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Since the 1970s, several species of herpesviruses have been identified and associated

with significant diseases in reptiles. Earlier discoveries placed these viruses into

different taxonomic groups on the basis of morphological and biological characteristics,

while advancements in molecular methods have led to more recent descriptions

of novel reptilian herpesviruses, as well as providing insight into the phylogenetic

relationship of these viruses. Herpesvirus infections in reptiles are often characterised

by non-pathognomonic signs including stomatitis, encephalitis, conjunctivitis, hepatitis

and proliferative lesions. With the exception of fibropapillomatosis in marine turtles, the

absence of specific clinical signs has fostered misdiagnosis and underreporting of the

actual disease burden in reptilian populations and hampered potential investigations

that could lead to the effective control of these diseases. In addition, complex life

histories, sampling bias and poor monitoring systems have limited the assessment of

the impact of herpesvirus infections in wild populations and captive collections. Here we

review the current published knowledge of the taxonomy, pathogenesis, pathology and

epidemiology of reptilian herpesviruses.
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INTRODUCTION

Reptiles are a group of vertebrates (class Reptilia) that are adapted to a broad range of terrestrial
and aquatic environments (1, 2). The group comprises over 11,000 extant species placed in
four orders, namely: Testudines (turtles, tortoises, and terrapins); Squamata (lizards, snakes, and
worm lizards); Crocodilia (crocodiles, alligators, gharials, and caimans); and Rhynchocephalia
(tuatara) (3). Reptiles constitute an integral part of the natural ecosystem and play the roles
of both pollinators and predators, as well as environmental health indicators (4). In addition
to their ecological services, reptiles have become desirable for food, medicinal products, pet
trade, leather goods and research applications (5–7). However, their existence and well-being
have constantly been threatened by several factors, such as hunting, environmental pollution,
loss of habitat, destructive non-native species, climate change, and infectious diseases (4, 8–10).
Disease surveillance and research in wild populations of reptiles are associated with numerous
challenges including difficulties in accessing samples or field data, misleading epidemiological data
and missing population data, as well as political and cultural restrictions (11). These challenges
well explain the use of captive wildlife as models in many studies to acquire epidemiological
information, since diseases are comparable in both wild and captive animals (12–15). Nonetheless,
more robust and ideal epidemiological data are obtained when free ranging animals are surveyed.
Recently, researchers have taken a renewed interest in reptilian viruses, partly due to the role played
by reptiles as reservoir hosts for zoonotic viruses, as well as improvements in viral diagnostic
methods that, in turn, have increased understanding of viruses in reptiles (16–20).
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Herpesviruses (HVs) are members of the family
Herpesviridae, a large taxon of DNA viruses that have been
described in most vertebrate animals, including reptiles (16, 21).
Herpesviruses are enveloped viruses with an icosahedral
nucleocapsid and a linear double-stranded genome of varying
length from ∼124 to 259 kbp (22). Generally, HVs replicate
within host cell nuclei and are able to remain latent in
their natural hosts (17, 23). So far, reptilian HVs that have
been identified and characterised all belong to the subfamily
Alphaherpesvirinae (17, 24–26).

The occurrence of HV infections among reptiles has been
widely documented and associated with stomatitis, tumors,
encephalitis, conjunctivitis, hepatitis and mortalities (27, 28).
Unfortunately, current treatment options of reptilian HVs are
limited and the search for potent vaccines remains a herculean
task; therefore, the adoption of preventative strategies is still the
most efficient way of controlling these diseases. This review aims
to assist in biosecurity planning as well as create a knowledge
platform for decision makers and researchers by providing
an overview of the taxonomy, pathogenesis, pathology and
epidemiology of reptilian HVs.

METHODS

Databases such as Medline (Ovid), PubMed, and Scopus
were searched using specific keywords and phrases
including Herpesviridae infections, herpesvirus infection,
fibropapillomatosis, grey-patch disease, loggerhead genital-
respiratory herpesvirus, herpesvirus disease, reptiles,
turtles, tortoise, snakes, lizards, alligators, and crocodiles
(Supplementary File 1). To ensure that relevant publications
were not missed, each subheading was searched independently
on PubMed. Also, an additional literature search was conducted
by assessing references of articles selected from previous
databases. A summary of the search results is shown in Figure 1.
Furthermore, we read the abstracts and full texts of the selected
articles, extracted and analysed information on the diagnostic
methods used and the reptilian HVs investigated from 1972
to September 8, 2020 (Figures 2, 3; Supplementary File 2).
Non-English, non-original research, guidelines, and review
articles were excluded from the analysis.

BIBLIOMETRICS

We conducted bibliometric analyses of published articles on
the topic of reptilian HVs using Vosviewer software (29)
and the Web of Science Core Collection database. A total
of 245 publications were downloaded from Web of Science
Core Collection database using the following search terms;
herpesvirus, turtle, lizard, snake, tortoise and crocodile. The
strategy involved a combined use of the keywords, tags and
Boolean operators to create query sets as follows: ALL=
(herpesvirus) AND ALL= (turtle∗ OR lizard∗ OR snake∗ OR
tortoise∗ OR crocodile∗) with no limitations. USA had the
highest number of research outputs with 149 (60.8%) articles.
This was followed by Germany (28; 11.4%) and Australia

FIGURE 1 | Summary of literature search conducted. A total of 1,026 articles

were initially screened and 712 articles were later excluded due to duplication.

A total of 314 articles were then reviewed for this study. One hundred and

thirty studies were then extracted for quantitative analysis.

(26; 10.6%) (Figure 4; Table 1). Using Vosviewer, we visualised
the major keywords commonly used in the field of reptilian
HVs and the link strengths between collaborating countries
(Figure 4; Supplementary File 3). Of note, a low number of
records on reptilian HVs were observed for some countries
(Indonesia, Mexico and India) that have rich reptile diversity
(Table 1) (3, 30, 31). Some of these countries also had little
or no collaborations with the high research output countries
(Figure 4), thus suggesting an under-reporting of reptilian HVs
in these countries. Conversely, Germany has less reptile diversity
with a higher number of records (Table 1). This observation
could be attributed to the presence of established diagnostic
resources or increased monitoring and reporting systems for
reptilian diseases in the country.

TAXONOMY OF REPTILIAN
HERPESVIRUSES

Reptilian HVs belong to the family Herpesviridae, a member
of the order Herpesvirales (32). According to the 2019
International Committee on Taxonomy of Viruses (ICTV)
classification, the subfamily Alphaherpesvirinae comprises five
genera namely, IItovirus, Mardivirus, Scutavirus, Simplexvirus,
and Varicellovirus. Only the genus Scutavirus contains species
that cause HV diseases in reptiles and includes Chelonid
alphaherpesvirus 5 (ChHV-5) and Testudinid alphaherpesvirus
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FIGURE 2 | Studies on HVs in reptiles from 1972 to September 8, 2020. Overall, more than a quarter (n = 51; 39%) of the 130 extracted studies were conducted in

marine turtles since the 1970s. Of the 60 publications between 2010 and 2020, 45% (n = 27) were ChHV-5 related studies.

3 (TeHV-3). The species Chelonid alphaherpesvirus 6 (ChHV-
6) belongs to the subfamily Alphaherpesvirinae with unknown
generic placement. The Iguanid herpesvirus 2 (IgHV-2) that
causes cytopathic infection in iguanids is of unknown generic and
subfamilial placement (32–35).

Since the end of the twentieth century, advances in
molecular and phylogenetic analyses have made it possible
for novel reptilian HVs to be identified with proposed
taxonomic placements (36). Novel HVs have been detected in
freshwater turtles, including Emydoidea herpesvirus 1 (EBHV-
1), Pelomedusid herpesvirus 1, Glyptemys herpesvirus 1 and
2 (GlyHV-1 and−2), Emydid herpesvirus 1 and 2 (EmyHV-1
and−2), and Terrapene herpesvirus 1 and 2 (TerHV-1 and−2)
(28, 37–41). Loggerhead genital-respiratory herpesvirus (LGRV)
and loggerhead orocutaneous herpesvirus (LOCV) were detected
in loggerhead turtles (Caretta caretta) and the genus Chelonivirus
was proposed for these viruses and other related chelonian
HVs (42). Also, tortoise HV species (TeHV-1,−2,−3,−4) have
been identified and placed in the proposed genus Chelonivirus
(43–46), although TeHV-3 has been formally assigned to the
genus Scutavirus (32). Other unassigned reptilian HVs in the
family Herpesviridae include the Iguanid herpesvirus 1 (IgHV-
1), Gerrhosaurid herpesvirus 1-3, Varanid herpesvirus (VHV-
1,−2,−3) and Helodermatid herpesvirus 1 (HeHV-1) in lizard
species (25, 47–51), Opheodrys herpesvirus 1 in snakes (52),

Crocodyline herpesvirus 1-3 (CrHV-1,−2,−3) in crocodiles
(53), and, Chelonid herpesvirus 1-4 (ChHV-1,−2,−3,−4) in
green turtles (Chelonia mydas-ChHV-1) (54), freshwater turtles
(Clemmys marmorata-ChHV-2; Chrysemis picta-ChHV-3) (55,
56), and Argentine tortoise (Geochelone chilensis-ChHV-4) (57).
Notably, some of these unassigned HVs were identified decades
ago based on their morphological and biological characteristics
using techniques (virus isolation, electron microscopy and
histopathology) that were available at that time, thus making
it challenging to place them taxonomically. We conducted
a phylogenetic analysis to illustrate the relationship between
the unassigned reptilian HVs and currently assigned HVs
using amino acid sequences of HV-DNA-dependent DNA
polymerase (37 complete and 17 partial sequences) from the
NCBI website (https://www.ncbi.nlm.nih.gov/). As previously
described (37, 58), the analysis showed that the unassigned
reptilian HVs form a monophyletic group with members of the
subfamily Alphaherpesvirinae. Freshwater HVs showed a close
phylogenetic relationship with the tortoise HVs while the lizard
HVs indicated high variations (Figure 5). Overall, given the
variations shown by the unassigned reptilian HVs, it remains
a matter of scientific deliberation whether these viruses should
be assigned into one genus such as TeHV-3 and ChHV-5 or
into different genera, although we envisage the latter would be
the case.
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FIGURE 3 | Diagnostic methods used in different studies from inception 1970 to September 8, 2020. Of the 130 studies extracted for this quantitative analysis, 22

(17%), 59 (45%), 36 (28%), 24 (18%), and 87 (67%) used virus isolation, histopathology, electron microscopy, serology, and nucleic acid detection assays,

respectively, for various investigations of reptilian HVs.

FIGURE 4 | Links between collaborating authors from different countries with research output from inception to 2020. The circular coloured nodes represent countries

and the node size indicates number of publications from the country. The lines between nodes indicate authorship collaborations between countries and the widths of

these lines indicate the link strength.

VIRION AND GENOME ORGANIZATION

All members of the family Herpesviridae share a common
virion architecture, comprising a monopartite, linear, double
stranded DNA core enclosed within an icosahedral capsid
with a T = 16 symmetry (60–62). The capsid is tightly
wrapped by a proteinaceous tegument, which, in turn, is
surrounded by an envelope containing polyamines, lipids,
and essential antigenic glycoproteins (62, 63). Unlike reptilian
HVs, the atomic structures of human alphaherpesviruses

have mostly been described. For instance, a cryo-electron
microscopy (Cryo-EM) resolved the atomic structure of
human simplexviruses (HSV-1 and−2), which comprise
capsid organisation (hexons, pentons and triplexes), capsid
proteins (VP5, VP19C, VP23, and VP26) and tegument
proteins (pUL17, pUL25, and pUL36) (64–66). Although the
atomic structures of reptilian HVs have not specifically been
resolved, the resolved structures of other alphaherpesviruses
provide insights, since their genomes have many similarities
(36, 67). Consequently, the insights could guide future
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TABLE 1 | Bibliographic data on reptilian herpesviruses based on the number of

articles from different countries.

Countries/Regions Records % of 245 No. of reptiles

species (3,31)

*Rank

USA 149 60.8 1,147 2

Germany 28 11.4 29 31

Australia 26 10.6 1,159 1

Brazil 23 9.4 878 5

Switzerland 11 4.5 27 32

Italy 10 4.1 65 24

Canada 9 3.7 57 25

United Kingdom 15 6.1 6 43

Belgium 6 2.4 11 41

Spain 6 2.4 78 23

Denmark 5 2.0 12 40

France 4 1.6 181 15

Mexico 4 1.6 1,021 3

Portugal 4 1.6 44 27

Slovakia 4 1.6 16 37

Ecuador 3 1.2 541 10

Japan 3 1.2 111 22

China 3 1.2 605 8

Peru 3 1.2 586 9

Austria 2 0.8 18 36

Costa Rica 2 0.8 467 12

Czech Republic 2 0.8 15 38

India 2 0.8 889 4

Ireland 2 0.8 21 35

Netherlands 2 0.8 23 34

Barbados 1 0.4 13 39

Cape Verde 1 0.4 51 26

Chile 1 0.4 179 16

Colombia 1 0.4 654 7

Croatia 1 0.4 42 28

Egypt 1 0.4 133 20

French Guiana 1 0.4 177 17

Indonesia 1 0.4 798 6

Israel 1 0.4 148 19

Myanmar 1 0.4 374 13

Nicaragua 1 0.4 218 14

Norway 1 0.4 10 42

Romania 1 0.4 31 30

Seychelles 1 0.4 37 29

South Africa 1 0.4 529 11

South Korea 1 0.4 26 33

Taiwan 1 0.4 123 21

Turkey 1 0.4 150 18

Turks Caicos 1 0.4 12 40

*Ranking was conducted based on the number of reptile species by countries identified

from our bibliometric search and not based on the global ranking by Butler (31).

research in the atomic structure resolutions of reptilian
HVs, which in turn could serve as a baseline for reptilian
HV vaccinology.

Although the complete nucleotide sequences for most
reptilian HVs are yet to be obtained, genomic features can
be inferred from other fully sequenced alphaherpesviruses
owing to sequence homology (36, 67). All alphaherpesvirus
genome structures contain unique long (UL) and short (US)
sequences and each are flanked by both terminal (TRL,
TRS) and internal (IRL, IRS,) inverted repeat regions, giving
the general configuration TRL-UL-IRL-IRS-US-TRS (68). The
complete genome of two TeHV-3 strains (1976 and 4295) was
recently sequenced. The 1976 strain was shown to have a novel
inverted repeat (TRT, IRT) and unique (UT) regions (69). The
genome is approximately 160 kbp, encodes at least 107 open
reading frames (ORFs) and consists of UL (107,928 bp) and US

(20,375 bp) regions. The UL is bound to its right by the US

adjoined to inverted repeats (IRS and TRS; 8,536 bp) and to
its left by a third unique region (UT; 12,595 bp), which is also
bordered by inverted repeats (TRT and IRT; 1,194 bp) to give the
overall layout TRT-UT-IRT-UL-IRS-US-TRS (69). However, this
differs from the type D configuration earlier attributed to this
species (70). In another study, the complete nucleotide sequence
of a Bacterial Artificial Chromosome (BAC) containing the entire
genome of ChHV-5 (cloned in pTARBAC2.1) was obtained
and it showed a different configuration (UL-IRS-US-TRS) from
that of TeHV-3, even though they both belong to the genus
Scutavirus (71). Moreover, the genome characterisation of strain
4295 identified regions containing genes that could be involved
in viral pathogenesis or virulence (69). This is an important
finding as these regions could serve as therapeutic or diagnostic
targets in future research. Similarly, evidence of recombination
among strains of ChHV-5 documented by Morrison et al.
could lead to increased virulence and transmission of ChHV-
5 variants (72) and these events may remain undetected in
sea turtle populations. Therefore, it is pertinent to strengthen
current diagnostic approaches to allow for more comprehensive
geographical surveys and characterisation of HVs. Also, as new
and affordable diagnostic techniques are being developed and
improved upon, we expect more novel structures of reptilianHVs
to be reported.

TRANSMISSION AND PATHOGENESIS

Several modes of reptilian HV transmission have been postulated
including vertical, horizontal and mechanical transmissions (73–
75). Marenzoni et al. reported the first evidence of vertical
transmission of TeHV-3 in a captive breeding facility (14). In
this study, one hatchling born in isolation from the egg laid
by an infected tortoise (Testudo hermanni hermanni) presented
with conjunctivitis and tested positive by specific polymerase
chain reaction (PCR) targeting the partial sequence of the UL39
gene of TeHV-3 (14). In other studies, Jones and colleagues
provided molecular evidence for the horizontal transmission
of ChHV-5 in green turtles by demonstrating the molecular
link between viral variants and foraging grounds (76, 77).
Furthermore, experimental studies have revealed the possible
transmission of reptilian HVs by direct contact with infectious
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FIGURE 5 | Midpoint rooted maximum likelihood phylogenetic tree of predicted amino acid sequences of HV-DNA-dependent DNA polymerase. The unassigned

reptilian HVs are shown in red and cluster within the subfamily Alphaherpesvirinae. This analysis involved 54 amino acid sequences (37 complete and 17 partial

sequences) downloaded from NCBI website (https://www.ncbi.nlm.nih.gov/) and aligned by ClustalW. There were a total of 1,443 positions in the final dataset. The

evolutionary history was inferred by using the Maximum Likelihood method and JTT matrix-based model. The tree with the highest log likelihood (−60139.09) is

shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated

using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of

substitutions per site. Evolutionary analyses were conducted in MEGA X (59).

secretions (78–80) or indirectly via vectors and water (81–
84). By linking viral shedding patterns or frequency to disease
occurrence, we could trace the most probable transmission

mode of reptilian HVs. For instance, in captive enclosures,
HVs could be easily transmitted via contact with secretions
or contaminated materials, even at low shedding rates, and
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the removal of infected animals and infectious materials
could stop the spread of the virus. In the wild, different
transmission agents such as vectors, fomites and superspreaders
could interplay to compensate for the low contact rate and
infrequent shedding of someHVs (85). Because of themanagerial
implications, it is therefore important to further investigate
the roles of these factors in the transmission of HVs in
wild reptiles.

Four pathogenic mechanisms are highly conserved among
all HVs and include: (1) intranuclear replication and capsid
assembly; (2) expression of DNA metabolic and synthetic
enzymes; (3) cell destruction following the release of viral
progenies; and (4) the maintenance of latency in natural host
cells (63, 86, 87). Generally, HV infections begin with viral
entry, which is followed either by localisation or systemic
spread (87). An experimental transmission study described the
systemic dissemination of tortoise HVs (isolates HV 1976 and
HV 4295/7R/95) (78). Following experimental infection via
intranasal and intramuscular routes, the HVs elicited clinical
signs and were detected by PCR in tissue samples from the
respiratory, digestive and urogenital tracts, central nervous
system (CNS), heart and spleen (78). Fibropapillomatosis (FP)
and grey patch disease (GPD) are both associated with clinical
signs that could be attributed to local destruction of infected
cells due to replication and progeny release (54, 80, 88–90).
Evidentially, two studies demonstrated the local replication
of ChHV-5 by detecting certain biomarkers (eosinophilic
intranuclear inclusions, F-VP26, DNA, and mRNA transcripts)
within fibropapillomatous lesions (85, 91).

Unfortunately, the specific mechanisms involved in host cell
invasion, immune evasion, localisation and spread of reptilian
HVs have not been fully elucidated. However, recent molecular
studies have provided insights into some virulence factors
associated with reptilian HVs (69–71). Briefly, glycoproteins B
(gB), gC, gD, gH, gK gL, gM, and gN have been hypothesised
to function in host cell attachment and entry (69–71). gB and
gC are capable of binding to heparan sulphate proteoglycans
that are present on the surface of many cells, thus aiding viral
adsorption and penetration into different cell types (69, 92). The
interactions of gB, gD, gH, gK, gL, gM, and gN have also been
postulated to mediate membrane fusion and viral entry into the
cell (69, 70, 92). Glycoproteins B, E, H, and L are involved in
viral cell to cell spread, which could occur through intercellular
bridges or intra-axonal transport, thus circumventing humoral
immune responses (69, 70). Similarly, the gC can bind to the
third complement component (C3b) to block the alternative
pathway complement activation (69, 93). The gE and gI in
HSV-1 inhibit the normal function of antibodies by building
up a complex that acts as an Fc-receptor (94). However,
the immunosuppression mechanism of the gE homologue in
reptilian HVs is not yet clear. Finally, the F-M04 and F-sial
proteins were recently identified in ChHV-5 and thought to play
a role in FP pathogenesis; however, the specific mechanisms
involved are not yet understood (71). Future research should
consolidate characterisation of reptilian HVs in order to increase
the understanding of host-pathogen interactions and improve
clinical interventions.

CLINICAL AND PATHOLOGICAL SIGNS

Herpesvirus infections have been described in reptiles with a
range of clinical manifestations (16). To provide an overview,
the clinical signs and the gross and histological lesions associated
with reptilian HVs are summarised in Table 2. Some of the
more detailed descriptions are from sea turtles, tortoises and
crocodiles. Grey patch disease and FP, characterised by coalescing
greyish papular skin lesions (spreading patches) and branching
papillary tumours (Figure 6), respectively, have been reported
in sea turtles (42, 54, 108, 109). Lung-eye-trachea disease
(LETD) with a clinical course of 2–3 weeks has been seen in
green sea turtles (98). Lung-eye-trachea diseased turtles often
present with pneumonia, stridor and caseation of the eyes,
oropharynx and trachea (98). In freshwater turtles, HV infections
are associated with hepatic necrosis, and proliferative and/or
ulcerative lesions of the skin and shell (Figure 7) (37, 38, 110,
111). Infections in tortoises result in ulcerative to diphtheroid-
necrotizing stomatitis, conjunctivitis, glossitis, rhinitis, dyspnoea,
liver disease and neurological disease and could be accompanied
by anorexia, regurgitation, neck oedema, lethargy and death
(Figure 8) (112–115). Papillomas, stomatitis, and hepatitis are
commonly described in lizards infected with HV (25, 47–
49, 116, 117). Recently, five green snakes (Opheodrys vernalis)
housed together presented with oropharyngeal squamous cell
carcinoma and molecular analysis confirmed the presence of
a novel Opheodrys herpesvirus-1 (Alphaherpesvirinae) (52). In
another study, a lymphoid follicular cloacal inflammation in
juvenile alligators was initially associated with tortoise HV.
However, the HV (Genbank accession AY913769.1) was later
determined to be a likely laboratory contamination and the
actual causative agent is still unknown (118). Similarly, Hyndman
et al. identified three novel HVs associated with conjunctivitis
and/or pharyngitis (CP), systemic lymphoid proliferation with
non-suppurative encephalitis (SLPE), and lymphonodular skin
lesions (LNS) in farmed saltwater crocodiles (Crocodylus porosus)
and captive freshwater crocodiles (Crocodylus johnstoni) (53).
Obviously, HVs can induce significant diseases in both captive
and wild reptiles; therefore, there is a need to develop rapid
diagnostic tests that will aid disease surveillance and reporting in
order to maintain safe biosecurity measures and reduce spread.

EPIDEMIOLOGY

Epidemiological studies of HVs in wild reptiles could be
challenging due to a lack of sensitive diagnostics for the detection
of unknown or novel species, especially in resource-limited
regions. HV infections are commonly characterised by non-
specific clinical signs in most reptiles, thus making diagnoses on
the basis of clinical signs alone difficult. An exception to this is FP,
in which the presence of cutaneous tumours gives an indication
of the disease; hence, more FP-associated HV data have been
reported in recent decades (Figure 2; Supplementary File 2).
Even so, the complete disease impact on wild populations
could be currently underestimated due to the underreporting
of outbreaks, sampling bias and poor monitoring systems. For
instance, there is a paucity of information for FP epidemiology
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TABLE 2 | Clinical presentations, gross, and histological lesions of reptilian HV species.

Species Reported host Clinical presentation Gross lesion Histopathology References

ChHV-1 • Green sea turtles (Chelonia mydas) • Benign papular lesions on the neck and

flippers

• Spreading grayish patches to large areas

of the epidermal surface

• Death may occur

• Benign Papules

• Spreading gray patches

• Intranuclear inclusions found in

epidermal keratinocytes

(54, 95, 96)

ChHV-2 • Pacific pond turtles

(Clemmys marmorata)

• Lethargy

• Anorexia

• Muscular weakness

• Coma

• Subcutaneous haemorrhages

• Death

• Hepatomegaly

• Pallor of kidney

• Subcutaneous Petechial and

ecchymotic haemorrhages

• Hepatic necrosis

• Intranuclear inclusion bodies

• Lymphocytic aggregation in liver, kidney, and spleen

• Moderately hyperplastic spleen

(55)

ChHV-3 • Painted turtles (Chrysemys picta) • Abscessation

• Death

• Pulmonary edema

• Friable and greenish-brown liver

• Distended gall bladder

• Congested spleen

• Shell rot lesions on plastron

• Foci of necrosis on the liver and infundibular septa

• Hepatocytes containing Eosinophilic intranuclear

inclusions

• Granulocytic and mononuclear infiltrations

(56)

ChHV-4 • Argentine tortoise

(Geochelone chilensis)

• Acute death

• Nasal discharge

• Ocular discharge

• Regurgitation

• Anorexia

• Lethargy

• Necrotizing stomatitis

• Necrotizing lesions

• Serous atrophy of fat

• Pale liver

• Diffuse area of necrosis in mucosal epithelium

• Accumulation of necrotic cellular debris and fibrin

• Infiltration of Inflammatory cells

• Eosinophilic intranuclear inclusions within

degenerating epithelial cells and other tissues

• Vacuolar degeneration of hepatocytes

(57)

ChHV-5 • Green sea turtle (Chelonia mydas)

• Loggerhead sea turtle (Caretta

caretta)

• Hawksbill turtle (Eretmochelys

imbricata)

• Leatherback turtle (Dermochelys

coriacea)

• Olive ridley sea turtle (Lepidochelys

olivacea)

• Kemp’s ridley sea turtle

(Lepidochelys kempii)

• Flatback turtle (Natator depressus)

• Tumours on the inguine, tail, flippers,

axillae, chin, neck, eyelids, corneas,

carapace and plastron

• Single to multiple raised cutaneous

masses that are verrucous, smooth,

sessile or pedunculated

• Ulcerated and necrotic large masses

• Pigmented cutaneous tumours

• Spherical, smooth, firm, white, or

gelatinous and translucent nodules in

the lungs, kidneys, liver, heart, and

gastrointestinal tract

• Papillary epidermal and dermal hyperplasia

• Orthokeratotic hyperkeratosis

• Hypertrophied epithelial cells overlying vascularized

fibrous stroma

• Epithelial necrosis and multifocal areas of

ballooning degeneration

• Lymphocytes and plasma cells infiltrations

• Melanophores within the masses

• Eosinophilic intranuclear inclusions

(97)

ChHV-6 • Green sea turtles (Chelonia mydas) • Gasping

• Buoyancy abnormalities

• Inability to dive

• Lethargy

• Caseous exudate covering the eyes,

glottis and trachea

• Death

• Emphysematous areas in the lungs

• Caseous exudate in the eyes, glottis

and trachea

• Multifocal raised white nodules in

the liver

• Necrotic lesions in the glottis, tracheal and lungs

• Periglottal accumulations of necrotic cellular debris

and fibrin

• Infiltrations of heterophils, lymphocytes, and plasma

cells in periglottal submucosa

• Periglottal and tracheal epithelial proliferative and/or

squamous metaplastic changes

• Syncytial giant cells in tracheal mucosa and major

airways of lungs

• Thickened interstitium

(98)

(Continued)
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TABLE 2 | Continued

Species Reported host Clinical presentation Gross lesion Histopathology References

• Hypertrophic and hyperplastic cells with enlarged

vacuolated nuclei lining the airways

• Amphophilic intranuclear inclusions

TeHV-1 • Horsfield tortoises (Testudo

horsfieldii)

• Pancake tortoises

(Malacochersus tornieri)

• Cervical extension

• Laboured breathing

• Respiratory murmur

• Oral and nasal discharge

• Reddish-white fibrinous coating of the

tongue

• Death

• Yellowish-white pseudomembrane in

the mouth, pharynx and glottis

• Hepatomegaly and ecchymotic liver

• Pseudomembrane formation in

the stomach

• Diffuse areas of degeneration and necrosis in

tongue and pharynx and larynx

• Necrotic cellular debris and fibrin accumulation

• Inflammatory cells infiltrations

• Eosinophilic or amphophilic inclusion bodies

(99–101)

TeHV-2 • Desert tortoises

(Gopherus agassizii)

• Anorexia

• Lethargy

• Necrotizing stomatitis

• Oral plaques • Eosinophilic and amphophilic intranuclear inclusions

in superficial epithelial cells

• Thick coagulum over the epithelial surfaces of the

mouth, pharynx, and trachea

• Infiltration of heterophils, lymphocytes, plasma cells,

and macrophages

• Granulation of oropharyngeal tissue following

epithelial loss

(44)

TeHV-3 • Greek Tortoises (Testudo graeca)

• Hermann’s Tortoises

(Testudo hermanni)

• Nasal and oral discharges

• Rhinitis

• Dyspnoea

• Conjunctivitis associated with

blepharospasm

• Diphtheroid-necrotizing stomatitis

• Glossitis

• Pharyngitis

• CNS involvement (Circling, head tilt,

lethargy, circling, paralysis and

incoordination)

• Deaths

• Stomatitis with yellowish oral plaques

• Rhinitis with foamy nasal discharge

• Conjunctivitis

• Oesophageal hyperplasia

• Hyperplasia and hyperkeratosis in the oral mucosa

• Sloughing of the epithelial cells and multifocal

erosion

• Glottal epithelial ulceration, hyperplasia and

necrosis

• Heterophilic pustules.

• Amphophilic intranuclear inclusion bodies

• Heterophilic bronchitis and pneumonia

• Nuclear degeneration changes of the hepatocytes

• Ballooning degeneration renal and digestive organs

(14, 78, 102,

103)

TeHV-4* • Bowsprit tortoise (Chersina

angulata)

• Leopard tortoise

(Stigmochelys pardalis)

• Asymptomatic in some cases.

• Respiratory distress

• Increased salivation

• No data • No data (43, 104)

LGRV • Loggerhead sea turtles

(Caretta caretta)

• Moribund state

• Lethargy and quadriparesis

• Emaciation

• Abnormal gait

• Death

• Colon impaction

• Fibrinonecrotic colitis

• Linear ulcers around the base of the

base of the phallus

• Multifocal ulcers along the

mucocutaneous junction of the eyelids

• Circumferential ulcer around the entire

mucocutaneous junction of the cloaca

• Ulcerative gastritis

• Epithelial hyperplasia.

• Ballooning degeneration and syncytial cell formation

within basal layers of the epithelium

• Intranuclear eosinophilic inclusion bodies

• Heterophilic inflammation

(Continued)
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TABLE 2 | Continued

Species Reported host Clinical presentation Gross lesion Histopathology References

LOCV • Loggerhead sea turtles

(Caretta caretta)

• Moribund state

• Lethargy, bradycardia, hypoventilation,

and aspiration pneumonia.

• Death

• Deep multifocal ulcers around the rostral

aspect of the tongue

• Multifocal pale cutaneous plaques with

erythematous borders on the ventral

neck region

• Tenacious exudates covering some

plaques

• Liver pallor

• Eosinophilic intranuclear inclusion bodies

• Necrosis of the epithelium and extend into the

underlying lingual collagen

• Heterophilic inflammation

• Epidermal hyperplasia

• Hyperkeratosis

• Intraepithelial pustules

• Multifocal serocellular crust

• Sloughed epithelial cells in the airways

(42)

EBHV-1* • Blanding’s turtles

(Emydoidea blandingii)

Asymptomatic • No data • No data (39)

GlyHV-1* • Bog turtles

(Glyptemys muhlenbergii)

Asymptomatic • No data • No data (37)

GlyHV-2* • Wood turtles (Glyptemys insculpta) Asymptomatic • No data • No data (37)

EmyHV-1 • Eastern river cooter (Pseudemys

concinna)

• Northern map turtle (Graptemys

geographica)

• Painted turtles (Chrysemys picta)

• Weakness

• Frothy nasal discharge

• Acute death

• Dark red, wet, and heavy lungs

• Thickened, wet, and gelatinous cranial

aspect of the lungs

• Trace amount of watery fluid in the

trachea

• Diffusely tan, and slightly rounded

lobular edges of the liver

• Hepatic lipidosis

• Intranuclear inclusion bodies

• Necrotic lesions in the lungs, liver and spleen

• Granulocytic and lymphocytic interstitial infiltrations

• Acute congestion with multifocal haemorrhage

(28, 105)

EmyHV-2* • Bog turtle (Glyptemys muhlenbergii)

• Spotted turtles (Clemmys guttata)

Asymptomatic • No data • No data (37)

TerHV-1* • Eastern box turtles (Terrapene

carolina carolina)

• Lethargy

• Dehydration

• Dyspnoea

• Moribund state with fibronecrotic

stomatitis and cloacitis

• Conjunctivitis

• Blepharoedema

• Death

• No data • Necrosis, ulceration and syncytia formation of the

pharyngeal mucosal epithelium

• Eosinophilic to amphophilic intranuclear inclusions

(40)

TerHV-2 • Eastern box turtles (Terrapene

carolina carolina)

• Papillomatous skin lesions

• Anorexia

• Cutaneous papillomas • Papillary hyperplasia of the epithelium

• Infiltrations of lymphocytes, plasma cells, and

heterophils

• Epithelium covered by keratin and cell debris

(38)

Pelomedusid

HV-1*

• West African mud turtles

(Pelusios castaneus)

• Asymptomatic • No data • No data (41)

IgHV-1 • Green iguana (Iguana iguana) • Acute death • Thin body

• Generalized muscle wasting

• Loss of fat store

• Hepatocellular necrosis

• Hepatic syncytia

• Eosinophilic intranuclear inclusions

• Stomach and intestinal ulceration and necrosis

• Acute renal tubular necrosis

• Splenic lymphoid atrophy or hypoplasia

(33, 50, 51)

(Continued)
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TABLE 2 | Continued

Species Reported host Clinical presentation Gross lesion Histopathology References

IgHV-2 • San Esteban Chuckwalla

(Sauromalus varius)

• Acute death • Haemorrhage in the lung

• Congestion of airway

• Pale liver

• Diffuse hepatic necrosis, eosinophilic intranuclear

inclusions

• Multifocal necrosis of the spleen

• Interstitial infiltrations of muscles by mononuclear

leucocyte

• Fibrosis of muscle and gingiva

(34)

Gerrhosaurid

HV-1

• Sudan plated lizard

(Gerrhosaurus major)

• Glossal stomatitis

• Severe dyspnoea

• Raised and tanned periglottal tongue

• Little body fat

• Glottal trachea of granulocytic and lymphocytic

inflammation with erosion of overlying epithelium

(47)

Gerrhosaurid

HV-2*

• Black-lined plated lizard

(Gerrhosaurus nigrolineatus)

• Labial stomatitis • No data • No data (47)

Gerrhosaurid

HV-3*

• Sudan plated lizard

(Gerrhosaurus major)

• Chronic labial proliferative and

ulcerative growth

• No data • No data (47)

VHV-1 • Green tree monitor lizards

(Varanus prasinus)

• Proliferative and Ulcerative

stomatitis/gingivitis

• Squamous cell carcinomas

• Small white chalky plaques in the

coelomic membrane, thoracic

musculature, liver, kidneys, heart, and

joints fascial plane

• Gingival proliferation

• Mucosal hyperplasia

• Fibrinous exudate on the serosa of the

gall bladder

• Oral villous-like proliferation with

patches of focal erythema

• Mucosal epithelial proliferation

• Severe pulmonary, myocardial, hepatic, and renal

vascular thrombosis

• Sloughed tubular endothelial cells

• Gingival necrosis

• Hepatic lipidosis

• Hepatic and renal amyloidosis

(48)

VHV-3 • Monitor Lizards (Varanus spp.) • Acute death • Yellow-tan or white viscous material and

white, thick material in the intestine and

distal colon, respectively

• Multiple soft, white particles (2–3mm) in

intestinal tract

• Diffuse pale-brown liver with multiple flat,

tan pinpoint foci on the capsular surface

• Acute, multifocal, coagulative necrosis in the lamina

propria of the small intestine

• Acute, multifocal hepatocellular coagulative

necrosis

• Eosinophilic intranuclear inclusions in the small

intestine and liver

(49)

HeHV-1 • Gila monster

(Heloderma suspectum)

• Intraoral mass

• Loss of weight

• Gingival nodule

• Muscle atrophy

• Anastomosing epithelial cords

• Proliferative gingival tissues

• Eosinophilic and birefringent material within mass

(25)

Elapid

HV-1

• Siamese cobra (Naja naja kaouthia) • Thick tenacious venom (low

grade venom)

• Enlarged venom gland

• Thick venom exudates

• Venom glands are lined by degenerated epithelial

cells

• Mononuclear cell infiltration of gland subepithelium

• Debris, degenerated cells and venom in the lumina

of glands

• Intranuclear inclusions

(106)

Opheodrys

HV-1

• Smooth green snakes

(Opheodrys vernalis)

• Oropharyngeal squamous cell carcinoma • Pale tan, multinodular masses on

oropharyngeal mucosa

• Brown friable accumulations on

tumour surface

• Distorted oropharyngeal mucosa and submucosa

by epithelial neoplasm

• Islands of neoplastic epithelial cells containing

keratin cores

• Anisocytosis and anisokaryosis of neoplastic

epithelial cells

(52)

(Continued)
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TABLE 2 | Continued

Species Reported host Clinical presentation Gross lesion Histopathology References

• Squamous differentiation, keratin pearls, prominent

intercellular bridges

• Heterophilic inflammation and surface compact

keratin layers

CrHV-1 • Saltwater crocodiles

(Crocodylus porosus)

• Conjunctivitis-pharyngitis (CP). • Reddening and swelling of the

conjunctivae of the eyelids and

nictitating membrane

• Cornea opacity and rupture

• Fibrinocaseous conjunctival, lingual and

oropharyngeal exudates

• Epithelial Hyperplasia, erosion, or ulceration of the

conjunctiva, pharynx and larynx with cellular

infiltrations

• Lymphocyte, heterophil, and macrophage

infiltrations of cornea, iris, and conjunctival,

pharyngeal and laryngeal epithelium

(53, 107)

CrHV-2 • Saltwater crocodiles

(Crocodylus porosus)

• Conjunctivitis-pharyngitis (CP)

• Concurrent skin ulcers.

• Systemic lymphoid proliferation and

encephalitis (SLPE)

• Lymphnodular skin (LNS)

CP

• Gross lesions of CP syndrome as

described above

SLPE

• Poor body condition

• Splenomegaly.

• Pulmonary edema

LNS

• Pale, soft, raised, well-delineated foci

on lateral abdominal scales with

occasional ulcerated surface covered

in caseous exudate

• Pale pink soft glistening tissue

between the epidermis and deep

dermal collagen

• Enlarged tonsils with multinodular

appearance

• Discrete soft white foci in the

subepithelial tissue of the conjunctiva

• Multinodular swelling of the cloacal

mucosa

• Discrete white soft foci in the

parenchyma of the myocardium, liver,

or kidney

CP

• Histological lesions of CP syndrome as

described above

SLPE

• Lymphohistiocytic and macrophage infiltration of

pulmonary septae, hepatic periportal regions,

pancreatic interstitium, gastrointestinal

submucosa, pericardium, epicardium, iris, wall of

large blood vessels and brain

• Hyperplastic lymphocytic conjunctivitis

LNS

• Expansion and displacement of collagen of the

superficial and mid-dermis by intense

multinodular mononuclear cell infiltrate

• Epithelial hyperplasia of the tonsils will

lymphocytes and macrophage infiltrations

• Dense lymphohistiocytic aggregates of

myocardium, liver, or kidney

(53, 107)

CrHV-3 Freshwater crocodiles (Crocodylus

johnstoni)

• Systemic lymphoid proliferation • Gross lesions of SLPE described above • Histological lesions of SLPE described above (53, 107)

ChHV, Chelonid herpesvirus; TeHV, Testudinid herpesvirus; LGRV, loggerhead genital-respiratory herpesvirus; LOCV, loggerhead orocutaneous herpesvirus; EBHV, Emydoidea herpesvirus; GlyHV, Glyptemys herpesvirus; EmyHV, Emydid

herpesvirus; TerHV, Terrapene herpesvirus; IgHV, Iguanid herpesvirus; VHV, Varanid herpesvirus; HeHV, Helodermatid herpesvirus; CrHV, Crocodyline herpesvirus.

*To the best of our knowledge, the gross or histological lesions of some novel viruses have either not been detected, or were reported while this manuscript was being written.
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Okoh et al. Herpesviruses in Reptiles

at the pelagic phase of life in sea turtles as most studies are
biassed towards sampling nearshore juveniles and adult females
at foraging grounds or nesting beaches. Nevertheless, wildlife
workers and researchers who, despite numerous challenges,
have provided considerable epidemiological data targeted at
conservation efforts towards endangered species should be
commended. An overview of some of the epidemiological
information including the prevalence and demography of both
wild and captive reptilian HVs is discussed in this section.

Herpesviruses are linked to different diseases ofmarine turtles,
including FP, LETD and GPD (54, 82). FP is a debilitating
disease characterised by the development of tumours (119,
120). Depending on the location of the tumours, FP can have
detrimental effects (109, 121). On the basis of prevalence and
distribution, Tagliolatto et al. reported a prevalence rate of
43% for FP in green turtles captured in a foraging area in
south-eastern Brazil (121). Adnyana et al. recorded 22% overall
prevalence in green turtles in Indonesia and also observed
that the prevalence rate of FP was higher among turtles from

FIGURE 6 | Fibropapillomatosis in green turtle (Chelonia mydas). Photo by Dr.

Karina Jones.

waters adjacent to densely populated regions compared to
those collected from waters remote from urbanised regions of
Indonesia (122). These findings indicate that the epidemiology
of FP in marine turtles vary between geographical regions
and may be linked to anthropogenic activity. This theory is
supported by the findings in another study, which attributed the
variation of FP prevalence to environmental cofactors that vary
among local habitats (123). A study associated the geographical
distribution of FP with the genomic variation of HVs in marine
turtles, and observed four forms of the virus corresponding to
Atlantic Ocean, west Pacific, mid-Pacific, and east Pacific (124). A
similar study conducted in Australian waters identified different
genotypes along the east coast of Queensland. Such differences
in strains may also effectuate different levels of pathogenicity
between strains (76, 77) and account for variation in reported

FIGURE 8 | Necrotic foci (a) and syncytial formation (b) in HV infected

hepatocytes of a tortoise (Testudo horsfieldii). “Adapted from Hepatitis

Associated with Herpes Viral Infection in the Tortoise (Testudo horsfieldii)” by

Hervás et al. (112). Copyright 2021 by John Wiley and Sons. Reprinted with

permission.

FIGURE 7 | Herpesvirus infection in freshwater turtle (Emydura macquarii krefftii) presented with proliferative and ulcerative lesions of the skin (A), proliferative and

crusted lesions on the bridge of the shell (B), and proliferative lesion on the palmar aspect of the right forefoot (C). “Adapted from Herpesvirus in a captive Australian

Krefft’s river turtle (Emydura macquarii krefftii)” by Cowan et al. (110). Copyright 2021 by John Wiley and Sons. Reprinted with permission.
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prevalence in different regions. Also, given that the immune
system of reptiles is dependent on temperature (125, 126), the
variation in the prevalence rates of reptilian HVs across regions
could be associated with differences in regional climate types.
Comprehensive reviews of the epidemiology of FP in marine
turtles have been documented elsewhere (73, 97, 127–129). The
host immune status influences the clinical course of a disease,
as immuno-deficient populations are more likely to succumb to
disease outbreaks. Serosurveys have been conducted to determine
the immune status of populations and to provide evidence of
past and ongoing HV infections (130, 131). Seroepidemiological
studies in three localities in Florida revealed high anti-ChHV
seroprevalences (up to 100%) in both FP and non-FP sea turtles
(81, 132). Contrastingly, seropositivity to ChHV-5was dependent
on the tumour status in turtles from Hawaii (133). This variation
was mainly attributed to differences in the pathogenicity of
ChHV-5 subtypes from the two regions (133). In another
report, an epizootic of LETD in confined juvenile green sea
turtles resulted in 8 to 38% mortality, thus posing significant
conservation and management concerns (98, 134). The LETD
impact on free ranging sea turtles has not been investigated;
however, seroprevalence rates of 13% and 22% were reported in
two studies, respectively (134, 135).

Similarly, HV infections are causing increasingly significant
concerns in non-marine chelonians (27, 39). Herpesviruses have
been implicated as the cause of severe clinical signs and acute
death in terrestrial and freshwater turtles (Table 2) (28, 40,
105, 110, 111, 136). Although, HVs have been associated with
latent infections in their natural hosts, infections in young,
immunosuppressed or non-adapted hosts could result in the
development of significant diseases (137). Therefore, monitoring
the disease impact on both wild and captive endangered species
has become pertinent. In an epidemiological study conducted
in Tennessee and Illinois, USA, 128 of 409 free-ranging eastern
box turtles (Terrapene Carolina Carolina) tested positive for
TeHV-1 using TaqMan quantitative PCR, and the detection rate
varied widely between seasons (138). Another study reported
48.3% prevalence of HV infections in endangered populations of
bog (Glyptemys muhlenbergii), wood (G. insculpta), and spotted
(Clemmys guttata) turtles in the northeastern United States
(37). Furthermore, tortoise HVs have been associated with high
mortality and morbidity (104, 113, 139–141). Different HV
species were identified to cause the death of a large number of
pancake (Malacochersus tornieri), Horsfield (Testudo horsfieldii),
Hermann’s (Testudo hermanni), and Egyptian tortoises (Testudo
kleinmanni) during spontaneous outbreaks in Japan, Italy
and Germany, respectively (99, 102, 142). Species dependent
susceptibility to HV was reported in a tortoise colony in which
T. graeca and T. horsfieldii appeared to be unaffected by the
HV species that caused the death of other tortoises in the same
colony (113). A possible explanation could be that the causative
HV species is well-adapted in these tortoises and they could be
transmitting the virus to naïve or non-adapted tortoises. Of the
four tortoise HV species (TeHV1-4), TeHV-3 appears to be the
most pathogenic and frequently described, causing lethal disease
in different tortoise species (14, 142–145). In a recent assessment
of the incidence of chelonian HVs in Europe, more than half

(54%) of all the detected chelonian viruses were TeHV-3 (146).
Again, seroprevalence rates of 27% and 31% were reported for
TeHV-1 and TeHV-3, respectively, in different populations of
desert tortoises in California (147, 148). Despite the significance
of HV infections, we observed that the disease is still grossly
under-studied in some countries (Table 1). Thus, insufficient
data and underreporting have made it difficult to assess the
geographical patterns of the HV epidemiology in non-marine
chelonians and other reptiles.

Herpesviruses have also been described in various species of
squamates and crocodilians (25, 47, 48, 52, 106, 116–118, 149).
A recent outbreak of a lethal HV infection in a private facility
housing 127 snakes resulted in the death of all 71 horned vipers
at the premises after a brief illness (150). An earlier study also
implicated HV in the death of some boa constrictors within
the first year of life (151). Herpesvirus-induced deaths have
been reported in different species of lizards with case fatalities
nearing 100% (33, 49, 152). As stated earlier, HV infections in
crocodiles are associated with CP, SLPE and LNS syndromes
(53). Another study strongly linked HV infection to SLPE and
CP syndromes in farmed Australian saltwater crocodiles, with
the highest prevalence rates of 94 and 54%, respectively (107).
Crocodiles are intensively farmed for commercial purposes in
Australia; therefore, the occurrence of HVs in crocodiles has both
epidemiological and economic implications (53, 153).

Finally, we extracted a total of 130 articles, of which 39%
(51 articles) and 32% (41 articles) were studies that investigated
HVs in marine turtles and tortoises, respectively. A total of
21 (16%) studies investigated HVs in freshwater turtles. HVs
were least studied in lizards (8%; 11 articles), snakes (3%; 4
articles) and crocodiles (2%; 3 articles) (Figure 2). The scant
studies of HVs in some reptilian species since the 1970s could
be attributed to the unavailability of reagents or sensitive
diagnostic assays required to investigate reptilian diseases in
remote areas or the lack of interest to investigate HVs in reptiles
because of their relatively low socio-economic importance.
Therefore, future efforts should be directed towards enhancing
collaborations among government agencies, researchers and
wildlife workers with a view to creating awareness, increasing
access to reagents and sensitive assays, and ultimately conserving
endangered reptiles.

DIAGNOSIS

A timeline of reptilian HV diagnosis showed that traditional
assays including histopathology, virus isolation (VI) and electron
microscopy (EM) have been the mainstays in the diagnosis
of reptilian HVs (Supplementary File 4). Many studies have
reported the use of these techniques since the 1970s for the
investigation of reptilian HVs. A breakdown of the number of
studies that have used these methods to detect reptilian HVs
is shown in Figure 3. Molecular diagnosis of reptilian HVs
started two decades ago and has been used increasingly since
then (Figure 3; Supplementary File 4). The advent of molecular
diagnostic techniques has provided insight into the genetic
characteristics and the phylogenetic relationship of most reptilian
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HVs. This section highlights some important characteristics of
the various techniques used in the diagnosis of reptilian HVs.

Diagnosis of reptilian HVs is tentatively made on the basis of
patient history, clinical signs, and gross and histological lesions
(16). However, this is not always the case, as host-adapted HVs
can cause subclinical, mild or latent infections in their natural
hosts, and the demonstration of intranuclear inclusions is not
pathognomonic of reptilian HV infections (154). Intranuclear
inclusions are frequently associated with other reptilian viruses
including adenoviruses and papillomaviruses (155–157). Earlier
researchers used EM to confirm the presence of reptilian HV
infections by demonstrating the ultrastructure of the viral
particles in fixed, cut and stained sections of tissue samples (51,
54, 98, 106, 116, 136, 140, 158). More recently, EM has been used
to confirm a necrotic hepatitis associated with HV infection in a
tortoise with no clinical signs or lesions in the respiratory tract,
oral cavity or other organs (112). The need for high technical
capacities and the high cost of electron microscopes limit the use
of EM for epidemiological and diagnostic purposes especially in
resource-limited areas. Despite these limitations, EM remains a
powerful detection tool in most high-class virology laboratories.

Reptilian HVs have been isolated in cell culture and identified
on the basis of their cytopathic effects (50, 98, 107, 159). For
instance, tortoise HVs were isolated from pharyngeal swabs,
trachea, kidney, oesophagus, tongue, stomach, and intestine,
and caused cytolysis and rounding of cells in terrapene heart
cells (TH-1) (160). In another study, detachment and foci
of enlarged, rounded, refractile cells were produced following
inoculation of tissue and swab supernatants in turtle heart
cells (142). ChHV-5, which historically has been resistant
to replication in conventional cultures, produced de novo
ballooning degeneration and eosinophilic intranuclear inclusion
in plugs and organotypic skin cultures (89). This observation
implies that ChHV-5 remains latent in conventional cultures
and requires replication of the turtle skin to grow in vitro (89).
Aside from the fact that CPE are not obtained for non-cytopathic
viruses, cell culture is susceptible to both chemical and biological
contaminations, which in turn affect its sensitivity and specificity.
Also, diagnostic turnaround could be delayed for slow-growing
viruses. Therefore, it should not be solely relied upon for the
epidemiological investigations of HVs.

Following primary infections in reptiles, a strong non-
specific (innate) immune response that includes lysozymes,
leukocytes, natural antibodies (NAbs), antimicrobial peptides,
and the complement pathway, is quickly stimulated (126, 161).
No specific information is currently documented about adaptive
cell mediated immunity to HV infections. Unlike mammals, in
reptiles a less robust and slower humoral response (IgA, IgD,
IgM, and IgY) is stimulated after the innate immune system
is activated (126, 154). In tortoises, neutralising antibodies to
HV infection were detectable in serum at least 4 weeks post-
exposure (162). These serum neutralising antibodies did not
appear to confer immunity to reinfection or recrudescence (78).
Later seroconversion was observed (four months to one year) in
green turtles (Chelonia mydas) that were experimentally infected
with ChHV (81, 132). Generally, the detection of anti-herpesvirus
antibodies in a single sample could indicate previous or latent

infection, while rising antibody titre in paired samples collected
at least 6 weeks apart indicates active infection (154, 163).
Humoral antibodies are detected by serological assays such as
serum neutralisation (SN) tests, ELISA, and immunoperoxidase
(IP) assays (132, 164–166). The SN test is considered the
reference test for anti-herpesvirus antibody detection but has
limitations such as a delayed turnaround, inherent assay arduity
and the requirement for standard isolates (162). ELISAs with
high sensitivity and specificity have been developed and deployed
in various seroepidemiological studies (44, 81, 132, 147, 162,
166). However, a high degree of cross-reactivity that potentially
affects assay specificity has been demonstrated among different
tortoise HV isolates used as antigens in the ELISA (147, 162).
Cross-reactivity could also occur in other reptilian HVs that
share similar antigenic epitopes, giving false positive results
and, thus, leading to unnecessary post-exposure interventions.
Overall, serological diagnostic techniques are not useful for the
early diagnosis of reptilian HVs because of the delay in antibody
response and the need for paired serum sample collection weeks
apart with accurate timing. However, it can play an important
role in retrospective studies and in the diagnosis of latent or
asymptomatic patients.

Recent epidemiological studies have largely relied on
molecular methods to identify potential genetic and
environmental risk factors associated with reptilian HVs
(24, 80, 138, 167–169). Species-specific PCR-based assays
targeting specific gene segments of reptilian HVs have been
developed and validated (78, 170). Lindeman et al. developed
two quantitative PCR assays and recorded a detection limit as
low as 1 viral copy per reaction using primers that targeted the
EBHV-1 specific segment of DNA polymerase gene (UL30) (39).
In another study, two TaqMan PCR assays developed to target
the UL30 gene of TerHV-1 detected 10 viral copies per reaction
(171). Conventional and heminested PCR assays using tortoise
HV-specific primers have been developed with assay sensitivity
of 103 and 101 DNA copies, respectively (172). Alternatively,
consensus PCR techniques developed by VanDevanter et al. have
been employed for the molecular screening and novel detection
of reptilian HV species (39, 43, 100, 173–177). Although
the molecular assays for the diagnosis of reptilian HVs have
demonstrated excellent performance, their use still presents a
major challenge in remote areas due to high cost, complexity of
instrumentation, aseptic technique requirement and the need for
electricity to operate PCR machines.

In order to accurately estimate the magnitude and scope of a
disease outbreak or occurrence, case definition (that is, standard
criteria for categorising diseases) would need to be established.
One of the ways to achieve this is to make available rapid,
sensitive and affordable assays for confirming the presence of
diseases. Rapid diagnostic immunoassays that use lateral flow or
chromatographic strategies should be developed for the rapid
diagnosis of reptilian HV infections in the field or point of
care (POC) settings. This approach could overcome some of
the above-mentioned diagnostic challenges, especially in low
resource areas. However, the use of lateral flow immunoassays
for viral detection in other species have been marred by low
and varying sensitivities (178–181). Sensitive molecular-based
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rapid assays are relatively expensive and yet to be employed for
the diagnosis of reptilian HVs (182–185). We would propose
an ultrasensitive format that combines PCR and immunoassay
but then it can be argued that such a laboratory-based system
is less rapid and has limited use in low-class laboratories
(186, 187). Rapid detection techniques such as Microfluidic
chip immunoassay and Smartphone-based rapid telemonitoring
system (SBRTS) are fast becoming powerful tools in the diagnosis
of viral infections (188–196). Of particular interest, is the
SBRTS that combines biosensor and smartphone functionalities
to produce a rapid, sensitive and cheap detection system (197).
SBRTS has an average turnaround of 30min, overcomes inherent
problems associated with sample handling and preparation, and
can remotely monitor and report data on disease occurrence,
thus making it suitable for use in resource-limited countries
(193, 197). This assay if employed could tick all the boxes for the
epidemiological investigation and reporting of reptilian HVs.

Herpesvirus diagnostic and epidemiological data should be
interpreted with prudence because of the possible influence
of coinfection variables that could cause the reactivation of
seemingly latent HV infections. For instance, some studies
have reported the detection of co-pathogens in reptiles showing
clinical signs, some of which are typical of HV infections (27,
38, 146, 168, 173, 198, 199). These observations imply that the
detection of HVs may not be the actual cause of the current
disease, but because the immune system is compromised by other
pathogens, the HVs recrudesce and become easier to detect. Both
latency (decreases apparent prevalence and significance) and
coinfections (increase apparent prevalence and may also falsely
assign the clinical signs to the HV) will have an influence on
the disease picture. Therefore, we recommend that biosecurity
and conservation measures should include a multiplex pathogen
detection model whenever possible in order to fully assess the
health of reptilian populations.

TREATMENT, PREVENTION, AND
CONTROL

Surgical excision, carbon dioxide (CO2) laser surgery and
cryosurgery are some of the commonly used therapeutic
strategies for the management of HV-associated tumours (25,
110, 111, 120, 200–202). High rates of recurrence and the
risk of secondary bacterial infections have greatly reduced the
efficacy of surgical excision (200, 203). CO2 laser surgery,
which combines laser excision and ablation of tumours, has
shown improved intraoperative and postoperative outcomes and
is therefore the treatment of choice (120, 201, 204). Non-
surgical approaches including electrochemotherapy (ECT) and
photodynamic therapy (PDT) with no known recurrence have
recently been employed as alternatives in the treatment of FP
(205, 206).

Several authors have recommended the use of acyclovir
complemented by fluid and antibiotic therapies for the effective
treatment of tortoise HV infection (143, 207–209). Marschang
et al. showed that acyclovir and ganciclovir effectively inhibited
HV replication in vitro at a single dose or repeated daily dose of

25 or 50µg/mL (142). Similarly, the in vitro activities of acyclovir
and ganciclovir were recently tested and shown to be effective
against TeHV-3; however, the safety of these drugs is yet to be
demonstrated in tortoises (210). Based on the toxicity (on liver
and kidney cells) and other biochemical data, this same study
showed that eprociclovir is not suitable for use as anti-TeHV-3
in Hermann’s tortoises and further in vivo assessment of other
potential antiviral drugs was recommended (210).

Recently, an autogenous vaccine therapy was proposed and
used for the treatment of HV-associated papillomatosis in
Williams’ mud turtle (Pelusios williamsi) (111). The autogenous
vaccine, which was aseptically prepared from excised fresh
tissue induced substantial areas of necrosis of the papillomatous
lesions, thus indicating the efficacy of the vaccine (111).
Autogenous vaccines potentially contain relevant neoantigens
that comparatively improve their efficacy (211). However,
their use could be limited by lack of sufficient tumours (in
patients) needed to produce adequate vaccine doses. Also, no
standard protocol exists for autogenous vaccine production
and delivery, and patients’ tumours may progress beyond the
intervention stage before the vaccine becomes ready for delivery.
Allogeneic vaccines on the other hand, can overcome some
of the aforementioned challenges; however, they may lack the
advantageous self-neoantigens (211). In the past, an inactivated
vaccine was evaluated against tortoise HV without success as no
significant rise in antibody was detected in vaccinated tortoises
after 369 days post vaccination (160). DNA or mRNA based
vaccines have the capacity to induce both humoral and cellular
immune responses and have shown promising outcomes against
some animal and human diseases (212–215). Although vaccine
research and development could be costly, laborious and time-
consuming, the nucleic acid vaccines hold the potential to
significantly reduce HV-associated losses in captive collections
and wild reptiles of conservation concerns.

Prevention is of utmost importance in the management of
reptilian HV infections, since death may still occur following
therapeutic interventions and recovered animals remain latent
carriers (143, 163). Unfortunately, there are no established
preventive or control measures for HV infections in wild
populations of reptiles (200), which consequently presents a
major conservation challenge. Environmental factors including
degraded water quality caused by pollutants, increased water
temperature, natural biotoxins, and high dietary arginine
concentrations due to microalgae bloom have arguably been
linked as cofactors in the development of FP in sea turtles (73,
119, 216–221). Therefore, adopting conservation actions needed
to regulate water and species management, as well as regulating
human activities leading to climate change, would be sensible.

In captive reptiles, quarantine procedures and adequate
testing of new acquisitions are strongly recommended (153,
163, 167). All previously infected or HV seropositive animals
should be treated as latent carriers and potential shedders to
naïve populations, as factors including stress, bad husbandry,
illness or immunosuppression could reactivate the virus (14,
163, 167, 200). Generally, strict hygiene practises and adequate
biosecurity should be followed in all facilities housing reptiles
(162, 172, 222–224).
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