA 2 segment sequence that encodes the capsid protein of strains causing 

VER in Australian grouper is critical to multiple decisions regarding vaccine formulation. In 

addition to ensuring targeted protection against Betanodavirus strains that are associated with 

VER outbreaks, herein referred to as NNV strains, knowledge of capsid protein sequence 

assists in determining: 

 the level of variation in NNV strains that cause VER;  

 the potential geographic market of an effective vaccine and  

 the duration for which the vaccine could be expected to be effective considering the 

typically rapid mutation rate of RNA viruses.  

Although North Queensland was among the first regions in the world to report VER outbreaks, 

there are few genome sequences of Australian NNV strains. At the commencement of this 

study, there were only two complete genome sequences of Betanodavirus from Australian 

species within the NCBI database, neither of which originated from Queensland (Hick & 

Whittington, 2010). There are a further eight partial sequences of RNA 2 segments collected 

from Australian species (Moody et al., 2009). 

The current species classification of Betanodavirus recognised by the ICTV, named with the 

original host names of striped jack, red-spotted grouper, barfin flounder and tiger puffer was 

initially based on analysis of a 606nt conserved region, termed T2 and a 289nt highly variable 

region, termed T4 of the RNA 2 (Nishizawa et al., 1997). The species divisions align with three 

distinct serotype divisions determined by antibody reaction to the capsid protein which is 

encoded by RNA 2 (Nishizawa et al., 1997, Johansen et al., 2004 and Mori et al., 2003) (Table 

3.1). Numerous serological studies have reported a lack of in vitro and in vivo cross-reactivity 

between two species namely the RGNNV and SJNNV (Mori et al., 2003; Chi et al., 2003 and 

Pascoli et al., 2019). However, there is some cross reactivity between RGNNV and BFNNV 

(Mori et al., 2003).  

In recognition of an expanded host range beyond those of the original species names, Thiery et 

al. (2004) proposed a division of the Betanodavirus into subgroup clusters based on analysis of 

the highly variable region (T4) of RNA 2. The cluster proposal retained TPNNV and SJNNV as 

distinct single clusters, Clusters III and IV respectively but further differentiated the RGNNV 

into two, namely Ia and Ib and BFNNV into three: IIa, IIb and IIc. The clusters, based on 

nucleotide comparison of the T4 region, also tended to align with temperature and geographic 

origin (Thiery et al., 2004) (Table 3.1). 
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Table 3-1: Betanodavirus Type Species, Serotypes and Thiery cluster assignments based on 
conserved capsid protein amino acid 

 

 

Although the ICTV has not adopted the model proposed by Thiery et al. (2004), subsequent 

authors have applied the cluster proposal in taxonomic comparison of NNV strains (Olveira et 

al., 2009 & Moody et al., 2009). Phylogenetic comparison between NNV strains from 

Australian fish species are limited to two publications. (Moody et al., 2009 & Hick et al., 2013). 

Moody et al. (2009) reported a phylogenetic comparison between the T2 region of four 

Betanodavirus strains collected from tropical Australian species. Based on T2, all Australian 

strains clustered within the RGNNV assignment of Nishizawa (1994) or the equivalent 1a of 

Thiery et al. (2004). Comparative analysis between nine, smaller, T4 region sequences, divided 

the Australian strains into two clusters, Ia and Ic based on the Theiry et al. (2004) model. 

Moody et al. (2009) also noted the clusters retained some general geographic alignment which 

included strains from tropical and cold-water species (Figure 3-1) although this was not 

consistent within 1a. 

 

Acronym Betanodavirus species
Conserved 

aa motif
Serotype

Thiery 

cluster

SJNNV Striped Jack Nervous Necrosis Virus PAN A IV

RGNNV Red spotted Grouper Nervous Necrosis Virus PDG C Ia,Ib

BFNNV Barfin Flounder Nervous Necrosis Virus PEG C IIa, IIb,IIIc

TPNNV Tiger Puffer Nervous Necrosis Virus PPG B III

*TNNV *Turbot Nervous Necrosis Virus PTG untested

*proposed as an additional species by Johansen et al. 2004

Compiled from:  (Nishizawa et al. 1997) & (Johansen et al. 2004) & (Mori et al. 2003) & (Thiery et al. 2004)
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Figure 3-1: Unrooted phylogenetic tree produced from partial T4 region (289 nt) of RNA 2 
reproduced from Moody et al. (2009) including strain identifiers and source of strain. 

 

Due to the early focus on the T4 and T2 regions of RNA 2 for a taxonomic division of 

Betanodaviruses, most sequences published within the NCBI database before 2008 are 

incomplete genome sequences. Subsequent research indicated regions outside of T4 on RNA 2 

and also regions on RNA 1 that relate to virulence, infectivity and adaption to temperature 

increases (Costa et al., 2007; Hata et al., 2010; Souto et al., 2018 and Souto et al., 2019). 

Further, chimeric recombinants of RNA 1 and RNA 2 between RGNNV and SJNNV species have 

been detected in diseased fish (Olveira et al., 2009). Noting the inherent weakness in 

conducting comparative analysis based on the T4 or T2 region, more recent works have 

compared the entire RNA 1 and RNA 2 sequences of NNV. (Hick et al., 2013 and Olveira et al., 

2009). For Australian strains, comparative analysis including complete mRNA sequences 

obtained from VER outbreaks in Lates calcarifer in Northern Territory and Macquaria 

Ba94AUS and sequences 
indicated with  are 
sequences derived from 
Australian fish species.  



63 

 

novemaculata in New South Wales have been reported. (Hick et al., 2013). The authors formed 

a similar conclusion to Moody et al. (2009) regarding the taxonomic division of Australian NNV 

strains with an exception of aligning the Ba94Aus strain, collected from barramundi, within the 

tropical strains 1a rather than 1c temperate strains. (Figure 3.2). Although the divisions of 

Australian NNV strains tend to align with geographic source, the strain collected from striped 

trumpeter, Latris lineata, from Tasmania aligns more to the tropical species division. It is 

possible the divisions between 1a and 1c in Australian strains relate to other factors such as 

marine v freshwater systems. The striped trumpeter is a marine species whereas the 

Australian bass, M.novemaculata is a freshwater species. Although barramundi, L.calcarifer are 

naturally found in tropical waters, as a euryhaline species, it has been translocated into 

temperate regions in Australia where is cultured within systems that have access to naturally 

heated spring water or apply heated spring water to warm marine systems. There was no 

information in the NCBI database entry to indicate if the strain from barramundi collected 

from South Australia (T452934) was from a marine or freshwater system.

 

Figure 3-2: Summary of strain classification based on NNV RNA 2 sequences derived from 
Australian fish species (including strain reference identified and source). Modified from Hick 
et al. (2013). The “tropical” strains are aligned within 1a cluster (Black rectangle) and 
“temperate” strains aligned within 1c cluster (blue rectangle).  
 

Whilst there has been no detection of any Betanodavirus strain other than RGNNV in Australia, 

the division of strains into clusters indicates a degree of variability between Australian NNV 

strains. The scarcity of complete sequence data of tropical NNV strains within prior work and 

the large financial cost of vaccine production, necessitates careful investigation into the 

complete genome sequences of strains causing VER in tropical grouper species and other 



64 

 

species within their geographic range of grouper culture. This study reports on the complete 

mRNA sequence of Betanodavirus associated with natural VER outbreaks in marine finfish 

grow-out systems in Northern Queensland and their phylogenetic position within the 

collection of NNV strains affecting Australian fish species. Knowledge of the complete mRNA 

sequences of the strains of NNV that cause VER in grouper in North Queensland is required to 

ensure the therapies to be prepared within this project specifically target those strains that are 

present in Northern Queensland.  

3.2 Materials and Methods 

3.2.1 Collection of samples from natural VER outbreaks 

Samples of brain and eye were collected from fish from three aquaculture farms in Northern 

Queensland displaying clinical signs of VER. Viral Encephalopathy and Retinopathy was 

confirmed by the Queensland Government Biosecurity Sciences Veterinary Diagnostic 

laboratory (BSL) (farmers personal comms.). In this study, RT-PCR and sequencing analysis was 

performed to confirm VER. A summary of the sample source is provided in Table 3.3.  

3.2.2 Sequencing of Betanodavirus from natural disease outbreaks 

Total viral nucleic extracts were prepared by dissecting eye and brain tissues from frozen fish 

collected during natural VER outbreaks. Extraction was completed using the High Pure™ Viral 

Nucleic Acid kit (Roche 11858874001) according to the manufacturer’s instructions. Cloning 

and sequencing was conducted as previously described in 2.1.3 to 2.1.7 using the primers 

details in Table 2.1 (Section 2.1.4).  

3.2.3 Additional Sequences obtained for phylogenetic analysis 

Sequences of RNA 1 and RNA 2, were compared with strains obtained from the NCBI GenBank 

(http://www.ncbi.nlm.nih.gov/) nucleotide database including reference strains of 

Betanodavirus species and similar geographic source (Australia). Sequences of NNV from each 

of the reference strains of Betanodavirus species are indicated in Table 3.2. Sequences of NNV 

obtained from Australian fish were collected from the NCBI data base and other researchers as 

indicated in Table 3.3.  
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Table 3-2: Details of Reference strains and sequences of NNV type species used in this study 
including species, RNA segment, strain identification, NCBI reference number, length of 
sequence, host species, year and location of strain and publication relating to the sequence.  

Species Strain Id 
NCBI 

accession 
length (nt) Host species 

Location and 

year 
Publication 

RNA-1           

RGNNV SGWak97 AY324869 3105 Red-spotted grouper Japan 1997 Iwamoto et al., 2001 

SJNNV SJNNV AB025018 3081 Striped Jack Japan 1999 Nagai & Nishizawa np. 

TPNNV TPKag93 EU236148 3112 Tiger Puffer Japan 1993 Okinaka *np. 

BFNNV JFwa98 EU236146 3100 Barfin Flounder Japan 1998 Okinaka *np. 

RNA-2           

RGNNV SGWak97 AY324870 1434 Seven Band grouper Japan 1997 Iwamoto et al., 2001 

RGNNV RGNNV AY690596 1432 Redspotted grouper China  

SJNNV SJNNV NC003449 1421 Striped Jack Japan 1999 Iwamoto et al., 2001 

TPNNV TPKag93 EU236149 1422 Tiger Puffer Japan 1993 Okinaka *np. 

BFNNV BF93Hok EU826138 1433 Barfin Flounder Japan 1993 Okinaka *np. 

*np. Indicates sequence is a direct submission to NCBI and has no published journal article. 
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Table 3-3: Details of Australian sourced NNV sequences used in this study including species, 
RNA segment, strain, NCBI reference number, length of sequence, host species, year and 
location of strain and publication relating to the sequence.  

Strain Id 
NCBI 

accession 
length (nt) Host species Location and year Publication 

RNA-1           

P14-10380 KT390712 2871 E. lanceolatus QLD Aus 2014 Agnithortri et al. (2015) 

Lc3NQAus MH181161 3090 Lates calcarifer QLD Aus 2013 Condon et al. (2019) 

MnNNV12/06 GQ402012 2998 M. novemaculata NSW Aus 2006 Hick et al. (2013) 

LcNNV_09/07 GQ402010 2998 Lates calcarifer NT Aus 2007 Hick et al. (2013) 

Ec2NQAus 
 

3090 E. coioides QLD Aus 2015 This study 

El1NQAus 
 

3090 E. lanceolatus QLD Aus 2013 This study 

RNA-2           

T540844 EF591369 606 E. coioides QLD Aus 2005 Moody et al. (2009) 

T256901 EF591370 289 Latris lineata TAS Aus 2002 Moody et al. (2009) 

T442286 EF591371 832 

Cromileptes 

altivelis QLD Aus 2004 Moody et al. (2009) 

T342514 EF591372 832 Lates calcarifer QLD Aus 2003 Moody et al. (2009) 

T156700 EF591367 289 Lates calcarifer NT Aus 2001 Moody et al. (2009) 

T99180614 EF591368 832 

Oxyeleotris 

lineolata QLD Aus 1999 Moody et al. (2009) 

T452938 EF591366 294 Lates calcarifer SA Aus 2004 Moody et al. (2009) 

T451722 EF591365 294 M. novemaculata NSW Aus 2004 Moody et al. (2009) 

LcNNV_09/07 GQ402011 1017 Lates calcarifer NT Aus 2007 Hick et al. (2013) 

MnNNV12/06 GQ402013 1017 M. novemaculata NSW Aus 2006 Hick et al. (2013) 

P14-10380 KT390714 990 E. lanceolatus QLD Aus 2014 Agnithortri et al. (2015) 

Lc3NQAus MH017207 1017 Lates calcarifer QLD Aus 2013 Condon et al. (2019) 

Ec2NQAus 
  

E. coioides QLD Aus 2015 This study 

El1NQAus   
 

E. lanceolatus QLD Aus 2013 This study 

E. indicates Epinephelus M. indicates Macquaria. Sequences obtained within this study are 

indicated in bold. 

 

3.2.4 Sequence alignment 

Sequencing data was analysed as previously described in 2.1.6 and 2.1.7. The depth of 

sequence coverage was a minimum of 3 sequences reads per nucleotide over the entire 

published sequence. Phylogenetic comparison between sequences was conducted using the 

Geneious v9.1 software, using the default algorithm settings. Neighbourhood joining trees 

were prepared using the Tamura-Nei genetic distance model (Biomatters 

http://www.geneious.com). 
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3.3 Results 

Complete mRNA sequences were obtained from the Lates calcarifer (ref Lc3NQAus) , 

Epinephelus coioides (ref Ec2NQAus) and Epinephelus lanceolatus (ref El3NQAus) VER 

outbreaks. The sequences from the Lates calcarifer outbreak were lodged in the NCBI 

nucleotide database as accessions MH181161 (RNA 1) and MH017207 (RNA 2) (Condon et al., 

2019). Phylogenetic analysis of RNA 1 and RNA 2 indicate all three NNV strains collected in this 

study display greatest homology to the RGNNV species.  

3.3.1 RNA-1  

Comparison of the complete mRNA of the RNA 1 segment from the VNN strains collected in 

this study indicate the strains display strong nucleotide sequence homology (99-97%) to each 

other (Refer to Table 3.4). Comparison with the Betanodavirus species type strains indicates all 

3 NQAus strains display strongest homology to the RGNNV reference strain (95-97%) with 

lesser homology to BFNNV (82%), SJNNV (82%) and TPNNV (82%) reference strains. (Figure 3.3 

and Table 3.4). Comparison with the other Australian strains in the NCBI database indicates 

strong homology between all of the Australian strains (95-98%) and the original RGNNV 

isolated from Sevenband grouper in Japan in 1997 (Table 3.5).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 

 

 
Created by Geneious Prime (Biomatters) http://www.geneious.com. Strains coloured pink are RGNNV aligned. 

Figure 3-3: Neighbour-joining tree of mRNA RNA 1 segment of the Betanodavirus from 
this study aligned against the reference species strains of NNV. 
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Figure 3-4: Neighbour-joining tree of mRNA RNA 1 segment of Australian strains of 
Betanodavirus determined by the Tamura-Nei genetic distance model 
Created by Geneious Prime Biomatters http://www.geneious.com. Strains indicated in red were sourced within a 
~500km coastal zone in North Queensland. 
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Table 3-4: Displaying Percentage Homology between mRNA sequences of RNA 1 segments from the three NNV strains sequenced in this study 
(El2NQAus, Lc2NQAus and Ec2NQAus) in comparison to the NNV type species RGNNV, SJNNV, BFNNV and TPNNV including details of NCBI reference, 
host species and location and year of collection. 

Sequence Source details This study Species allocation and reference identifiers 

Strain NCBI ref. 
Length 

(nt) 
Host species Location 

El2NQAus Ec2NQAus Lc3NQAus AY324869 AB025018 EU236148 EU236146  

      RGNNV SJNNV TPNNV BFNNV 

El2NQAus    3030  E.lanceolatus 
QLD Aus 

2015 
  97.27 99.17 96.30 82.17 82.73 82.50 

Ec2NQAus   3029 E.coioides 
QLD Aus 

2014 
97.27   97.06 97.55 82.09 82.61 82.81 

Lc3NQAus  MH181161 3090 L.calcarifer 
QLD Aus 

2013 
99.17 97.06   95.69 81.95 82.53 82.04 

 Redspotted 
Grouper NNV 

(RGNNV) 
AY324869 3105 

Sevenband 
grouper 

Japan 
1997 

96.30 97.55 95.69   82.12 82.62 82.83 

Striped Jack NNV 
(SJNNV) 

AB025018 3081 Striped Jack 
Japan 
1999 

82.17 82.09 81.95 82.12   82.62 83.08 

 Tiger Puffer NNV 
(TPNNV)  

EU236148 3112 Tiger Puffer 
Japan 
1993 

82.73 82.61 82.53 82.62 82.62   91.26 

Barfin Flounder 
NNV (BFNNV) 

EU236146 3101 
Barfin 

Flounder 
Japan 
1993 

82.50 82.81 82.04 82.83 83.08 91.26   

Strains obtained in this study are indicated in bold and grey shading. 
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Table 3-5: Displaying Percentage Homology and number of nucleotide differences between mRNA sequences of RNA 1 segments from NNV strains 
sequenced in this study (El2NQAus, Lc2NQAus and Ec2NQAus) in comparison to the other Australian-sourced strains of NNV including NCBI reference, 
host species, location and year of reference. 

Source of Sequence 

Global Zone, Habitat type and % homology in RNA 1 sequences 

Tropical Tropical Tropical Tropical Tropical Temperate Temperate 

marine marine marine marine marine freshwater marine 

Host species Location/Year 
Reference 

No.  
El2NQAus Lc3NQAus  KT390712  GQ402010 Ec2NQAus GQ402012 AY324869 

Epinephelus lanceolatus QLD Aus 2013 El2NQAus    99.20 98.83 97.98 97.27 96.38 96.30 

Lates calcarifer QLD Aus 2013 Lc3NQAus 99.20   98.78 97.70 97.06 96.03 95.72 

Epinephelus lanceolatus QLD Aus 2014 KT397012 98.83 98.78   98.19 97.49 96.17 96.20 

Lates calcarifer NT Aus 2007 GQ402010 97.98 97.70 98.19   97.13 97.20 97.03 

Epinephelus coioides QLD Aus 2015 Ec2NQAus  97.27 97.06 97.49 97.13   95.96 97.59 

Macquaria novemaculata NSW Aus 2006 GQ402012 96.38 96.03 96.17 97.20 95.96   96.63 

Seven Band grouper Japan 1997 AY324869 96.30 95.72 96.20 97.03 97.59 96.63   

Heat map indicating closest relatedness by percentage similar (%). 
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3.3.2 RNA-2  

Comparison of the complete mRNA of the RNA 2 segment from the VNN strains collected in 

this study indicate the strains display strong nucleotide sequence homology (98-99%) to each 

other (Refer to Table 3.6). Comparison with the Betanodavirus species type strains indicates all 

3 NQAus NNV strains display strongest homology to the RGNNV reference strain (97-99%) with 

lesser homology to BFNNV (81-83%), SJNNV (77-78%) and TPNNV (77-78%) reference strains. 

(Figure 3.3 and Table 3.6). Comparison with the other Australian strains in the NCBI database 

reflect a similar pattern to that described by Moody et al. (2009) and Hick et al. (2013) 

whereby the majority of temperate strains display division from the tropical stains (Figure 3.5 

and Table 3.7). Within this analysis, although closely aligned with the other tropical strains (97-

98% homology), the freshwater strain collected from sleepy cod (EF591368), displays slightly 

less homology to the strains collected from the same geographic zone (97.98-99.65%). All 

other NQ region strains were collected from marine fish culture systems. The majority of 

Australian strains (Cluster 1a) align more closely to the E.septemfsciatus (Cluster 1a) strain 

collected from Japan in 1997 than those collected from the Australian “temperate”species 

within Australia (Cluster 1c). 

 

 
Figure 3-5: Neighbour-joining tree of mRNA RNA 2 segment of the Betanodavirus from this 
study aligned against the reference species strains of NNV including species and NCBI 
reference. 
Alignment determined by the Tamura-Nei genetic distance model, created by Geneious 
version 9.1 Biomatters http://www.geneious.com 
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Figure 3-6: Neighbour-joining tree of mRNA RNA 2 segment of Australian strains of 
Betanodavirus from the NCBI database aligned against the strains collected from this study 
Determined by the Tamura-Nei genetic distance model created by Geneious version 9.1 using 
the default parameters. Biomatters http://www.geneious.com. Strains indicated in red were 
sourced within a ~500km coastal zone in North Queensland. 
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Table 3-6: Displaying Percentage Homology between mRNA sequences of RNA 2 segments from NNV strains sequenced in this study (El2NQAus, 
Lc2NQAus and Ec2NQAus) in comparison to the NNV type species including RGNNV, SJNNV, BFNNV and TPNNV, NCBI reference, length of sequence, host 
species, location and year of collection.  
Strains sequenced in this study are highlighted in grey and bold. 

Sequence Source details 
This study Species allocation and reference identifiers 

Ec2NQAus El2NQAus Lc3NQAus AY690596 AY324870.1 EU826138 NC_003449 EU236149 

Strain NCBI ref.  

Length 

(nt) Host species Location       RGNNV RGNNV BFNNV SJNNV TPNNV 

Ec2NQAus (this study) 
 

1032 E.coioides 

QLD Aus 

2015 
 

99.32 98.62 97.86 97.96 82.49 78.26 78.24 

El2NQAus (this study) 
 

1030 E.lanceolatus 

QLD Aus 

2013 99.32 
 

98.72 97.58 97.87 81.88 77.86 77.65 

Lc3NQAus (this study) MH017207 1017 L.calcarifer 

QLD Aus 

2013 98.62 98.72 
 

98.23 98.33 82.50 78.32 78.20 

Redspotted grouper NNV 

(RGNNV) 
AY690596 1432 

Red-spotted 

grouper 
China 

97.86 97.58 98.23 
 

99.44 82.47 78.46 79.29 

Redspotted grouper NNV 

(RGNNV) SGWak97strain AY324870 1434 

Seven Band 

grouper 

Japan 

1997 97.96 97.87 98.33 99.44 
 

82.73 78.59 79.28 

Barfin Flounder NNV (BFNNV)  

BF93Hok strain EU826138 1433 

Barfin 

Flounder 

Japan 

1993 82.49 81.88 82.50 82.47 82.73 
 

78.46 79.16 

Striped Jack NNV (SJNNV) NC_003449 1431 Striped Jack 

Japan 

1999 78.26 77.86 78.32 78.46 78.59 78.46 
 

82.01 

 

Tiger Puffer NNV (TPNNV) 

TPKag93 strain EU236149 1422 Tiger Puffer 

Japan 

1993 78.24 77.65 78.20 79.29 79.28 79.16 82.01 
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Heat map indicating closest relatedness by percentage similar (%) and number of different nucleotides. Sequences obtained in this study are indicated in 

bold and grey shading. Differences and homology of sequences collected in this study are enclosed by the rectangle. 

Table 3-7: Displaying Percentage Homology and number of nucleotide differences between mRNA sequences of RNA 2 segments from NNV strains sequenced in this study 
(El2NQAus, Lc2NQAus and Ec2NQAus) in comparison to the other Australian sourced strains of NNV from the NCBI database including Host species, NCBI reference, 
location and year of collection. 
 

 

Strains sequenced in this study are highlighted in grey and bold. 
 Temperate Tropical Tropical Tropical Tropical Tropical Tropical Tropical Tropical Tropical Tropical Tropical Temperate Temperate Temperate Zone

marine marine marine marine marine marine marine marine marine marine marine freshwater freshwater not recorded freshwater Habitat

Host species Location/Year Reference No. EF591370 EF591371 EF591367 EF591369 EF591372 KT397014 El2NQAus Lc3NQAus Ec2NQAus GQ402011 AY324870 EF591368 EF591365 EF591366 GQ402013

Latris lineata TAS Aus 2002 EF591370 99.65 98.62 99.31 99.31 99.31 98.96 98.27 98.96 98.62 98.62 96.19 85.81 85.81 85.81

Cromileptes altivelis QLD Aus 2004 EF591371 1 98.96 99.51 99.4 99.16 99.16 98.2 98.68 98.56 99.04 97.24 86.05 86.05 92.19

Lates calcarifer NT Aus 2001 EF591367 4 3 98.62 98.62 98.62 98.27 97.58 98.27 97.92 97.92 96.89 86.51 86.51 86.51

Epinephelus coioides QLD Aus 2005 EF591369 2 3 4 99.51 99.18 99.18 98.19 98.68 98.52 99.18 96.87 85.81 85.81 90.59

Lates calcarifer QLD Aus 2003 EF591372 2 5 4 3 99.28 99.28 98.32 98.8 98.68 99.16 97.36 86.05 86.05 92.43

Epinephelus lanceolatus QLD Aus 2014 KT397014 2 7 4 5 6 99.7 98.89 99.39 98.89 99.19 97.12 85.71 86.4 92.22

Epinephelus lanceolatus QLD Aus 2013 El2NQAus 3 7 5 5 6 3 98.72 99.32 98.62 97.87 97.12 85.37 86.05 92.33

Lates calcarifer QLD Aus 2013 Lc3NQAus 5 15 7 11 14 11 13 98.62 98.13 98.33 96.15 84.69 85.37 91.84

Epinephelus coioides QLD Aus 2015 Ec2NQAus 3 11 5 8 10 6 7 14 98.53 97.96 96.88 85.37 86.05 92.33

Lates calcarifer NT Aus 2007 GQ402011 4 12 6 9 11 11 14 19 15 98.82 96.76 85.71 86.4 92.33

Seven Band grouper Japan 1997 AY324870.1 4 8 6 5 7 8 22 17 21 12 97.48 85.71 85.71 92.33

Oxyeleotris lineolata QLD Aus 1999 EF591368 11 23 9 19 22 24 24 32 26 27 21 87.76 87.08 91.83

Macquaria novemaculata NSW Aus 2004 EF591365 41 41 39 41 41 42 43 45 43 42 42 36 98.64 97.96

Lates calcarifer SA Aus 2004 EF591366 41 41 39 41 41 40 41 43 41 40 42 38 4 97.96

Macquaria novemaculata NSW Aus 2006 GQ402013 41 65 39 57 63 77 78 83 78 78 78 68 6 6

%
 h

o
m

o
lo

gy

Number of differences in sequence

Source of Sequence
Global Zone, Habitat type, Reference No. and Matrix of homology (%) and Difference in RNA 2 sequences
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3.4 Discussion 

Prior to this study, knowledge of the VNN strains present in Australia, were not sufficient to 

allow robust decisions to support vaccine development nor design targeted dsRNA for 

attempted knockdown of NNV. The acquisition of complete genome sequences of RNA 1 and 

RNA 2 collected from strains associated with VER outbreaks in marine aquaculture systems in 

North Queensland indicate the highest level of conservation to the RGNNV. Unfortunately, 

comprehensive comparison of RNA 1 segments across Australian species are limited. There are 

only three RNA 1 segment sequences from Australian species in the NCBI database ( Hick & 

Whittington 2010; Agnihotri et al., 2015). Nonetheless, within the comparison containing six 

sequences, the RNA 1 segments from Australian strains of NNV display a very high level of 

conservation, exceeding 97%, across the tropical geographic, and 96% across temporal zones.  

Similarly, the sequences of RNA 2 segments of NNV are highly conserved between strains that 

have been associated with VER outbreaks in Australia since 2001. High conservation extends 

not only across Australian strains but also across diverse geographic (Japan, China and the 

Mediterranean) and temporal sources (earliest strains collected in 1997). Previous researchers 

have noted the conservation of the capsid protein. The high level of conservation of RNA 2 

which contains the mRNA for the capsid protein, the antigen target for vaccine preparation, 

indicates a vaccine against the Australian strains could have wider global application.  

Temporally, the capsid protein gene has a low evolutionary rate (Thiery et al., 2004). In 

particular, the RNA 2 sequences obtained in this study display 97.8 to 98.3% homology to the 

RNA 2 segment of the type species for RGNNV, namely SGWak97, that was collected from 

E.septemfasciatus in Japan in 1997 (Iwamoto, 2001). The NQAus NNV strains collected in this 

study have less than 20 nucleotide differences from the original RGNNV strain or less than 1.31 

changes per 1000 nt per year. Considering the nucleotide differences translate to very few 

changes in the capsid protein during the past 17+ years, it is also likely a vaccine will be 

suitable for a long period of time. Further investigation regarding the conservation of the 

protein motifs will be discussed in the next chapter.  
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3.5 Conclusion 

The following outcomes and conclusions were drawn from this Chapter: 

 

Data presented in this chapter was published:  

Condon K., Bochow S., Ariel E., and Miller T., (2019) Complete sequence of Betanodavirus from 

Australian barramundi, Lates calcarifer. Microbiology Resource Announcements 8. 

https://doi.org./10.1128/MRA.00081-19 

  

 NNV was confirmed to be present in high copy number in the viral extract. 

 Complete sequence of Betanodavirus RNA 1 and RNA 2 was obtained from three 

VER outbreaks in North Queensland. 

 Comparative phylogenetic analysis indicates the strains are of the RGNNV species. 

 Bioinformatic analysis indicates the RNA 1 and RNA 2 sequence and theoretically, 

the translated proteins are highly conserved in the RGNNV species associated with 

VER in tropical marine species in North Queensland. 

 Comparative analysis with RGNNV from the NCBI database indicates the RNA 1 and 

2 sequence and theoretically, translated proteins display remarkable conservation 

across a broad global species, geographic and temporal range. 

 Sequence of mRNA 2 was obtained for application to produce standard RT-qPCR 

control plasmids and recombinant protein expression. 

 Sequence of mRNA 1 was obtained which indicated the strains causing VER are pure 

RGNNV genomes and the lack of chimeric recombination with other NNV strains. 

 Gene sequence of RNA 1 was obtained for application to produce standard RT-qPCR 

control plasmids. 
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CHAPTER 4. REVIEW AND IDENTIFICATION OF THE FUNCTIONAL 

MOTIFS OF THE BETANODAVIRUS GENOME 

Background  

 Amino acid motifs that are critical to the production of neutralising antibodies 

against RGNNV in grouper have been identified in the capsid protein. 

 Amino acid motifs that are linked with increased virulence, or critical to viral 

replication of Betanodavirus have been identified in the capsid Protein, Protein 1 

and B1 and B2 proteins. 

 Amino acid motifs that are linked with host species specificity have been 

identified in the RGNNV capsid protein structures. 

 Confirmation the strain of RGNNV to be used in this study contains virulence- 

associated motifs is required for vaccine preparation and to have confidence in 

the translation of the project results to industry application. 

 Knowledge of the functional motifs is required to direct targeted knockdown of 

the RGNNV using dsRNA.  

 

Aims of this Chapter  

 Confirm that motifs which are critical targets of neutralising for antibodies are 

present in the viral extract. 

 Confirm that the motifs which are critical targets for neutralising antibodies will 

be encoded by the gene sequence used for recombinant protein expression and 

vaccine preparation. 

 Confirm the viral extract being used in this project contains the factors that have 

been identified to be associated with virulence. 

 Determine a region/s in the RGNNV genome to target for knockdown with dsRNA.  
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4.1 Introduction 

Although the previous chapter identified a remarkable level of conservation in the genome of 

RGNN strains, there are also studies that identify significant loss in virulence associated with 

single amino acid mutations (Souto et al., 2015). Furthermore, there are a number of short 

amino acid motifs that have been determined to be critical to the production of neutralising 

antibodies in grouper species (Chen et al., 2015). In other fish species, including Senegalese 

sole, single amino acid mutations in the capsid protein have been demonstrated to 

significantly affect viral replication kinetics in SJNNV (Hata et al., 2010 and Souto et al., 2015). 

To ensure an effective translation of this project’s outcomes to the grouper aquaculture 

industry, it is important to ensure the therapies and challenges being conducted within this 

project are performed using the most virulent and competent viral strains. The production of a 

vaccine against a viral strain of reduced virulence would not be effective as a long-term 

management tool to prevent VER in grouper farms, in fact, it may contribute to the selection 

of more virulent strains within culture systems (Kennedy et al., 2016). 

In addition to the preparation of a vaccine, this project is attempting to apply dsRNA to 

prevent VER outbreaks. The targeted knockdown of portions of the viral genome that are 

critical to replication or disease is a fundamental requirement for the successful application of 

dsRNA as a therapy. A range of functional motifs have been identified in the Alphanodavirus 

and Betanodavirus genome.  

This work summarises the findings of previous researchers that have identified functional 

activity of specific regions of Nodavirus genomes. Considering the paucity of data available on 

Betanodaviruses, some Alphanodaviruses are included as a model for explaining the general 

replication characteristics of the Betanodavirus.  

The aim of this chapter is to identify motifs of the Betanodavirus genome that are critical for 

viral replication and virulence in grouper species and confirm the presence of such in the 

NQAus NNV strains that are being investigated in this project. The collective findings are 

illustrated in Figure 4.1 Schematic representation of the functional motifs for the 

Betanodavirus Protein A (p.85) and Figure 4.2 Schematic representation of the functional 

motifs of the Betanodavirus capsid protein (p.88) (Condon, this work).  

4.1.1 Viral Replication Characteristics 

Although the small size of the nodavirus genome would suggest a simple replication process 

the mechanism of viral and gene replication and expression involves a sophisticated regulatory 

system that is not completely understood (Petrillo et al., 2013). The restricted protein 
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encoding capacity of the small genome means the nodaviruses must utilise many host-

regulatory processes to complete the replication cycle (Castorena et al., 2010). Successful viral 

replication, in the case of nodaviruses, requires completion of several critical actions. The 

processes are presented as:  

 Attachment to susceptible host cells 

 Entry of viral particle to host cells 

 Formation of the replication complex 

 Expression of viral proteins 

 Replication of viral RNA segments 

 Formation of viral particles 

 Exit of viral particles from host cell. 

The processes do not occur as separate steps but rather a regulated system and presumably 

the inhibition of any of these critical actions could form the basis for the development of new 

treatments or therapies. For clarity, the processes will be discussed separately.  

4.1.1.1 Attachment to susceptible host cells 

All non-enveloped viruses use receptor mediated endocytosis to enter host cells (Chang & Chi 

2015; Smith & Helenius 2004). Three reports indicate the Betanodavirus mode of attachment 

to host cells (Liu et al., 2005) (Ito et al., 2008) (Chang & Chi 2015). A Sialic acid moiety of 

unknown location on the capsid of RGNNV is required for cell infectivity in vitro (Liu et al., 

2005).  

4.1.1.2 Entry of viral particles to host cells 

Although the mode of viral attachment is unknown, the mode of entry of the nodaviruses into 

cells has been determined. The Betanodavirus, Dragon Grouper NNV (DGNNV), penetrates 

Striped Snakehead (SSN-1) cells via a spherical pit and membrane-ruffling pathway suggestive 

of the use of macro- and micropinocytosis pathways (Liu et al., 2005). The inhibition of DGNNV 

replication was blocked in vitro by chlorpromazine, which suggests clathrin-mediated 

endocytosis as an entry pathway (Liu et al., 2005). This is the common pathway of cell entry by 

many unenveloped viruses and requires an acidic environment in the endosome (Liu et al., 

2005). 5-(N-ethyl-N-isopropyl) amiloride (EIPA) is a selective inhibitor of sodium/hydrogen ion 

exchange, disrupts glucose-induced acidification and is a micropinocytosis-specific inhibitor 

(Huang et al., 2014). EIPA reduced cell death in vitro and significantly reduced the expression 

of both RNA 1 and RNA 2 of RGNNV. The detection of RNA 2 was affected more significantly 
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than RNA 1 by EIPA (Huang et al., 2014). Following entry into cells, nodaviruses form viral 

replication complexes (VRCs) (Nagy & Pogany 2012).  

4.1.1.3 Formation of the Replication Complex 

All the characterised +ssRNA viruses assemble a viral replication complex (VRC) (Nagy & 

Pogany 2012). The expression of viral proteins, replication of the viral genome and packaging 

of viral particles occurs within the cell at a viral replication complex (VRC). The nodavirus VRC 

is located at the mitochondria and results in conformational changes in the organelle to form 

spherules, which are “viral replicating factories” (Kopek et al., 2007). The spherules appear 

between the outer and inner mitochondrial membranes and are invaginations of the outer 

mitochondrial membrane with interiors connected to the cytoplasm through small open necks 

(Kopek et al., 2007). Motifs on Protein A are responsible for the location of the VRC at the 

mitochondria. In the Alphavirus, Flock House Virus (FHV), spherule formation does not occur 

unless the viral RNA dependant RNA polymerase (RdRp) is active and a replication competent 

FHV RNA strand is present (Kopek et al., 2010).  

Docking of the Betanodavirus VRC in the mitochondrion relies on interaction between Protein 

A, secondary structures in the viral RNA strands and the modulation of host cellular co-factors 

(Weeks et al., 2010; Young et al., 2003). The interactions are not fully understood however, 

host cellular co-factors including heat shock proteins (Hsp) and phospholipids have been 

implicated. Heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) were recognised 

as important cytosolic chaperones for docking onto a special domain on the import receptor of 

the outer mitochondrial membrane (TOM) specifically Tom70 (Young et al., 2003). Hsp40, 

Hsp70 and Hsp90 have been implicated as important co-factors for nodavirus replication 

(Weeks et al., 2010). Deletion of a SSZ1 gene in yeast that encodes an atypical Hsp70, involved 

in translational fidelity as part of the ribosome-associating complex (RAC), resulted in a 30-fold 

increase in FHV3 RNA 3 accumulation (Weeks et al., 2010). Deletion of similar genes encoding 

RAC Hsp40 reduced FHV accumulation (Weeks et al., 2010).  

Hsp70 and Hsp90 have been implicated as important co-chaperones facilitating replication in 

several other RNA virus infections including human immunodeficiency virus (HIV) , Influenza A, 

severe acute respiratory syndrome (SARS) and hepatitis C (Mine et al., 2012). A plant infecting, 

+ssRNA virus, tomato bushy stunt virus (TBSV) like the Alphanodaviruses, replicates in yeast 

(Nagy 2015). In yeast, the formation of the VRC by TBSV requires the recruitment of a number 

of cellular co-factors including Heat shock protein 70 (Hsp70), proteosomal Rpn1 1p 

metalloprotease, eukaryotic elongation factor 1A (eEF1A), endosomal sorting complexes 

required for transport protein (Vps23p ESCRT), 60 Bro1p ESCRT-associated protein, Vps4p AA 
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A+ ATPase and Cdc34p E2 ubiquitin conjugating 61 enzyme (Nagy 2015). In addition, TBSV 

channels sterols and phospholipids to the sites of replication (Nagy 2015). The activation of 

TBSV RNA polymerase within the VRC was demonstrated to require Hsp70 and was enhanced 

by the phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) (Pogany & 

Nagy 2015). The role of lipids in nodavirus VRCs has been reported as essential but rarely 

investigated (Castorena et al., 2010) (Qui et al., 2014a). FHV replication in Drosophila S2 cells in 

vitro was associated with the upregulation of several lipid metabolism genes (Castorena et al., 

2010). The down regulation of chaperone containing T-complex proteins (Cct), Cct1 and Cct2, 

that encode essential enzymes for phosphatidylcholine biosynthesis, supressed FHV RNA 

replication (Castorena et al., 2010). In contrast, formation of the VRC by WhNV was not 

improved with PE exposure (Qui et al., 2014a). WhNV Protein A was enhanced by 1, 1′, 2, 2′-

tetraoleoyl cardiolipin (CL), 1, 2-dioleoyl-sn-glycero-3-phosphate (PA) and 1, 2-dioleoyl-sn-

glycero-3 – (phosphoro-rac-(1-glycerol)) (PG) which are present in mitochondrial membranes 

(Qui et al., 2014a). Further research into the role of cellular chaperones in Betanodavirus and 

other viral infections is required.  

4.1.2 Expression of Viral Proteins  

In eukaryotic cells, many of the processes of RNA replication and capping which allow efficient 

protein translation to occur are contained within the nucleus (Ahola & Karlin, 2015). 

Considering their cytoplasmic location, nodaviruses must encode their own enzymes to ensure 

viral RNA replication and protein translation success (Ahola & Karlin, 2015). Nodaviruses 

express 4 proteins during replication namely Protein A, B1 and B2 and the capsid protein-α. In 

the positive sense ssRNA viruses, the RNA dependant RNA polymerase (RdRp) is always 

translated first (Miller & Koev, 2000). Protein A, B1 and B2 are expressed early in the infection 

stage and capsid protein-α later. Functional motifs of the RNA 1 strand are illustrated by Figure 

4.1  

4.1.2.1 Protein A:  

Protein A is ~1000 aa and contains multiple functional domains including nucleolar locating 

domains, mitochondrial targeting domains (MTD/MLS), a transmembrane domain (TMD), a 

RdRp, a self-interacting domain and an RNA capping domain (Bai et al., 2011). Additionally, 

upstream of the RdRp domain is a hypothetical methyltransferase-guanylyl transferase 

(MTase-GTase) region, which includes the MTD/MLs and TMD (Ahola & Karlin 2015). Wang et 

al. (2013) demonstrated Protein A also displays N-terminal transferase activity. Unlike many of 
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the +ssRNA viruses Protein A is produced as a single replication protein that is not cleaved into 

several functional proteins.  

4.1.2.2 Nucleolar Localising domains of Protein A 

The C-terminus of Protein A (aa 972 to 978) is similar in aa sequence (RPRRQRR) to the nuclear 

location signal (NLS) of HIV-1 Trans-activator of Transcription (Tat) and Rev proteins (Mezeth 

et al., 2007). No reason for a nuclear localisation signal in Protein A has been proposed. In 

addition, no Nuclear Export Signal (NES) has been proposed in the nodavirus genome (Guo et 

al., 2003a). 

4.1.2.3 Mitochondrial-interacting proteins of Protein A 

Early expression of Protein A coincides with the formation of the nodavirus viral replicating 

complex (VRC) (Miller & Ahlquist 2002). The VRC complex locates to the mitochondria via a 

mitochondrial locating signal (MLS) and embeds within the mitochondria via the mitochondrial 

transmembrane domain (TMD) (Miller & Ahlquist 2002). The RdRp is maintained in close 

association with both the spherule and the RNA strand by RNA binding motifs and RdRp self-

interacting motifs. Many of these tasks occur in vitro through amino acids within the MLS and 

MTD motif. In the nodavirus group, the mode of membrane association by Protein A is taxon 

specific (Ahola & Karlin 2015). In FHV the mitochondrial location signal (MLS), contained within 

the N-terminal end of Protein A (aa 1 to 46), is responsible for locating the VRC at the 

mitochondrion (Miller & Ahlquist 2002). Genetic replacement of the mitochondrial localisation 

sequence (MLS) region of FHV Protein A with an endoplasmic reticulum (ER) targeting 

sequence results in the formation of the VRC at the ER with increased viral protein production 

in vitro (Miller et al., 2003). Once localised to the mitochondria, a region within the N-terminal 

end of Protein A, termed the transmembrane domain (TMD) becomes inserted in the 

intermembrane space of the mitochondria and the C-terminus is exposed to the cytoplasm 

(Miller & Ahlquist 2002). In FHV, the TMD is predicted to be aa 15 to 36 

LLVGIATVSGCGAVVYCIS (Miller & Ahlquist 2002). One or more other regions, which were C-

terminal to aa 230, also possessed some MLS/TMD activity (Miller & Ahlquist 2002).  

Recently, both N-and C-terminal TMDs were studied (Qui et al., 2014b). In  Wuhan nodavirus 

(WhNV), a self-interaction of Protein A occurs between aa 1 to 254 and 255 to 480. The 

interaction occurred between 3 amino acid regions. Homotypic interactions between the same 

regions were noted for aa 1 to 254 (75 %) and 255 to 240 (55 %). The region aa 481-659 also 

formed heterotrophic interactions between aa 1 to 254 (30 %) and aa 255 to 480 (22 %). The 

self-interaction of Protein A was lost when mutations were created at K91A, W92A, R93A, 



83 

 

S163, R165A and Y169A. The mitochondrial membrane binding was not affected by the 

mutations (Qui et al., 2014b). Amino acid motifs between aa 660 to 839, which is within the 

RdRP domain, and aa 840 to 1014 of Protein A also display RNA binding activity that has not 

been fully investigated (Qui et al., 2014a). 

Protein A of GGNNV localised to intracellular membrane compartments in the cytoplasm (Guo 

et al., 2004). Bioinformatic analysis identified two hydrophobic aa residues that could 

hypothetically act as TMDs at aa 153 to 173 and 229 to 249 (Guo et al., 2004). The region 

consisting of aa 215 to 255 was demonstrated to contain an MLS and a TMD (229 to 249) (Guo 

et al., 2004). The MLS was not determined within the aa 215 to 255 region. The TMD mode of 

association was proposed be through embedding into the phospholipid bilayer of the 

organelle. In Atlantic Halibut NNV, four hypothetical transmembrane domains were identified 

(Mezeth et al., 2007). The regions consisted of aa residues 6 to 26, 148 to 169, 225 to 247 and 

647 to 665. Regions aa 6 to 26 and aa 225 to 246 were demonstrated to be MLS (Mezeth et al., 

2007). Proteins comprising aa 225 to 246, if expressed alone, localised to the golgi apparatus in 

some cells (Mezeth et al., 2007). 

4.1.2.4 MTase-GTase domain of Protein A 

In close association with the MLS and MTD is a proposed MTase-GTase domain. A MTase-

GTase domain is essential for RNA capping and is related to the formation of spherules (Ahola 

& Karlin 2015). Alphaviruses, another family of +ssRNA viruses that replicate in the cytoplasm, 

contain a unique type of RNA capping enzyme that has combined methyltransferase-guanylyl 

transferase (MTase-GTase) activity. The MTase-GTase structure, rather than the sequence, is 

proposed to convey the functional properties of the enzyme. The N-terminal moiety of the 

Alphanodavirus- Nodamura Virus Protein A (aa 1 to 460) is homologous in functional 

secondary structure to the Alphavirus MTase-GTase and contains a hypothetical membrane-

associating region (Ahola & Karlin 2015). MTase-GTase is comprised of the N-terminal core and 

the downstream “iceberg region” region (Ahola & Karlin 2015). The “iceberg region” is 

synonymous with the MLS/MTD domain already discussed. Ahola and Karlin (2015) did not 

refer to the region as a domain because it did not form a separate unit. Specific mutations 

within either the core or iceberg region can abolish the MTase-GTase activity.  

In the Betanodaviruses, a genus-specific insertion contributes to membrane association and 

mitochondrial targeting or “Iceberg region” (Ahola & Karlin 2015). This occurs in an area 

between aa 108 to 255 and concurs with the results of Guo et al. (2004). In FHV the C-terminal 

aa 1 to 200 were demonstrated to possess the ability to interact with components of the 

Protein A (Dye et al., 2005). Specifically, mutations to aa N203, W220, W222 and S231 induced 
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significant reduction in Protein A self-binding and RNA replication (Dye et al., 2005). Mutations 

introduced at aa Y207, W215 and E227 did not affect Protein A self-binding but did reduce 

RNA replication to 8, 5 and 4 % of wild type (WT) respectively (Dye et al., 2005). The Y207, 

W222 and S231 are conserved at the same location in the Betanodaviruses however; the E227 

is replaced with M227. The W222, S231 and M227 could relate in function as an MLS for the 

downstream MTD. Guo et al. (2004) or Ahola & Karlin (2015) did not solely differentiate the 

MLS function.  

 Between the MTD/MLS and self-binding motifs and RdRP motif of Protein A is a region that 

relates to temperature sensitivity in the Betanodaviruses (Hata et al., 2010). Temperature 

sensitivity of the Betanodaviruses involves a combination of RNA 1 and RNA 2. The region on 

the RNA 2 has not been investigated. The region on the SJNNV RNA 1 genome was located 

from nt 84 to 1419 or aa 1 to 445 Protein A (Hata et al., 2010). More specifically, the region nt 

1088 to 1419, aa 335 to 445 was particularly important in the temperature sensitivity of 

RGNNV (Hata et al., 2010). Souto et al. (2019) demonstrated point mutations of nucleotide 

sequence of SJNNV RNA 1 that lead to single specific amino acid changes to resemble that of 

RGNNV RNA 1 at aa 41, 48, 218, 223, 238 and 239 lead to reduced infectivity of the 

recombinant strain compared to the wild type SJNNV at 25 °C in experimental challenge in 

sole. The authors were not able to test if the aa changes improved infectivity at the RGNNV 

optimal temperature of 30°C due to the inability of sole to tolerate the higher water 

temperature.  

4.1.2.5 RNA dependant RNA polymerase of Protein A 

In the positive sense ssRNA viruses, the RNA dependant RNA polymerase (RdRp) is always 

translated first (Miller & Koev 2000). Betanodavirus RdRP was detected in the barramundi cell 

line from 12 hours post infection (hpi) with peak expression at 24 hpi and declining expression 

48 to 72 hours hpi (Wu et al., 2010). In Dicentrarchus labrax, Protein A of GGNNV was detected 

from 5 hpi, increased to 14 hpi and stabilised until 23 hpi whereby it slightly declined (Guo et 

al., 2004). The RdRp has an essential requirement for Mn2+ (1mM optimal and above 4mM 

inhibitory and an optimal performance at pH 8 to 9. (Guo et al., 2004). The nodavirus RdRP 

contain 6 motifs that are preserved in many ssRNA virus RdRps (Johnson et al., 2001). The 

conserved RdRp motifs have been identified in the Betanodavirus RdRP (Johnson et al., 2001). 

The RdRp can replicate the nodavirus genome in the absence of cellular co-factors (Wang et 

al., 2013). However, protein translation and virion formation rely on the formation of the VRC. 

The RdRp recognises the nodavirus genome via cis-acting elements and secondary structures 

rather than any sequence specific recognition factor (Wang et al., 2013). 
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4.1.2.6 Terminal Transferase in Protein A 

The RdRp is unable to replicate the viral genome if more than 3 nt are removed from the 3’ 

end of the negative strand of RNA 1 sequence (Wang et al., 2013). Protein A has terminal 

nucleotransferase (TNT) activity that adds nt to the 3’ sequence if 2 nt are missing (Wang et al., 

2013). The TNT recognises the last 191nt of +/-RNA 1. Adding additional nucleotides to the 3’ 

of the 191 nt sequence does not affect RdRp activity provided the addition be not too long 

such as that of an 18nt poly a tail. Like the RdRp, the TNT relies on the presence of the 3’ end 

of the positive or negative strand of RNA 1 and the presence of the GDD motif (Wang et al., 

2013). The location of the TNT motif on Protein A has not been determined. 

4.1.2.7 B1 Protein 

B1 is a 111 aa protein. B1 is dispensable for RNA replication in mammalian and yeast cells in 

vitro (Chen et al., 2009). In Betanodaviruses, B1 cDNA and B1 expression was detected at 12 

hours, peaked at 24 hours and declined over 72 hours post-transfection in 3 fish cell lines 

(grouper liver cells (GL-av), grouper fin cells (GF-1) and zebrafish liver cells (ZLE) (Chen et al., 

2009). B1 was demonstrated to be a novel anti-necrotic protein that may serve to maintain 

mitochondrial function to allow viral replication (Chen et al., 2009). How B1 prevents cell 

death has not been determined. However, it has been demonstrated to not be a member of 

the Bcl-2 family, which is a host-encoded antagonist of apoptosis (Chen et al., 2009).  

The aa 1 to 70 are highly homologous across the RGNNV, AHNNV and SJNNV strains studied by 

Chen et al. (2009). A N-glycosylation site is present at aa 16 to 19 (NKTS) as is a nuclear 

locating sequence (NLS) between aa 33 to 38 (PRRARAA). The PRRARAA aa sequence is 

retained by the grouper isolated RGNNV genotypes but present as a PRRART in the AHNNV 

and SJNNV genotypes. An additional NLS is located at aa 66 to 70 (KRPRR) (Chen et al., 2009). 

Although not demonstrated to be a result of the proposed NLS, B1 linked to a reporter protein 

were observed to be transported to the nucleus (Chen et al., 2009). The purpose of the nuclear 

transport has not been discussed in literature. Investigation into functional motifs in B1 

identified possible protein modification sites including a N’myristoylation site (aa 30 to 55 

GGVTAI), a protein kinase C phosphorylation site (aa 58 to 60 SRR), a protein kinase II 

phosphorylation site (66 to 69 TVIE) and a mitochondrial specific sequence (45 to 52 TFVISHAA 

A) (Su et al., 2009). Amino acid sequence between the Nodaviruses was not conserved within 

the hypothetical protein modification sites proposed by Su et al. (2009). When the nucleotide 

sequence identity of the B1 region RGNNV TN1 strain (EU118118) was compared with other 

species, there was a 92 to 96 % homology with other grouper isolated strains, 81 % with 
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AHNNV (AJ401165), and 70 % with SJNNV (AB025018) (Chen et al., 2009). No functional 

explanation for the homology between strains was proposed.  

4.1.2.8 B2 Protein 

B2 is a 75 aa multifunctional protein whose role in nodavirus replication has not been fully 

exposed (Petrillo et al., 2013). The protein is not required for viral RNA replication however it 

is required for accumulation of the viral RNA and the production of infectious virions (Settles & 

Friesen, 2008). B2 of RGNNV was expressed in grouper liver cells (GL-av) 12 hpi with increased 

expression between 24 and 72 hpi (Su et al., 2009). The B2 protein has been demonstrated to 

possess dsRNA-binding activity, pro-apoptosis properties, be involved in the formation of the 

VRC and promote translation of the capsid protein (Venter and Schneemann, 2008). There is 

little aa homology between B2 of the Alpha-and Betanodaviruses however due to their 

functional similarity some homologous regions have been identified (Ou et al., 2007). B2 plays 

a critical role in the silencing of the RNA interference pathway, which is involved in innate 

immune responses (Su et al., 2009). B2 binds dsRNA to both prevent the cleavage of long 

dsRNA by Dicer-2 and inhibit the loading of short interfering RNAs (siRNA) into the RNA 

silencing complex (RISC). 

B2 recognition of dsRNA occurs in a sequence independent manner. The mode of recognition 

relies on an A-type duplex RNA, specifically 2 successive minor grooves with an intervening 

major groove on the other side of the RNA duplex (Venter & Schneemann, 2008). The dsRNA 

binding activity of B2 is based on electrostatic forces (Petrillo et al., 2013). Mutation of 3 

positively charged aa including R36, L47and L62 to A or D reduced or inhibited the ability of 

FHV B2 to bind dsRNA. In the presence of the mutant viruses, the FHV RNA accumulated in 

cytoplasmic granules, preventing the translation of the RNA into protein (Petrillo et al., 2013). 

A substitution mutation in NoV B2 of aa R59 was defective in binding both 44bp dsRNA and 21 

nt siRNA (Aliyari et al., 2008). 

B2 also acts as a structural component of the VRC to limit the effect of the iRNA pathway to 

combat viral production (Aliyari et al., 2008). In RGNNV a mitochondrial targeting sequence 

(MTS) of B2 (aa 41 to 50) is reported as RTFVISAHAA (Su & Hong 2010). Residues critical to 

maintaining the dsRNA binding ability of Betanodaviruses have been identified (Fenner et al., 

2007). Arginine (R) residues, R26, R53 and R60 are essential for the binding of short 40-bp 

dsRNA (Fenner et al., 2007). R53 and R60 in GGNNV were essential for the accumulation of 

long (600bp) dsRNA in vitro (Fenner et al., 2007). An R55, which is only present in AHNNV, and 

GGNNV not SJNNV was also identified to have dsRNA binding ability (Fenner et al., 2007). The 

R53 and R60 were confirmed to be critical for B2 dsRNA binding and RNAi-inhibition in a 
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grouper isolated VER strain in Taiwan (Ou et al., 2007). Four aa residues were identified as 

necessary for the mitochondrial targeting of an RGNNV strain namely V44, I45, R52 and R53 

(Su & Hong 2010). Although no nuclear localisation signal has been identified Fenner et al. 

(2006) noted the accumulation of GGNNV B2 within the nucleus during the late stages of 

GGNNV infection. 

Comparative analysis of the 27 B2 Betanodavirus sequences published on NCBI reveal 

homology of 51/70 aa (73 %) across the entire protein (this work). Within B2 the first 50 aa are 

highly conserved displaying homology of 42/51aa (82 %). A motif of unknown significance at aa 

5-19 is completely conserved in the N-terminal arm of the Betanodavirus B2 aa 5-

QQAIDQHLVELEQLF-19 (this work). The E14 residue along with D24 facilitates long dsRNA 

binding (Fenner et al., 2007). In addition, the aa 16-20 LEQL is conserved between the 

Betanodaviruses and NoV (Ou et al., 2007 and this work). The MTS, aa 41 to 50 (Su & Hong 

2010), is almost completely conserved in the Betanodaviruses. All SJNNV species have a S48 

motif rather than H48. Three strains have a single aa change within the motif that has not 

been linked with any clinical change in VER. Only 8/24 (33 %) aa of the C-terminal end of B2 

are conserved. Conserved motifs are R53, L54, L57, R60, P52, E70, P71 and M72 (This work). 

The R59 motif identified by Aliyari et al. (2008) as essential for NoV B2 is conserved in all the 

25 Betanodavirus B2s except the BFNNV strains. An A69 motif is conserved between FHV, NoV 

and the Betanodaviruses, except AHNV. The effect of variation in these sequences on virulence 

or species specificity was not proposed.  

In vitro monitoring of capsid protein demonstrated B2 is necessary for efficient translation of 

the capsid protein (Petrillo et al., 2013). The translational efficiency was linked to B2 playing a 

role in ribosomal occupancy of RNA 2 (Petrillo et al., 2013). B2 has also been demonstrated to 

possess pro-apoptotic activity (Su et al., 2009). B2 upregulated the expression of Bax which is 

an antagonist of apoptosis leading to mitochondria-mediated necrotic cell death at the late to 

mid stage (24 to 48 hpi) of viral replication of RGNNV (Su et al., 2009).  
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Figure 4-1: Schematic drawing of RNA 1, mRNA of Protein A indicating location (number) , function and amino acid sequence of functional motifs 
described in the literature and source of reference.
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4.1.2.9 Capsid Protein  

The RNA 2/capsid protein of the Betanodavirus has been proven to determine host range 

(Iwamota et al., 2004). The Betanodavirus capsid protein has also been reported to possess 

Nuclear Location signal activity, pro-apoptosis activity and contain a motif that relates to 

species-specific virulence and the recognition of virus by neutralising antibodies (Guo et al., 

2003a; Ito et al., 2008 and Chen et al., 2015). A schematic diagram of the Betanodavirus capsid 

protein is presented in Figure 4.2. 

The Betanodavirus capsid protein consists of 340 aa. The translation of the capsid protein 

requires both UTRs of RNA 2 and the 5’UTR contains a Kozak sequence of ACAA TGG 

(3ANNATGG+4) (Huang et al., 2007). The capsid protein has a mw of ~37 to kDa which is 

slightly higher than that predicted by their amino acid sequences (Lin et al., 2001). The higher 

molecular weight is consistently observed and could possibly be caused by host cell factors 

causing polyadenylation in vitro (Huang et al., 2007). Expression of the capsid protein was 

reported to increase from 12 to 72 hpi and was significantly greater than the peak RdRP 

expression (Wu et al., 2010). Studies with recombinantly expressed mouse grouper NNV 

(MGNNV) indicated the capsid protein packages multiple RNA strands ranging in size from 100 

to 4500 nt (Guo et al., 2003b). Expression of the capsid protein of GGNNV in vitro induced 

activation of caspase-3-like and caspase-8-like proteases which ultimately leads to apoptosis 

via the “extrinsic” pathway (Guo et al., 2003b). The induction of apoptosis serves as a 

mechanism to release progeny virus from infected cells (Guo et al., 2003b). 

The Betanodavirus capsid protein displays an N-terminal arm aa 1 to 52, a highly conserved 

region T2 aa 83 to 216, a variable region T4 aa 235 to 351 and an area referred to as the C-

terminal arm aa 288 to 338. The N-terminal aa 23 to 31 RRRANNRRR of the capsid protein 

from GGNNV were demonstrated to perform nucleolar localisation (NLS) functions in both 

mammalian (Cos-7) and Asian seabass D.labrax (SB) cell lines (Guo et al., 2003a). The N-

terminal aa 2 to 10 RKGEKKLAK of GGNNV capsid protein also displayed NLS activity (Guo et 

al., 2003b). No role of the NLS in the replication of the Betanodavirus genome has been 

proposed. The N-terminal arm of the capsid protein contains a high percentage of basic 

residues and is involved in binding the negatively charged phosphate backbone of the viral 

genomic RNA within the capsid (Lu & Lin 2003). There are two stretches of RRR residues and 

D75 residue. The D75 residue represents a catalytic residue (Grotmol et al., 2000). The RRR 

residues are involved in the binding of the viral genomic RNA to the internal capsid wall of the 

host cell. The aa R23 to 25 and R 29-31 were critical in the formation of viral like particles (Lu & 
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Lin 2003). Also, within the N-terminal arm aa 127 to 140 is the highly conserved DxxDxD motif, 

which in the Betanodaviruses is FLPDPTDNDHTFDA, is responsible for calcium binding (Wu et 

al., 2008). 

Within the highly variable T4 region a 3 aa motif (254 to 256) is completely conserved within 

each NNV genotype (Nishizawa et al., 1997). The motif is responsible for neutralising epitopes 

that are associated with viral infectivity (Ransangan & Manin 2012). The species present as 3 

serotypes by analysis with monoclonal antibodies raised against the capsid protein (Mori et al., 

2003). The amino acid motifs and serotypes were discussed in Chapter 3 (refer to Table 3.1). 

The RNA 2 and/or the encoded coat protein controls host specificity in SJNNV and RGNNV 

(Iwamoto et al., 2004). Recombinant studies combining RNA 1 and different RNA 2 regions of 

SJNNV and RGNNV identified regions on RNA 2 which related to virulence (Ito et al., 2008). 

Virulence in striped jack and seven band groupers was retained when the RNA 2 segment nt 

693 to 1054 (RGNNV) and 694 to 1061 (SJNNV) was retained respectively. In vitro all the viral 

hybrids replicated indicating the loss in infectivity was related to a host factor rather than 

critical mutation in the virus. Significantly, in vitro activity was demonstrated via transfection 

with lipofectamine which facilitates entry of DNA or RNA to cells (Cardarelli et al., 2016) and 

by-passes the requirement of attachment and entry to cells. The loss of virulence in vivo could 

indicate the regions identified by Ito et al. (2008) relate to attachment and entry of host cells. 

However, other mechanisms could also account for the variation in infectivity between in vivo 

and in vitro studies. 

 In RGNNV the region between nt 694 to 758 (aa 223 to 245) appears to affect species 

specificity. In SJNNV, the region between nt 695 to 765 affects species specificity (Ito et al., 

2008). The nt and aa homology of the two viruses within the critical regions were 60 and 55 % 

respectively. How the region influences species specificity is unknown. Near this region a 

combination of either both or two single amino acid mutations of S247A or S270N in a SJNNV 

capsid protein lead to mortality of 60 % compared to 100 % compared to wild type virus in 

experimental infection of Senegalese sole (Souto et al., 2015). In vitro, the viral mutations 

reached similar viral titres albeit with slower replication kinetics (Souto et al., 2015a).  

The capsid protein may also have yet to be discovered functions. The formation of the VRC and 

the expression of B2 provide a mechanism that protects the viral RNA during synthesis 

following the expression of Protein A. However, no mechanism for the protection of the RNA 1 

strand prior to translation to Protein A has been proposed. Considering the capsid protein is 

the only viral-derived protein present in the host cell prior to Protein A translation it is likely 

the capsid protein performs other roles yet to be described.  
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Figure 4-2: Schematic drawing of RNA 2 mRNA of Capsid Protein indicating location (number) , function and amino acid sequence of functional motifs 

described in the literature and reference source.
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4.1.3 Replication of Viral RNA segments 

Replication of the Nodavirus RNA involves the production of multiple RNA species in addition 

to RNA 1, 2 and 3 (Venter & Schneemann 2008). Although packaged as separate strands, 

during replication, the RNA 1 and 2 are covalently linked as head to tail monomers (Rosskopf 

et al., 2010). Additional RNA species have been described as defective interfering RNAs (DI-

RNAs) and RNA dimers (Venter & Schneemann 2008). RNA dimers consist of head to tail 

junctions of RNAs 1, 2, 3 or 2 and 3 in both positive and negative strand RNA. DI-RNAs consist 

of genomic RNAs with internal deletions or sequence rearrangements. A 634 nt DI-RNA of FHV 

(DI 634) accumulates to higher levels than viral genomic RNAs (Dasgupta et al., 2003). No 

function has been demonstrated for the DI-RNA. An additional negative sense intermediary 

formed in the early replication cycle accounts for approximately 1 % of the RNAs replicated 

(Venter & Schneemann 2008). The production of the negative sense intermediary is 

independent of an external RNA primer and in the case of WhNV involves the recognition of 

the last 191nt on the 3’ of RNA 1 positive sense or last 201nt on the negative sense RNA 1 

(Wang et al., 2013). A D.labrax NNV (termed DIEV in the publication) intermediate, minus 

strand RNA, was detected in cell culture at 96 hours post-inoculation (hpi). Other researchers 

report the detection of minus strand RNA 1 of GGNNV in cell culture 12 hpi (Adachi et al., 

2007). 

How the RNA 1 strand locates and becomes stabilised in the cell prior to packaging in the 

capsid protein is not established beyond occurring within the VRC. The B2 protein has been 

shown to be in close association with the RNA 1 and plays a role in the protection of RNA 1 

from the RNA interference (RNAi) machinery. B2 is produced well in excess of RNA 1 and could 

perform additional roles in the replication of the Nodaviruses (Petrillo et al., 2013). 

Within the virion, RNA 1 and 2 of FHV form a single RNA that has been observed in gel 

electrophoresis. A covalent link is proposed to occur through a small section with nucleotide 

homology between the 3’ end of RNA 1 and 5’ end of RNA 2. Deletion of 5 nt from the 3’ end 

of RNA 1 prevents RNA synthesis in the case of FHV (Ball 1995). A single nt substitution of G at 

2960 to T in FHV leading to an amino acid change from R to L in the RNA 3 promoter region 

lead to an absence of B2 and significant downregulation in the translation of the FHV coat 

protein α (Petrillo et al., 2013). The recruitment of RNA 1 by Protein A at the VRC in WhNV was 

demonstrated to rely on the presence of a stem loop structure with nt 50 to 118 of RNA 1 

being critical (Qui et al., 2014a). The binding ability was increased with increased Protein A 

concentration with the minimal ratio of Protein A: RNA 1 being 10: 1 (Qui et al., 2014a). The 



93 

 

recruitment of RNA 2 by Protein A in the VRC was also dependant on the presence of a stem 

loop structure that is located in nt 123 to 164 of RNA 2 (Qui et al., 2014a).  

4.1.3.1 RNA 1 

Betanodavirus RNAs are of similar function and structure to that of the Alphanodaviruses. RNA 

1 is the mRNA for the RdRP (Protein A). The sub-genomic RNA 3 is also present on the 3’ end of 

the RNA 1 and is the mRNA for the B1 and B2 proteins. Both the RNA 1 and 2 molecules are 

required for infectivity and the viral strands are self-replicating in vitro in the absence of 

complete virions. The presence of RNA 1 and RNA 2 was detected in vitro at 24 hours post-

infection (hpi) and RNA 3 at 96 hours pi (Delsert et al., 1997). Delsert et al. (1997) further 

noted that the RdRp was associated with the mature capsid. The RNA 1 nt sequence of 

Betanodaviruses displays ~80 % homology across the genus. Within each species/genotype 

approximately 90 % nt homology exists although it should be noted that a large proportion of 

the strains in the NCBI database have not been assigned to genotype level. Within the first 

~40nt of RNA 1 of the Betanodaviruses a TPNNV specific insert exists at nt 27 to 34 

(UAACUGAA). The insert is positioned in the UTR of RNA 1. No reference to the insert has been 

located in the published literature. As TPNNV has not been reported since 2007, it could be 

inferred that TPNNV displays low virulence and adaptability compared to the RGNNV, SJNNV 

and BFNNV. 

4.1.3.2 RNA 2 

The RNA 2 strand consists of ~ 1435 nt and contains one open reading frame (nt 27 to 1043) 

flanked by a 5’ 26 nt non–coding/untranslated region (NCR/UTR) and a 3’ 392nt UTR (Huang et 

al., 2007). Secondary structures within the RNA 2 C-terminal region (UTR), also referred to as 

“cis-acting elements”, are required for RNA 2 replication. The secondary structures in UTRs are 

required by the RdRP of many RNA viruses to allow the recognition and processing of RNA in 

viral replication (Taufer et al., 2008). Conserved secondary structures were predicted by 

computer modelling to be present in the 3’ terminus of RNA 2 in the nodaviruses including 

FHV, NoV, SJNNV and GGNNV (Taufer et al., 2008). The 50 nt of the 3’ terminal RNA 2 of FHV 

were sufficient to direct the replication of complementary RNA (Albarino et al., 2003). 

Similarly, in NoV, 50 nt (1287 to 1336) at the 3’ end of the RNA 2 is sufficient to direct the 

RdRP to replicate a complementary RNA (Rosskopf et al., 2010). RNA 2 also forms head-to-tail 

dimers during RNA replication (Qia et al., 2011). The dimers are approximately the same size 

as the RNA 1 and can be difficult to distinguish on gel electrophoresis (Qia et al., 2011). The 
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RNA dimers of NoV form between the 5’ terminal 17 nt and the 3’ terminal 54 nt of RNA 2 

(Rosskopf et al., 2010). 

4.1.3.3 RNA 3 

The replication of RNA 3 has been described for the Alphanodaviruses. The replication of RNA 

3 does not involve an intermediary negative sense sequence. In the Alphanodaviruses Flock 

House Virus (FHV), Pariacoto Virus (PaV), Nodamura Virus (NoV) and Wuhan Nodavirus 

(WhNV), RNA 1 and sub genomic RNA3 (sgRNA3) form homodimers during replication (Qia et 

al., 2011). It is proposed that RNA 3 binds to viral RNA to prevent the formation of 

incompatible dsRNA that may affect the formation of the capsid (Schneemann 2006). The 

homodimers consist of negative strand RNA 1 and positive strand sgRNA3 which results in the 

initiation of sgRNA3 transcription. The promoter for transcription of sgRNA3 is located on the 

negative strand of RNA 1. In the case of WhNV, the promoter is located within nt 2758 and 

2769 on RNA 1. The production of sgRNA3 also requires the presence of secondary structure 

that includes the transcription start site of B1 (Qia et al., 2011).  

Transcription of RNA 2 suppresses the transcription of sgRNA3 (Qia et al., 2011). The 

suppression of sgRNA3 by RNA 2 is proposed to occur through RNA 2 having 3 regions of 

nucleotide complementarity to the negative strand of RNA 1, which both restrict the formation 

of the secondary structure of RNA 1 and also bind directly to the sgRNA3 promoter region (Qia 

et al., 2011, Wang 2010). By annealing to the sgRNA3 promoter site on the negative to strand 

RNA 1, RNA 2 impairs the recognition of the sgRNA3 promoter by the viral RdRp (Wang et al., 

2013). The mechanisms of replication of RNA 3 in the Betanodaviruses have not been 

described.  

4.1.4 Formation of viral particles 

Nodaviruses do not form empty capsids but package RNA into the capsid being either viral or 

seemingly random in origin with the final product having approximately the same 

sedimentation rate as that of the nodavirus virion (Gopal et al., 2014). The capsid protein 

packages one molecule of RNA 1 and RNA 2 into progeny particles. The RNA 3 is not packaged 

into virions (Gopal et al., 2014). RNA packaging into virions occurs approximately 30 minutes 

after synthesis of the capsid protein. Optimal capsid formation in the Betanodaviruses occurs 

at pH 8.0 that correlates well with the normal pH of ocean water (pH 8.4) (Lin et al., 2001). The 

capsid consists of 180 copies of the capsid protein α (Gopal et al., 2014).  

The Betanodavirus capsid protein is produced as a single protein. Functional motifs have been 

identified on the capsid at aa 23 to 25, 29 to 31, 83 to 216, 127 to 140, 187 to 201 and C-
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terminal aa 4 to 11 (Lu & Lin 2003). At the N-terminal the RRR motifs at aa 29 to 31 and less so 

aa 23 to 25 and were critical for viral particle formation in vitro (Lu & Lin 2003). Wang (2010) 

investigated the role of 35 residues at the N-terminus of the DGNNV. R30 and R31 are 

important for particle formation and particle stability (Wang 2010). Effects of R29 were 

negligible (Wang 2010). 

The middle region of the capsid protein aa 83 to 216 is proposed as the site of folding to form 

the T=3 capsid. Within this region a conserved aa 140 to 147, AL/FQATRGA, is encoded by less 

frequently present codons and may serve to slow the ribosomal traffic rate to avoid 

interference with the folding of the capsid protein (He & Teng 2015). Folding of the single 

protein to form a functional capsid involves disulphide bonding at highly conserved residues 

C187 and C201 (Krondiris & Sideris 2002). Amino acid analysis of the coat protein of the 

Betanodaviruses indicates the DxxDxD motif, which is important for capsid formation, is 

positioned at aa 127 to 140. Within aa 127 to 140 of DGNNV aa 130 to 135 of the capsid 

protein was identified as the calcium binding ligand. Point mutations of aa D130, D133 and 

D135 resulted in a 50, 100 and 50 % reduction in viral particles respectively (Wu et al., 2008). 

Motifs C115 and C201 are essential for capsid formation of DGNNV and for thermal stability of 

viral particles (Wang 2010).  

In the DGNNV capsid protein, N-and C-terminal motifs are involved in the viral particle 

formation (Lu and Lin 2003). Deletion of the C-terminal aa 4 to 11 (328GTVCTRVD335) reduced 

viral particle formation to just 4.5 % of wild type (Lu and Lin 2003). Although viral replication 

and packaging occurs in membranes associated with the mitochondria, the capsid protein lacks 

MLS (Mezeth et al., 2007). Signals for mitochondrial targeting maybe present in the UTR of 

RNA 2 (Mezeth et al., 2007). The covalent linkage proposed by Rosskpf et al. (2010) between 

the RNA 1 and RNA 2 would facilitate localisation of the capsid protein to both the 

mitochondria and replicated RNA 1 and 2. How the ssRNA viruses in general regulate viral 

production with protein synthesis and capsid formation and packaging has not been 

determined. A form of viral sensing of cellular co-factors in the sub-cellular environment is 

proposed to regulate the actions within the VRC (Nagy 2015).  

4.1.5 Exit of viral particles 

The exit of viral particles from the host cell by Betanodaviruses has not been extensively 

studied. The fore-mentioned induction of apoptosis by either the capsid protein or B2 would 

facilitate the release of progeny virus from infected cells. The action of B2 to upregulate 

expression of the pro-apoptotic gene Bax which induced loss of mitochondrial membrane 

potential and mediated necrotic cell death of 44 % of cells at 72 hpi, is a mechanism that 



96 

 

would facilitate exit of viral particles (Chen et al., 2009). Although cell-to-cell transport is 

reported for many neurotropic viruses, no such movement of viral particles between cells has 

been demonstrated in the Betanodaviruses. 

4.1.6 Undescribed mechanisms 

Acknowledging the limitation of a small genome, the Betanodaviruses complete infection and 

replication in a very efficient manner. Although the untranslated region of RNA-2 represents a 

relatively large proportion of the genome (~10% of whole genome and ~30% of RNA 2 

segment), limited attention has been directed to the role of the UTR in viral replication. 

Recently Souto et al. (2018) demonstrated the importance of the 50 terminal nucleotides of 

the 3’ end of the genome in forming the stem loop structure that is essential for replication. 

The nt region 1398-1421 was broadly identified as more critical in forming the stem loop 

structure and mutations at 1408 and 1408-1412 but not 1412 alone. Through in vitro studies, 

the functional role of 1408-14212 was demonstrated to affect the interaction with the 3’ 

NCR/UTR of RNA 2 (Souto et al., 2018). Moreover, the significant attenuation of virulence in 

Senegalese sole through mutation of 1408-1412 indicated the region also plays a role in 

interaction for RNA 2 with host cellular proteins (Souto et al., 2018). 

The importance of viral encoded microRNA (V-miRNA) is recognised as a potent mechanism 

used by viruses to achieve viral replication, persistence, immune evasion and cellular 

transformation (Cullen 2009; Grundhoff & Sullivan 2011; Tycowski et al., 2015). V-miRNAs 

represent a genomically efficient way for viruses to regulate host immune responses. A V-

miRNA could target multiple genes in the same host or a highly conserved gene in multiple 

hosts. Additionally, V-miRNAs are known to target the expression of viral replication process 

and are involved in the Singapore grouper Iridovirus which encodes at least 16 V-miRNAs, the 

functions of which are being studied (Guo et al., 2013). In addition, nine v-miRNAs have been 

detected during replication of the fish-infecting Megalocytivirus (Zhang et al., 2014). 

Nodavirus V-miRNAs have not been reported. However, the replication of short incomplete 

copies of Differential interfering-RNA (DI-RNA) by the RdRp has been detected in the early 

phases of nodavirus replication in vitro. During RNA replication, FHV produces, ~ 400bp ds RNA 

(DI-RNA) from the 5’ terminus of RNA 1 which serves as a Dicer-2 substrate (Aliyari et al., 

2008). Pyrosequencing of the dsRNA formed 4 days post-FHV infection detected 4371 small 

RNAs the majority of which have strong homology and presumably target a region comprising 

the first 400nt of RNA 1 (Aliyari 2008). No functional roles for the DI-RNAs have been 

demonstrated. The mass replication of the DI-RNAs could be an intermediate step in the 

production of V-miRNA which could serve to downregulate specific host genes such as those 
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which regulate immune function or to regulate nodavirus replication. The lower expression of 

Protein A from RNA 1 compared to the capsid protein of RNA 2 despite both strands being 

transcribed in equal amounts supports a proposal that portions of RNA 1 may have regulatory 

roles conferred by the RNA rather than translated protein. 

4.1.7 The importance of the functional motifs in the context of this study 

There are few studies investigating the functional motifs of the Betanodavirus genome that 

discuss multiple motifs across multiple Betanodavirus strains. Rather many studies investigate 

a small portion of the genome in a single strain of NNV. Although this review has identified a 

large number of motifs that are important for replication, it must be noted that the images 

prepared are a collective representation from many articles. The aim of this chapter is to 

confirm the presence or absence of the many functional motifs identified in the literature in 

the three NQAus NNV strains of RGNNV obtained within this study. Confirmation of the 

functional motifs serves a three-fold purpose namely: 

1. It confirms the presence of the motifs noted from literature are present in strains 

beyond those used in the published reports. 

2. It ensures the viral extract being used in this project to test therapies is theoretically 

competent and virulent. 

3. It ensures the therapies developed in this project are targeted and tested against a 

competent and virulent strain of RGNNV. 

4.2 Materials and Methods 

4.2.1 Genome annotation and illustration 

The aforementioned critical motifs identified by previous researchers were annotated into the 

complete RNA 1 and RNA 2 segments obtained from sequencing using the Geneious 

bioinformatic program. Although the Geneious program is a very useful tool for bioinformatics, 

the illustration of the overall genome annotation is not easily reproduced in printable, 

readable single page format from Geneious. Hence, additional schematic maps of RNA 1 and 

RNA 2 were prepared (Figures 4-1 and 4-2). 

4.2.2 Identification of critical motifs in the E.coioides RGNNV viral extract strain. 

The critical motifs identified by previous workers were annotated into the RGNNV species type 

strain using the Geneious bioinformatic program (Biomatters, available from 

http://www.geneious.com). The sequences of the viral segments obtained from the three 

NQAus NNV strains described in Chapter 6 were aligned against the RGNNV reference genome 

described in Chapter 3 using a Geneious global alignment with default parameters. The region 
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of the RNA 2 that translates into the species specificity region identified by Ito et al.(2008) 

were compared for all of the Australian strains described in Chapter 3. The conservation or 

lack thereof motifs in the strains collected in this study were recorded.  

4.3 Results 

4.3.1 Genome annotation and illustration 

A summary of the functional motifs from the translated amino acid sequence from the 

Betanodavirus are illustrated in Figures 4.1 and 4.2. 

4.3.1.1 RNA 1, mRNA of Protein A 

All of the motifs that are translated from the mRNA of RNA 1 and identified in the literature as 

critical for viral replication in the RGNNV species were conserved in each of the three strains 

investigated in this study. (Table 4.1). The motifs that have been identified as essential for viral 

replication complex formation were 100% conserved in the species sequenced in this study (aa 

6 through to 249 in Table 4.1). A common aa motif of SGxxxxV was retained between the 

RGNNV, and all of the Betanodaviruses and some Alphanodaviruses in the Mitochondrial 

location signal motif (aa 6-26 in Table 4.1). The RdRP motifs, where identifiable, were 

conserved (aa 594-740 in Table 4.1). Two regions in the Protein A sequence (aa750-761 and 

780-791) were also 100% conserved across the three strains sequenced in this study. No 

reference to the potential function of these motifs has been identified (Refer to Table 4.1). All 

motifs proposed as critical in the B1 and B2 protein were also conserved (Table 4.1). The TVIE 

motif proposed as a protein kinase II phosphorylation site (aa 66 to 69) identified by Su et al. 

(2009) was not identified in any of the strains or the RGNNV reference sequence. 

4.3.1.2 RNA 2, mRNA of Capsid Protein 

All of the motifs that are translated from the mRNA of RNA 2 and identified in the literature as 

critical for viral replication in the RGNNV species were conserved in each of the three strains 

investigated in this study (Table 4.1). Most critically to this project, the minimal essential 

epitopes required for antibody production in grouper namely, aa 181-212 VNVSVLCR were 

identified (Chen et al., 2015). The region of the RNA 2 identified by Ito (2008) which relates to 

species specificity of the RGNNV strains was conserved between the RGNNV reference strain 

and all 3 NQAus NNV strains collected in this study (Figure 4.3). Within the Ito et al. (2008) 

region, a difference of 3aa across all of the Australian collected sequences was identified 

(Figure 4.3). Immediately adjacent to the region of Ito et al. (2008), an additional motif GAVF 
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was also conserved within the strains of this study and the RGNNV reference genome (Figure 

4.3). A variant motif of GAIF was present in some of the strains (Figure 4.3). 
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Table 4-1: Conserved motifs critical for replication of the RGNNV genome identified from translated mRNA of RNA 1 obtained from this study. Including strain, function, amino acid sequence and 
location on the protein. 

Function Stem loop structure Mitochondrial Location Signal 

aa motif 6 – 26

Sequence in literature DVDYY MRRFEFALARMSGAAFCVYTGYRLLTSKWLADRVEDYRQRVI 

Ec2NQAus E.coioides  this study 160-164 DVDYY MRRFEFALARMSGAAFCVYTGYRLLTSKWLADRVEDYRQRVI 

El3NQAus E.lanceolatus  this study 160-164 DVDYY MRRFEFALARMSGAAFCVYTGYRLLTSKWLADRVEDYRQRVI 

MI181161 L.calcarifer this study 160-164 DVDYY MRRFEFALARMSGAAFCVYTGYRLLTSKWLADRVEDYRQRVI 

Function
Transmembrane Domain of 

Viral Replication Complex
A:  Acid motif B:  SG.T motif

C:  GDD motif: NTP 

binding
D:  Basic motif Motif 7 & 8

aa motif 229 – 249 594-599 655-660 695-697 740

Sequence in literature ITGVTAICSFLYTKLGIAPFG DxxxxD SGxxxT GDD Lysine or Arginine

Ec2NQAus E.coioides  this study ITGVTAICSFLYTKLGIAPFG DYSKFD  SGSALT GDD L 

El3NQAus E.lanceolatus  this study ITGVTAICSFLYTKLGIAPFG DYSKFD  SGSALT GDD L 

MI181161 L.calcarifer this study ITGVTAICSFLYTKLGIAPFG DYSKFD  SGSALT GDD L 

Function
aa motif

Sequence in literature

Ec2NQAus E.coioides  this study

El3NQAus E.lanceolatus  this study

MI181161 L.calcarifer this study

Function N-glycosylation site Nuclear Location signal

Hypothetical 

Nuclear Location 

signal

Protein kinase C 

phosphorylation 

site

Protein kinase II 

phosphorylation site
Nuclear Location signal

aa motif 869-899 912-918 984-988 929-931 66 - 69 946-950

Sequence in literature NKTS PRRARAA RPRRQRR SRR TVIE KRPRR

Ec2NQAus E.coioides  this study NKTS PRRARAA RQRRR KRSRR not found KRPRR

El3NQAus E.lanceolatus  this study NKTS PRRARAA RQRRR RRSRR not found KRPRR

MI181161 L.calcarifer this study NKTS PRRARAA RQRRR RRSRR not found KRPRR

Function Conserved in all the Betanodaviruses Conserved with NoV
40bp (short)  dsRNA binding 

motifs

Mitochondrial specific 

sequence

aa motif 5-20 16 - 20 26 41 - 50

Sequence in literature QQAIDQHLVELEQLF LEQL R26 RTFVISAHAA 

Ec2NQAus E.coioides  this study QQAIDQHLVELEQLF LEQL R27 RTFVISAHAA 

El3NQAus E.lanceolatus  this study QQAIDQHLVELEQLF LEQL R27 RTFVISAHAA 

MI181161 L.calcarifer this study QQAIDQHLVELEQLF LEQL R27 RTFVISAHAA 

Function N’myristolyation site Mitochondrial specific sequence
aa motif 30 -55 38-47 R60 V44 I45  R52

Sequence in literature GGVTAI TFVISHAAA R60 V44 I45  R52

Ec2NQAus E.coioides  this study 26-31 GGVTAI TFVISHAAA R60 V44 I45  R52

El3NQAus E.lanceolatus  this study 26-31 GGVTAI TFVISHAAA R60 V44 I45  R52

MI181161 L.calcarifer this study 26-31 GGVTAI TFVISHAAA R60 V44 I45  R52

Function Mitochondrial targetting 1000bp (long) ds RNA binding motifs and anti- RNAi

aa motif 53 53,60

Sequence in literature R53 R53 R60

Ec2NQAus E.coioides  this study R53 R53 R60

El3NQAus E.lanceolatus  this study R53 R53 R60

MI181161 L.calcarifer this study R53 R53 R60

Sequence Id. 

Protein A

B2 Protein (72aa) 1 frame shift from Protein A mRNA continued

Mitochondrial targetting
Sequence Id. 

69

A69

A69

A69

A69

59

R59

R59

R59

R59

B2 Protein (72aa) 1 frame shift from Protein A mRNA continued

Description not 

sufficient for alignment

Conserved with NoV but not BFNNV Conserved with NoV, FHV but not AHNV

780-791

YLvTDclTPfI

YLVTDSKTPFIG

YLVTDSKTPFIG

YLVTDSKTPFIG

750-761

QsPLRTllKLHtT

QSPLRTLLKLHTT

QSPLRTLLKLHTT

Important for Viral Replication complex formation. Essential for replication, point mutations lead to 

reduced virulence.

184-229

DDSVHYRVAGGKDVRHRIWNYNQNTMYVCSRPRGFWANLMQILRD

DDSVHYRVAGGKDVRHRIWNYNQNTMYVCSRPRGFWANLMQILRD

DDSVHYRVAGGKDVRHRIWNYNQNTMYVCSRPRGFWANLMQILRD

DDSVHYRVAGGKDVRHRIWNYNQNTMYVCSRPRGFWANLMQILRD

Sequence Id. 

Sequence Id. 

B1 Protein (111aa) same reading frame as Protein A

B2 Protein (72aa) 1 frame shift from Protein A mRNA

Protein A

Unknown functionUnknown function

QSPLRTLLKLHTT

E14, D24

E14, D24

E14, D24

Long dsRNA binding

E14, D24

Sequence Id. 

Sequence Id. 

Sequence Id. 
14,24

RdRP conserved motifs

Protein A



101 

 

 

Function Binds with viral RNA

aa motif 23-25 23-25 29-31

Sequence in literature RRR RRR RRR

Ec2NQAus E.coioides  this study RRR RRR RRR

El3NQAus E.lanceolatus  this study RRR RRR RRR

MI017207 L.calcarifer this study RRR RRR RRR

Function Nucleolar localization signal
Required for capsid formation and 

thermal stability of capsid
50% reduction in viral particle

aa motif 23-31 115 130 & 135

Sequence in literature RRRANNRRR C D 

Ec2NQAus E.coioides  this study RRRANNRRR C D

El3NQAus E.lanceolatus  this study RRRANNRRR C D

MI017207 L.calcarifer this study RRRANNRRR C D

Function 100% reduction in viral particles
Proposed to slow ribosomal 

processing

Required for capsid 

formation and thermal 

stability of capsid

Minimum essential epitopes for 

antibody target 

Region within Ito  et al. 2008; 

SGIV homology; GTPAse 

homology

aa motif 133 140-147 201 181-212 223-245

Sequence in literature D AL/FQATRGA C VNVSVLCR LSTND

Ec2NQAus E.coioides  this study D ALQATRGA C VNVSVLCR LSTND

El3NQAus E.lanceolatus  this study D ALQATRGA C VNVSVLCR LSTND

MI017207 L.calcarifer this study G ALQATRGA C VNVSVLCR LSTND

Function
Mutation lead to reduction in 

mortality by 40%
Serotype/Species determinant

C terminal region. Viral particle 

formation

aa motif S247>A 252-254 328-335

Sequence in literature S PDG GTVCTRVD

Ec2NQAus E.coioides  this study S PDG GTVCTRVD

El3NQAus E.lanceolatus  this study S PDG GTVCTRVD

MI017207 L.calcarifer this study S PDG GTVCTRVD

GAVF

GAVF

GAVF

Required for capsid formation

127-140

DxxDxD  

DPTDND

DPTDND

DPTGND

Critical in the formation of viral like particles

Sequence Id. 

Sequence Id. 

Sequence Id. 

Nuclear location signal

2 to 10

RKGEKKLAK

RKGEKKLAK

RKGEKKLAK

RKGEKKLAK

Variance leads to lack of Pathogenecity in D.labrax

254-257

GAVF

Sequence Id. 

Table 4-2: Conserved motifs critical for replication of the RGNNV genome identified from translated mRNA of RNA 2 obtained in this study including strain, function and 
amino acid motif and location. 
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Figure 4-3: Nucleotide sequence and translated amino acid sequences of Australian strains of NNV aligned with Ito species specific region including strain identification, 

nucleotide and translated protein sequence and arrows indicating points of variance. Prepared using Geneious Prime. Biomatters http://www.geneious.com.
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4.4 Discussion 

Acknowledging previous works and targeting therapies that are directed at critical motifs may 

improve the efficacy in preventing VER outbreaks. This study reviewed the collection of 

literature on the functional motifs of the Betanodavirus genome and confirmed the majority of 

the motifs that have been identified as critical have been conserved in the NQAus RGNNV, 

strains collected in this project. No similar review and confirmation of the motifs across an 

entire RGNNV Betanodavirus genome has been published. The conservation of motifs 

identified from the translated mRNA-1 indicate all of the motifs considered essential for viral 

replication have been retained by the strains in this study. Specifically, the mitochondrial 

location signals and motifs that are essential for the formation of the viral replication complex 

were identified. The RdRP motifs were also conserved. Individual motifs that locate the B1 and 

B2 proteins to the VRC and nucleus and also ensure binding of dsRNA to prevent the 

degradation of the viral genome by host factors were also identified. Interestingly, four 

additional motifs were identified to be conserved between the species in this study and the 

RGNNV reference genome. Two motifs namely 750-761aa QSPLRTLLKLHTT and 780-791aa 

YLVTDSKTPFIG were identified by Johnson et al. (2001) to be conserved in both 

Alphanodaviruses and Betanodaviruses (specifically: Flock house virus, Nodamura virus, 

SJNNV, Black beetle virus and Pariacoto virus) but had not previously been identified in the 

RGNNV. In the same study the authors also identified aa 969-971 RGG motif conserved across 

the same species but the RGG motif was not identified in this study. No function for any of the 

three motifs were proposed. The other two motifs noted as highly conserved in this study are 

aa 5-20 QQAIDQHLVELEQLF of the B2 protein and within this motif a LEQL motif. The LEQL is 

conserved within the Betanodaviruses and the Alphavirus, Nodamura Virus, which significantly 

has a wide host range including insects, pigs, suckling mice and hamsters (Gant et al., 2014). 

No function of this motif has been reported in the literature relating to Nodavirus replication. 

However, an LEQL motif is an important epitope recognised by the endoplasmic reticulum 

aminopeptidase (ERAP 1) to target Major Histocompatibility complex class 1 presented 

epitopes for degradation. ERAP 1 is stimulated by interferon (Hearn et al., 2009). The LEQL 

motif is also an important epitope of TRIM 21 which is a member of the Tripartite motif 

superfamily (Al-Majdoub et al., 2013). TRIM 21, in particular, is expressed upon interferon 

stimulation and is also an important component of innate immunity and neurological disorders 

(Al-Majdoub et al., 2013). Kim et al. (2017) reported the upregulation of TRIM 21, 29, 39, 25, 

14, 16 and 47 following infection of Sevenband grouper to NNV. In vitro upregulation of TRIM 
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21 in human microglial cells attenuated the replication of Japanese encephalitis (JE), via 

regulation of the type 1 interferon response (Manocha et al., 2014). JE is similar to NNV in that 

it affects the brain of host species. Damage due to inflammation is associated with mortality in 

many neurotropic viruses. Additionally, TRIM 21 is activated by antibody-coated viral particles, 

binding to the Fc receptor and targets virions for degradation. It is possible the LEQL motif of 

the B2 performs roles not currently identified to prevent both the innate and adaptive immune 

response to RGNNV infection. The targeting of TRIMs by Betanodavirus B2 would be a very 

efficient mechanism to successfully mitigate both a humoral (antibody) and innate immune 

response. However, no work has been published relating to TRIM and B2 protein. Petrillo et al. 

(2013) noted, B2 is produced well in excess of RNA 1 and could perform additional roles in the 

replication of the Nodaviruses. 

The majority of the motifs proposed to be critical for viral replication that are associated with 

the translated RNA 2 were also identified in all three strains of RGNNV studied. Importantly for 

the vaccine development, the motifs of the capsid protein that were identified to be critical for 

neutralising antibody production in grouper were present in all three strains obtained in this 

study (Chen et al., 2015, discussed in Chapter 1.8). The region identified by Ito et al. (2008) to 

confer virulence in host species was also conserved between all strains collected within this 

study. Notably comparison with all of the Australian collected strains indicated a variance of 3 

amino acids within the Ito et al. (2008) region. Specifically, at aa 233-237 an LSTND motif is 

present in all of the strains identified as “tropical (1a) strains” in Chapter 3. Whereas LATSD 

was conserved in the sequences assigned to the 1c cluster (Section 3.1). No mechanism for 

how the sequences may impact on host or environmental selection have been identified. Also, 

immediately adjacent to the PDG motif which confers the Betanodavirus serotype assignment 

an additional motif variation was noted between the Australian strains. Within Australian 

RGNNV strains, the four strains that slightly differentiate from the other Australian strains 

based on nucleotide comparison of RNA 2 (Chapter 3) display a GAIF motif. Interestingly, the 

tropically freshwater cultured sleepy cod, O.lineolata sourced strain displayed a hybrid pattern 

of motifs. The O.lineolata strain retained the LSTND motifs of the tropical 1a strains yet shared 

the GAIF motif of the “temperate Ic strains”, proposed by this worker to possibly reflect a 

freshwater habitat rather than temperate v tropical division (Chapter 3). Investigating how 

these motifs affect virulence to different species, or the same species within different habitats 

is beyond this study. However, confirmation that the strains in this study have the retained of 

the factors that have been identified to affect viral replication or host specificity provides 

confidence to advance further work using the strains collected. Confirmation of the protein 
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motifs is rarely considered in experimental challenge experiments. Although analysis 

completed in Chapter 3 indicated the RGNNV genome segments were highly conserved, 

between 13-21 nucleotide differences were noted between the Australian strains collected in 

this study and also the RGNNV reference genome (Table 3.2). Considering a single nucleotide 

variation could also translate to change in a critical protein motif, it was important to confirm 

the conservation of the motifs in the strains being used in this project. Variation on a single 

motif could lead to reduced virulence, which if were transferred into the project would reduce 

the effectiveness in translation of the outcomes of this study to industry. Lin et al. (2007) 

reported a relative percent survival of 80-90% in 35 dph E.septemfasciatus larvae when 

challenged by bath exposure to VVN at following 17 days of feeding with Artemia that been 

orally loaded with E.coli expressing a recombinant NNV capsid protein (Lin et al., 2007). 

However, the control fish displayed between 44-69% survival which is unusually high 

compared to similar reports of experimental challenge with this species. High survivals in 

control groups following RGNNV exposure have not been reported in any other research 

publication involving larval grouper. Despite the impressive survival and obvious economic 

benefit of this approach as a vaccination strategy, these results have not been translated to a 

commercial product. Although it cannot be confirmed, it is possible the strain of RGNNV used 

in the study was less virulent, possibly through lacking a motif that confers increased virulence. 

From the analysis completed in this chapter, considering all of the strains hosted the critical 

motifs, and the volume of infectious material available, the RGNNV extract prepared from 

E.coioides (Ec2NQAus) is considered an acceptable source of NNV for the remaining study in 

this project (and is henceforth referred to as the RGNNV viral extract).  
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4.5 Conclusion 

The aims of this chapter were met in the following manner: 

 

 
 
 
Data from this Chapter is planned for publication entitled “Review of the functional motifs of 
the Betanodavirus genome”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The motifs demonstrated to critically impact on viral replication or host specificity in 

Betanodaviruses have been identified. 

 The motifs have been confirmed to be present in the strains used within this 

project. 

 The production of a recombinant vaccine based on the RNA 2 sequence of the 

E.coioides RGNNV strain will contain the antigenic epitopes that were identified as 

critical to the production of neutralising antibodies by grouper recognised by Chen 

et.al., (2015) 

 dsRNA can be specifically designed to target functional motifs that are confirmed to 

be present in the strain used in this project. 
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CHAPTER 5. DEVELOPMENT OF QPCR STANDARD CONTROL 

MATERIAL TO ALLOW INITIATION OF VALIDATION OF RT-

QPCR ASSAYS TO DETECT AUSTRALIAN STRAINS OF 

REDSPOTTED GROUPER NERVOUS NECROSIS VIRUS 

(RGNNV).  

Background  

  Hick & Whittington, (2010) reported the development of RT-qPCR, qR2T, that 

detects RNA 2 of RGNNV in two Australian sourced NNV strains. 

 The qR2T assay is the assay recommended in the Australian and New Zealand 

Standard Diagnostic Protocols for the detection of NNV. 

 The assay has not been validated as fit for purpose on grouper tissues. 

 There are various novel biotechnology applications that aim to produce NNV 

vaccine via delivery of the viral capsid protein. 

 Some biotech applications aim to produce an antigen that can be delivered via 

oral dispersal of the antigen within larval fish feeds. 

 The widespread dispersal of RNA 2 constructs into the fingerling production 

systems will confound the current method of verification of freedom from RGNNV 

with the RT-qPCR targeting the RNA 2 segment. 

 Due to discovery of chimeric reassortment between RNA 1 and RNA 2 of SJNNV 

and RGNNV some researchers advocate the application of qPCRs that target both 

viral segments to study VER outbreaks. 

  Hick & Whittington (2010) reported an additional RT-qPCR that detects RNA 1 of 

RGNNV but did not extensively validate the assay. 

 

Aims of this Chapter  

 Develop RT-qPCR control material to assist in the validation of the currently 

recommended Australian and New Zealand Standard Diagnostic Protocol RT-qPCR 

that targets RNA 2 for the detection of the RGNNV from grouper brain and eye 

tissue. 

 Develop RT-qPCR control material to assist in the validation of an additional assay 

that targets the RNA 1 for the detection of the RGNNV genome from grouper 

brain and eye tissue. 
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5.1 Introduction 

The absence of a sound understanding of the factors that trigger VER disease outbreaks in 

grouper grow-out aquaculture, currently limits management options to the stocking of ponds 

with fingerlings that are free of NNV. The development of reverse transcriptase quantitative 

polymerase chain reaction (RT-qPCR) assays has significantly improved the opportunity for 

industry to obtain NNV free fish (RT-qPCR negative) and rapidly diagnose a VER disease 

outbreak (RT-qPCR high load positive). Detection by RT-qPCR is the only method currently 

recommended for all applications including targeted surveillance of larvae, juveniles and adult 

fish and presumptive and confirmatory diagnosis of VER disease (Anon. OIE 2018). The OIE 

Aquatic Animal Manual describes two RT-qPCR assays to detect NNV that have undergone 

significant validation namely the qR2T ( Hick & Whittington 2010) and RNA 2 assay (Anon. OIE 

2018). The area targeted by each assay overlap on the redspotted grouper nervous necrosis 

virus (RGNNV) RNA 2 segment. The qR2T assay, is incorporated into the Australian New 

Zealand Standard Diagnostic Procedures (ANZSDP) for the detection of NNV (Hick & 

Whittington, 2010; Moody & Crane 2012; Anon. OIE 2018). The RNA 2 assay was developed by 

the OIE Reference Laboratory for VER and has been adopted for proficiency testing across five 

European laboratories (Panzarin et al., 2010; Anon. OIE 2018;). Both assays are reported to 

detect all NNV species although qR2T is noted to optimally target RGNNV ( Hick & Whittington, 

2010 and Anon OIE 2018).  

With their emergence as high value aquaculture species, the economic impact of VER in sea 

bass aquaculture has prompted the development of two commercially available vaccines to 

protect against VER (ALPHA JECT micro® 1 Noda PHARMAQ and ICTHIOVAC® VNN HIPRA 

Laboratories). The ALPHA JECT micro® 1 Noda vaccine is a cell culture- derived- formalin-

inactivated antigen reported to induce effective immunity against the RGNNV genotype. The 

ICTHIOVAC® VNN is inactivated Betanodavirus strain 1103 (HIPRA Laboratories 

https://www.hipra.com/portal/en/hipra/animalhealth/species/fish ). To avoid stress 

associated with injectable vaccines, several biotech applications have been attempted with 

oral delivery of recombinant NNV capsid protein (Cho et al., 2017 and Gonzalez-Silvera et al., 

2019). Oral vaccination, through consumption of recombinant yeast, Saccharomyces cerevisiae 

expressing RGNNV capsid protein induced the production of neutralizing antibodies in 

Epinephelus septemifasciatus (Thunberg, 1793) (Cho et al., 2017). The inclusion of TOPO® 

transformed E. coli with RNA 2 segment of RGNNV into diet was recently reported to provide 

protection to sea bass against viral challenge with RGNNV (Gonzales-Silvera et al., 2019). 
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Although oral delivery offers advantages of practicality of delivery and reduced handling of 

fish, it may lead to inaccurate assessment of fish health status if the recombinant RNA 2 

genome segments are detected by RT-qPCR. The potential development of orally delivered 

vaccines based on expressed proteins from RNA 2 constructs necessitates an RT-qPCR 

targeting the RNA 1 segment to differentiate between NNV infected fish and those exposed to 

orally delivered recombinant capsid proteins. Further, the discovery of strains of NNV that 

consist of chimeric recombination of RGNNV and SJNNV segments highlights a need to apply 

assays that detect both RNA segments in epidemiology studies, particularly in zones where 

more than one genus of NNV is endemic (Panzarin et al., 2016).  

 RT-qPCRs that detect the RNA 1 have been described but not widely adopted in Australia ( 

Hick & Whittington, 2010 and Baud et al., 2015). Neither the qR1T or qR2T assay was validated 

for application on grouper tissues. The OIE Aquatic Animal Health Manual notes that it is 

important to revalidate an assay when it is being applied beyond the scope of the original 

intended purpose of the assay such as application to an additional host species (OIE Anon. 

2014). The recommendations of the OIE are also adopted by authorities in Australia that 

oversee quality control in testing for aquatic animal pathogens namely, the sub-committee for 

aquatic animal health (SCAAH) and the National Association of Testing Authorities (NATA). The 

validation of an assay is a step-wise process. Initial steps determine if the assay platform is the 

best fit for purpose format. For reasons of quantitation, high throughput, rapid turnaround, 

sensitivity and specificity, RT-qPCR is the assay of choice for many applications in aquatic 

disease management. An initial step in the implementation of an assay is to produce stable 

qPCR controls, of sufficient volume and stability that can be applied to monitor the 

performance of the assay over time (Fig 1. Anon OIE 2017).  

The aim of this chapter is to develop the standard positive controls for the qR1T and qR2T 

assays of Hick & Whittington, (2010). These controls are required to support further 

application of the assays within the activities of this project to assess the effectiveness of 

prophylactic measures against RGNNV; to gain a better understanding of the pathogenesis of 

VER in grouper and to validate the assays as suitable for application beyond the scope which 

was demonstrated by Hick & Whittington (2010). 

5.2 Materials and Methods 

5.2.1 Preparation of plasmid control for quantitative real-time polymerase chain 

reaction 
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Synthetic control for quantitative real-time polymerase chain reaction was prepared from PCR 

amplicons obtained from NNV infected fish. Positive PCR amplicons were produced using the 

primers R1F1/R1R5 and R2F1/R2R1 described by Hick & Whittington (2010) (Table 5.1). The 

amplicons were visualised and cut from agarose gels as described in Chapter 2.1.4-2.1.7. The 

PCR product was cleaned using a High Pure PCR Product Purification Kit (11732668001 Roche, 

NSW) as per manufacturer’s instructions. Purified PCR product was cloned into One Shot TOPO 

chemically competent E. coli using the pCR4-TOPO TA vector (Cat. K4575-01 Life Technologies, 

VIC) as per manufacturer's instructions. Transformed E. coli were grown overnight at 37 °C on 

lysogeny broth (LB) (Bertani, 1951) agar supplemented with 50 g mL-1 ampicillin (Cat. A9393-

5G Sigma-Aldrich, NSW). Three white colonies were picked from the agar and grown overnight 

at 37 °C in LB supplemented with 50 g mL-1 ampicillin (Cat. A9393-5G Sigma-Aldrich, NSW) 

and shaken (Bioline incubator shaker 8500 Edwards Instruments, NSW) at 150 rpm. Plasmid 

DNA was extracted using a High Pure Plasmid Isolation kit (Cat. 11754777001 Roche, NSW) as 

per manufacturer's instruction. Plasmid extracts were submitted to Macrogen Inc. (Seoul, 

Korea) for sequencing. Sequence analysis confirmed the respective plasmids were the RNA 1 

and RNA 2 derived products. The clones and extracts became the positive plasmid controls for 

the quantitative real-time PCRs (qPCR).  

 

Table 5-1: Details of primer sequences used to produce RT-qPCR control sequences including 
assay type, primer name, primer sequence, primer target, primer position and expected size 
of positive amplicon. 

 

 

5.2.2 Standard curve preparation from plasmid controls 

A standard curve was prepared for the qPCR using the positive plasmid controls generated 

from section 5.2.1. The clones were cultured for 18 hours in 30 mL of LB supplemented with 50 

μg mL-1 ampicillin (Sigma-Aldrich) at 150 rpm (Bioline incubator shaker 8500). A 100 μL aliquot 

of culture was added to 12 x 10-fold serial dilutions while the 30 mL culture was frozen at -80 

°C to prevent further bacterial growth. Copy number was calculated by plating triplicate 20 μL 

qR1T R1F1* CACTTACGCAAGGTTACCG 1 1

R1R5* TCTGCTGCTCCTCGACATAC 1 1525

qR2T R2F1* CATATGGTACGCAARGGTGA 2 3

R2R1* CTCGAGTTAGTTTTCCGAGTCA 2 1023

amplicon 

size (bp)

Assay 

name
Primer Name Sequence (5'-3')

RNA segment 

Target
Position~

Source of All primer sequences Hick & Whittington (2010)

~ Position with reference to  NCBI MI181161/RNA-1 or MH017207/RNA-2

1515

1020
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aliquots of each dilution on LB agar plates supplemented with 50 μg mL-1 ampicillin (Sigma-

Aldrich) and incubating for 18 hours. The number of white colony forming units (CFU) were 

counted for each dilution and used to calculate the plasmid copy number in the 30 mL culture, 

assuming one CFU represents one plasmid copy.  

5.2.3 RT-qPCR analysis of standard control serial dilutions 

The 30 mL culture that was frozen during the CFU counting procedure was thawed and 

plasmid DNA extracted and eluted in 100 μL elution buffer as previously described (3.3.4). A 50 

μL aliquot of DNA extract was used to prepare 9 x 10-fold serial dilutions in DEPC-treated 

water (BIO-38030, Bioline) and stored at -20 °C for qPCR. A 2.5 μL aliquot of each serial dilution 

was used as template in the qR1T and qR2T RT-qPCRs to construct the quantified standard 

curve. The qPCR mix consisted of 2.5 μL DNA extract in Bioline SensiFAST probe No ROX mix 

(BIO-86050) prepared according to the manufacturer’s specifications, containing Forward and 

Reverse Primer (20 pmol) and Probe (5 pmol) per reaction (Table 5.2). The qPCR was 

completed on a Qiagen Rotor-Gene™ with thermal cycling consisting of 95 °C for 3 mins 

followed by 40 cycles of 95 °C for 15 s and 60°C for 25 sec. Fluorescence was acquired at the 

60°C for 25 sec step of each cycle using the green and yellow filters of the machine.  

 

Table 5-2: Primer and Probe sequences used in RT-PCR assays including assay type, primer 
name, primer sequence, RNA target, position on target and primer melt temperature. 

 

 

5.3 Results 

5.3.1 Confirmation of sequence of the RNA 1 and RNA 2 plasmid 

Plasmid sequences were confirmed to be 100% homologous to the E.coioides RGNNV strains 

discussed in Chapter 3. Although shorter sequences would have been sufficient to act as qPCR 

PCR format Primer Name Sequence (5'-3')

RNA 

segment 

Target

Position~ Tm Primer

RT-qPCR qR1T-F GCTACCGCCTGTTGACCTC 1 140 61

qR1T-R TTGTTTCTTCTCAGCGATGATGC 1 219 64

qR1T-Probe TGGCGAATCCTCAACACGTCC 1 171

RT-qPCR qR2T-F CTTCCTGCCTGATCCAACTG 2 401 62

qR2T-R GTTCTGCTTTCCCACCATTTG 2 476 61

qR2T-Probe CAACGACTGCACCACGAGTGG 2 454

Source of All primer and probe sequences Hick & Whittington (2010)

~ Position with reference to  NCBI GQ904198/RNA-1 or GQ904199/RNA-2
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controls, the longer sequences were selected to align more closely with the characteristic of 

viral sequence that would be present in host tissues during viral replication.  

 

 

 

5.3.2 Plate count of CFU of each dilution of plasmid controls 

A number of the serial dilutions of plasmid contained too many colonies to allow accurate 

counting of colonies. The plates that contained less than 100 colonies were used to calculate 

the plasmid CFUs. Plate counts indicated the stock cultures of each plasmid contained ~ 12.6 x 

109 (RNA-1) and 13.8 x 109 (RNA-2) CFU mL-1. 

5.3.3 Quantitative real-time polymerase chain reaction 

The target sequences were detected in the standard curve dilutions from 100 to 109 range for 

qR1T and 100 to 108 range for qR2T. The standard curves prepared displayed a strong linear 

correlation between estimated plasmid copy number and Ct value (R2 value=0.99 in each 

assay). (Figure 5.1). The qR1T assay had a reaction efficiency of 98% which was slightly less 

than that of qR2T (99%) (Figure 5.1). The Cycle threshold value, plasmid copy number and 

typical standard series amplification curve for the RNA 1 and RNA 2 segment plasmid control 

are provided in Figure 5.1. 
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Figure 5-1: RT-qPCR amplification curves of qR1T (a) and qR2T (b) and linear correlation 
between Ct value v plasmid copy number determined from bacterial plate counts of qR1T 

(c) and qR2T plasmid (d) controls. 
 

 

5.4 Discussion 

The data collected in this study indicates the RT-qPCR assays that detect RNA 1 (qR1T) and 

RNA 2 (qR2T) perform consistently to accurately detect the specific segments of the Ec2NQAus 

genome on the standard constructed DNA plasmid controls. The operational range of each 

assay detected a minimum of ~10 copies of the plasmid target. In this study, consistent Ct 

values were obtained for plasmid dilutions targeted by each assay across a gene copy number 

ranging from ~10 to 108 copies mL-1. Although a calculated copy number greater than 108 is 

detected by both assays, there is considerable variation in the calculated copy number at 

higher concentration of plasmid (data not shown) and higher concentrations were not 

included in the standard curve regressions. As the calculated copy number that applies to such 

high concentration of plasmid genome would only be detected in severe VER outbreaks where 

management decisions are not reliant on accurate discrimination between a 108 or 109 or 10 

copies of viral genome, the omission of the high copy number control within the standard 

curve is not expected to be a major impediment to the application of either RT-qPCR assay.  

The OIE devotes a chapter in the Manual of Diagnostic Tests for Aquatic Animals to discuss the 

principles and methods of validation of diagnostic assays for infectious diseases (OIE 2019). 
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Whilst Hick & Whittington, (2010) validated the performance of the qR2T assay against the 

criteria discussed in the OIE Aquatic Manual, their analysis was based on cell cultures and 

barramundi derived tissue samples. In addition, very limited assessment of the qR1T assay that 

targeted the RNA 1 was performed. Neither assay has been reportedly applied to grouper 

species ( Hick & Whittington 2010). The OIE recommends validation and verification of assay 

performance is conducted when analysis is applied to tissue matrix that is beyond that which 

the assay was validated (OIE 2017).  

One of the initial steps in assay validation is the implementation of standard positive controls 

(OIE 2017). This current work has developed a plasmid containing the respective target 

sequences to act as a standard control for each assay. The use of a constructed plasmid as a 

standard curve control reduces laboratory biosecurity risk by avoiding a need for staff to 

handle viable viral particles and also negates a need for cell culture capability within a 

laboratory. However, further monitoring of assay performance on a similar analyte matrix to 

that which it will most typically be applied, namely eye and brain tissue of known NNV status, 

is required for assay validation (OIE 2017). The stepwise approach to assay validation which 

has been adopted in this project is typical within the framework recommended by a number of 

authorities responsible for animal health laboratory standards including the OIE, the sub-

committee for animal health laboratory standards (SCAAHL) and the National Association of 

Testing Authorities (NATA) in Australia (OIE 2017). The development of the standard controls 

discussed in this chapter are a crucial requirement for managing the quality of the quantitative 

data that will be collected in this project. Further application of the assays on grouper brain 

and eye tissues to monitor the pathogenesis of VER and to assess the efficacy of prophylactic 

measures against RGNNV will be discussed within subsequent chapters of this thesis. 

5.5 Conclusion 

The following outcomes were achieved in this chapter: 

 

 

 Standard plasmid controls for RT-qPCRs to detect RNA 1 (qR1T) and RNA 2 (qR2T) of 

RGNNV described by Hick & Whittington, (2010) were developed.  

 Both assays, qR1T and qR2T were demonstrated to detect the respective standard 

plasmid controls. 

 The linear regression of standard curve preparations was determined for each 

assay, with high correlation between Ct value and calculated copy number.  
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Data collected in this chapter contributed to the validation documentation to support 

application by the JCU AquaPATH laboratory for NATA accreditation in the field of animal 

health. Scope of application detection of viruses by nucleic acid detection.  
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CHAPTER 6. DEVELOPMENT OF PROPHYLACTIC MEASURES TO 

PREVENT VIRAL ENCEPHALOPATHY AND RETINOPATHY (VER) 

 

Background  

 

Aims of this Chapter  

 

6.1 Introduction 

The development of a vaccine that prevents VER outbreaks in E.lanceolatus is a primary goal of 

this study. Vaccination strategies that prevent VER have been reported with varying success in 

experimental settings (Tanaka et al., 2001;Nishiwawa et al., 2012; Kai and Chi 2008). Various 

antigen presenting configurations have been developed to produce vaccines against VER. 

Antigen configurations include the presentation of live virus (Nishizawa et al., 2012), 

inactivated virus (Kai and Chi 2008), recombinantly expressed DNA or capsid protein (Tanaka 

et al., 2001), provision of virus-like particles in live Artemia (Lin et al., 2007) recombinantly 

expressed virus-like particles (VLPs)( Lai et al., 2014) and most recently, viral capsid protein 

expressed in a cell-free system (Kim et al., 2015). All strategies report improved survival 

measured over a period of weeks. Some studies don’t include viral challenge but rather detect 

 Grouper in grow out pond culture are susceptible to NNV for the entire duration of 

pond stocking. 

 VER outbreaks in pond grow out impose severe mortality and economic losses that 

threaten the viability of the grouper aquaculture industry in Australia. 

 A number of experimental vaccines to prevent VER have been reported. 

 There is no VER vaccine available for use in Australia. 

 The capsid protein has been demonstrated as the target of neutralising antibodies.  

 Treatment with dsRNA has been proposed as a treatment for difficult to prevent 

viral diseases.  

 To develop a recombinant clone and express RGNNV capsid protein. 

 To prepare a vaccine containing the recombinantly expressed capsid protein. 

 To develop a dsRNA construct to knock-down replication of RGNNV. 
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the expression of immune components following vaccination (Lai et al.2014). Despite the 

reported progress, there is no vaccine approved for use or commercially available for use in 

Australia.  

Previous research into immunization and the potential of dsRNA as an additional option to 

prevent VER is discussed within this chapter. In addition, the methods used to prepare 

experimental therapies that will be evaluated as a means to prevent VER within this project, 

namely a vaccine and dsRNA constructs, are described.  

 

6.1.1 Live Virus Vaccine 

“Vaccinating” fish with live virus at a lower rearing temperature has been reported as an 

effective way to reduce mortality to subsequent Betanodavirus exposure (Nishizawa et al., 

2012). Seven-band grouper “vaccinated” with live RGNNV at 104.3 TCID50 displayed no 

mortalities at 17 °C compared with ~47 % mortality in fish held at 20 °C and 93-100 % in fish 

reared at 23 °C and 26 °C respectively (Nishizawa et al., 2012). NNV titres varied over the 21-

day trial period at the different rearing temperatures. Nishizawa et al. (2012) hypothesised the 

slower replication of NNV in fish at lower water temperature enabled sufficient time for the 

fish to mount an effective immune response before NNV reached critical a threshold level of 

1010 TCID50 and death occurred. The long-term outcome of this vaccination strategy was not 

investigated. 

6.1.2 Inactivated-Virus Vaccine 

Protection from VER has been reported through the use of vaccination based on the IM or IP-

injection of formalin-inactivated (Yamashita et al., 2009) and binary ethylenimine (BEI)-

inactivated (Kai & Chi 2008) RGNNV. Survival, antibody presence and antibody titre in the 

formalin-inactivated vaccinated fish exposed to challenge dose of 105 TCID50 was dependant 

on the dose of RGNNV in the vaccine. Yamashita et al. (2009) did not measure the neutralising 

antibody level in vaccinated fish over a period beyond 28 days. As NNV is believed to be 

endemic in the waterways around Japan, fish would likely been exposed to NNV which would 

serve as a natural booster in immunity (Yamashita et al., 2009). 

6.1.3 DNA vaccine: recombinantly expressed viral protein 

Protection from NNV infection has been reported through the use of vaccines based on 

recombinantly expressed Betanodavirus capsid protein since 2000/2001 (Nakai 2002 and 

Tanaka et al., 2001). Tanaka et al. (2001) reported the successful vaccination of seven band 

grouper (28 g) against RGNNV using IM. injected recombinantly expressed coat protein (60 µg 
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fish-1) and challenged by intramuscular injection 20 days post vaccination (dpv). Vaccinated 

fish that were challenged with a dose of 104.4-5.4 TCID50 displayed 65 % mortality compared to 

the control fish which suffered 100 % mortality within 4 days post challenge (dpc) (Tanaka et 

al., 2001). Vaccinated fish exposed to a lower challenge dose 103.4 TCID50 had 10 % mortality 

compared to 85 % mortality in the unvaccinated group. Results of fluorescent antibody testing 

(FAT) on the lower challenge dose survivors revealed only 1/18 of the vaccinated fish was 

positive for the detection of VER capsid protein compared to 1/3 control fish. Neutralising 

antibody titres were detected in the vaccinated fish peaking at 1:400-1:500 at days 20 to 30 

and declining to 1:200 to 1:260 at days 70 to 110 dpv (Tanaka et al., 2001). The minimum 

neutralising antibody giving protection is approximately 1:200 to 300 (Yamashita et al., 2009). 

The application of recombinantly expressed capsid protein to protect against VER continues to 

be reported with no advance towards the production of a commercial vaccine (Vimal et al., 

2014a). Most recently a vaccine based on an IM injection (50 µg fish-1) of recombinantly 

expressed RGNNV capsid was reported to provide 76 % relative percent survival (RPS) to 

juvenile L.calcarifer (10 to 15 g) (Vimal et al., 2014a). No mortalities occurred in the vaccinated 

group until 16 days post-VER challenge. Mortality in the non-vaccinated group was 80 % at the 

same time point. Notably mortalities in the vaccinated group were on an upward trend from 

day 22 until when the trial was terminated at day 30 post-VER challenge. Serum collected from 

vaccinated fish displayed anti-viral activity capable of neutralising 50µl of 102 TCID50 in D. 

labrax kidney cells (Vimal et al., 2014a). Using the same plasmid attached to chitosan-

tripolyphosphate (CS/TPP) in an oral vaccination (feed) survival of ~50 % was achieved in L. 

calcarifer following injection with RGNNV (Vimal et al., 2014b). Immunofluorescent detection 

of the plasmid demonstrated the nanoparticles were delivered to the gills, heart, intestine, 

muscle and liver. Antibodies against RGNNV were detected in serum diluted 1:1000 (Vimal et 

al., 2014b). Unlike the previous report, all of the fish injected with RGNNV displayed relatively 

good survival until day 15 (~70 %) suggesting the exposure to plasmid offered some degree of 

protection against VER. However, from day 15 mortality in all of the control groups displayed a 

marked increase which reached approximately 80 to 90 % at day 30 pi. The mortality in the 

CS/TPP “vaccinated” group displayed an upward trend at day 30 pi. Considering the upward 

trend observed in both experiments at 30 dpi the long-term protection offered by the vaccines 

is questionable, but could perhaps be improved by boosting. 

6.1.4 Viral Like particle (VLP) Vaccine 

Viral like particles (VLP) formed by the expression of RGNNV RNA 2 in E. coli have been used as 

experimental vaccines to prevent VER. VLPs, IM-injected (1 to 10 µg-1 fish) into malabar 
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grouper and dragon grouper (average body weight {abw}~20g) lead to the production of 

specific antibodies within 4 weeks post-injection (Liu et al., 2006). The innate immune 

response of grouper following exposure to RGNNV VLPs was measured in orange-spotted 

grouper E. coioides (0.36 g) (Lai et al., 2014). VLP injection (1.5 µgg-1 FBW) was demonstrated 

to be effective in the production of neutralising antibodies. Titres detected within one-week 

post-exposure could neutralise more than 108 TCID50 of virus in vitro (Lai et al., 2014). Changes 

in the expression of humoral (CD4, MHC11a) and cellular (TCR-β, MHC1a, CD8, CCC3) immunity 

factors, members of the antiviral pathway (Mx, TNFR14, ISP16), and the cellular chaperone 

HSP90, were recorded in various organs. The immune factors measured from the brain and 

eyes displayed minor increases in expression levels. Measurements in the kidney, spleen and 

liver displayed varying responses, none of which were prolonged beyond 48 hours (Lai et al., 

2014). As the fish were not exposed to viral challenge, the significance of the differential 

immune response data cannot be determined. The lack of detectable changes in the brain and 

eye could indicate the VLPs were never presented to those organs. Nonetheless, the data 

provides some indication the capsid protein of RGNNV stimulates both cellular and humoral 

immune pathways. 

6.1.5 Cell-free vaccine production 

The commercial production of vaccines based on recombinant technologies is reportedly 

hindered by the tedious and labour-intensive processes involved in production (Kim et al., 

2015). Kim et al. (2015) reported such issues can be overcome through the production of a 

RGNNV capsid based vaccine using cell-free protein synthesis (rNNV-CP). Seven band groupers 

(20 g) were injected with rNNV-Cp (20µg fish-1) followed by injection with NNV 102.8 TCID50 , 

two weeks later. Seventeen days post-VER challenge 10% of vaccinated fish displayed 

mortality comparing favourably to 50 % of unvaccinated fish (Kim et al., 2015).  

 

6.1.6 Consideration of path for approval of use of a vaccine against VER 

The Australian Pesticides and Veterinary Medicines Authority (APVMA) regulates the 

registration of veterinary vaccines in Australia (https://apvma.gov.au/node/1108). The 

registration process is lengthy, and in some cases, requires demonstration of compliance 

across multiple authorities. Vaccines containing cell-culture derived antigen must be prepared 

in compliance with Australian Government Department of Agriculture and APVMA (pers. 

comms from APVMA). There are no fish cell lines in Australia with approval for vaccine 

production. Consequently, in Australia, the development of vaccines containing antigens 
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produced from recombinant expressed viral proteins is underway and considered an attractive 

longer-term approach to viral vaccine production of fish species (Norwood, 2018).  

 

6.1.7 dsRNA as an alternative or complement to vaccines 

Many vaccines have been reported with varying success in reducing mortality due to VER. 

However, all report the reduction, rather than elimination, of NNV titres over the short term 

(Kim et al., 2015). Based on previous reports, successful vaccination of grouper although 

preventing disease expression, results in the production of sub-clinical carriers following 

exposure to NNV (Kim et al., 2015). Considering the factors which lead to VER in grow out 

grouper systems are unknown; vaccination may not be the remedy to the challenge NNV poses 

to aquaculture. If disease in grow out grouper is caused when naïve individuals are exposed to 

Betanodavirus, vaccination will be a useful management tool. However, if disease outbreaks 

are due to other modulating factor/s inducing sub-clinical fish to express disease, vaccination 

may not be the solution to prevent losses due to VER in grouper grow out aquaculture. The 

limited availability of any commercially produced vaccine against VER, despite their reported 

successful application in experimental conditions since 2001, suggests the pathogenesis of VER 

disease in grouper grow-out culture is more complex than anticipated. 

Attempts to combat human RNA viral infections have led to the development of vaccines by a 

variety of protocols. Although often safe and effective in the short term, many fail to be 

effective long-term and require multiple doses which are not cost effective. The production of 

live-attenuated vaccines, although overcoming the need for boosting, presents some risk in 

that RNA viral genomes are particularly unstable and vaccine strains could become virulent. 

Additionally, in human applications, there is a lack of success in producing vaccines which are 

protective against a variety of viruses that, like VNN, display phases of latency such as Epstein 

Barr virus, Human Immunodeficiency Virus and Herpes Simplex Virus (HSV) or a range of 

viruses that sequester in neural tissues such as Dengue Fever, Zika virus and West Nile virus. 

The use of specific microRNAs, termed dsRNAs, is emerging as effective means to overcome 

the limitations of vaccines (Heiss et al., 2010). Successful downregulation of a multitude of 

viruses has been reported in vitro using synthetic RNA (sRNA) to prime the RNAi pathway 

vaccines (Heiss et al., 2010). There are no reported attempts to down-regulate Betanodavirus 

replication using sRNA. However, when Grouper Heat Shock Protein 70 (GHsp70), which was 

discussed in Chapter 3 as an important site for viral attachment to cells, was silenced with 

iRNA, NNV expression of RNA 2, as measured by SYBR green RT-qPCR, was reduced (Chang & 

Chi 2015). Although Chang & Chi (2015) report the target of the iRNA was GHsp70 the 
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designed iRNA (iRNA sequence: CGGUGUUCCUCAGAUUGA) conserved regions of homology 

with many RGNNV RNA 1 sequences (eg. KP455643.1) (Table 6.1). Successful knockdown of 

NNV RNA may have been achieved by direct action of the iRNA on NNV replication rather than 

knockdown of the critical Hsp70. 

 

Table 6-1: Shared homology between anti GHSP-70 iRNA and Spotted grouper RNA 1 

segment (NCBI reference KP455643.1), including homologous sequence, nucleotide position 

and orientation and functional motif of NNV genome (if known). 

Source of sequence and alignment Details of homology to RGNNV genome 

GHsp70 iRNA SGNNV (KP455643.1) (RNA1) nt/nt % Function on VNN Protein A if known 

2 GGTGTTCC 9 550 GGTGTTCC 557 
 8/8 
+/+ 100 Region associated with temperature sensitivity 

9 CTCAGAT 15 248 CTCAGAT 254 7/7 +/+ 100 Region associated with temperature sensitivity 

10 TCAGATT 16 745 TCAGATT 739 7/7 +/- 100 Mitochondrial location signal of Mezeth 

4  TGTTCCT 10 1663 TGTTCCT 1657 7/7 +/- 100  

12 AGATTGA 18 2354 AGATTGA 2360 7/7 +/+ 100  

5  GTTCCTC 11 2963 GTTCCTC 2957 7/7 +/+ 100 B1/B2 

 

 Effective prevention or treatment of viruses requires the dsRNA to have exact complementary 

alignment to the viral target gene sequence to ensure the target sequence is loaded into the 

RNAi silencing complex (RISC) and template degraded rather than translated into protein 

(Chakraborty et al., 2017). It is equally important to ensure that the gene in target is essential 

for viral replication or virulence and the dsRNA does not have off-target effects such as down-

regulating host genes that are required to retain health (Chakraborty et al., 2017). 

In Chapter 4 the processes known to occur during replication of NNV and the genome regions 

that translate to the functional motifs of the genomes of the NNV strain being used in this 

study were identified. As discussed in Chapter 4, the mRNA 1 is the first strand translated 

during viral replication. The initial stages of viral replication occur within viral replicating 

complexes that are contained within the mitochondrion. Also, during the early stage of viral 

replication, the B2 protein is expressed. B2 binds short and long dsRNA and inhibits iRNA 

activity presumably by preventing any viral genomic material that is not within the VRC from 

being targeted by Dicer-1 and also abrogate the genome recognition by Argonaute and 

prevent loading of viral genome into the RNA Silencing Complex for degradation. B2 is 

downregulated when the capsid protein mRNA is upregulated. Additionally, the capsid protein 

isn’t reported to locate within the protection of VRC.  

Because of the forementioned processes this study considered the capsid protein mRNA to be 

theoretically more accessible during viral replication and therefore it was considered a target 

for dsRNA. Specifically, the region that encoded the LSTND motif, contained within the species 
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specificity region identified by Ito et al. (2008). The motif was retained by the RGNNV 

reference genome and the NQAus NNV strains that display virulence to the tropical grouper 

species in Northern Queensland (Chapter 4.3 and 4.4). Examination of the nucleotide region of 

this motif indicates, changes to host specificity associated with this region may not be related 

to the translated amino acids but alternately affect species specificity through action a viral 

micro-RNA that targets host immune factors (Weber et al., 2004; Workenhe et al.2010; Shen 

et al.2015; Tycowski et al.2015). An align two sequences function within the NCBI tools using 

the nucleotide sequence that encodes this region namely, CTTTCCACAAATGACTTCAAGTC 

indicated the first 12 nt sequence encoding for LSTND is conserved with Singapore Grouper 

Iridovirus https://blast.ncbi.nlm.nih.gov/Blast.cgi. A BLASTx search with the nucleotide 

sequence that encodes this region reveals a 22nt region (CTTTCCACAAATGACTTCAAGTC) 

22/23nt homology in the plus/minus orientation to Haplochromis and teleost species 

interferon-induced very large GTPase 1-like mRNA. Additionally, smaller 8 to 12 nt regions of 

this sequence display 100% homology to the mRNA of various immune factors of Epinephelus 

sp. including RAB7 GTPase (JQ08543.1), TLR3 (HQ857748.1), Tumour necrosis factor 2 

(HQ011926.1), interleukin enhancer binding protein factor 2 (HM185492.1) beta-2 

macroglobulin (HQ441036.1). The homology may be coincidental, however Mx, which is a 

GTPase is one of the immune factors known to be significantly upregulated and associated 

with survival to NNV in sea bream S.aurata) (Poisa-Beiro et al. (2008) mentioned p.44 Chapter. 

1.8). Carballo et al. (2016) demonstrated prior infection of D.labrax with SJNNV (which has 

variance to RGNNV at this nucleotide- aa region) increased survival to RGNNV exposure from 

24% to 96%. Mx was significantly upregulated in the SJNNV exposed fish compared to the 

RGNNV exposed fish. No mechanism for the ensued protection or differential immune 

response was provided. There is a reported lack of cross-protection by neutralising antibodies 

between SJNNV and RGNNV (Pascoli et al., 2019). One mechanism of improved survival against 

SJNNV may be a loss in ability by the SJNNV to downregulate Mx through mismatch to the 

target gene if this region acts as a v-miRNA. 

 Extending on the novel use microRNA to combat viral infections, Heiss et al. (2010) recently 

reported that engineering of a neurotropic flavivirus to include microRNAs (mir-9 or mir-124a) 

that are exclusively expressed in neural tissue, was sufficient to restrict their replication in the 

CNS of immunodeficient mice. The application of microRNA to combat Betanodavirus warrants 

further investigation.  
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The aims of this investigation are twofold namely: 

1. Prepare the expressed capsid protein from the Ec2NQAus NNV strain described in 

Chapters 2 through to 4. 

2. Prepare dsRNA constructs designed to down regulate targeted portions of the virus 

will be employed in viral challenge studies (Ec2NQAus NNV).  

6.2 Materials and Methods 

6.2.1 Nucleic acid extraction and reverse transcriptase polymerase chain reaction 

Nucleic acid extraction and RT-PCR was performed as described in 2.1.2 to 2.1.4 using primers 

R2F1/R2R1 ( Hick & Whittington 2010) (indicated by * in Table 2.1). 

6.2.2 Cloning into replication plasmids 

PCR products of complete mRNA of RNA 2 were cloned into TOPO vectors as previously 

described in Chapter 2.1.7. 

6.2.3 Confirmation of clone sequence 

Ten plasmid extracts containing the DNA sequence of the complete mRNA strand of RNA 2 

segment were screened by PCR using the primers R2F1/R2R1 ( Hick & Whittington 2010) 

(indicated by * in Table 2.1). Amplicons of the expected size were cut from agarose gels and 

purified using the Bioline gel PCR purification kit. Amplicons were subjected to PCR 

amplification using the primers that contained an additional EcoR1 target (on the R2F1 primer) 

and a Hind111 target (on the R2R1 primer). The amplified segment was ligated into the PRSET 

B expression backbone that contained T7 promoter, Lac operon, ribosome binding site state 

codon, capsid protein sequence, stop codon and T7 terminator (GeneART ThermoFisher) 

according to the manufacturer’s instructions. An aliquot of the purified PCR product was 

submitted to AGRF for sanger sequencing analysis. Sequence was confirmed to have 100% 

homology to the EcNQAus NNV strain and also contain the T7 promoter, Lac operon, ribosome 

binding site state codon, capsid protein sequence, stop codon and T7 terminator in 

appropriate location to ensure correct reading frame for protein expression (codon 

optimisation). 

6.2.4 Cloning into expression vector and protein expression 

The DNA amplicon containing the N-terminal histone tag, T7 promoter, Lac operon, ribosome 

binding site state codon, capsid protein sequence, stop codon and T7 terminator were cloned 

into BL21 (D3) Chemically competent E.coli following the manufacturer’s instructions for heat 

shock method (ThermoFisher C60003). Five cultures were prepared from single cloned 

colonies and incubated in 50ml SOC media under protein induction by 0.4 mM IPTG for 6 
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hours. After incubation, 1ml of culture was subjected to plasmid extraction and subjected to 

PCR analysis using the T7/T3 primer set. Three cultures that were contained high copy number 

of the target amplicon (determined by correct size) were harvested by low speed 

centrifugation at 5000g x 10 mins, resuspended in 5ml RNAse free PBS and frozen at -20°C.  

6.2.5 Purification of Capsid Protein  

Protein was extracted from the frozen cultures prepared as described in 6.2.6. Protein was 

extracted using the B-PER®Bacterial Protein extraction reagent as per the manufacturer’s 

instructions (90079 ThermoFisher Scientific). Briefly, 10mL of B-PER II Reagent, containing 20ul 

of lysozyme and 20ul of DNase was added to the bacterial pellet and incubated at RT for 10-

mins. Solutions were centrifuged at 15, 000 g x 15mins. Total protein extracts were viewed 

with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). Fifty microlitres of 

each protein extract were mixed with 2 x loading dye and loading buffer and boiled for 5 mins. 

Samples were loaded to a polyacrylamide gel and the electrophoresis chamber (BioRad), 

containing Tris-glycerine-SDS buffer was subjected provided with electrical current at 150 V for 

~ 1 hour. Gels were fixed in silver fixative and washed 5 times for 1 minute. Gels were then 

stained by 10-minute incubation in silver nitrate solution (0.1% AgNO3 in distilled water), 

washed three times in distilled water and developed for sufficient time to allow resolution of 

bands (by eye). Gels were rinsed three times in 6.25% of acetic acid solution (in distilled 

water). Gels were patted dry and photographed with I-phone. I-phone images were 

downloaded and edited to display the protein ladder and the rows that allowed visualisation 

of protein bands. The soluble capsid protein fraction was purified from the total protein 

fraction by affinity chromatography using nickel-nitrilotriacetic acid (Ni-NTA) spin purification 

kits (3mL) according to the manufacturer’s instructions (88229 ThermoFisher Scientific). The 

concentration of purified protein was determined using the Pierce BCA protein assay kit 

following the 96 well plate protocol (23225 ThermoFisher Scientific) following the 

manufacturer’s instructions.  

6.2.6 Preparation of Vaccine 

Vaccine and Placebo vaccine were prepared using Freund’s incomplete adjuvant. Viral vaccine 

was prepared by combining 15ml of purified capsid protein diluted to 500 mg mL-1 with sterile 

phosphate buffered saline (PBS) and 15ml Freund’s incomplete adjuvant (Sigma F5506). The 

mixture was homogenised using a sterile homogenized using an Ultra-Turrax T 25 (IKA works) 

at 20,000 rpm in 3 x 10-minute intervals minutes until adjuvant emulsified. Triplicate tubes of 

vaccine were prepared. The mixture was contained within 3 x 50ml sterile tubes and held 

within a beaker containing ice during the homogenisation process. Placebo vaccine was 
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prepared by combing 15ml of sterile PBS and Freund’s incomplete adjuvant (Sigma F5506) and 

homogenising until emulsification as described for preparation of vaccine. Vaccine was stored 

at 3°C overnight prior to use.  

6.2.7 Preparation of dsRNA to target RGNNV genome. 

Constructs of synthetic dsRNA were purchased from Integrated DNA technologies. A dsRNA 

construct with homology to the prawn virus Penaeus merguiensis hepandensovirus PmeDV 

which had no homology to NNV was used as the non-specific dsRNA construct, and herein 

refered to as the non-NNV construct (Owens et al., 2015). The NNV spec designed and 

purchased from the Integrated DNA technologies custom dicer-substrate siRNA design tool 

from the region of RNA 2 nt 721 to 780 of Ec2NQAus. 

(https://sg.idtdna.com/site/order/designtool/index/DSIRNA_PREDESIGN). The design tool 

selected the sequence cacaaaugacuucaaguccauccuc as the positive sense strand as a construct 

design. Sense and anti-sense contructs were purchased and prepared according to the 

manufacturers’ instructions. Briefly, individual constructs were provided as tubes containing 

lyophilised ssRNA constructs 20 x 10 nmol (minimum yeild) (NNV specific) or 3 x 10 nmol 

(minimum yeild non-NNV specific) individual positive and negative strand constructs. 

Constructs were resuspended in RNAse free water at a concentration of 100pmol µl-1.. On the 

day of injection into experimental fish, the constructs were combined in equal volume and 

incubated for 2 hours to allow annealing to dsRNA. Fish were injected IM with 100µl of 50pmol 

µl-1 dsRNA. 

6.3 Results 

6.3.1 dsRNA Construct design 

The alignment of the positive strand of the dsRNA corresponds to the RNA 2 segment nt 722 to 

738 which is the mRNA encoding the LSTND motif of the viral capsid protein (Figure 6.1). 

  

Figure 6-1 Alignment of the positive strand of the dsRNA construct designed to target the 

mRNA that encodes the LSTND motif. Alignment illustrated using Geneious prime 

(Biomatters.)  
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6.3.2 PCR Amplification of the mRNA encoding the Capsid Protein 

Nine of the ten plasmid extracts that were screened for the DNA sequence equivalent to the 

capsid protein mRNA were positive for the sequence (Figure 6.2). Plasmids 5, 6 and 7 were 

selected for progression to capsid protein expression protocols.  

 

Figure 6-2 Image from gel electrophoresis screening of plasmid extracts for DNA sequence 

equivalent to the capsid protein mRNA. MW indicates molecular weight marker (200bp increments). 

Lanes 1 to 10 are amplicons (or lack thereof) from plasmid extracts analysed by PCR using R2F1 and R2R4 primers of 

Hick & Whittington (2010). Lane 11 is amplicon from positive control (Ec2NQAus NNV viral extract). NTC indicates 

no template control. Red arrow indicates positive amplicon of expected size in positive control (1034nt).  

6.3.3 Purification of Capsid Protein  

The total protein fraction from the 3 cultures selected for expression were examined using SDS 

PAGE (Figure 6.3). The 42kDA protein of the capsid protein was evident as the darkened band 

with IPTG expression. The capsid protein purified from the Ni-NTA spin columns were adjusted 

with sterile PBS to a final concentration of 1000µg ml-1. Purified protein was frozen at -60°C 

until use. 

 

Figure 6-3 Silver stained SDS PAGE gel from protein purification of recombinant expression of capsid 

protein. M indicates Protein marker ladder with labelled protein bands. Lane 1, 2 and 3 are total protein 

extracts from the IPTG induced cultures. Arrow indicates band corresponding to capsid protein (~42kDa). 
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6.4 Discussion 

Vaccine and dsRNA constructs targeting the NNV capsid protein/mRNA were produced in this 

study. In Australia, the application of vaccines produced from recombinant expressed viral 

proteins is underway and considered an attractive longer-term approach to viral vaccine 

production for fish (Norwood, 2018). Interfering RNAs syn dsRNA are considered some of the 

most important biopharmaceuticals as future medicines (Chakraborty et al., 2017). In addition 

to the aligning with the target sequence and not having off-target effects on host genes, the 

success of dsRNA treatment is determined by effective delivery of the dsRNA construct 

(Chakraborty et al., 2017). However, the design and delivery of dsRNA has not been applied to 

many studies involving fish (Gotesman et al., 2015). Considering the lack of understanding 

relating to dsRNA in fish, the design and delivery of dsRNA into a fish host in this project is 

considered highly experimental. This study has adapted a dsRNA approach that was used to 

reduce viral load in crustaceans (Owens et al., 2014).  

The design and preparation of dsRNA and a vaccine based on expressed recombinant NNV 

capsid protein has been discussed in this chapter. The effectiveness of either/both of these 

agents as prophylactic measures to prevent VER in E.lanceolatus following experimental 

challenge are described in chapters 8 and 10.  

6.5 Conclusion 

The aims of this chapter were met in the following manner: 

 

  

 Complete sequence of the RNA 2 segment of RGNNV obtained from diseased E.coioides 

was cloned into the expression vector. 

 Capsid protein was expressed, purified and incorporated into a vaccine. 

 dsRNA constructs targeting RGNNV RNA 2 were designed and prepared.  
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CHAPTER 7. EXPERIMENTAL CHALLENGE VIA CO-HABITATION 

WITH MARINE LEECH, ZENYLANICOBDELLA ARUGAMENSIS 

Background  

 Challenge of fish via injection does not represent the natural pathway of 

transmission of NNV in natural disease outbreaks.  

 Experimental reproduction of VER outbreaks simulating a more natural route of 

exposure, namely co-habitation with infected individuals or water borne exposure 

does not yield consistent results.  

 Although naturally occurring disease outbreaks are reported following periods of 

“stress”, a trigger that consistently induces VER in aquaculture systems has not 

been identified.  

 In temperate finfish aquaculture, leeches have been proposed as vectors of viral 

disease. 

 Infestation by the marine leech, Zeylanicobdella arugamensis, has been reported 

to affect the health of grouper within earthen ponds in North Queensland.  

 Some authors report the detection of NNV from blood of infected fish. 

 Whilst Z.arugamensis have been reported to be vectors of marine fish 

trypanosomes, there has been no reported investigation of their role in 

transmission of viruses.  

 

Aims of this Chapter  

 Investigate if RGNNV can be transmitted to fish held in a co-circulation system 

with fish exposed to  by IM challenge. 

 Investigate if exposure to the marine leech, Zeylanicobdella arugamensis, in 

combination with co-habitation with RGNNV infected fish leads to RGNNV 

infection or VER outbreaks in juvenile E.lanceolatus. 

 Investigate if the marine leech, Zeylanicobdella arugamensis, has potential to act 

as a vector of RGNNV.  

7.1 Introduction 

Although injection methods induce a consistent expression of VER, they are artificial and do 

not reflect a natural infection path leading to outbreaks of VER (Kim et al., 2018). Ideally, 
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challenges to assess the efficacy of vaccines should mimic the natural path of infection. Whilst 

natural disease outbreaks, which presumably do not involve an intramuscular injection of 

NNV, often lead to mass mortality, the reproduction of VER via co-habitation with infected 

animals and water borne exposure is inconsistent and leads to reduced levels of mortality and 

disease in fish that are aged beyond the larval stages (Anderson & Moody 2004, Kim et al., 

2018). Anderson and Oakey (2008) stated: “Our feeling is that the project test results do not 

support the suggestion that nodavirus infections are readily transmitted from one adult 

barramundi to another sharing the same tank.” Attempted bath exposure of freshwater fish 

species (silver perch, golden perch and sleepy cod and Barcoo grunter (6 and 12-week-old) to 

VNN did not display any signs of infection despite morbidity of 46%, 15%, 98% and 7%  when 

fish were exposed via injection (Anderson and Moody 2004). RGNNV has been isolated in cell 

culture and detected by RT-qPCR in water containing fish with clinical VER (Jaramillo et al., 

2017). Hodneland et al. (2011) added brain homogenate from severely infected sea bass to an 

aquarium containing 15 sea bass (40g) and co-habitated fish with IM injected sea bass (1:3 

ratio infected: cohabitated). None of the cohabitated fish displayed clinical signs or were 

positive for the detection of RGNNV RNA 2 by RT-qPCR during the 5-week incubation period. 

Whereas 85% of the IM infected fish died within 10 days. Fish exposed to brain homogenate in 

the water displayed 33% mortality from day 17-35 post exposure (Hodneland et al., 2011).  

The inconsistency in disease expression via water exposure to viruses, including NNV, in 

experimental systems compared to the process that leads to natural disease outbreaks is 

proposed to be due to the presence of “a stress event” as a precursor to trigger natural 

disease outbreaks. The “stress events” remain largely un-investigated beyond simple 

manipulations of water temperature and salinity or retrospective studies that identify risk 

factors (Juniar et al., 2018). Artificial attempts to mimic stress and induce immunosuppression 

of Atlantic cod, Gadus morhua by injection with prednisolone-acetate failed to induce disease 

following IM challenge with NNV isolated from Atlantic halibut, Hippoglossus hippoglossus 

(Korsnes et al., 2009). Conversely, exposure to tributyltin, a component of boat hull anti-foul, 

lead to increased mortality, with lower exposure dose to RGNNV in Japanese medaka Oryzias 

latipes (Kitamura et al., 2017).  

Parasite infestations are frequently encountered in marine fish culture systems and, in high 

numbers, may place a stress burden on host fish. Infestation of grouper and barramundi by the 

marine leech Zeylanicobdella arugamensis have occurred within marine farm grow-out 

systems in Northern Queensland (Vaughan, 2018). This leech has a wide geographic range and 

infection of marine groupers have been reported from Philippines, Sri Lanka, Malaysia, 
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Singapore, India, Japan, Iran and China (Murwantoko et al., 2018). In temperate fish farming 

systems leeches have been implicated as vectors of some viruses (Salimi and Abdi 2016 and 

Steinbauer et al., 2019). Although no viral transmission studies have been conducted with the 

species, Z.arugamensis has been demonstrated to be an efficient vector of the marine 

trypanosome, Trypanosoma nudigobbi (Hayes et al., 2014.) The case of VER in cobia described 

by Chu et al. (2013) noted the presence of Z.arugamensis along with monogeneans (Benedenia 

sp.) and copepods (Caligus sp.). Yet, there was no suggestion of any role the parasites may 

have played in relation to the mortalities and there are no published reports of attempts to 

detect viruses from leeches from tropical finfish aquaculture systems (PubMed, Science Direct, 

Google scholar, Scopus databases accessed 2.08.19). In addition to directly transferring 

viruses, the feeding action of leech and fish scraping and rubbing behavioural in response to 

leech infestation can cause disruption of the protective skin-scale-mucus barrier. Disruption of 

the physical barrier of skin, scales and mucus by parasites render fish susceptible to secondary 

infection by disease-causing organisms such as bacteria, fungi and viruses (Francis-Floyd, 

2018). Dermal abrasion prior to water borne exposure to Vibrio harveyi was required to induce 

disease in an experimental challenge of juvenile hybrid groupers E.fuscoguttatus x 

E.lanceolatus (abw 4.15g) (Shen et al., 2017). Infestation with Z.arugamensis, and secondary 

infection with pathogenic bacteria such as Vibrio alginolyticus has been associated with 

mortalities in grouper (Ravi & Yahaya, 2017). The aim of this study is to investigate potential 

experimental challenge models for future studies to test the efficacy of therapies developed in 

Chapter 6 to prevent VER. Models include exposure to RGNNV through a shared circulation 

system (co-circulation). The potential of the marine leech, Z. arugamensis to compromise the 

skin-mucus barrier, act as “a stress factor” or vector to induce VER under co-circulation will 

also be investigated. 

7.2 Materials and Methods 

7.2.1 Culture of marine leech, Zeylanicobdella arugamensis 

Culture of marine leech Z. arugamensis was kindly conducted by JCU PhD Candidate Dr David 

Vaughan. Approximately 100 leeches were provided for the experiment. Prior to exposure to 

the experimental fish, leeches were removed from the E. coioides host fish and starved for 24 

hours. 

7.2.2 Fish culture, viral challenge and co-circulation system 

Thirty juvenile groupers, E.lanceolatus were dispersed evenly into a system consisting of 3 x 

60L tanks that were immediately adjacent to each other and sharing the same biological 
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filtration and recirculation system. There was no shield to prevent aerosol spread between 

tanks. (Figure 7.1). Water, temperature, light and fish feeding conditions were as described 

previously in section 2.2. For the viral challenge, ten fish from one tank (Tank C Figure 7.1) 

were sedated and challenged by IM injection of 100 uL of RGNNV viral extract (6.36 x 104 mL-1) 

as described in 2.2.2. Fish from the RGNNV challenged tanks began displaying clinical signs of 

VER from day 8 post IM injection. One fish was sampled from the IM challenge group (Tank C) 

at day 4 prior to the onset of clinical signs. When fish began displaying signs of VER at day 8, 

fifty leeches Zeylanicobdella arugamensis were added to two of the tanks, namely the RGNNV 

challenged tank (Tank C Figure 7.1) and another tank on the same recirculation system (Tank A 

Figure 7.1). The leeches had been starved for 24 hours prior to their addition to the tanks 

(provided by Dr David Vaughan). Fish were observed twice daily for signs of VER. When fish 

displayed multiple signs of disease (two clinical signs e.g. not feeding and inflated swim 

bladder), they were removed from the system and euthanased as described in 2.2.1. Any 

leeches that were attached to euthanased fish were removed and stored in separate 1.5ml 

RNase free microcentrifuge tubes and frozen at -20°C until the end of the experiment. The 

experiment was terminated at 40 days post IM challenge. All remaining fish were euthanased 

at day 40 post IM challenge. All leeches present on fish or in the tank system were stored in 

pools of 5 animals and frozen at -20°C.  

 

 

Figure 7-1: Diagrammatic illustration of the experimental aquarium system for co-circulation 

Each tank (A, B, C) contained 10 fish within a 60-litre tank. Water circulated between the tanks from a shared bio-
filter (D). Tank A fish were exposed to 50 Z.arugamensis from the onset of clinical signs of VER in Tank C fish. 
Tank B fish had no exposure to Z.arugamensis nor RGNNV other than that which occurred within the 
recirculation system. Tank C fish were exposed to an IM challenge of RGNNV and at the onset of clinical signs 
were exposed to 50 Z.arugamensis. 

7.2.3 Nucleic acid extraction, CDNA synthesis, RT-qPCR. 

Total nucleic acid (TNAs) was extracted from whole eye and whole marine leeches collected 

from fish following the protocol previously described in 2.1.2. cDNA synthesis and qR1T and 

D 
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qR2T, were conducted on TNAs as previously described in 2.1.3 and 5.2.3. Leeches were 

extracted in pools of 5 collected from fish when they were euthanased.  

7.3 Results 

7.3.1 Expression of VER in juvenile E.lanceolatus. 

The fish that were challenged by IM injection of viral extract (Tank C) displayed clinical signs of 

VER (Figure 7.2). Clinical signs of VER, including hypertrophy of the swim bladder, abnormal 

swimming behaviour and lack of feeding were evident in the RGNNV injected + leech exposed 

group from 8 days post IM challenge (Figure 7.2). No clinical signs of VER were evident in fish 

from either of the co-circulating tanks for the 40 days of the experiment (Figure 7.2). Leeches 

were observed attached to the fish in Tank A and C (leeches added to the tanks) but no 

leeches were observed in the Tank B (no leeches added to the tank) during the course of the 

experiment.  

 

Figure 7-2 Cumulative morbidity (%) of fish from each tank following IM challenge of Tank C 
fish v days post viral challenge. Tank A contained fish exposed to leeches and on co-circulation with IM 

challenged fish in Tank C. Tank B contained fish on circulation with IM challenged fish in Tank C. Tank C contained 
fish challenged with IM injection of viral extract and exposed to leeches from the onset of clinical signs of VER.  

7.3.2 Detection of RGNNV by RT-qPCR 

RGNNV was detected using qR1T and qR2T from the eye tissue of all fish in the IM challenged + 

leech experimental group (Table 7.1). RGNNV was detected in the eye tissue of the grouper 

that was killed at day 4 post challenge (4 days prior to clinical signs). RGNNV was not detected 
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from the eye of fish that were not subjected to IM challenge (Table 7.1) nor any of the leeches 

collected during the experimental period (Table 7.1). 

 

Table 7-1 Cycle threshold values from each RT-qPCR from eye and leech samples collected 
from the three experimental groups at various days post challenge by IM injection. 

 

(grouper) and (leech) indicates type of sample analysed by RT-qPCR 

7.4 Discussion 

Waterborne exposure, which reflects the route of infection in natural disease outbreaks, 

would be the preferred model for disease experimental challenges to induce VER and test the 

efficacy of prophylactic measures. However, variable morbidity and mortality have been 

reported from waterborne and co-habitation exposure to NNV (Anderson & Moody 2004). In 

this study, VER disease was not observed when juvenile groupers were held on a shared 

circulation system for 40 days with a cohort of fish that displayed 90% morbidity following IM 

challenge with RGNNV extract. Furthermore, RGNNV was not detected from the eye or brain 

of-fish held in co-circulation using qR1T or qR2T. In contrast, fish challenged by IM injection of 

viral extract had signs of disease from day 8 post challenge and cycle threshold values of NNV 

in the range of 14.72 to 20.58 and 11.48 to 16.56 were detected from eye tissue using qR1T 

and qR2T respectively. Further attempts to promote NNV infection and induce VER disease by 

introducing an infestation of the leeches, Z.arugamensis were also unsuccessful. Leeches have 

been proposed as mechanical vectors of viruses of fish for many years (Ahne, 1985). Spring 

Viremia of Carp virus was isolated from the leech Piscicola geometra (Ahne, 1985). Viral 

Haemorrhagic Septicaemia Virus was isolated and detected by RT-PCR from the leech 

Myzobdella lugubris (Faisal & Schulz, 2009). Infectious Pancreatic Necrosis Virus was detected 

by PCR from two leech species, Hemiclepsis marginata and Hirudo medicinalis (Salimi & Abdi 

2016). Salmonid alphavirus was detected by PCR from Piscicola geometra (Steinbauer et al., 

2019). In this study, RGNNV was not detected by RT-qPCR from any leech collected from fish 

displaying clinical signs of VER or from fish within the same co-circulation system as diseased 

Assay 

Target 0 4 8* 9 10 11 12 13 40

RNA 1 qR1T nd 30.2 20.6 16.9 15.3 16.3 15.3 14.9 nt

RNA 2 qR2T nd 27.7 16.6 13.4 12.0 12.8 12.0 11.7 nt

RNA 1 qR1T nd nt nt nt nt nt nt nt nd

RNA 2 qR2T nd nt nt nt nt nt nt nt nd

RNA 1 qR1T nd nt nt nt nt nt nt nt nd

RNA 2 qR2T nd nt nt nt nt nt nt nt nd

RNA 1 qR1T nd nd nd nd nd nd nd nd nd

RNA 2 qR2T nd nd nd nd nd nd nd nd nd

RNA 1 qR1T nd nd nd nd nd nd nd nd nd

RNA 2 qR2T nd nd nd nd nd nd nd nd nd

nt = none tested 

C

B

A

C

A

Tank

 IM challenge (leech)

Co-circulation + leeche (leech)

Days post challenge

* indicates day clinical signs of VER became evident

Experimental Group and (sample)
Assay 

Name

IM challenge (grouper)

Co-circulation + only (grouper)

Co-circulation + leeche (grouper)
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fishes. Presumably, one of the requirements for leeches to act as mechanical vectors of viral 

infections relies on the presence of the virus in the blood cells of infected fish. Reports on the 

detection of NNV from the blood of infected fish are inconsistent. Korsnes et al. (2009) 

reported the detection of NNV from the blood of Atlantic cod, Gadus morhua. Yet, no 

detection from blood cells have been reported by others (Valero et al., 2018). The inability to 

induce RGNNV infection or VER disease via co-circulation with diseased fish, either with or 

without an additional burden of leech infestation indicates waterborne transmission of NNV is 

not a robust model for future studies to test the efficacy of prophylactic measures. Although 

injection challenge by-passes one of the primary immune barriers of the fish, investigation into 

efficacy of prophylactic measures developed in Chapter 6 are proposed to be conducted using 

IM challenge with RGNNV 

 

7.5 Conclusion 

The following outcomes and conclusions were discussed in this chapter: 

 

  

 RGNNV was not transmitted to naïve fish on a co-circulation system with VER 

diseased fish during a 40-day experiment. 

 Exposure of fish to the marine leech Zeylanicobdella arugamensis in addition to co-

circulation with VER affected fish did not lead to infection with RGNNV in juvenile 

E.lanceolatus.  

 The inability to detect RGNNV from leeches which fed on VER affected animals 

indicates Z.arugamensis is not likely to be an effective vector of RGNNV.  

 As VER was not induced via co-circulation or co-exposure to a leech “stress event”, 

no effective method of water borne challenge has been identified for future trials. 

 Although not mimicking the natural route of infection, challenge by IM injection is 

the only consistent challenge model available for continued testing of the efficacy of 

vaccine to prevent VER within the time frames of this project.  
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CHAPTER 8. TESTING EFFICACY OF PROPHYLATIC MEASURES 

AGAINST VIRAL ENCEPHALOPATHY AND RETINOPATHY (VER) 

IN EPINEPHELUS LANCEOLATUS VIA EXPERIMENTAL 

CHALLENGE  
 

Background  

 

Aims of this Chapter  

 

 A vaccine containing the recombinantly expressed capsid protein of RGNNV 

has been prepared for assessment as a prophylactic measure to prevent VER 

(Chapter 6).  

 dsRNA designed to target RGNNV RNA 2 has been prepared as an 

experimental compound to prevent VER (Chapter 6).  

 Due to reported inconsistency to induce VER by waterborne or co-habitation, 

challenge by IM injection with RGNNV is the preferred method of challenge 

within the scope of this project. 

 The pathogenesis of VER from exposure to disease expression has not been 

well described in grouper.  

 Synthetic plasmid controls have been prepared to support monitoring of the 

qR1T and qR2T assays towards both tracking the pathogenesis of VER and 

validation of both assays for application on grouper tissues. 

 To test the efficacy of vaccine and dsRNA preparations to prevent infection 

and disease in juvenile E. lanceolatus following IM challenge with RGNNV viral 

extract. 

 To assess the performance of the qR1T and qR2T assays to detect RGNNV 

from grouper derived brain and eye tissue following experimental challenge 

by IM injection with RGNNV. 

 To track the pathogenesis of RGNNV from exposure to disease expression by 

applying analysis using RT-qPCR. 
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8.1 Introduction 

In grouper aquaculture, stocking of ponds with NNV-free fingerlings does not prevent 

economically catastrophic VER outbreaks during grow-out stages of production. There is an 

urgent need to develop prophylactic measures to combat NNV infection in grouper grow-out 

systems. Despite numerous reports of successful vaccination against NNV in various 

experimental formats, there are few commercial transfers for application by industry.  

 

 The management of VER in grouper aquaculture is hampered by gaps in knowledge of both 

the development of the juvenile grouper immune system and the pathogenesis of VER. This 

study has prepared a vaccine and dsRNA as potential therapies to prevent RGNNV infection. 

Although monitoring of the juvenile grouper immune system is beyond the scope of this study, 

tracing the progression of the disease following IM challenge is possible with RT-qPCR. Despite 

the need to improve knowledge and the availability of validated, sensitive, specific, 

quantitative, rapid turnover and high throughput RT-qPCR assays, very few published reports 

have applied RT-qPCR to investigate the pathogenesis of VER (Jaramillo et al., 2017; Hodneland 

et al., 2011; Lopez-Jimena et al., 2011; Panzarin et al., 2010). Only one article details the 

application of RT-qPCR to grouper species (Kim et al., 2018). 

8.2 Materials and Methods 

8.2.1 Fish husbandry  

Six hundred juvenile giant grouper, E.lanceolatus (abw 18g 𝜎 ~2 g, range 11.3 g to 23.6 g; aged 

84 days post hatch) were provided by a commercial hatchery. Water temperature ranged 

between 24 to 28 ⁰C and salinity ranged from 26 to 35 ppt. Fish were weighed, tagged with 

streamer tags to allow individual identification (Hallprint) (Refer to Figure 8.1) and fed ad lib 

twice daily with a commercial fish feed pellet (Ridley AgriProducts Pty Ltd). Fish were 

acclimated for two weeks prior to commencement of experimental procedures. Two weeks 

(98 dph) and six weeks (126 dph) after acquisition, fish were injected with the experimental 

treatments. All fish from the same experimental group were held in the same tank system until 

IM challenge. Fish were sedated for all treatments involving injection, according to JCU Animal 

Ethics requirements using AQUI-S® (AQUI-S).  
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Figure 8-1. (A) Image of juvenile E.lanceolatus with tag and (B). multiple tagged fish within a 
recovery tank after injection with RGNNV extract  
 

8.2.2 Experimental design and vaccination 

Fish were distributed into ten experimental groups. The experimental groups were duplicates 

of five experimental treatments that were subsequently challenged with either PBS or RGNNV 

extract. The five groups consisted of treatments prepared as described in Chapter 6. In 

summary the experimental treatments were: (1) Placebo vaccinated with Adjuvant + PBS, (2) 

vaccinated with recombinant expressed capsid protein (500mg mL-1) + adjuvant, (3) vaccinated 

with recombinant expressed capsid protein (500mg mL-1) + adjuvant and a dsRNA (50pmol µl-1 

dsRNA) construct with homology to RGNNV, (4) injected with a dsRNA (50pmol µl-1 dsRNA) 

construct with homology to RGNNV, (5) injected with a dsRNA (50pmol µl-1 dsRNA)  construct 

with no homology to RGNNV. All injections were the same approximate body position as 

described in Chapter 2.2.3. 

 

8.2.3 Experimental Challenge with RGNNV extract 

Two weeks after the booster (140 dph) treatments or equivalent placebo treatments, fish 

were challenged with virus by either intramuscular injection with 50 µL RGNNV extract 

(calculated copy number 6.36 x 104 mL-1 of viral extract prepared in 2.1.6) or 50 µL sterile PBS. 

Fish were then redistributed into tanks with six fish from each of the five treatment groups 

were placed into replicated tank systems. The experimental groups are described in Table 8-1 

and illustrated in Figure 8.2. 
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Table 8-1 Summary of the experimental design indicating description of prophylactic 
measures, IM challenge, number of fish in each group and number of fish sampled at 
morbidity or within planned schedules in the absence of clinical signs of VER. 

 

 

 

Figure 8-2: Graphic illustration of experimental tank design 
Ten duplicate systems consisting of 2 x 300 litre tanks for housing fish, were equipped with 1 x 300 litre tank 
containing ~100 litres of bio-wheels with constant water flow 1200L hr-1 and constant aeration. Each tank 
contained 6 fish from each of 5 treatments. Fish were individually tagged with T bar anchor tags to indicate 
experimental treatments.  

 

8.2.4 Monitoring of fish health and euthanasia 

Fish were monitored twice daily for signs of adverse health. For the first six days post IM 

challenge, prior to the onset of clinic signs of VER, one fish from each treatment type was 

removed from each tank system and euthanased by Aqui-S overdose (Table 8.1). When fish 

At morbidity Scheduled*

PBS 60 0 10

RGNNV Extract 60 41 4

PBS 60 0 10

RGNNV Extract 60 32 9

PBS 60 0 10

RGNNV Extract 60 26 8

PBS 60 0 10

RGNNV Extract 60 54 4

PBS 60 0 10

RGNNV Extract 60 54 4

Sampling schedule

* indicates at scheduled days in the absence of clinical signs of VER

Anti-RGNNV ds RNA

Non-specific ds-RNA

Number of 

fish 
Description

 IM injection of 100µL adjuvant/PBS 1:1

 IM injection of 100µL adjuvant/PBS:dsRNA 

(RGNNV)

 IM injection of 100µL adjuvant/RGNNV capsid 

protein

 IM injection of 100µL PBS:ds RNA (RGNNV)

 IM injection of 100µL PBS:ds RNA

Experimental Group 
Challenged 50 uL 

i.m. injection

Placebo vaccine

Vaccine & Anti-RGNNV dsRNA

Vaccine
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displayed more than one sign of VER they were euthanased. Euthanasia was conducted by 

Aqui-S overdose as described in 2.2.1. Euthanased fish were weighed, frozen whole in 

individually labelled plastic bags and stored at -20°C along with their identification tags. After 

20 days post challenge, when morbidity had reached plateau phase, all surviving fish were 

collected from the RGNNV challenged tanks, weighed and consolidated into two of the 

experimental tank systems. Fish that displayed a clinical sign of VER, mostly darkened colour or 

inflated swim bladders, yet continued to feed were placed in the “clinical sign” system and fish 

that did not display signs of VER were placed in the “no clinical sign” system. The “clinical sign” 

fish were removed from the “no clinical sign” fish to avoid injury and stress. When held in the 

same tanks, the “clinical sign” fish were actively attacked and outcompeted for feed by the “no 

clinical sign” fish. The condition of fish in the consolidated systems was monitored for a further 

80 days post IM challenge. During the 80-day period the streamer tags became damaged and 

were actively removed by the fish so accurate tracking of the individual treatments was, in 

many cases not possible. After 80 days all fish in the “clinical signs” tank were euthanased and 

half of the fish in the “no clinical signs” tank were euthanased. Euthanased fish were weighed 

and stored as previously described. Thirty-five fish with “no clinical signs”, which had retained 

their tags were retained for longer term monitoring of growth. All of the retained fish were 

from one of the two vaccinated treatment groups. Tags were removed in an effort to reduce 

injury from fish trying to eat each other’s tags. Grouping of the “no clinical signs” fish was 

required because the growth and subsequent aggression and territorial behaviour of the larger 

fish prevented retaining all of the survivors under conditions that would comply with Animal 

Ethics Permits. Throughout the remainder of the project, fish with “no clinical signs” were 

euthanased when fish growth caused overcrowding and the fish could not be maintained in 

conditions that complied with the ethical treatment of animals for scientific purposes. Ten fish 

from each of the experimental groups that were challenged with PBS were euthanased at 

scheduled intervals. One fish from each group was euthanased at days 0,2,3,4, and a further 6 

fish from each group were euthanased at day 20 (Refer to Table 8-1). 

8.2.5 Nucleic acid extraction 

Total nucleic acid was extracted from eye as described in 2.1.2. 

8.2.6 Analysis by RT-qPCR using qR1T and qR2T 

Analysis by RT-qPCR using qR1T and qR2T was conducted on tissue extracts as described in 

2.1.9.  
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8.3 Results 

8.3.1 Expression of VER following experimental challenge of juvenile grouper with 

RGNNV extract and efficacy of protection of each preventative treatment. 

There was 100% survival and no adverse reaction evident in any of the five groups of fish 

challenged with PBS injection for the duration of the trial period. Within the RGNNV 

challenged groups, fish fed and behaved normally for five days post challenge. Six days post 

challenge, a small number of fish displayed some typical signs of VER. Clinical signs included 

inflation of swim bladder, lethargy, erratic swimming behavior, darkened body color and flared 

opercula. The number of fish with multiple clinical signs increased markedly between days 8 to 

10 post challenge after which morbidity plateaued (Table 8.2). Exposure to dsRNA (specific and 

non-specific design) was not effective in reducing morbidity in juvenile E.lanceolatus following 

IM challenge with viral extract. The groups that received the capsid protein within either 

vaccine formulation (vaccine alone, or vaccine + dsRNA) had reduced total numbers of fish 

displaying VER compared to the placebo vaccinated groups and the groups which received 

dsRNA in either form (Figure 8.3). By day 20 post viral challenge, the group that received 

vaccine and vaccine with anti-RGNNV dsRNA displayed 43% and 53% cumulative morbidity 

compared to the placebo vaccinated (68%) and either form of dsRNA injected (88% and 88%) 

(Figure 8.1). Observation of body mass of moribund and surviving fish from the RGNNV 

challenge indicates a trend whereby larger vaccinated fish tended to survive the RGNNV 

challenge. However, as there were small numbers of larger fish and body weight was not 

considered in the experimental design no statistical analysis was attempted.  
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Table 8-2: Number of fish sampled or euthanased during the experimental challenge 
including experimental group and day of sampling/euthanasia post challenge. 

Fish which were sampled within the project sampling plan with an absence of clinical signs of disease are indicated 

by S. Fish that were euthanased due to multiple clinical signs of VER are indicated by D.  

 

 

Figure 8-3: Cumulative morbidity of fish displaying signs of VER from each experimental 
group following IM challenge with RGNNV extract. 

Total cumulative mortality (%) at day 20 post IM injection is indicated by data labels adjacent to each 
preventative treatment group. No fish from any of the experimental groups that were challenged with PBS 
injection displayed morbidity during the term of the trial (data not shown). Fish that were sampled prior to the 
onset of clinical signs were not included in the cumulative morbidity calculations.  
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Experimental Group 

Number of fish sampled and days post challenge 

sampled 

0 2 3 4 6 7 8 9 10 11 12 13 14 15 16 19 20 

Placebo vaccine 1 1 1 1 1 3 14 11 3 3 1 2 2 0 1 0 0 

Vaccine & Anti-VNN dsRNA 1 1 1 1 2 3 9 8 3 0 1 4 0 1 1 0 0 

Vaccine 1 1 1 1 1 3 14 3 2 0 1 1 1 0 0 0 0 

Anti-VNN ds RNA 1 1 1 1 1 1 9 14 11 7 3 4 0 1 0 1 0 

Non-specific ds-RNA 1 1 1 1 1 1 13 17 12 5 0 0 2 1 0 1 1 

Day Total 5 5 5 5 4 10 59 53 31 15 6 11 5 3 2 2 1 

Sub-clinical (S) or diseased (D) S S S S D D D D D D D D D D D D D 
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8.3.2 Body weight of fish 

The body weight of fish that were euthanased with clinical signs of VER were recorded (Figure 

8.4).  

 

Figure 8-4: Scatter plot of mass of individual fish from each treatment group v days when 
euthanased due to morbidity for each day post challenge by IM injection of RGNNV. 
Notably only 3 fish that received vaccine that were over 50 g in body weight were euthanased. 

 

8.3.3 Detection and quantification of RGNNV by RT-qPCR assay 

There was no detection of RGNNV genome by either assay from any fish challenged with PBS 

injection. RGNNV genome was detected with both assays from eye of viral challenged fish 

from day two post challenge, four days prior to the onset of signs of disease, until and beyond 

day 19 post challenge (Table 8-3). Assay qR1T, which targets the RNA-1 segment had higher Ct 

values than qR2T, which targets the RNA-2 segment (Table 8-3). 

 



143 

 

Table 8-3: Average Cycle threshold value of qR1T and qR2T from analysis on Eye tissue from 
viral challenged fish. 

 

 

The calculated copy number of RGNNV genome detected per mg of eye tissue by each assay 

ranged from 0.02 which was detected at day 2 post challenge, to 8.3 x105 which was detected 

at day 11 post challenge. (Figure 8-5). Mass of eye tissue ranged from 125 mg to 347 mg 

(average 180.4 sd. 49.9 mg). Prior to onset of clinical signs, the calculated copy number was 

less than 103 mg-1. From the onset of clinical signs at day 6, the calculated copy number of 

RGNNV mg-1 of eye tissue markedly increased in both assays. Detection by qR2T was 

consistently ten-fold higher than that of qR1T (Figure 8-5). Prior to the onset of clinical signs at 

day 6, the calculated copy number mg-1 was less in the two groups exposed to vaccine 

compared to the other three treatment groups. However, during the period of peak morbidity 

calculated copy number was comparable between the five treatment groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assay 

Target 0 2 3 4 6* 7 8 9 11 13 15 19

RNA 1 qR1T nd nd 37.7 26.7 19.7 16.1 16.2 17.2 15.5 16.7

RNA 2 qR2T nd 45.0 30.0 29.5 15.3 19.0 11.6 12.9 11.3 11.9

RNA 1 qR1T nd 31.8 nd 31.7 21.1 18.8 17.3 16.5 18.0 15.5 19.3

RNA 2 qR2T nd 29.9 28.8 29.6 16.8 15.7 12.4 11.9 13.4 10.8 14.4

RNA 1 qR1T nd 36.8 34.9 34.5 nd nd 16.0 15.8 15.5 16.4

RNA 2 qR2T nd 30.8 30.4 31.4 30.7 30.9 11.5 11.4 10.8 11.8

RNA 1 qR1T nd nd 35.7 25.4 17.6 19.5 15.7 15.8 16.3 16.0 14.7 16.8

RNA 2 qR2T nd 45.0 29.7 22.6 14.8 15.2 11.1 11.4 11.7 11.4 10.8 11.8

RNA 1 qR1T nd nd 31.1 28.9 19.2 12.9 16.1 15.5 16.1 16.0

RNA 2 qR2T nd 35.8 27.3 34.9 14.9 16.4 11.6 10.6 11.0 11.3

* indicates day clinical signs of VER became evident

Days post challenge

Vaccine

Anti-VNN ds RNA

Non-specific ds-RNA

Experimental Group
Assay 

Name

Placebo vaccine

Vaccine & Anti-VNN 

dsRNA



144 

 

 

Figure 8-5: Calculated copy number of RNA 1 (Black columns) and RNA 2 (Red columns) 

segment per mg of tissue detected by qR1T and qR2T assay for each experimental treatment 

group (ds-RGNNV RNA; dsRNA, Vaccine, Vaccine +ds RGNNV RNA and Placebo) v days post 

challenge by IM injection.  

 

8.4 Discussion 

The application of RT-qPCR to quantify the detection of RGNNV genome segments RNA 1 and 

RNA 2 in response to IM challenge with RGNNV extract following exposure to experimental 

prophylactic measures was discussed within this chapter.  

The two RT-qPCR assays, qR1t and qR2T displayed similar sensitivity to detect RGNNV genome. 

Both assays detected RGNNV genome segments from day 2 post-challenge albeit with a high 

cycle threshold value (Ct) and very low calculated copy number per mg tissue. The frequency 

of detection and calculated copy number per mg of eye tissue from both assays dramatically 

increased in all experimental groups from day 6 post challenge, where clinical signs became 
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evident. Detection of RGNNV before the clinical disease was reported previously from 

experimental challenges of juvenile sea bass after day one post-infection (Dalle Valle et al., 

2005). Souto et al. (2018) reported calculated copy number of RNA 1 and RNA 2 segments by 

RT-qPCR in vitro of log 105.5-8.5 copies mL-1 within 24 hours post-inoculation yet an absence of 

cellular pathological effect (CPE) until after 48hours. 

Although RT-qPCR has significantly improved the ability to quantitatively determine viral 

replication and better understand the expression of VER, few publications have applied RT-

qPCR for a purpose other than detection in disease outbreaks. Comparison of the levels of 

RGNNV detection associated with disease previous reports is difficult. Many reports that have 

applied RT-qPCR to experimental infection with NNV have presented results in different 

formats including cycle threshold (Ct) value (Hodneland et al., 2011 and Panzarin et al., 2010, 

Agnihotri et al., 2015), copies mL-1 (Kim et al., 2018), copies per 200ng total RNA (Dalle Valle et 

al., 2005), copies per 4 µg total RNA (Lopez-Jimena et al., 2011), log10 viral copies ( Hick & 

Whittington, 2010) or log10 viral copies g-1 brain tissue (Souto et al., 2018). Only one of the 

prementioned studies were conducted on groupers (Kim et al., 2018).  

In this experiment, average Ct values from eyes collected from the onset of clinical signs, days 

6 to day 19 post challenge were 16.8 (s.d 1.67) (RNA 1) and 12.8 (s.d 2.14) (RNA 2) 

respectively. Brain samples from clinically diseased grouper had a Ct value of ca 10 (RNA 2) 

(Agnihotri et al., 2015), sea bass had a median Ct value of ca 15.0 (RNA 2) (Hodneland et al., 

2011) and a range of Ct value from 9.91 to 18.6 (RNA 2) (Parnzarin et al., 2010). Other authors 

report calculated copy numbers of 109 mL-1 (RNA 1) to 106 mL-1 (RNA 2) (Kim et al., 2016) or 105 

(RNA 1) and 107 (RNA 2) per 200ng total RNA (Dalla Valle et al., 2005).  

In this investigation, although both assays detected the RGNNV genome, the calculated copy 

number of qR1T was slightly less than qR2T. An increased calculated copy number of RNA 2 

compared to RNA 1 has been noted previously where the number of copies of RNA 1 was 100 

times less than those of RNA 2 from the brain of sea bass from days 3 to 14 post experimental 

challenge (Dalle Valle et al., 2005). It is possible the differences in levels of detection are 

related to variable transcription of the RNA 1 and RNA 2 gene segments as infection 

progresses. As RNA 1 encodes the mRNA for the RNA-dependant RNA polymerase, the 

replication and translation of RNA 1 is required for transcription of RNA 2. The time course of 

sample collection in this investigation may not be sufficient to resolve shorter-term variation in 

transcription of RNA 1 and RNA 2 during the early stage of progression towards disease. The 

reduced efficiency in assays that detect RNA 1 may also relate to secondary structure 

interaction between RNA 1 and its translated form, Protein A, that contribute to the formation 
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of the viral replication complex, termed spherules, which are essential for nodavirus 

replication (Kopek, Settles, Friesen & Ahlquist 2010). The formation of the replication complex 

in the mitochondria, serves to protect the naked RNA 1 genome and facilitate viral replication. 

In contrast, RNA 1 was detected at much higher quantities (102-104) than RNA 2 in a variety of 

tissues from H.septemfasticatus following experimental challenge (Kim et al., 2016).  

A range of criteria are applied to process of validation of an assay, one of which, the operating 

range of the assay, can be difficult to demonstrate beyond application of disease diagnosis. 

Specifically, determining the suitability of an assay to accurately and precisely detect NNV in 

sub-clinical carriers can be difficult because it requires access to experimental challenged 

animals where the infection status of the samples is pre-determined. In this study, NNV was 

detected by both RT-qPCR assays after IM challenge, prior to, and following the expression of 

disease symptoms. Similar results were reported by Dalle Valle et al. (2005) whereby RGNNV 

was detected within 1-day post challenge and clinical signs became evident 7 days post 

challenge. In this study NNV was detected at 2 days post challenge and clinical signs of VER 

were evident 6 days post challenge. NNV continued to be detected by RT-qPCR up to 80 days 

post IM challenge (data not shown). Groupers that were assigned to the non-clinical signs tank 

did not succumb to VER during an 18-month holding period (data not shown).  

The rapid progression of disease observed in this report agrees with numerous experimental 

challenges in other fish species that indicate mortality from day ~5-10 post infection 

(Hodneland et al., 2011; Lopez-Jimena et al., 2011). Hodneland et al. (2011) reported 84% 

mortality of IM injected sea bass within 10 days post infection. Dalle Valle et al. (2005) 

reported initial lethargy in sea bass 7 days post infection, followed by death of fish at 9, 10- 

and 11-days post infection and an absence of disease in survivors at 13- and 14-days post-

infection. Mortality in juvenile E. septemfasciatus (reclassified as Hyporthodus 

septemfasciatus) between days 6 to 9 were observed following challenge with a RGNNV titre 

approximately 105-6 TCID50 (Cho et al., 2017; Kim et al., 2018). 

 

The prophylactic measures had varying effect on the cumulative morbidity of RGNNV 

challenged fish. Experimental groups that received vaccines containing recombinantly 

expressed RGNNV capsid protein displayed reduced levels of morbidity compared to fish that 

received placebo vaccine or dsRNA constructs. Modest reductions in the cumulative morbidity 

were observed in the vaccinated fish (43-53% morbidity) compared to the other experimental 

therapies (placebo 68% morbidity and dsRNA 88% morbidity). Although the presentation of 

dsRNA constructs provided no protection against the development of VER following exposure 
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to RGNNV extract in this experiment, the technology should not be discounted as a tool to 

better understand and manage VNN. The application of dsRNA as a therapeutic has been 

reported for the prevention of viral diseases of crustaceans (Owens et al., 2014). Although the 

technology faces a number of hurdles there is at least one US patent claiming successful 

application of dsRNA to prevent disease in an aquaculture species namely for the prevention 

of Infectious Myonecrosis Virus in shrimp and other invertebrates (Loy et al.US patent No. 

US8822427B2). This project attempted delivery of naked dsRNA, which was not protected 

from degradation. The delivery of unprotected dsRNA has been reported previously (Owens et 

al., 2014; ). One of the main problems in the development of siRNA for therapeutic use is the 

need for a delivery method that prevents the degradation of siRNAs by cellular nucleases 

(Chernikov et al., 2019). Adjustments to the delivery, concentration, target sequence and 

duration of priming may lead to improvements in the efficacy of dsRNA prevent VER. 

Considering the range of variables that require refinement in dsRNA, a more ethical approach 

investigating dsRNA as a therapy would be to refine the target design in cell culture systems 

before further trials are commenced in fish. Approaches using dsRNA to knockdown fish 

viruses have been successfully applied to prevent the expression of the major capsid protein of 

the tiger frog Iridovirus in fathead minnow cells (Xie et al., 2005). However, further work with 

cell culture systems are beyond the resource and short time frame of this study. 

The modest reduction in morbidity in vaccinated fish compared to unvaccinated fish was a 

promising result. The results suggest that some level protection is provided by the vaccine. 

However, the protection wasn’t consistent across the vaccinated cohort.  

Body mass was also noted to be variable within the experimental groups. Very few vaccinated 

fish with a body mass over 50g displayed morbidity following challenge with viral extract. 

There has been no reported effect of fish size on the efficacy of vaccination in grouper. There 

is a large range in body mass across the studies that have investigated vaccination against NNV 

in grouper (Table 8-4) but so far, no statistically analysed effect of body weight on vaccination. 

The design of this experiment prevents robust statistical analysis of effect of body weight on 

vaccination.  
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Table 8-4 Details of species, age and body weight from previous studies involving vaccination 
of grouper against NNV or bacteria. 

 

 

Within the literature there is very little information about the development of a competent 

humoral immune system in grouper in relation to age or body mass. Mao et al. (2012) 

reported with detectable antibodies to VNN and the oval shaped thymus of 4-month old (~112 

dph) fish was clearly visible and there were amounts of T lymphocytes present. However, no 

protective functionality of the antibodies or T-lymphocytes was demonstrated. The differential 

morbidity of vaccinated fish may be related to factors other than body weight. However, few 

of those factors can be investigated with the available data.  

 

8.5 Conclusion 

The aims of this chapter were met in the following manner: 

 

 

 

Species Age (dph) body mass (g)

E.coioides  from 1 to 18 dnp Lin et al. 2007

E.coioides dnp 0.36 Lai et al., 2014

E.lanceolatus dnp 20 Liu et al., 2006

E.malabaricus dnp 20 Liu et al., 2006

E.septemfasciatus 28 Tanaka et al. 2001

E.coioides dnp 33 Mo et al., 2019

E.coioides dnp 32 Huang et al., 2014b

E.coioides dnp 35 Atujona et al., 2019

E.septemfasciatus dnp 75 Yamashita et al. 2009 

E.septemfasciatus dnp 80 Oh et al. 2012

Details of Groupers in the Studies
Reference

dnp = detail not provided

 The efficacy of vaccine and dsRNA preparations to prevent infection and disease in 

juvenile E. lanceolatus following IM challenge with RGNNV viral extract were 

assessed. 

 The performance of the qR1T and qR2T assays to detect RGNNV from grouper 

derived brain and eye tissue following experimental challenge by IM injection with 

RGNNV. 

 RT-qPCR analysis detected RNA 1 and RNA 2 NNV segments from grouper tissues 

prior to the onset of disease, during the period of peak morbidity and for a period 

when morbidity numbers had plateaued. 
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CHAPTER 9. ROLE OF PARENTAGE IN SURVIVAL FROM VIRAL 

ENCEPHALOPATHY AND RETINOPATHY IN  

EPINEPHELUS LANCEOLATUS 
 

Background  

 Initial attempts with vaccination led to a modest improvement in survival of E. 

lanceolatus following RGNNV challenge.  

 Grouper are aggregative spawners. The juveniles used in the experimental 

challenge were produced in a mass spawning event with 7 potential parent 

contributions.  

 Evidence of genetic resistance to NNV is reported in some fish species. 

 There is very limited evidence of genetic resistance to NNV in grouper. 

 Modest efficacy of the vaccine to protect against VER could be related to 

parentage rather than a protective effect of vaccination. 

 

Aims of this Chapter 

 Investigate if vaccinated fish that survived RGNNV (resistant) have a different 

parental assignment than fish that succumbed to VER disease (susceptible) 

following RGNNV challenge. 
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9.1 Introduction 

The juvenile E.lanceolatus used in the trial described in Chapter 8 were derived from a mass 

spawning containing eight parent fish. It is possible the differential survival of vaccinated fish 

compared to the other experimental groupers was influenced an unknown parentage-linked 

genetic element. 

Genetic selection for resistance to disease is often pursued as a management strategy to 

reduce the impact of disease outbreaks in aquaculture. Successful breeding of families with 

resistance to infectious pancreatic necrosis virus (IPNV), salmon alphavirus and infectious 

salmon anaemia virus (ISAV) have been reported in salmon aquaculture (Yanez et al., 2014). 

Previous studies with grouper species identified a relationship between major 

histocompatibility complex (MHC11) polymorphism and resistance to Singapore grouper 

Iridovirus (SGIV) in 40-60g E. coioides whereby allele (EPOC-DBB*1001) (NCBI JN980423) was 

significantly associated with resistance (Min et al., 2016).  

There is limited evidence of genetic resistance to NNV in grouper species. Although there are 

rumoured reports of cross-species hybrid groupers being less susceptible to VNN, there are no 

published reports identifying genetic markers for resistance to VNN in hybrids or within a 

single grouper species. In L.calcarifer, a single study with larval fish identified five significant 

quantitative trait loci (QTL) for resistance to VNN which accounted for 2.2 to 4.1% reduced 

calculated copy number and 2.2-3.3 % survival time as phenotypic traits that indicated 

resistance (Liu et al., 2016). The authors proposed genetic resistance to NNV in L.calcarifer to 

be complex and controlled by the accumulation of small effects of many loci (Lui et al., 2016). 

A significant improvement in VNN resistance was noted in a cohort of 3-month-old L.calcarifer 

that possessed a variant (410_417) in the 3’ untranslated region (UTR) of Receptor-

transporting protein 3 (Rtp3) (Liu et al., 2017). Approximately 22% of fish that survived water 

bath challenge to RGNNV displayed the variant 410_417 compared to approximately 13% of 

the fish that succumbed to VER (Liu et al., 2017). Unfortunately, the samples were collected 5 

days post challenge when mortality across the cohort reached 50%. In numerous studies, 

including that indicated in Chapter 8, mortality in susceptible cohorts typically exceeds 50% 

and consequently, a number of the fish included in the “survival group” may have succumbed 

to infection within a further 1- or 2-days post sampling. An analysis of survivors after the 80% 

mortality phase, or when the mortality curve reached a plateau stage, would have provided 

greater confidence in the significance of this allele.  

Selective breeding programs for highly pathogenic diseases typically rely on binary assessment 

of susceptibility and resistance via disease-challenge testing (Houston 2017). The earliest 
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studies phenotypically determined “susceptible” as those individuals that succumbed to 

disease and “resistant” as those that survived challenge. More recently, determination of 

“resistance” has been refined to indicate a blocking of reproduction of the pathogen, namely 

survival and an absence of detection of the pathogen (Yanez et al., 2014). Survivors, where the 

pathogen can be detected are termed “tolerant” (Yanez et al., 2014). 

Although it was not the intent of the challenge trial discussed in Chapter 8, the production of 

the juveniles used in this project from a mass spawning event may have inadvertently 

introduced a variable genetic element to the vaccine efficacy experiment. As a precautionary 

measure, prior to further assessment or attempted optimisation of the vaccination process, 

some assessment of the parentage of the experimental challenge fish is warranted. 

Fortunately, Bright et al. (2016) published multi locus sequencing analysis (MLSA) using 

microsatellite markers to determine parentage based on E.lanceolatus from The Company One 

broodstock. The aim of this investigation is to apply the markers of Bright et al. (2016) to 

determine the parentage of a selection of the vaccinated fish that were susceptible to RGNNV 

and those that survived RGNNV challenge. 

9.2 Materials and Methods 

9.2.1 Source of E.lanceolatus for family assignment 

All the experimental challenge fish used in the family assignment were from the vaccinated 

group. Nine of the experimental challenge fish that were euthanased with signs of VER were 

included in the analysis as the susceptible group. Six of the experimental challenge fish, which 

did not display signs of VER, were euthanased at day 20 post challenge after the mortality 

curve had plateaued from the peak morbidity period between days 7 to 10 post challenge 

(Figure 7.2). As one of the aims of the efficacy investigation was to determine long term 

survival, only a small number of fish were euthanased for this investigation. Although 

parentage assignment could be conducted on fin clips, samples of brain or eye were required 

to assess the RGNNV status and determine if the survivors were resistant or tolerant to 

infection.  
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9.2.2 Nucleic acid extraction 

Total nucleic acid was extracted from eye tissue of the experimental challenge fish as 

previously described in 2.1.2. Total nucleic acid was extracted from fin clips from the adult 

grouper that contributed to the experimental challenge cohort. Fin clips were extracted as 

previously described in 2.1.2.  

 

9.2.3 Quantitative RT-PCR to detect RGNNV 

Quantitative RT-PCR applying the qR2T assay to detect RGNNV was conducted as previously 

described in 8.2.6. 

 

9.2.4 Confirmation of suitability of family assignment primers.  

Eight primer pairs were selected for parentage assignment by polymorphic microsatellite 

analysis (Bright et al., 2016). Prior to submission to AGRF a preliminary assessment of primer 

suitability was conducted against the six nucleic acid extracts from fish that did not display 

signs of VER by applying touchdown PCR described by Bright et. al (2016). Briefly, PCR was 

conducted on a Maxygene thermal cycler (Axygen) in a 20 µL reaction with 2.5 µL of TNA 

extract and 0.5 µM each primer in a MyFi™ DNA polymerase Mix according to the 

manufacturer’s instructions (BIO-21117 Bioline, NSW). The thermal cycle profile consisted of a 

3 min incubation at 95⁰C followed by 20 cycles of 30 s denaturation at 95⁰C, 30 s of annealing 

temperature 62⁰C (decreasing by 0.5 ⁰C per cycle) and 45 s extension at 72⁰C followed by 15 

cycles of 30 s denaturation at 95⁰C, 30 s of annealing temperature 50⁰C and 45 s extension at 

72⁰C; and a final extension step of 10 min at 72⁰C.  
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Table 9-0-1: Details of primer sequences applied to MLST analysis to determine family 

assignment 

 

9.2.5 Gel electrophoresis 

PCR amplification was confirmed by agarose gel electrophoresis as previously described in 

2.5.3. The gels were loaded with 20 μL of PCR product and subjected to 60 min at 100 volts 

with a Hyper Ladder™ 50bp DNA ladder (BIO-33054, Bioline, NSW) (1 % gel). The gels were 

visualised and photographed on a UV trans illuminator.  

 

9.2.6 Family assignment by microsatellite markers 

Following confirmation of suitability of primers, total nucleic acid extracts from 7 parent and 

15 experimental challenge fish, were submitted to the Australian Genome Research Facility 

(AGRF) for fine mapping and custom genotyping services applying the primers of Bright et al. 

(2016). Results of allele counts for each marker were provided by AGRF. 

 

 

 

 

Set Id. Locus Orientation Sequence (5'-3') Size Tm 

F TGT AAA ACG ACG GCC AGT TTT GCC TTT CCT AGA CTT AT

R CAT CAC ATG ATT CCT TTC TAT

F TTC CAC AGC AAT TAG CAG CA

R TTT CCT CCC ACA GTT CCA AAG

F TCA GCA AGC ACT TTT TGG AC 

R TGC TTC CTT CAG TGC ATC AG

F TGC CCC TCC GAC AAC TAA TA

R AAC GGG ACT TGT GGT TTT TG

F TGT AAA ACG ACG GCC AGT GCT CGA AGA TGA GCT GGA AG

R AAG GTG CTG CTC CTG CTT T

F TGT AAA ACG ACG GCC AGT ACC ATG CAT AAA TGC CCA CT

R GCT CTC TGT CTC GCA AGG AT

F TGT AAA ACG ACG GCC AGT TCT GTG CTG ATG CCG ACT AC

R CCG TGT TTG CAC ACT CTC TG

F TGT AAA ACG ACG GCC AGT TCA ATG TGT GCA AAC GCT GTA

R CAA CAT GGC CGA AAC CTA AT

C

B

G

Source of Al l  primer  sequences  Bright et. a l . (2016)

Tm, anneal ing temperature of Primer (°C)

H

A

F

E

D

60

58

50

56

56

61

60

148-162

146-200

184-218

An8

An25

An31

ELMS007

ELMS009

ELMS019

An2

An4

61

325-341

257-300

377-385

226-250

192-210
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9.3 Results 

9.3.1 Gel electrophoresis to confirm primer suitability 

The primers of Bright et al. (2016) amplified products in the six extracts used in the pilot 

assessment. Refer to Figure 9.1 for image of gel electrophoresis. 

 

Figure 9-1: Gel electrophoresis image of amplicons 

Produced by application of the eight primers A to H) of Bright et al. (2016) on extracts from the six fish (Fish 1 to 

6) that did not display signs of VER to determine family assignment in E.lanceolatus. Refer to Table 8.1 for primer 

sequences. 

 

9.3.2 Quantitative RT-PCR for the detection of RGNNV genome. 

All samples collected from juvenile fish were positive for the detection of the RGNNV genome. 

Cycle threshold values ranged from 23 to 30 (Table 9.2). The RT-qPCR for detection of RGNNV 

RNA 2 was positive for all samples indicating, that the fish which did not succumb to VER 

should be considered tolerant rather than resistant to infection.  
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Table 9-2: Family assignment and qR2T Cycle threshold value (Ct) of vaccinated fish that 
displayed clinical signs or succumbed to VER following IM challenge to RGNNV extract. 

 

9.3.3 Family assignment by microsatellite markers 

Allele counts from each sample for each marker were provided by the Australian Genome 

Research Facility (Appendix 2). Five reactions out of 175 failed to amplify. Family assignment 

was performed based on allele sizes generated. The data provided by Markers An31 (primer 

set G) and Elms19 (primer set F) had very little resolution power and were not considered in 

the family assignment (Appendix 2). Family assignment analysis indicated 4 out of 6 fish that 

did not display clinical signs of VER were from Male #2 and Female #2. The remaining 2 fish 

that did not display clinical signs of VER were from Male #2 and Female #3 and Male #2 and 

Female #4. Within the susceptible fish 7 out of 9 fish had the same parentage assignment as 

those of the tolerant group.  

9.4 Discussion 

Although the experimental challenge study was not intended as an investigation into genetic 

selection for disease, due to the aggregate spawning behaviour of grouper, the modest 

survivals evident in the vaccinated groups of RGNNV challenged animals may have related to a 

different parentage rather than an efficacy of the vaccine i.e. a genetic trait. Although some 

correlative studies investigating genetic traits and survival to NNV have been reported in other 

species, no genetic resistance to NNV has been demonstrated in groupers. Studies linking 

genetic resistance to VER in other species have indicated the mechanisms of resistance are 

likely complex (Liu et al., 2016). This also applies generally to research reporting on genetic 

Sample Id. Clinical disease/No clinical signs Female Male

Fish-1 No clinical signs 27 F3 M2

Fish-2 No clinical signs 27 F2 M2

Fish-3 No clinical signs 27 F2 M2

Fish-4 No clinical signs 30 F2 M2

Fish-5 No clinical signs 27 F2 M2

Fish-6 No clinical signs 30 F4 M2

Fish 7 Clinical disease 24 F3 M2

Fish 8 Clinical disease 25 F2 M2

Fish 9 Clinical disease 23 F3 M2

Fish 10 Clinical disease 23 F2 M2

Fish 11 Clinical disease 23 F3 M3

Fish 12 Clinical disease 25 F3 M1

Fish 13 Clinical disease 22 F4 M2

Fish 14 Clinical disease 25 F2 M2

Fish 15 Clinical disease 24 F3 M2

Parentage assignment
qR2T Ct 

Sample information
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resistance to viral disease in salmon (Yanez et al., 2014). Genetic resistance to disease typically 

involves detection of combinations of traits that are complicated to measure (Yanez et al., 

2014). The interaction between multiple immune mechanisms, viral variants and 

environmental fluctuation make identification of traits that link to disease resistance very 

difficult (Yanez et al., 2014). Investigation of such traits was both beyond the scope of this 

project and restricted by a void in the understanding of mechanisms of the grouper immune 

system and its differential development with growth. Nonetheless, working within the 

limitations of knowledge and resources available at the time of this study, investigation 

comparing parentage of the vaccinated fish that were susceptible to RGNNV (euthanased due 

to clinical disease signs) against those animals that were tolerant of RGNNV (survivors) was 

conducted. Quantitative RT-PCR to detect RGNNV indicated the survivor were positive for the 

detection of NNV genome and were hence considered a tolerant phenotype for parentage 

analysis. Working with the MLST markers Bright et al. (2016) applied to successfully assign 

parentage to 574 offspring from a broodstock cohort from The Company One stock, this study 

investigated parentage of tolerant v susceptible individuals. The parentage assignment was 

comparable between both cohorts whereby two individuals from Male #2 and Female #2 

dominated both the tolerant and susceptible groups. Within the restriction of the small 

number of samples analysed, the results of the parentage assignment were in agreement with 

those observed by Bright et al. (2016) whereby, a dominant male sired the majority of 

offspring and although polygamous mating was observed, the same dominant male 

predominantly spawned with a particular female. Whilst Bright et al. (2016) reported all of the 

markers except ELMS7 were useful for parentage assignment, this study noted that ELMS19 

also had poor power in determining parentage assignment. This study demonstrates the 

modest improvements in survival following challenge with RGNNV in the vaccinated groups 

that were described in Chapter 8 were not simply caused by differential parentage within the 

experimental cohort. Further investigation into the optimisation of the vaccine and vaccination 

strategy to prevent VER in E.lanceolatus is therefore supported.  

 

 

 

 

 

 



157 

 

9.5 Conclusion 

 

The following outcomes and conclusions were described in this chapter: 

 

  

 RT-qPCR detected RGNNV in the eye of fish that survived RGNNV and those that 

succumbed to VER following IM challenge. 

 Surviving fish are therefore considered tolerant rather than resistant to infection by 

RGNNV. 

 Results of Multilocus sequence analysis indicate the fish that were tolerant to RGNNV 

following IM challenge were of the same parentage as fish that were susceptible to 

RGNNV following IM challenge. 

 The modest improvements in survival observed in vaccinated fish were not due to 

variable parentage within the cohort produced to due to the grouped spawning 

production of the experimental cohort. 

 Further investigation into the efficacy of vaccination to prevent VER following exposure 

to RGNNV is validated. 
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CHAPTER 10.  TESTING EFFICACY OF EXPERIMENTAL VACCINE TO 

PREVENT VER FOLLOWING CHALLENGE WITH NERVOUS 

NECROSIS VIRUS IN LARGER FISH 

Background  

 Initial attempts with vaccination led to a modest improvement in survival of 

E.lanceolatus following RGNNV challenge.  

 Some fish species display age related resistance to VER. 

 Successful vaccination relies on the fish having attained a competent adaptive 

immune system. 

 Many of the vaccinated fish that were tolerant of RGNNV challenge were a larger 

body weight than the fish that succumbed to disease. 

 Delaying vaccination and challenge until fish are slightly larger (and therefore 

older) may improve the efficacy of vaccination as a strategy to prevent VER. 

 The time frame for approval of a recombinant expressed capsid protein vaccine is 

likely to take a number of years. 

 An emergency/research permit vaccine could be obtained in a shorter time frame 

based on heat-killed cell culture produced antigen. 

 

Aims of this chapter  

 Investigate if a refined vaccination strategy, on larger fish >50g, improves efficacy 

of vaccination to prevent VER. 

 Investigate if heat-killed cell culture derived vaccine on larger fish is an effective 

measure to prevent VER.  
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10.1 Introduction 

The Australian Pesticides and Veterinary Medicines Authority (APVMA) regulates the 

registration of veterinary vaccines in Australia (https://apvma.gov.au/node/1108). The 

registration process is lengthy, and in some cases, requires demonstration of compliance 

across multiple authorities. Vaccines containing cell-culture derived antigen must be prepared 

in compliance with Australian Government Department of Agriculture and APVMA (pers. 

comms from APVMA). Vaccines containing expressed recombinant antigen must address the 

standards regulated by Office of the Gene Technology Regulator (OGTR) and APVMA (pers. 

comms from APVMA). Although the path to registration for commercial production is long, 

there is provision for the registration of an experimental vaccine to provide interim or 

emergency protection (https://apvma.gov.au/node/1108). 

Experimental vaccines are typically autogenous vaccines prepared from a pathogen isolated 

from a specific location and administered to other stock at risk within the same location 

(https://apvma.gov.au/node/1108). The several years that may be required to register a 

vaccine within the APVMA is not compatible with the immediate need for the current grouper 

aquaculture industry to prevent the economic losses caused by VER outbreaks in pond grow-

out systems. For reasons of upscale and difficulty with biosecurity compliance requirements, a 

cell culture-derived vaccine is not the preferred vaccine format for future commercial 

preparations; however, if effective, the format provides an interim measure to prevent losses 

due to VER for the period required to meet compliance for commercial registration of 

expressed recombinant capsid protein vaccine. Therefore, this study investigated an 

autogenous cell culture-derived vaccine for effectiveness to prevent VER. 

The observation of increased survival in larger vaccinated fish described in Chapter 8 may be 

due to several factors, one of which is the larger fish were in better condition and hence 

responded to vaccination more efficiently. The absence of improved survival in the non-

vaccinated fish of similar body weight in the experimental trial (Chapter 8) indicates that 

survival following challenge was not a bodyweight-viral dose relationship. Although 

understanding the mechanism between bodyweight and vaccination efficacy is not within the 

scope or resource budget of this study, further investigation into a relationship is possible.  

Researchers that apply experimental procedures to animals are obligated to ensure the 

ethical, humane and responsible use of animals in their care. One aspect of that obligation is 

to minimise the number of animals used (NHMRC, 2013). To minimise the number of fish used 

within experimental processes, testing the efficacy of the autogenous vaccine on juvenile 

E.lanceolatus was combined with testing the efficacy of the recombinant vaccine on larger 
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body weight fish. This chapter investigates the efficacy of vaccination, using a heat-killed viral- 

cell culture antigen or expressed recombinant capsid protein as antigen to prevent VER in 

juvenile grouper with a minimal body weight of 50g. 

10.2 Materials and Methods 

10.2.1 Experimental E.lanceolatus 

Juvenile E.lanceolatus, (116 days post hatch), were provided by a commercial supplier, Fin Fish 

Enterprises (Australia). Two hundred fish, produced from a single mass spawn were used in the 

investigation. Fish were housed under the same conditions as described in section 2.3, 

including at a water temperature range of 24-28°C, until all fish had a body weight exceeding 

50g.  

10.2.2 Expressed recombinant viral capsid Vaccine production 

The vaccine produced from expressed recombinant protein was prepared as described in 

section 6.2.7. For this trial the purified protein was retrieved after approximately 9 months 

storage at -80°C. 

10.2.3 Heat-killed cell culture derived vaccine production 

 Heat-killed cell culture derived vaccine (HK-vaccine) was prepared from 2 x 15 ml E 11 striped 

Snakehead whole fry tissue (SSN) cell cultures (Nakai, European Collection of Authenticated 

cell cultures Sigma 01110916) inoculated with RGNNV extract (Iwamoto et al., 1999 and 2000). 

Briefly, one ml of the RGNNV extract was inoculated onto two confluent monolayers of SSN-

E11cells that were prepared in 15cm2 cell culture flasks (Corning), supplemented with Leibovitz 

L-15 media containing glutamine (Sigma L1518) and 10% Foetal Bovine Serum (Sigma F6178). 

The flasks were incubated at 28°C for 3-4 days, until CPE extended across the entire 

monolayers. The cultures were then frozen and thawed 3 times and filtered through 0.45µM 

and 0.22µM filters. The culture supernatant was stored in a sterile 50ml tube at -20°C. RT-

qPCR analysis to detect NNV was conducted on a total nucleic acid extract prepared from a 

400µl aliquot of supernatant as described in section 2.2.9. NNV was detected by the qR1T PCR 

with a Ct value of 10.38 which equates to a calculated copy number of 2.29 x 108 copies mL-1. 

The viral culture supernatant was subjected to 40-minute incubation at 60°C (Labnet) to 

deactivate the virus (Frerichs et al., 2000). Vaccine was prepared by mixing 15ml of the 

deactivated viral culture with 15ml of Fruends’ incomplete adjuvant and homogenising the 

mixture as previously described for the other vaccine formulations (Section 6.2.7). Prior to 

commencement of the experiment a pilot study was conducted to confirm no adverse impact 

of the heat-killed cell culture vaccine. Fourteen days after delivery of the grouper, ten 
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groupers were anaesthetised, injected with 100µl of HK-vaccine (as described in section 2.3.3 

and observed for 14 days to monitor any adverse effect of vaccine. After 14 days of no notable 

adverse reaction, the experiment was commenced as described below. The ten fish were 

maintained throughout the duration of the experiment, however, no longer term effects of 

vaccine were observed. 

10.2.4 Vaccination of Fish 

One hundred and eighty fish were divided into 3 experimental treatment groups namely: (1) 

Placebo vaccinated with Adjuvant + PBS, (2) vaccinated rCP vaccine), (3) vaccinated with HK-

vaccine. Fish were anaesthetised and injected with vaccines as described previously (section 

2.3.2 and 2.3.3). A timeline of procedures and description of the experimental procedures is 

outlined in Tables 10.1 and 10.2. Briefly, fish were vaccinated four weeks after receipt, with 

100µL vaccine by IM injection by the same protocol described in section 2.3.3, followed by a 

booster four weeks after vaccination (Table 10-1). A further ten fish were included as negative 

controls. The negative control fish were injected (IM) with placebo vaccine following the same 

protocol and schedule as the experimental vaccine group fishes. 

 

Table 10-1: Timeline of age of fish days post hatch at acclimation, vaccination, booster and 
challenge with viral extract. 
 

  Acclimation Vaccination Booster Challenge 

Days of this experiment 0 28 56 70 

Age of fish (days post hatch) 116 144 172 186 

 

 

10.2.5 Experimental Challenge with RGNNV extract 

Two weeks after the booster (186 dph) vaccine or equivalent placebo vaccine, fish were 

anaesthetised, weighed and challenged with either intramuscular injection with 50 µL RGNNV 

extract (calculated copy number 6.36 x 104 mL-1 of viral extract, prepared in 2.2.6) or 50 µL 

sterile PBS. One hundred and eighty fish were challenged with the viral extract described in 

section 2.3.3. The ten negative control fish, that were vaccinated with placebo vaccine 

(adjuvant: PBS 1:1 ration), were challenged with IM injection of PBS following the same 

protocol as the NNV challenged fishes. Ten fish from each vaccine type that were challenged 

with viral extract were then distributed into tanks (n=30 fish per tank) (Table 10-2 & Figure 10-

2). The negative control, PBS challenged fish were held in a separate recirculation system 
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within the same experimental room. The tank system of the negative control fish was a 

duplicate system of the fish challenged with viral extract (Refer to section 2.3.1). 

 

Table 10-2: Summary of experimental design indicating experimental groups, description, 
number of fish in the trial and number of fish sampled at morbidity or at scheduled time 
points during the experimental trial 

 

 

Figure 10-1: Diagram depicting experimental tank system. Three replicate systems each consisting of 

dual 200 litre tanks on a co-circulation system each containing 10 fish from each experimental group (placebo 
vaccine= blue fish; recombinant capsid protein vaccine= yellow fish; Heat-killed cell-culture vaccine= pink fish) 
making a total of 30 fish in each tank. The tanks on the top row were sampled at morbidity or at the end of the 
trial period and the tanks on the bottom row were sampled on schedule weekly, at morbidity or at the end of the 
trial period.  

 

10.2.6 Monitoring of fish health and euthanasia 

Fish were monitored twice daily for signs of adverse health. Fish were euthanased when more 

than one sign of VER was observed. In the absence of signs of disease, a fish from each of the 

experimental groups was euthanased every seven days for the first three weeks of the study. 

Euthanasia was conducted by Aqui-S overdose as described in 2.2.3. Euthanased fish were 

weighed, frozen whole in individually labelled plastic bags and stored at -20°C along with their 

identification tags. After 40 days post challenge all fish were euthanased with an overdose of 

At morbidity Scheduled*

Placebo vaccine  IM injection of 100µL adjuvant/PBS 1:1 RGNNV Extract 60 57 3

Recombinant Capsid protein 

vaccine (rCP)
 IM injection of 100µL adjuvant/ rCP-RGNNV 1:1

RGNNV Extract
60 6 54

Heat-killed cell culture vaccine 

(HK)

 IM injection of 100µL adjuvant/heat-killed cell 

culture 1:1 RGNNV Extract
60 5 55

Placebo vaccine (Negative 

control)
 IM injection of 100µL adjuvant/PBS 1:1

PBS
10 0 10

* indicates at scheduled days in the absence of clinical signs of VER

Experimental Group Description
Challenged 50µL i.m. 

injection

Number of 

fish 

Sampling schedule
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Aqui-S (as described section 2.2.3). The clinical state of all fish was recorded at the time of 

euthanasia.  

 

10.2.7 Nucleic acid extraction 

Total nucleic acid was extracted from a whole eye from each euthanased fish as described in 

sections 2.2.1 t0 2.2.3. Fish that were euthanased on schedule and at morbidity were 

subjected to nucleic acid extraction and quantitative RT-PCR. 

 

10.2.8 Quantitative RT-PCR to detect RGNNV 

Quantitative RT-PCR applying the qR1T and qR2T assay to detect RGNNV was conducted as 

previously described in section 8.2.6. 

 

10.3 Results 

10.3.1 Expression of VER following experimental challenge of juvenile grouper with 

RGNNV extract and efficacy of protection of each prophylactic measure. 

The average body weight (abw) of groupers on the day of challenge was 103.5 g (𝜎 20.39 g) 

(data not shown). There was 100% survival and no adverse reaction evident in any of the 

groupers challenged with PBS injection. Within the NNV challenged groups, fish fed and 

behaved normally for six days post challenge. Seven days post challenge, a small number of 

fish displayed some typical signs of VER. Clinical signs included inflation of swim bladder, 

lethargy, erratic swimming behavior, darkened body color and flared opercula. The number of 

fish with multiple clinical signs increased markedly between days 8 to 10 post-challenge after 

which morbidity plateaued (Figure 10-2). The groups that received either vaccine formulation 

had reduced total numbers of fish displaying VER compared to the placebo vaccinated groups 

(Figure 10.2). By day 20 post viral challenge, 17% (HK-vaccine) and 20% (rCP-vaccine) of the 

vaccinated fish succumbed to VER compared to 93% of the placebo vaccinated (Figure 10.2). 

To remove any impact of scheduled euthanasia on measurements of survival or morbidity, the 

morbidity curves were only calculated from the tanks that were sampled in response to 

morbidity (n=30 each experimental group).  
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Figure 10-2: Cumulative morbidity (%) of fish with different vaccine formulations (placebo: 
blue line; heat-killed: pink line and recombinant capsid protein: yellow line) versus days 

post-challenge with NNV extract by IM injection. 
 

 

10.3.2 Detection of RGNNV by RT-qPCR assay 

There was no detection of NNV genome using qR1T or qR2T from any fish challenged with PBS 

injection. Within the groups that were challenged with RGNNV there were a variable number 

of positive detections of NNV by the RT-qPCRs (Table 10-3). There was 100% concordance 

between qR1T and qR2T assay results (Table 10-4). The number of detections of NNV by RT-

qPCR was different to the number of groupers that displayed signs of VER (Table 10-3).  

Within the group that was vaccinated with placebo vaccine and challenged with RGNNV, fifty-

seven (97%) fish were positive for the detection of NNV by both assays. Only three fish from 

the placebo vaccinated group survived challenge, did not display signs of VER and were also 

negative by both assays for the detection of RGNNV when euthanased at day 40 (Table 10-3; 

Figure 10-3). 

Within the rCP-vaccinated group that was and challenged with RGNNV, twenty-three (38%) 

were positive for the detection of RGNNV by both assays (Table 10-3). Only six of the fish from 

the rCP-vaccine that were positive for the detection of RGNNV also displayed clinical signs of 

VER. A further 17 groupers were positive for the detection of RGNNV by RT-qPCR with an 

absence of clinical signs of disease (Table 10-3) (Figure 10-3). Thirty-seven fish that were rCP-



165 

 

vaccinated and challenged with RGNNV were negative for the detection of RGNNV by RT-qPCR 

(Table 10-3; Figure 10-3). 

Eleven of the groupers that received HK-vaccine, were positive for the detection of NNV by 

both RT-qPCR assays (n=60 fish each group; Table 10-3; Figure 10-3). Only five of the groupers 

from the HK-vaccine group had clinical signs of VER (Table 10-3; Figure 10-3). Forty-nine of the 

fish that received with HK-vaccine were negative for the detection of RGNNV by both RT-qPCR 

assays (Table 10-3; Figure 10-3). 

 

 

 

 

Table 10-3: Number and percentage (%) of groupers positive and negative for the detection 
of RGNNV genome by RT-qPCR from each experimental group and number of groupers 
displaying clinical signs of VER or no clinical signs of VER at the time of euthanasia. 

Experimental Group 
RT-qPCR Result VER clinical signs  

Number 
Positive 

% 
Positive 

Number 
Negative 

% 
Negative 

Number 
Positive 

% 
Positive 

Number 
Negative 

% 
Negative 

Placebo vaccine 57 95% 3 5% 57 95% 3 5% 
Heat-killed vaccine 11 18% 49 82% 5 8% 55 92% 
Recombinant capsid protein vaccine 23 38% 37 62% 6 10% 56 93% 

NB. Data calculated on all fish sampled including fish sampled according to schedule. 
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Figure 10-3: Number of groupers positive and negative for the detection of RGNNV by RT-
qPCR from each experimental group with observation of presence (VER clinical signs) or 
absence of clinical signs (No clinical signs) of disease at the time of euthanasia. n=60 each 
group. 
 

 

10.3.3 Quantification of RGNNV by RT-qPCR assay 

RGNNV genome was detected with both RT-qPCR assays (qR1T and qR2T) from eye of virus-

challenged fish from day 7 until day 40 when the trial was terminated (Table 10-4). Assay 

qR1T, which targets the RNA-1 segment had slightly higher Ct values than qR2T, which targets 

the RNA-2 segment (Table 10-4). RGNNV was detected by qR2T with lower Ct value in the fish 

that succumbed to VER than fish that did not display disease signs (Figure 10-4).  

 



167 

 

Table 10-4: Cycle threshold values of each RT-qPCR assay from eye of groupers from 

experimental group by days post viral challenge 

 
 
 
 
 

 
  
Figure 10-4: Average Cycle threshold (Ct) values of positive detections by qR2T from eyes 
collected from grouper from each experimental group according to the presence or absence 
of clinical signs of VER. 
 

 

 

 

 

 

Assay 

Target 0 7* 8 10 11 13 14 18 20 21 28 40

RNA 1 qR1T nd 20.4 19.4 27.8 ns ns 18.1 20.9 20.9 ns ns 28.7

RNA 2 qR2T nd 19.8 18.2 25.3 ns ns 16.5 19.0 ns ns ns 28.5

RNA 1 qR1T nd 37.5 ns 30.0 34.0 ns 34.0 ns 19.2 34.9 33.6 36.7

RNA 2 qR2T nd 37.2 ns 29.8 33.3 ns 33.7 ns 19.0 34.6 33.3 36.3

RNA 1 qR1T nd 38.9 ns 33.7 ns 26.8 nd ns 33.6 nd 33.6 29.8

RNA 2 qR2T nd 38.6 ns 33.4 ns 26.5 nd ns 28.3 nd 36.0 29.4

RNA 1 qR1T nd nd ns ns ns ns nd ns ns nd nd nd

RNA 2 qR2T nd nd ns ns ns ns nd ns ns nd nd nd

ns= no samples           nd= not detected    * indicates onset of clinical signs      Bold indicates scheduled sample

Placebo vaccine ( Negative 

Control: PBS challenge)

Heat-killed cell culture 

vaccine (HK)

Assay 

Name

Days post challenge
Experimental Group 

Placebo vaccine

Recombinant Capsid 

protein vaccine (rCP)
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10.4  Discussion 

In this study, vaccination of juvenile groupers with average body weight (abw) greater than 

50g was associated with 17-20% morbidity (80-83% survival) following IM challenge with 

RGNNV (average body weight at challenge 103.5 g, (𝜎 20.39 g)). In contrast, 93% of the 

unvaccinated fish succumbed to VER following challenge with viral extract (7% survival). The 

survival of vaccinated fish in this trial was improved compared to the initial experimental trial 

discussed in Chapter 8. The mechanism that conferred improved efficacy of vaccination on the 

larger fish is unknown.  

The acquisition of competence of the adaptive immune system is a prerequisite for successful 

vaccination. Excluding groupers, in many fish species, only the larval stages are highly 

susceptible to NNV (OIE, 2018). Despite the general acceptance of age-related susceptibility to 

NNV in juvenile barramundi, there is only a single report investigating the NNV susceptibility 

transition period (Jaramillo et al., 2017). In barramundi, juveniles older than 5 weeks of age 

develop a subclinical infection, whereas younger cohorts suffer clinical disease and mass 

mortality (Jaramillo et al., 2017). There is no characterisation of the mechanism that ensures 

resistance (Jaramillo et al., 2017) and a recent review of vaccination as a preventative strategy 

against VER did not refer to the development of the fish immune system (Hazreen et al., 2019).  

Due to their typically low economic value, juvenile fish are often the subject of disease 

challenge and vaccine efficacy experiments. Although less expensive, and logistically more 

easily managed, challenges with juvenile fish may fail to consider conditions that affect the 

development and expression of adaptive antiviral immunity. Many studies are driven by a 

need for commercial outcomes and focussed on the production of a vaccine, rather than the 

basic science of grouper immunity. The FAO generally recognise that the lack of understanding 

of immune function in host species is one of the factors that reduce the ability to manage 

disease in aquaculture species (FAO 2018). 

Foundational studies into vaccination of salmon identified the significant influence of water 

temperature on immune function in fish and discusses the term degree days (DD) as a unit to 

represent the interaction between number of days post-vaccination and water temperature 

(DD = water temperature (C⁰) x number of days) (Holm et al., 2014 in Gudding et al., 2014). DD 

has also become an increasingly popular method for explaining variation in fish growth and 

development (Chezik et al., 2014). Recently, the body weight and water temperature have 

been demonstrated to be important in fish immunization (Soto et al., 2014).  

The Biological Theory of Relativity (BTR) provides a more sophisticated framework for the 

study of a range of biological processes in marine ectotherms (Neuheimer 2019). The theory is 
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proposed to characterise biological phenomena, as a function of the variable interaction 

between water temperature and time with the biological variability of an organism (size of 

organism, age of organism, maturity of organism and environmental conditions of organisms’ 

habitat amongst others). For example, in the context of vaccination: the biological process of 

expression of effective adaptive antiviral immune response following vaccination in grouper 

would be studied in relation to grouper age, species, size, nutritional status, (biological 

variations) stocking density, salinity, water quality (environmental variations) and water 

temperature and time (biological time). The recognition and study of the multitude of 

interactions between biological time and biological variability allow the identification of the 

critical factors for a prescribed biological function (Neuheimer 2019). Adoption of the BTR 

approach increases the ability of researchers to make predictions about biological functions 

and ultimately allow researchers to manipulate the interaction to achieve a desired biological 

outcome (Neuheimer 2019). Although using different terms, the BTR approach is similar to the 

concept proposed by Stentiford et al. (2017) that disease outbreaks in aquaculture are likely 

the result of a complex interaction between host genetics-environment-pathogen and likely 

requires a multidisciplinary approach. The Biological Theory of Relativity and the 

multidisciplinary approach (Stentiford et al., 2017) are recent concepts and there has been no 

concerted approach to record the range of factors that constitute “biological time” or 

“biological variation” or multitude of factors that may influence the development of immune 

competence or initiate VER disease outbreaks in juvenile groupers.  

Although age and water temperature are considered important factors influencing the 

development of adaptive immunity in fish, few of the studies that investigate vaccination 

against NNV in grouper describe the age of fish or water temperature used in experimental 

studies (Table 10-5), although fish bodyweight is provided in the description of experimental 

groupers (Table 10-5). Review of the grouper vaccination studies indicates this project, 

amongst others, may have serendipitously been conducted across a transitional period of 

“biological time” required for the attainment of adaptive immune competence in juvenile 

cultured grouper (Table 10-5). Studies that report greater than 60% survival in groupers 

following vaccination and challenge, (Table 10-5) (Atujona et al., 2019; Yamashita et al., 2009; 

Oh et al., 2012 and this study: Chapter 10), involved larger bodyweight juveniles than the fish 

in less successful studies that report lower survival following vaccination and challenge (Mo et 

al., 2019 and this study Chapter 8)(Refer to Table 10-5). 
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Table 10-5: Summary of the age, weight, water temperature (⁰C) and reported survival of 
groupers from published studies that have investigated vaccination against pathogens in 
groupers. 

 

 

However, within the concept of BTR or host-environment-pathogen model, it is unlikely that 

bodyweight is the sole factor influencing the effectiveness of vaccination to prevent VER. 

Water temperature has been demonstrated to affect in vitro and in vivo replication of RGNNV 

(Nishizawa et al., 2012). The bodyweight of groupers in the vaccination studies is influenced by 

other factors such as age, stocking density, nutritional status or other factors that could 

similarly impact on the ability of the grouper to respond to the vaccination. The slow release of 

any commercially produced vaccine against VER, despite the significant commercial value and 

reported successful application in experimental conditions since 2001 (Tanaka et al., 2001), 

suggests the prevention of VER disease in grouper grow out culture is more complicated than 

anticipated, and prevention of VER may rely on knowledge beyond vaccination.  

 

In this study, although vaccination led to improved survival in E.lanceolatus following challenge 

with NNV extract, analysis by RT-qPCR assay detected NNV in the surviving and moribund fish. 

Although survival between the two vaccinated experimental groups was similar (87% and 

80%), the detection of RGNNV varied between the two experimental groups. Namely, less fish 

in the HK-vaccinated group were positive for NNV (20%) compared to the rCP-RGNNV 

vaccinated group (41%) (Figure 10-5). Further interpretation of the effectiveness of each 

vaccine to prevent infection or the status of fish concerning RGNNV is not possible based on 

the results of RT-qPCR analysis. Detection of viral genome by RT-qPCR may be due to the 

presence of viable viral particles or alternately, be due to the detection of residual degraded 

Species Age (dph)
Temperature 

(°C)

Average body 

weight (g)

Survival after 

challenge

E.coioides  from 1 to 18 dnp dnp *80-90% Lin et al. 2007

E.coioides dnp dnp 0.36 no challenge Lai et al., 2014

E.lanceolatus dnp 25-30 20 no challenge Liu et al., 2006

E.malabaricus dnp 25-30 20 no challenge Liu et al., 2006

E.lanceolatus 98 24-28 18 47-57% this study (Chapter 8)

E.septemfasciatus dnp 28 28 35% Tanaka et al. 2001

E.coioides dnp 28 33 17% Mo et al., 2019

E.coioides dnp dnp 32 no challenge Huang et al., 2014b

E.coioides dnp dnp 35 90% Atujona et al., 2019

E.septemfasciatus dnp 20 75 60+% Yamashita et al. 2009 

E.septemfasciatus dnp 20-24 80 100% Oh et al. 2012

E.lanceolatus 144 24-28 103.5 80-83% this study (Chapter 10)

Details of Groupers in the Studies

Reference

dnp = detail not provided

*this study reported survival of 44-69% in no-vaccine challenged fish. Virulence of the viral extract is questionable.
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viral genome or non-infectious particles (Gu et al., 2014). Although RT-qPCR is useful for 

tracking the increase in the detection of viral genome from infection to disease expression, its 

ability to determine the carrier or recovery status of grouper following exposure to NNV is 

restricted. Viral isolation in a compatible cell culture system is the definitive proof of the 

presence or absence of viable viral isolation may have improved (Schnurr 2006). Analysis of 

tissue samples by virus isolation may have improved interpretation of the RT-qPCR results in 

this project. Inclusion of tissue analysis by viral isolation has been incorporated into 

subsequent research that extends beyond this project.  

Regardless of the interpretation of the RT-qPCR results, this study demonstrated that 

increased survival of juvenile groupers, E.lanceolatus following experimental challenge with 

RGNNV viral extract, was markedly improved, with either HK-vaccine (83% survival) or rCP-

vaccine (80% survival) antigens compared to placebo vaccinated groupers (7% survival). 

Survival in vaccinated grouper following NNV challenge was improved in this study compared 

to the modest survival of 43-53% of vaccinated grouper in the trial described in Chapter 8 that 

studied smaller bodyweight groupers. This study indicates the significant losses imposed on 

the grouper aquaculture by the endemic strains of RGNNV present in Northern Queensland 

may be preventable with vaccination. However, the efficacy of vaccination to protect against 

VER requires further optimisation, as within the conditions of this study, the efficacy of 

vaccination was influenced by grouper bodyweight. Although further research is required 

before commercialisation of the vaccine, the results of this study are very promising and 

provide confidence to support further investment in vaccine development.  

 

10.5 Conclusion 

The following outcomes were described in this chapter: 

 

 

 Vaccination against RGNNV on larger fish >50g abw displayed improved protection 

against VER. 

 Vaccination of E.lanceolatus with a vaccine derived from either recombinant 

expressed capsid protein or heat-killed cell culture antigen led to increased survival 

(80-83%)/ reduced morbidity (20-17%) compared to placebo vaccinated control fish 

(7% survival/ 93% morbidity) after 40 days post challenge. 

 Bodyweight, or some factor that is reflected as bodyweight, appears to affect the 

efficacy of vaccination to prevent VER. 
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CHAPTER 11. SUMMARY OF FINDINGS AND DIRECTION FOR 

FUTURE WORK 

11.1 Summary of Findings 

This work improved understanding of the management of Betanodavirus infections in the 

culture of grouper in Australia. The project aimed to answer three broad research questions. 

The following summary presents the discoveries relating to the research questions: 

 
To improve knowledge in the strains of Betanodavirus associated with VER outbreaks the 

following was investigated 

 The species of NNV that were associated with three natural outbreaks of VER in 

marine aquaculture systems in Northern Queensland were determined 

 The level of variation/conservation between strains that have been associated 

with VER in Northern Queensland and Australia was determined 

The complete sequences of mRNA of RNA 1 and RNA 2 were obtained from three disease 

outbreaks of marine finfish aquaculture ventures in Northern Queensland (collectively referred 

to as NQAus NNV). The NQAus NNV strains obtained from outbreaks of VER in tropical marine 

fish species in Northern Queensland were all RGNNV species. Phylogenetic analysis of both the 

RNA 1 and RNA 2 segments did not detect any chimeric recombination with any other NNV 

species such as SJNNV or BFNNV. RGNNV continues to be the only species of Betanodavirus 

detected from Australian fish. Comparison with other Australian-collected RGNNV strains 

indicated highest homology to the strains collected from tropical marine species rather than 

temperate or freshwater species.  

Comparative analysis with other strains in the NCBI database demonstrated the remarkable 

conservation of the RGNNV genome, both temporally and geographically. The RNA 1 and RNA 

2 segments of the three NQAus NNV strains retained 97-98% homology to the original RGNNV 

strain isolated from Japan (SgWAk97) in 1997. The high level of conservation of the genome 

with other RGNNV strains had implications for vaccine design. 

Research Question 1: What strains of Betanodavirus are associated with VER 

outbreaks of tropical marine fish species in Northern Queensland? 
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To assess the usefulness of qPCR as a management tool the following topics were investigated:  

 The qR2T assay described by Hick & Whittington, which is also the current ANZSDP to 

detect NNV from grouper was applied to grouper derived tissue. 

 The qR1T assay that targets RNA 1, designed by Hick & Whittington to detect NNV, 

was applied to grouper derived tissue. 

Positive amplicons produced from RNA 1 and RNA 2 were cloned to produce standard control 

plasmids for the qR1T and qR2T RT-qPCR assays described by Hick & Whittington (2010). The 

RT-qPCRs were applied to trace the viral copy number of RGNNV during the progression of 

disease in the experimental challenge. Both RT-qPCR assays detected viral genome before the 

onset of clinical signs at a cycle threshold values ranging from 45 to 22.6. During the period of 

peak morbidity, viral genome was detected by both RT-qPCR assays with a cycle threshold 

range of 10.6 to 21.1. Both assays detected NNV genome prior to the onset of VER disease, 

during peak period of morbidity and also up to 80 days post IM challenge. There were no false 

negative results obtained from either assay in this investigation when samples were sourced 

from grouper displaying clinical signs of VER. Both assays detected NNV in every tissue sample 

derived from fish that displayed several signs of VER. Based on known challenge status, there 

were no false positives. Neither assay detected NNV in E.lanceolatus tissues from any of the 

PBS- challenged groups that were not exposed to NNV. 

RT-qPCR was fit for purpose for application on brain and eye tissues of E.lanceolatus in 

situations that required rapid turnaround, high throughput, and quantitative detection of 

RGNNV genome such as during a during disease outbreaks or to demonstrate freedom from 

NNV infection. Both the qR1T and qR2T assays developed by Hick & Whittington (2010) are fit 

for purpose for the detection of RGNNV genome in eye and brain tissue collected from 

E.lanceolatus. 

 However, the interpretation of the results of RT-qPCR analysis must consider that detection of 

genomic material does not indicate viability of virus. As such, the RT-qPCR assay was not useful 

to assist in determining the nature of protection provided by the vaccines. In this study, 

vaccinated fish survived and did not display signs of VER. However, viral genome was detected 

from eye and brain tissues from the vaccinated fish that did not show signs of disease 

following IM challenge. It is not possible to determine if the viral genome that was detected by 

Research Question 2: Is qPCR a useful tool to assist in the management of VER in giant 

Queensland grouper, Epinephelus lanceolatus in Australia? 
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the RT-qPCR assays was viable virus. Consequently, it is not possible to determine if 

vaccination lead to the production of fish that were immune and not-susceptible to the virus 

or were sub-clinical carriers with increased tolerance. RT-qPCR is a useful tool to assist in the 

management of VER in giant grouper. However, it is not the only analysis platform required to 

understand and improve management of the disease.  

 

Vaccine and dsRNA were prepared that targeted the Ec2NQAus strain of NNV. The efficacy of 

the therapies to prevent VER were assessed by IM challenge of juvenile E.lanceolatus with viral 

extract. 

 

In an initial trial, the IM delivery of naked dsRNA designed against Ec2NQAus strain of NNV did 

not reduce severity of morbidity following IM viral challenge and no further investigation into 

dsRNA was conducted. Although this trial was unsuccessful, a range of variables could be 

adjusted to improve the potential of dsRNA as a treatment or preventative. A more recent 

accessing of the IDT dsRNA design tool indicates the anti-NNV dsRNA will cross react with six 

transcripts from the human genome (Refer to Appendix 3). Notably four of the transcripts are 

members of the C-type lectin domain family 4 member A (CLEC4A) gene which is involved in 

the regulation of immune reactivity (uniport.org/uniprot/Q9UMR7) and speculatively, may 

also be an important component of the grouper immune system. Until the knowledge of the 

grouper immune system is improved, research seeking to apply dsRNA to prevent VER will be 

very difficult. 

This study demonstrated vaccination is effective in preventing VER following IM challenge with 

viral extract. The effectiveness of vaccine appears to be affected by fish body weight. In an 

initial trial, involving fish with average body weight (~18g), the vaccinated groups of 

E.lanceolatus displayed between 43-53% cumulative morbidity after challenge with NNV 

compared to 88% morbidity in dsRNA exposed groupers. The modest reduction of morbidity 

by 35-45% indicated the vaccine formulation presented some potential as a preventative 

measure. There was a trend for vaccinated fish over 50g to have reduced morbidity. 

In a subsequent study, E.lanceolatus with average body weight over 50g were vaccinated and 

challenged. The outcome was increased protection against VER in the slightly larger fish with 

the vaccinated groups experiencing 20-23% morbidity compared to the 93% morbidity in 

placebo vaccinated groupers.  

Research Question 3: How effective is vaccination or dsRNA designed against the 

endemic strains of NNV in preventing disease? 
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During the term of the project additional research questions were posed as important 

considerations to achieve the project aims. The additional discoveries are summarised here: 

 

Ideally, the efficacy of therapies to prevent VER is determined via a challenge model that is 

most representative of the natural infection route. Although waterborne transmission of 

RGNNV is the most likely path of transmission leading to natural VER outbreaks there is limited 

success applying waterborne transmission to experimental challenges. In a novel approach, 

waterborne challenge via co-circulation with diseased fish along with co-infection with the 

marine leech, Zeylanicobdella arugamensis was tested as an infection model. During a 40-day 

trial, despite habitation within a shared recirculation system containing 10 fish that displayed 

clinical signs of VER following exposure to RGNNV via IM challenge, none of juvenile 

groupers E.lanceolatus exposed/non-exposed to the marine leech Z.arugamensis succumbed 

to a VER disease outbreak. Furthermore, RGNNV was not detected by RT-qPCR from leeches 

collected from any of the tanks. The inability to induce VER via waterborne challenge despite 

the addition of leech infestation, lead to the adoption of intramuscular injection of RGNNV 

extract as a challenge model for all subsequent studies. 

 

Recognising that the cohort of fish used in the experimental challenge were produced from a 

mass spawning event with eight potential parents, the influence of parentage on 

survival/mortality was investigated by applying Multi-loci sequencing analysis. Parentage did 

not coincide with improved survival or increased mortality within the studies 

conducted. Although other genetic factors may be involved, the variance in survival between 

vaccinated and non-vaccinated fish was not a direct reflection of different parentage between 

individuals. 

 

 

 

Inclusion of leeches to improve waterborne transmission of RGNNV 

Role of parentage in survival to VER? 

Additional discoveries 
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Understanding the replication characteristics of Betanodavirus may allow targeted approaches 

to prevent VER. This study completed a review of the functional motifs of the Betanodaviruses, 

mapped them to a schematic diagram of the mRNA segments and sought to confirm the 

presence or absence of the motifs in the NQAus NNV strains. Review and confirmation of the 

multiple motifs across an entire genome have not been reported previously from any strain of 

Betanodavirus.  

The three strains of NQAus NNV obtained in this study retain the functional motifs of the 

Betanodavirus genome that are critical for viral replication and associated with most virulence. 

The confirmation of the presence of the essential motifs indicated that outcomes of this 

research based on the NNV strains obtained would likely be valid for translation to industry 

applications. 

11.2 Future work beyond this study 

Improved delivery of viral antigen 

Along with previous reports, this project succeeded in demonstrating protective immunity 

against NNV using either expressed recombinant RGNNV capsid protein or heat-killed RGNNV 

grown in cell culture as a vaccine antigen. Whilst the results are encouraging, further 

refinement of the vaccination process is possible. Although vaccination is an effective measure 

to prevent disease in cultured fish species, the requirement of handling to complete injection, 

imposes a level of stress on the fish and increased costs to production. A vaccine that could be 

delivered as an oral antigen would avoid the risk of handling stress. A factor reducing the 

effectiveness of oral vaccination is the inability to deliver antigen of sufficient quantity and 

integrity to effectively stimulate immune memory. As the minimal epitope for immune 

stimulation has been identified to be quite small, the delivery of antigen via recombinant 

bacteria, virus or algae may provide an optimal vaccination strategy. Some experimental 

vaccination applying the improved delivery have been reported this year. Gonzalez-Silvera et 

al. (2019) reported oral vaccination of sea bass using direct delivery of E.coli expressing the 

capsid protein with no protein purification.  

 

 

 

 

Identification and conservation of the functional motifs of Betanodavirus 
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Improved understanding of the development of grouper immunity 

Perhaps the most pressing issue to improve the management of VER in grouper is to identify 

the mechanisms of the immune system development in grouper that are involved in response 

to RGNNV and viruses generally. This would allow a more multidisciplinary and systematic 

approach to understanding VER expression and likely, other viral diseases. The need to better 

understand the immune function of aquaculture species is a factor limiting disease 

management across the multitude of tropical species (FAO 2018). There is an urgent need for 

research investment into understanding the mechanisms of immune function. Whilst such 

studies will not lead to production of commercialised products, they will provide the 

foundational knowledge that can be applied to adopt a more logical approach to improve 

health and reduce factors that impede fish immunity in aquaculture. For example, improved 

understanding of immune development may identify changes to husbandry practises or 

improve diet formulation that increase grouper health. 

 

Investigate impact of environmental parameters on grouper immunity 

Although the efficacy of vaccines can be accurately demonstrated in experimental challenge 

facilities, there are a multitude of other factors in grow out systems that may adversely affect 

fish immune function and ultimately contribute to VER outbreaks. Considering the 

metrological and agricultural conditions that dominate the locations prioritised for 

aquaculture development in Northern Australia, increased understanding of the following 

should be considered: 

 Effect of temperature and salinity on grouper immune function. 

 Effect of contamination of marine water ways with agricultural pesticides/herbicides 

on grouper immune function. 

 Refinement of grouper grow out diet formulation to support optimal grouper immune 

function. 

 

Investigate the roles of microRNA in the replication and management of NNV. 

Whilst the presentation of dsRNA constructs provided no protective effect against the 

development of VER following exposure to RGNNV extract in this experiment, the technology 

should not be discounted as a tool to better understand NNV. The paradox of NNV is that one 

of the smallest viral genomes is capable of causing disease in such a range of fish species, with 

worldwide distribution, across temperate and tropical and marine and freshwater culture 

systems. Reverting to basic principles for how the Betanodavirus genome achieves such 

infectivity highlights further paradox in the nature of this virus. Namely why, considering the 
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requirement for the virus to be very efficient within the constraints of its genome size, would 

the 403 nt of UTR of RNA 2 (~28% of the RNA 2 strand) that is not translated to produce the 

viral capsid protein, be retained in the genome if it served no purpose? In the absence of 

protein translation, a potential role of non-translated genomic sequence is viral and/or host 

gene regulation. Whilst, I have not been able to investigate this particular topic, I believe it is 

an important question to raise and the knowledge gained by understanding any potential roles 

of v-miRNA in Betanodavirus may provide a useful model to improve knowledge in other RNA 

viruses such as Influenza. The improved efficiency and affordability of next generation 

sequences techniques provides an unprecedented potential for researchers to investigate the 

complexities of viral-host interactions.  

11.3 Implications of findings from this study 

Although the viral aetiology of VER in Australian fish species was described by JCU researchers, 

Dr John Glazebrook and Steve de Beer (1990), research into the disease did not continue at 

JCU until this present study.  

This study has provided a strong basis for future work in the management of VER in grouper 

and has been applied towards the fast tracking of an NNV vaccine under FRDC project 2018-

098: “Vaccination for emergency and long-term control of nodavirus in Australian marine 

aquaculture”. The project aims to apply the demonstrated application of recombinantly 

expressed capsid protein-vaccine within a commercial field study and acquire data to support 

both the commercialisation of a vaccine and registration for approval by the Australian 

Pesticides and Veterinary Medicines Authority.  

The protocols to implement RT-qPCRs into a laboratory setting within this research project 

were audited against the international standard for testing and measurement (ISO 17025) 

within the field of animal health by the National Association of Testing Authorities (NATA). The 

laboratory, JCU AquaPATH, attained NATA accreditation in June 2018 at the James Cook 

University Townsville Campus. The specific scope of accreditation is the “detection of viruses 

by nucleic acid detection” specifically, the detection of Nervous Necrosis Virus. The facility is 

one of only three laboratories present in Northern Australia and one of only two universities 

nationally, that hold this scope of accreditation. The establishment of JCU AquaPATH on the 

James Cook University Campus provides core capability that will support future research in 

tropical aquatic animal health at James Cook University.  

 

“From little things, big things grow” (Kelly and Carmody, 1991) 
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APPENDIX 1 MEDIA AND BUFFERS 

Lysogeny broth (LB) 

Component Mass (grams litre-1) 

Yeast 5 

Tryptone 10 

Sodium chloride 5 

 

LB agar 

Component Mass (grams litre-1) 

Yeast 5 

Tryptone 10 

Sodium chloride 5 

Bacteriological agar 15 

 

Blood agar 

Component Mass (grams litre-1) 

Enzymatic digest of Casein 7.5 

Enzymatic Digest of animal tissue 7.5 

Liver digest 2.5 

Yeast extract 5 

Sodium chloride 5 

Bacteriological agar 12g 

Sheep’s blood 100 mL 

 

Preparation of stock solutions for cloning media 

Component Volume to prepare  Mass Stock concentration  

Isopropyl β-D-1-

thiogalactopyranoside (IPTG) 

5 mL 0.12 g 500 mM 

5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-Gal) 

2 mL (in dimethylformamide) 0.1 g 50 mg mL-1 

 
 
Additions of for LB media and Agar 

Component Stock concentration Final required Dilution of stock required 

 (IPTG) 500 mM 0.5 mM 1000 

 (X-Gal) 50 mg mL-1 80 ug mL-1 625 

Ampicillin a 100000 ug mL-1 100 ug mL-1 1000 

Ampicillin b 100000 ug mL-1 50 ug mL-1 2000 

a pGEM T Easy; b TOPO TA Cloning 
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TAE Buffer (50x) (1 Litre) 

242 g Tris base  

57.1 ml glacial acetic acid  

37.2 g Na2EDTA·2H2O (2 mM) H2O to 1 litre. 

For working solution add 200ml to 9800ml H2O. 

 

SDS PAGE 10× Tris glycine buffer  

10 g SDS  

30.3 g Tris  

144.1g Glycine  

Dissolve ingredient in 800 ml distilled water and adjust volume to 1 litre  

Dilute 100ml in adjusted volume to 1 litre with distilled water. 

 

SDS PAGE Silver Fixative 

500ml Methanol 

50ml Acetic Acid 

400ml Distilled water 

Mix solutions and adjust volume to 1 litre  

 

SDS PAGE Development Solution  

20 g Na2CO3 

400µl Formalin 

800ml+ Distilled water 

Dissolve ingredient in 800 ml distilled water and adjust volume to 1 litre  
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APPENDIX 2: FAMILY ASSIGNMENT RAW DATA 

Counts of Alleles of microsatellite amplicons from primers of Bright et al. (2016) used in MLS 
analysis to determine parentage of vaccinated fish that displayed (clinical) or did not display 
(sub-clinical) signs of VER following IM challenged with Ec2NQAus viral extract. (Chapter 9) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Group Ct value M F Sample Name Allele 1 Allele 2 Size 1 Size 2 Allele 1 Allele 2 Size 1 Size 2 Allele 1 Allele 2 Size 1 Size 2 Allele 1 Allele 2 Size 1 Size 2

An2 An2 An2 An2 An25 An25 An25 An25 An31 An31 An31 An31 An4 An4 An4 An4

Parent not tested F1 KCJCU-001 244 246 243.68 245.85 170 192 169.48 192.32 190 190 189.65 189.65 Failed Failed Failed Failed

Parent not tested M1 KCJCU-002 232 246 231.34 245.78 174 192 173.68 192.44 192 202 191.81 202.17 195 201 195.12 200.78

Parent not tested F2 KCJCU-003 232 232 231.28 231.28 170 192 169.47 192.36 196 202 195.87 202.04 185 201 184.99 200.47

Parent not tested F3 KCJCU-004 226 232 225.07 231.22 168 168 167.35 167.35 190 192 189.64 191.72 195 201 194.75 200.63

Parent not tested M2 KCJCU-005 232 246 231.27 245.75 172 184 171.71 184.1 190 200 189.69 200 193 195 192.87 194.78

Parent not tested  F4 KCJCU-006 232 232 231.31 231.31 170 170 169.47 169.47 192 200 191.72 200 193 193 192.84 192.84

Parent not tested M3 F5 KCJCU-007 232 244 231.23 243.64 186 194 186.03 194.3 190 196 189.54 195.73 195 201 194.78 200.63

Sub-clinical 27 M2 F3 KCJCU-008 232 246 231.31 245.79 168 172 167.36 171.59 190 192 189.64 191.72 193 201 192.84 200.63

Sub-clinical 27 M2 F2 KCJCU-009 232 246 231.33 245.76 184 192 184.18 192.44 Failed Failed Failed Failed 193 201 192.91 200.47

Sub-clinical 27 M2 F2 KCJCU-010 232 232 231.29 231.29 170 172 169.61 171.56 196 200 195.89 200 185 193 184.91 192.88

Sub-clinical 30 M2 F2 KCJCU-011 232 246 231.44 245.87 170 172 169.72 171.78 200 202 200.15 202.15 185 193 185.13 193.06

Sub-clinical 27 M2 F2 KCJCU-012 232 232 231.39 231.39 170 184 169.72 184.2 196 200 196 200.15 193 201 193.06 200.61

Sub-clinical 30 M2 F4 KCJCU-013 232 232 231.31 231.31 170 184 169.61 184.11 Failed Failed Failed Failed 185 193 184.91 192.88

Clinical 24 M2 F3 KCJCU-014 232 246 231.26 245.87 168 172 167.32 171.53 190 192 189.59 191.68 193 195 192.8 194.88

Clinical 25 M2 F2 KCJCU-015 232 232 231.28 231.28 172 192 171.62 192.32 200 202 200 202.05 193 201 192.8 200.47

Clinical 23 M2 F3 KCJCU-016 232 232 231.22 231.22 168 184 167.37 183.94 190 192 189.58 191.67 193 195 192.8 194.72

Clinical 23 M2 F2 KCJCU-017 232 232 231.25 231.25 172 192 171.64 192.32 196 200 195.78 199.84 195 201 194.83 200.47

Clinical 23 M3 F3 KCJCU-018 232 232 231.21 231.21 170 184 169.37 183.97 190 196 189.54 195.73 195 201 194.78 200.47

Clinical 25 M1 F3 KCJCU-019 226 246 225.17 245.79 168 192 167.36 192.2 192 192 191.72 191.72 195 201 194.75 200.63

Clinical 22 M2 F4 KCJCU-020 232 232 231.13 231.13 170 184 169.47 183.86 190 200 189.48 199.84 193 195 192.68 194.75

Clinical 25 M2 F2 KCJCU-021 232 232 231.39 231.39 184 192 184.19 192.44 196 200 195.91 200 185 195 184.98 194.97

Clinical 24 M2 F3 KCJCU-022 232 246 231.25 245.8 168 172 167.48 171.52 190 200 189.59 200 193 195 192.91 194.81

Group Ct value M F Sample Name

Allele 1 Allele 2 Size 1 Size 2 Allele 1 Allele 2 Size 1 Size 2 Allele 1 Allele 2 Size 1 Size 2 Allele 1 Allele 2 Size 1 Size 2

Parent not tested F1 KCJCU-001 An8 An8 An8 An8 ELMS7 ELMS7 ELMS7 ELMS7 ELMS9 ELMS9 ELMS9 ELMS9 ELMS19 ELMS19 ELMS19 ELMS19

Parent not tested M1 KCJCU-002 150 172 150.34 171.56 346 346 346.95 346.95 260 264 260.07 263.87 386 386 385.54 385.54

Parent not tested F2 KCJCU-003 144 150 143.81 150.34 345 345 345.38 345.38 254 264 254.63 263.94 382 384 381.8 383.64

Parent not tested F3 KCJCU-004 144 144 143.7 143.7 346 346 346.92 346.92 254 260 254.42 260.09 382 386 381.84 385.58

Parent not tested M2 KCJCU-005 144 166 143.89 165.89 346 346 346.92 346.92 260 264 260.12 263.92 382 386 381.77 385.52

Parent not tested  F4 KCJCU-006 142 144 141.64 143.89 345 346 345.48 346.93 260 262 260.08 261.97 386 386 385.57 385.57

Parent not tested M3 F5 KCJCU-007 144 144 143.7 143.7 345 345 345.48 345.48 260 260 260.12 260.12 382 386 381.77 385.53

Sub-clinical 27 M2 F3 KCJCU-008 162 166 161.96 165.87 345 346 345.48 346.93 264 264 263.92 263.92 384 386 383.7 385.57

Sub-clinical 27 M2 F2 KCJCU-009 142 166 141.59 165.89 346 346 346.93 346.93 260 262 260.12 262.01 386 386 385.53 385.53

Sub-clinical 27 M2 F2 KCJCU-010 144 144 143.8 143.8 Failed Failed Failed Failed 260 262 260.2 262.09 386 386 385.62 385.62

Sub-clinical 30 M2 F2 KCJCU-011 144 144 143.8 143.8 Failed Failed Failed Failed 254 262 254.47 262 382 386 381.89 385.62

Sub-clinical 27 M2 F2 KCJCU-012 144 144 143.9 143.9 346 346 346.85 346.85 260 260 260.31 260.31 382 386 381.8 385.46

Sub-clinical 30 M2 F4 KCJCU-013 142 144 141.73 143.9 345 346 345.44 346.85 260 262 260.22 262.06 386 386 385.5 385.5

Clinical 24 M2 F3 KCJCU-014 144 144 143.8 143.8 346 346 346.94 346.94 260 262 260.14 262.02 382 386 381.88 385.62

Clinical 25 M2 F2 KCJCU-015 142 144 141.65 143.9 345 346 345.32 346.77 262 264 262.07 263.96 382 386 381.83 385.57

Clinical 23 M2 F3 KCJCU-016 142 144 141.64 143.89 346 346 346.91 346.91 260 262 260.07 261.97 382 386 381.88 385.65

Clinical 23 M2 F2 KCJCU-017 142 144 141.64 143.71 346 346 346.91 346.91 260 262 260.1 262 386 386 385.6 385.6

Clinical 23 M3 F3 KCJCU-018 142 144 141.59 143.62 346 346 346.8 346.8 254 260 254.4 260.19 382 386 381.78 385.51

Clinical 25 M1 F3 KCJCU-019 144 144 143.81 143.81 346 346 346.95 346.95 254 260 254.32 260.1 386 386 385.67 385.67

Clinical 22 M2 F4 KCJCU-020 144 150 143.8 150.17 345 346 345.48 346.77 264 264 263.9 263.9 382 382 381.77 381.77

Clinical 25 M2 F2 KCJCU-021 144 144 143.71 143.71 345 345 345.48 345.48 260 260 260.08 260.08 386 386 385.47 385.47

Clinical 24 M2 F3 KCJCU-022 142 144 141.59 143.62 346 346 346.94 346.94 254 260 254.54 260.17 386 386 385.62 385.62

142 166 141.59 165.86 345 346 345.5 346.95 260 262 260.2 262.08 382 386 381.87 385.61

ELMS 19 poor resolution

An2 An 25 An 31 An 4

An 8 ELMS 7 poor resolution
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APPENDIX 3: UPDATED ANALYSIS OF DSRNA DESIGN BY IDT 

DESIGN ANALYSIS TOOL. 

Updated output from IDT dsRNA design analysis tool. Accessed 29.9.19. Tool indicates dsRNA 

would target a number of genes of human (A image) and mouse (B image) origin. A lack of 

suitable knowledge in fish immune gene or microRNA prevents analysis against fish.  
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APPENDIX 4: PUBLICATIONS AND DISSEMINATION FROM THIS 

THESIS 

 

Work published as part of this thesis: 

Condon K., Bochow S., Ariel E., and Miller T., (2019) Complete sequence of Betanodavirus from 

Australian barramundi, Lates calcarifer. Microbiology Resource Announcements 8. 

https://doi.org./10.1128/MRA.00081-19 
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Proposed publications from this thesis 

Condon K, Ariel E and Jerry D (2020) The functional motifs of the Betanodavirus genome.  

 

Condon K, Bochow S, Reynolds A, Knuckey R and Ariel E (2019) Real-time RT-PCR detection of 

Redspotted Grouper Nervous Necrosis Virus (RGNNV) in experimental challenge of 

Epinephelus lanceolatus following exposure to recombinant vaccine and dsRNA constructs.  
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Non-Peer Reviewed Additional Outputs of Doctor Studies  

Appendix 3.1: The Management of Betanodavirus infections in QLD giant grouper 

E.lanceolatus. Presented to the 3rd Australasian Aquatic Animal Health FRDC Conference Cairns 

2017. 
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