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a b s t r a c t 

Background and objectives: Continuous and non-invasive blood pressure monitoring would revolutionize 

healthcare. Currently, blood pressure (BP) can only be accurately monitored using obtrusive cuff-based 

devices or invasive intra-arterial monitoring. In this work, we propose a novel hybrid neural network 

for the accurate estimation of blood pressure (BP) using only non-invasive electrocardiogram (ECG) and 

photoplethysmogram (PPG) waveforms as inputs. 

Methods: This work proposes a hybrid neural network combines the feature detection abilities of tem- 

poral convolutional layers with the strong performance on sequential data offered by long short-term 

memory layers. Raw electrocardiogram and photoplethysmogram waveforms are concatenated and used 

as network inputs. The network was developed using the TensorFlow framework. Our scheme is analysed 

and compared to the literature in terms of well known standards set by the British Hypertension Society 

(BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). 

Results: Our scheme achieves extremely low mean absolute errors (MAEs) of 4.41 mmHg for SBP, 2.91 

mmHg for DBP, and 2.77 mmHg for MAP. A strong level of agreement between our scheme and the gold- 

standard intra-arterial monitoring is shown through Bland Altman and regression plots. Additionally, the 

standard for BP devices established by AAMI is met by our scheme. We also achieve a grade of ‘A’ based 

on the criteria outlined by the BHS protocol for BP devices. 

Conclusions: Our CNN-LSTM network outperforms current state-of-the-art schemes for non-invasive BP 

measurement from PPG and ECG waveforms. These results provide an effective machine learning ap- 

proach that could readily be implemented into non-invasive wearable devices for use in continuous clin- 

ical and at-home monitoring. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Blood pressure (BP) is a key diagnostic tool for a variety of life- 

hreatening conditions. Elevated BP, or hypertension, is a major risk 

actor for cardiovascular disease (CVD), contributing to the deaths 

f 9.4 million people every year [1] . Additionally, poor organ per- 

usion can be identified through the measurement of BP-derived 

arameters, particularly mean arterial pressure (MAP). MAP is use- 

ul in determining overall blood flow and thus the level of nutrient 
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elivery to organs, and thus is routinely measured when dealing 

ith high-mortality conditions like septic shock [2] . MAP that is 

oo low can lead to shock, syncope, and poor perfusion to organs, 

hile elevated MAP places strain on the cardiovascular system and 

an eventually to various CVDs including stroke [3] . 

Despite the importance of monitoring BP, there are currently 

o commercially available devices capable of continuous and non- 

nvasive BP measurement that have been approved for medical use. 

urrently, the gold-standard method for continuous and accurate 

P monitoring is intra-arterial monitoring, which involves the in- 

asive insertion of an arterial line into a patient’s artery [4] . This 

s clearly not suitable for long-term monitoring as it must be per- 
ormed in a clinical environment and it increases infection risk for 

nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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he patient. Typically, BP is measured using less invasive sphyg- 

omanometers, cuff-based devices which is manually or automat- 

cally inflated to determine BP. However, sphygmomanometers are 

ncapable of continuous monitoring and cause significant discom- 

ort to many patients [5] . They also cannot be used on people with

everal pre-existing conditions, such as lymphedema [6] . 

There is a clear need for improved methods of clinical and 

t-home BP monitoring, especially for high-risk patients. As such, 

any recent works have investigated methods for non-invasive 

easurement of BP. One promising area of research lies in machine 

earning (ML). ML techniques have been used to estimate BP from 

arious health factors such as age and gender [7] , as well as for

mproving sphygmomanometer measurements [8,9] . 

More recently, many researchers have investigated the calcu- 

ation of BP from electrocardiogram (ECG) and photoplethysmo- 

ram (PPG) signals [10–20] . In [10,11,19] , the Medical Information 

art for Intensive Care III (MIMIC III) database was used to obtain 

eatures such as pulse transit time (PTT) and other manually ex- 

racted features of the ECG and PPG waveforms. These were then 

sed with algorithms including AdaBoost in [10] , multi-regression 

n [11] and multivariate adaptive regression spline (MARS) analysis 

n [19] . Unfortunately, the MIMIC III database used by these works 

uffers from intra-waveform alignment issues that make calcula- 

ion of PTT and other time-dependent features between ECG and 

PG signals unreliable [21] . As such, these schemes could not be 

eliably applied in healthcare applications. 

In [12] , raw PPG waveforms are used to train an AdaBoostR al- 

orithm to estimate SBP, DBP and MAP. This model was trained 

n a small subset of the MIMIC-II data of 1,323 records and not 

alidated on a distinct testing set. In results presented from the 

raining set, the model was clearly suffering from a large number 

f high-range errors and large standard deviation (SD), particularly 

n SBP estimation. This indicates that the model had overfit to the 

raining data, and therefore would be unlikely to perform strongly 

n new data. 

Meanwhile, in the recent paper [20] , raw ECG waveforms are 

sed to train a neural network for SBP, DBP, and MAP prediction. 

esting was performed on MIMIC III data, as well as a second inde- 

endent database. Results across these two databases varied signif- 

cantly, with the scheme shown to not perform as strongly on the 

arge MIMIC III database. It is likely that utilizing both PPG and 

CG data would significantly improve performance, and PPG sig- 

als are comparatively easy to obtain from wearable devices com- 

ared to ECG signals. Obtaining both signals is highly feasible in 

ospitals, where both signals are routinely recorded. It is also be- 

oming increasingly feasible in wearable technology with PPG hav- 

ng long been available in smartwatches, and with recent genera- 

ions of devices such as the Samsung Galaxy Watch [22] and Apple 

atch [23] now offering ECG functionality. 

Two recent works [13,14] obtained features from ECG and PPG 

ignals before using ML techniques to predict BP. Features consid- 

red included PTT, which was measured using the same equipment 

cross all participants. This likely improved synchronization be- 

ween devices when compared to the waveform synchronity issues 

n [10,11,24] , however clock drift could still impair PTT calcula- 

ion over longer periods. Each of these works built small databases 

sing measurements from healthy volunteers, with [13] obtaining 

eadings from 85 patients and [14] using 20-second segments from 

10 subjects. Good results were presented in both works, however 

arger databases would be needed to verify that these schemes 

ould perform well on a wide range of patients. 

In this paper, we propose a hybrid deep neural network (DNN) 

hat incorporates temporal convolutional neural network (CNN) 

nd long short-term memory (LSTM) layers for the estimation of 

BP, DBP, and MAP from raw ECG and PPG waveforms with dura- 

ion of 5 s. The CNN layers act to identify the important features 
2 
f the waveform and thus reduce dimensionality, while the LSTM 

ayers are included for their ability to remember information and 

dentify relationships between features to determine a final esti- 

ate for SBP and DBP. 

Through using raw waveforms as inputs, we allow the hybrid 

NN-LSTM network to learn from all of the available information, 

ather than from manually identified features. This means that our 

ork does not rely on complex time-dependent features such as 

TT, thus avoiding issues associated with clock drift between de- 

ices. By avoiding manual feature selection, we also introduce the 

dvantages of removing human bias from training and testing. Ad- 

itionally, the use of short 5-second ECG and PPG waveforms en- 

ures that SBP, DBP, and MAP can be calculated rapidly and con- 

inuously, with a lower risk of interference than is seen in longer 

indows. 

The remainder of this paper is structured as follows. Section II 

resents our methodology, including our schemes for preprocess- 

ng, signal quality assessment and developing the hybrid DNN for 

P estimation. Section III discusses the results of testing conducted 

n the DNN algorithms to assess their performance. Finally, Section 

V briefly concludes this work and its significance. 

. Methodology 

.1. Data acquisition 

Deep learning is most successful when large quantities of data 

re used for training, validating, and testing the models. The Medi- 

al Information Mart for Intensive Care (MIMIC) [25] database fea- 

ures many de-identified patient records from critical care environ- 

ents and has been used in several significant and high-impact 

tudies to develop biomedical algorithms, including [10,11] . Pa- 

ient demographics are not available for many waveform records in 

IMIC-III, however the overall patient demographics for the entire 

IMIC-III database are presented in the original paper describing 

he data [25] . 

To train neural networks to estimate SBP, DBP, and MAP, we 

hose to use only ECG and PPG waveforms as inputs - as such, 

hese waveforms were required. Additionally, reference ground 

ruth values for SBP and DBP are required to give the neural net- 

ork an output target during training and to allow for assessment 

f network performance during testing. SBP and DBP are derived 

rom the arterial blood pressure (ABP) waveforms available in the 

IMIC database. As such, all records that contained ECG, PPG and 

BP waveforms were obtained, resulting in a database comprised 

f 6,972 unique patients. 

.2. Data preprocessing 

Following acquisition, each record was split into 5-second seg- 

ents. This segment length allows for extremely rapid calcula- 

ion of SBP, DBP, and MAP, while also providing a wide enough 

indow to accurately calculate the aforementioned BP parameters 

ven where the heart rate is extremely low. While one previous 

ork [15] determined the segment length by the number of peaks 

nd thereafter resampled the segment to fit within a fixed input 

eature vector length, a temporal approach is favoured by many 

orks [12,14,17] . In this work, a temporal approach to window siz- 

ng is taken as this minimises pre-processing and thus improves 

eal-time computational performance. A temporal approach also 

nsures a consistent sampling frequency is used for all data and 

reserves time-domain information, improving the network’s abil- 

ty to learn from the data. 

Segments were taken sequentially, with no overlap between 

egments. While using overlapping segments is a viable technique 
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or data augmentation in smaller databases, it was not neces- 

ary for this work given the large size of the MIMIC-III database. 

xtracting non-overlapping segments ensured that each segment 

ontained completely unique data, reducing the risk of overfit- 

ing and minimising the impact of any erroneous data that re- 

ained after data preprocessing. During the segmentation process, 

ny segments with missing or flatlining signals were immediately 

iscarded. No further pre-processing of signals was undertaken 

n this work, however the signals obtained from MIMIC-III were 

ecorded in hospital environment and thus were likely denoised 

y the high-quality equipment that recorded them. 

.3. Data selection 

Signal quality indices (SQIs) have been developed in several 

revious works to assess the quality of ECG signals, using tech- 

iques including spectral analysis [26] , fuzzy support vector ma- 

hines [24,27] , and simple sanity checks [28] . 

While these works offer significant SQI tools for ECG signal as- 

essment, they do not consider PPG signals. As such, for this work 

e implement a straightforward SQI strategy comprised of sanity 

hecks for PPG and ECG waveforms. Heart rate (HR), beat-to-beat 

BTB) intervals and waveform heights are calculated for ECG and 

PG in each record. HR values derived from each signal must be 

qual and fall within 40-180 bpm for a record to be considered 

good” by our SQI tool. This is the range which is physiologically 

robable for HR [28] and thus is a good indicator of signal qual- 

ty. The consistency of the signal is also considered by finding the 

aximum-to-minimum ratio for both beat-to-beat intervals and 

eak heights and ensuring that the maximum is no more than 50% 

arger than the minimum. 

Records were also excluded if pulse pressure (the difference be- 

ween SBP and DBP) was not between 20–60 mmHg. Pulse pres- 

ure is considered high when it is over 60 mmHg [29,30] , and 

s usually indicative of an immediate health problem. Meanwhile, 

ulse pressure is considered low beneath 40 mmHg and indicates 

oor heart function [29,30] , so an intentionally conservative lower 

imit of 20 mmHg was chosen for this application given that data 

s acquired from critical care units. While records containing phys- 

ologically improbable pulse pressures are excluded from the train- 

ng database to ensure data quality, the neural network is not de- 

endent on this feature or any other ABP features, and thus would 

ikely adapt successfully if it encounters valid ECG and PPG data 

rom a patient with exceptionally high or low pulse pressure. 

In Algorithm 1 , hr_ppg and hr_ecg are the HRs calculated from 

he PPG and ECG signal respectively. Additionally, ppg_peak_ratio 

nd ecg_peak_ratio are the ratios of the maximum peak height to 

he minimum peak height for each signal, while ppg_btb_ratio and 

cg_btb_ratio are the ratios of the widest to smallest BTB intervals 

lgorithm 1 Signal Selection Algorithm. 

nput: hr_ppg, hr_ecg, ppg_peak_ratio, ecg_peak_ratio, 

ppg_btb_ratio, ecg_btb_ratio, true_sbp, true_dbp, 

pulse_pressure 

utput: use_record 

1: if (hr_ppg == hr_ecg) & (hr_ppg > 40) & (hr_ppg < 180) & 

(ppg_peak_ratio < 1.5) & 

(ecg_peak_ratio < 1.5) & (ppg_btb_ratio < 1.5) & 

(ecg_btb_ratio < 1.5) & (pulse_pressure > 20 

& (pulse_pressure < 60)] then 

2: record_quality = 1 

3: else 

4: record_quality = 0 

5: end if 
c

3 
or each signal. Each of these metrics offers a measure of signal 

onsistency, which in turn is indicative of signal quality. Lastly, the 

arameter pulse_pressure is the pulse pressure values calculated 

rom the ABP signal. 

After assessing the suitability of all signals using Algorithm 1, 

he resulting data was inspected and outlier BP values were ex- 

luded. The final database contained over 20 0,0 0 0 records for use 

n training and testing of the proposed DNNs. 

For each “good” record, a feature vector was developed by un- 

avelling both the PPG and ECG signals into vectors of their respec- 

ive amplitudes. These vectors were then joined to create a single 

eature vector that contained all amplitude information for the PPG 

nd ECG signals consecutively. The input feature vector thus con- 

ained only raw ECG and PPG signals. 

.4. Proposed neural network 

For the task of blood pressure estimation from raw waveforms, 

e propose a hybridised deep neural network that combines tem- 

oral convolutional layers with long short-term memory (LSTM) 

ayers, as shown in Fig. 1 . CNNs are typically used to identify im- 

ortant features and patterns within a signal, and have previously 

een used in the related problems in ECG anomaly detection [31–

3] . Meanwhile, LSTM networks perform exceptionally well on se- 

uential data due to their ability to ‘remember’ what they have 

reviously seen, and thus have previously been trialled in ECG 

nd BP related problems [16,18,34] . By combining the two network 

tructures, we draw on the benefits of both to create a powerful 

ybrid NN with strong predictive abilities for sequential waveform 

ata. Our proposed hybrid CNN-LSTM outperformed separate CNN 

nd LSTM networks with respect to MAE, SD, and error distribu- 

ion in our preliminary testing. 

As shown in Fig. 1 , our network receives a feature vector con- 

aining only 5-second raw ECG and PPG waveforms as the input. 

s ECG and PPG waveforms were both sampled at 125Hz, the fea- 

ure vector included 625 amplitude data features from both the 

CG and PPG waveforms, for a total feature vector size of 1,250. 

The proposed network then utilizes three temporal CNN layers, 

ach with 128 hidden units and utilizing ReLU activation. The CNN 

ayers are mathematically described by Eq. (1) . 

 

i 
j = relu ( 

N ∑ 

n =1 

w 

i 
jn ∗ x (i −1) 

m 

+ b i j ) (1) 

here y i 
j 

is the jth feature map of the i th layer. Convolution is 

enoted with the ∗ symbol. Weights w jn 
i describe the n th weight 

f the jth feature map from the ( i − 1 )th layer, where n = 1 , . . . , N.

he outputs of the ( i − 1 )th layer are denoted as x m 

(i-1) , while bias

s denoted as b j for the jth bias term of the i th layer. Biases are ini-

ialised to zero and updated using the Adam optimizer algorithm 

35] with a learning rate of 0.01. 

Maximum pooling is applied following each convolutional layer, 

s shown in Fig. 1 . Pool1 and Pool2 both use a pool size of 10

nd stride of 2, while Pool3 uses a pool size of 4 and stride of 2.

pplying maximum pooling after CNN downsamples the outputs, 

hich aids in the prevention of overfitting. 

Following the convolutional section of the network, there two 

idirectional LSTM network layers with 128 hidden units. Bidirec- 

ional L STMs (BiL STMs) consider data in both original and reversed 

rder, allowing them to learn from values both in the past and fu- 

ure within the sequence. Results from both forward and reversed 

equences are concatenated to provide the overall output, however 

he mathematical structure for both passes remains the same as 

tandard LSTM. This mathematical process is described Eqs. (2) –(7) 

elow. 

˜ 
 t = tanh (w c [ a (t−1) , x t ] + b c ) (2) 
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Fig. 1. System model of the proposed DNN for BP estimation. 
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Table 1 

Grading criteria defined by the BHS proto- 

col. 

Absolute Difference (mmHg) 

Grade ≤ 5 ≤ 10 ≤ 15 

A 60% 85% 95% 

B 50% 75% 90% 

C 40% 65% 80% 

D Worse than C 

3

m

t

d

S

M

c

S

t

i

w

o

s
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m

M

3

m
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D

g

t

f

t

f t = σ (w f [ a (t−1) , x t ] + b f ) (3) 

 t = σ (w u [ a (t−1) , x t ] + b u ) (4) 

 t = σ (w o [ a (t−1) , x t ] + b o ) (5) 

 t = u t • ˜ c t + f t • c (t−1) (6) 

 t = o t • tanh (c t ) (7) 

here the weights are w c , w f , w u and w o , while biases are b c ,

 f , b u and b o . Biases and weights are learnt using the Adam opti-

ization algorithm [35] with a learning rate of 0.01. The previous 

ayer output is denoted as a (t-1) , while x t is the input to timestep

. Lastly, (6) and (7) are the updated cell state and layer output 

espectively. 

The final layer of the network is a densely-connected node that 

rovides the final output of the network - the SBP or DBP predic- 

ion. This network structure was used for training and testing of 

etworks for SBP and DBP estimation separately. 

.5. Training & testing of the DNNs 

The DNNs for both SBP and DBP estimation were developed, 

rained and tested using Keras [36] . The network was trained us- 

ng 80% of the data for both SBP and DBP networks. A further 10%

f the data was used for fine-tuning hyperparameters through val- 

dation, with the remaining 10% of data remaining unseen to the 

etworks for testing purposes. 

For both the SBP and DBP networks, training and validation 

as performed over 1,0 0 0 epochs with mean absolute error (MAE) 

sed as the loss function. Network performance was checked at 

he end of each iteration; if the network achieved a lower MAE 

n the validation set than all previous iterations, then the network 

eights were saved. If not, then training moved on to the next it- 

ration. The weight combination that resulted in the lowest MAE 

n the validation set during training was used in the final network, 

s strong performance on the validation set is indicative of good 

etwork fit. Training was conducted on a high-performance laptop 

ith a NVIDIA GeForce GTX 1070 graphics card and took approxi- 

ately 2.5 h to complete. 

Testing was then conducted using the highest-performing net- 

orks for SBP and DBP estimation. The results for both networks 

ere recorded and analysed, and are presented with discussion in 

he following section. 
4 
. Results & discussion 

In evaluating the performance of the proposed CNN-LSTM 

odel for the estimation of SBP and DBP respectively, we consider 

wo widely accepted standards for the approval of blood pressure 

evices for use in clinical environments - the British Hypertension 

ociety (BHS) protocol and the Association for the Advancement of 

edical Instrumentation (AAMI) standard. 

Furthermore, we evaluate the level of agreement between the 

alculations made by the CNN-LSTM networks and the expected 

BP and DBP values as determined from ABP waveforms within 

he MIMIC III database, which were obtained using gold-standard 

ntra-arterial blood pressure measurement. We also compare our 

ork to previous related works, highlighting the improvement that 

ur proposed CNN-LSTM network makes to accurate blood pres- 

ure estimation. 

Finally, we consider whether the predictions made by the SBP 

nd DBP networks can be combined to produce a prediction for 

ean arterial pressure (MAP), which represents the average pres- 

ure in a person’s arteries during a single cardiac cycle [2] . MAP is

athematically defined as follows: 

AP = 

SBP + (2 × DBP ) 

3 

.1. Comparison to the BHS protocol 

The BHS protocol [37] assigns grades of A-D to blood pressure 

easurement devices, based on the percentages of measurements 

hat achieve absolute differences of less than 5mmHg, 10mmHg, 

nd 15mmHg respectively, when compared to gold-standard mea- 

urement techniques such as intra-arterial monitoring. The grading 

riteria established by the BHS protocol are illustrated in Table 1 . 

evices that achieve grades of A or B in accordance with the BHS 

rading criteria are considered suitable for clinical use, while those 

hat achieve lower grades are not recommended for clinical use. 

As shown in Table 2 , our algorithms satisfy the requirements 

or an A grade device in the estimation of SBP, DBP, and MAP, and 

hus would be recommended for use in clinical settings. 
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Table 2 

Assessment of algorithms based on BHS protocol. 

Absolute Difference (mmHg) 

≤ 5 ≤ 10 ≤ 15 Grade 

SBP 67.66% 89.82% 96.82% A 

DBP 82.79% 96.12% 99.09% A 

MAP 84.21% 97.38% 99.58% A 

Table 3 

Assessment of algorithms based on AAMI standard. 

MAE (mmHg) SD (mmHg) Grade 

SBP 4.41 6.11 Pass 

DBP 2.91 4.23 Pass 

MAP 2.77 3.88 Pass 

Fig. 2. Error histogram for SBP. 
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Fig. 3. Error histogram for DBP. 

Fig. 4. Error histogram for MAP. 

Fig. 5. Bland Altman plot for SBP. 
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.2. Comparison to the AAMI protocol 

Blood pressure devices are often evaluated with respect to both 

he AAMI and BHS protocols, as they have different mechanisms 

or determining device suitability. The AAMI standard [38] states 

hat a device must have a mean difference (also known as mean 

bsolute error) of ≤5 mmHg and a standard deviation (SD) of ≤8 

mHg from gold standard measurements. Devices are assigned a 

rade of “Pass” if the aforementioned criteria are met, otherwise 

he device is given a grade of “Fail”. 

As illustrated in Table 3 , our algorithms comfortably achieve 

Pass” grades with respect to the AAMI criteria. Our algorithms 

chieve impressively low MAEs and SD in estimation of all BP pa- 

ameters, and would be suitable for implementation in healthcare. 

.3. Analysis of error distribution 

Accurate measurement of BP is of vital importance in healthcare 

pplications. To further analyse the performance of our proposed 

NN-LSTM models, error histograms were generated for SBP, DBP 

nd MAP to inspect the spread of errors. 

Figs. 2 , 3 , 4 present the error distributions for the SBP, DBP,

nd MAP measurements. Errors are defined as the difference be- 

ween the true and predicted values for SBP, DBP, and MAP in this 

ontext. As the network is a regressor, errors are rounded to the 

earest whole number in order to generate discretized error distri- 

ution histograms. Each of these histograms clearly shows that 0 

mHg is the most common error, and that most other errors are 

lso extremely low. This in turn indicates a strong level of agree- 

ent between the true and predicted values for each BP parame- 

er. 
5 
.4. Level of agreement between intra-arterial monitoring and our 

NN-LSTM networks 

Bland Altman plots are a key method for assessing the level of 

greement between two methods of measurement, particularly in 

edical applications. These plots illustrate the difference between 

wo measurements compared to the mean of the two measure- 

ents, and as such a high density of data near the central ‘mean 

ifference’ line and between the outer ‘limits of agreement’ (LOAs) 

ndicates a strong level of agreement between measurements. 

In Figs. 5 , 6 , 7 , we compare the SBP, DBP, and MAP predic-

ions made by our CNN-LSTM model with the values obtained 

sing the current gold-standard of BP monitoring, intra-arterial 

easurement. Each figure clearly shows a high density of points 

ear the mean difference line. The majority of high-range errors 

re seen around central values for mean as this is the region 

here the highest level of disagreement between the true and 

redicted values can occur. The percentage of all points that fell 

ithin the LOAs were 93.55%, 93.62% and 93.72% for SBP, DBP, and 

AP, respectively. As such, it is clear that there is a high level 

f agreement between our CNN-LSTM models the respective mea- 

urements made via intra-arterial monitoring. 

To further evaluate the level of agreement between our pro- 

osed scheme and intra-arterial BP measurement, regression plots 
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Fig. 6. Bland Altman plot for DBP. 

Fig. 7. Bland Altman plot for MAP. 

Fig. 8. Regression plot for SBP. 

Fig. 9. Regression plot for DBP. 
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Fig. 10. Regression plot for MAP. 

Table 4 

Coefficients of correlation. 

Blood Pressure Parameter Coefficient of Correlation 

SBP 0.80 

DBP 0.85 

MAP 0.86 
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ere generated and the coefficients of correlation were calculated 

o quantify the strength of the relationship between measure- 

ents. In all regression plots, the dashed black line shows the the- 

retical “perfect” correlation, while the solid black line represents 

he actual correlation. The regression plots for SBP, DBP, and MAP 

re shown in Figs. 8 , 9 and 10 respectively. 

Each regression plot illustrates strong positive linear correlation 

etween the “true” values and the actual predictions generated by 

he CNN-LSTM model. The calculated correlation lines fall close to 

deal correlation lines in all cases. To further analyse correlation, 
6 
he correlation coefficients were calculated, with the results dis- 

layed in Table 4 . 

These results clearly confirm the strong positive linear relation- 

hips between the predictions for SBP, DBP, and MAP made by 

ur scheme when compared with the respective measurements ac- 

uired with invasive intra-arterial monitoring. 

Overall, it is evident that there is a high level of agreement and 

trong correlation between our CNN-LSTM networks and the cur- 

ent gold-standard for blood pressure estimation. As our scheme is 

ntirely non-invasive, unlike intra-arterial monitoring, these results 

re extremely promising for the future of healthcare, especially for 

t-risk patients such as premature babies and the elderly. 

.5. Comparison to previous works 

Several works that are strongly related to our own are pre- 

ented in [10,12–14,19,20] . Each of these methods utilises PPG and 

CG signals to predict blood pressure, though preprocessing and 

egment lengths vary. Several of these works utilise the MIMIC-II 

atabase [12,19,39] or MIMIC III database [20] , while others utilise 

mall databases that were independently acquired [13,14] . In all 

ases, the same database was used for both training and testing of 

he modes. In this section, we compare our results with the best 

esults achieved by these works. The work in [20] presented re- 

ults from several databases, and as such we include the results 

hat they obtained using MIMIC III data, as this is the most directly 

omparable to our own work. 

In Table 5 , the models developed in previous works are com- 

ared to our proposed CNN-LSTM network with respect to the BHS 

rotocol. In terms of SBP, this table shows that our CNN-LSTM net- 

ork outperforms the previous state-of-the-art works. Our work 

s the only one to have achieved an ‘A’ grade for SBP estimation 

cross all data analysed. 

Our CNN-LSTM algorithm also performs extremely well for DBP 

stimation when compared to the previous works. As shown in 

able 5 , our CNN-LSTM definitively outperforms the DBP prediction 

etworks presented in other works. It also performed favourably to 

he network presented in [12] . While the latter achieved a higher 

ercentage of results with ≤5 mmHg error, our CNN-LSTM had a 

igher percentage of errors ≤10 mmHg and ≤15 mmHg. This in- 

icates that the work in [12] has overfit to the data. Our network 

as not suffered from overfitting, and therefore generates less ex- 

remely high errors. While all schemes for DBP estimation achieved 

rades of ‘A’ and therefore could be recommended for use by the 
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Table 5 

Comparison of MAP estimation based on the BHS protocol. 

Absolute Difference (mmHg) 

≤5 ≤10 ≤15 Grade 

Kachuee SBP 34.1% 56.5% 72.7% D 

[10] DBP 62.7% 87.1% 95.7% A 

MAP 54.2% 81.8% 93.1% B 

Mousavi SBP 71% 77% 84% C 

[12] DBP 84% 92% 97% A 

MAP 79% 83% 93% B 

Miao SBP 51% 81% 94% B 

[13] DBP 62 % 92% 99% A 

MAP 60% 90% 98% A 

Song SBP N/A N/A N/A B 

[14] DBP N/A N/A N/A A 

MAP - - - - 

Miao SBP 50.07% 76.41% 90.39% B 

[20] DBP 65.66% 89.77% 96.63% A 

MAP 65.14% 89.58% 96.61% A 

This SBP 67.66% 89.82% 96.82% A 

work DBP 82.79% 96.12% 99.09% A 

MAP 84.21% 97.38% 99.58% A 

Table 6 

Comparison of schemes based on the AAMI standard. 

Error Metrics (mmHg) 

MAE SD Grade 

Kachuee [10] SBP 11.80 9.88 Fail 

DBP 5.83 5.71 Fail 

MAP 5.92 5.25 Fail 

Mousavi [12] SBP 3.97 8.90 Fail 

DBP 2.43 4.17 Pass 

MAP 2.61 4.91 Pass 

Miao [13] SBP 6.13 7.76 Fail 

DBP 4.54 5.52 Pass 

MAP 4.81 6.03 Pass 

Song [14] SBP 4.8 6.0 Pass 

DBP 4.8 6.0 Pass 

MAP N/A N/A N/A 

Sharifi [19] SBP 7.83 9.1 Fail 

DBP 4.86 5.21 Pass 

MAP N/A N/A N/A 

Miao [20] SBP 7.10 9.99 Fail 

DBP 4.61 6.29 Pass 

MAP 4.66 6.36 Pass 

This work SBP 4.41 6.11 Pass 

DBP 2.91 4.23 Pass 

MAP 2.77 3.88 Pass 
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HS, ours has achieved the lowest number errors greater than 10 

mHg and thus would be considered the most suitable for clinical 

se. 

Our scheme for MAP estimation based is also compared to pre- 

ious works in Table 5 . No results for MAP were presented by 

14] , but this important diagnostics parameter was examined in 

10,12,13,20] . As shown in Table 5 , our scheme for MAP estima- 

ion outperforms the previous works. With 99.58% of errors falling 

nder 15 mmHg, it is clear that our scheme has very few high- 

ange errors when compared to previous state-of-the-art works. 

nly our proposed scheme and those of [13,20] achieve the grade 

f ‘A’, however our scheme has significantly fewer high-range er- 

ors exceeding 5 mmHg and thus would be the most suitable for 

linical use. 

As shown in Table 6 , our work also compares favourably with 

revious works with respect to the AAMI standard [38] . A com- 

on misconception in the literature is the calculation of mean er- 

or (ME), rather than mean difference (also known as MAE), when 

onsidering the AAMI standard. As such, Table 6 only includes 

omparisons to papers that provided the correct metric of MAE. 
7 
n all cases, the grade was determined based on MAE and standard 

eviation (SD). 

Table 6 shows that our CNN-LSTM scheme and that in [14] are 

he only ones to achieve a grade of “Pass” for SBP estimation, how- 

ver our scheme has a lower MAE and SD than that of [14] . Our

cheme has a marginally higher MAE and SD than the scheme in 

12] for DBP, however this is likely due to the overfitting seen in 

able 5 for [12] . Based on this, it is clear that our network is more

uitable as it performed well on a set-aside testing set, and there- 

ore is highly likely to generalize well to new data. 

Finally, the MAE for MAP is slightly higher than the scheme in 

12] , but the lower SD again indicates that the algorithm has fit 

etter to the data and performs better across all values. It is again 

ikely that the work in [12] is suffers from overfitting to the data. 

his is evident due to low MAE, but high percentages of high-range 

rrors as shown in Table 5 . 

It is also worth noting that several recent works, including [15–

7] , have achieved strong results in terms of parameters such as 

MSE and correlation. The work presented by [15] also achieves 

n A grade in terms of the BHS protocol. However, these works are 

eveloped on extremely small datasets comprised of 39 [15] , 84 

16] , and 37 [17] patients, respectively. Meanwhile, the AAMI cri- 

eria require a minimum of 85 participants to be used in testing 

o ensure validation on a diverse cross-section of the population. 

hile valid pilot studies, these three works would receive imme- 

iate grades of “fail” under the AAMI protocol due to insufficient 

alidation of their algorithms at this stage. 

Overall, our CNN-LSTM algorithms for SBP, DBP, and MAP per- 

orm strongly and have been shown to generalize well to new data. 

or SBP, DBP and MAP, our proposed model achieved ‘A’ and “Pass”

rades for the BHS and AAMI standard respectively. Ours was the 

nly scheme to meet these standards for all three BP metrics. Ad- 

itionally, ours was the only scheme to achieve both ‘A’ and “Pass”

rades for SBP measurement. These results suggest that our pro- 

osed CNN-LSTM model is the most suitable algorithm for non- 

nvasive BP estimation from ECG and PPG waveforms, and could 

eadily be implemented into healthcare environments. 

. Conclusion 

In this work, it was found that hybridized CNN-LSTM networks 

re capable of estimating key BP parameters from raw ECG and 

PG waveforms. Through the use of raw waveforms rather than 

anual feature selection, we avoid issues associated with time- 

ependent variables such as PTT, minimise pre-processing, and 

void human bias. Our proposed CNN-LSTM model is capable of 

ccurately estimating SBP, DBP and MAP with high accuracy. 

When compared to standards set by the reputable healthcare 

odies of BHS and AAMI, our networks performed extremely well. 

he schemes for estimating SBP, DBP and MAP all met the require- 

ents set by AAMI and achieved grades of ‘A’ in accordance with 

he BHS protocol. This success ensures that a device implement- 

ng our schemes would be recommended for clinical use by these 

rofessional bodies. 

Furthermore, when we compared our works to previous state- 

f-the-art schemes in the literature, our proposed CNN-LSTM was 

learly the strongest scheme. Previous schemes performed well in 

easurement of certain BP parameters, but not in others. Addi- 

ionally, overfitting was apparent in some schemes. Meanwhile, our 

cheme is shown to have fit the data extremely well while per- 

orming strongly on new data. Additionally, our proposed model is 

he only scheme that achieves grades of ‘A’ for the BHS protocol 

nd ‘pass’ for the AAMI standard across all BP measurements. 

These results suggest that our scheme is comparable to sphyg- 

omanometers and other devices used in healthcare environments 

oday, and is certainly ready for clinical trials. In our future work, 
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e aim to develop hardware with PPG and ECG sensing capabil- 

ties that will implement the proposed algorithm, and thereafter 

ndertake clinical trials that include patients with a wider range 

f blood pressures. This will allow us to validate that the model 

erforms strongly on real-time sensor data and can adapt to han- 

le extremely high or low blood pressure readings. 

Overall, the performance of our algorithm indicates that hybrid 

NN-LSTM networks are highly suitable for blood pressure predic- 

ion. Implementing our algorithm into healthcare monitoring de- 

ices would result in non-invasive, continuous, and highly accurate 

lood pressure measurements for a number of applications, from 

elehealth to intensive care. 
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