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ABSTRACT
Waterways worldwide are experiencing nutrient enrichment from population growth
and intensive agriculture, and New Zealand is part of this global trend. Increasing
fertilizer in New Zealand and intensive agriculture have driven substantial water
quality declines over recent decades. A recent national directive has set
environmental managers a range of riverine ecological targets, including three
macroinvertebrate indicators, and requires nutrient criteria be set to support their
achievement. To support these national aspirations, we use the minimization-of-
mismatch analysis to derive potential nutrient criteria. Given that nutrient and
macroinvertebrate monitoring often does not occur at the same sites, we compared
nutrient criteria derived at sites where macroinvertebrates and nutrients are
monitored concurrently with nutrient criteria derived at all macroinvertebrate
monitoring sites and using modelled nutrients. To support all three
macroinvertebrate targets, we suggest that suitable nutrient criteria would set median
dissolved inorganic nitrogen concentrations at ~0.6 mg/L and median dissolved
reactive phosphorus concentrations at ~0.02 mg/L. We recognize that deriving
site-specific nutrient criteria requires the balancing of multiple values and
consideration of multiple targets, and anticipate that criteria derived here will help
and support these environmental goals.
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Impacts
Keywords Eutrophication, Nutrient enrichment, Rivers, New Zealand, Macroinvertebrates,
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INTRODUCTION
Nutrient enrichment is a key stressor of waterway health across the globe, and is largely
driven by population growth, increased fertilizer application and intensive agriculture
(Kahiluoto et al., 2014; Nash et al., 2017;McDowell et al., 2020a). Nutrient enrichment can
drive excessive algal and microbial growth, which can relieve energy, nutrient and
macromolecule growth constraints further up the food web, altering the biological
communities (Elser et al., 2000; Benstead et al., 2009; Ferreira et al., 2015; Dodds & Smith,
2016). While autochthonous production by algae can increase the total energy pool
available, microbes can condition nutrient-poor detritus, making organic matter more
palatable to detritivores, thus enabling another energy source that can also alter biological
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communities (Elser et al., 2000; Benstead et al., 2009; Ferreira et al., 2015; Dodds & Smith,
2016). In more extreme cases, excessive respiration rates attributed to high autotrophic
production, high decomposition rates and altered biological communities can result in
hypoxic conditions that drive die-off events, such as mass fish kills, or metabolic toxicity of
aquatic organisms (Ferreira et al., 2015; Le Moal et al., 2019; Wurtsbaugh, Paerl & Dodds,
2019; Canning & Death, 2021). Furthermore, experimental nutrient enrichment studies
have observed altered ecological communities by permitting the growth of nutrient-limited
invertebrates (Kiffney & Richardson, 2001; Cross et al., 2006; Demi et al., 2018).

Macroinvertebrate growth can be limited by ambient nutrient concentrations as they
typically have little flexibility (i.e., show strong homeostasis) to adjust body nutrient
stoichiometry to accommodate environmental limitations (Elser et al., 2000; Persson et al.,
2010; Hessen et al., 2013). Nitrogen limitation can arise from the need to replace
nitrogen-rich chitin from moulting exoskeletons and produce protein and nucleic acids
(Elser et al., 1996; Frainer et al., 2016). Whilst phosphorus limitation can arise from protein
synthesis as this requires P-rich ribosomal RNA (Gillooly et al., 2005; Hessen, Ventura &
Elser, 2008; Hessen et al., 2013). Furthermore, the phosphorus content, specific growth
rate, DNA and RNA content typically negatively correlate with body size (Elser et al., 2000;
Gillooly et al., 2005; Hessen et al., 2013). Nutrients can also limit growth by constraining
the availability of macromolecules, such as sterols, essential amino acids and fatty acids
provided by nutrient-limited microbes (Mueller-Navarra, 1995; Goedkoop, Demandt &
Ahlgren, 2007; Wacker & Martin-Creuzburg, 2012; Guo et al., 2016). Furthermore,
experimental nutrient enrichment studies have observed altered ecological communities
by permitting the growth of nutrient-limited invertebrates (Kiffney & Richardson, 2001;
Cross et al., 2006; Demi et al., 2018). For example, Cross et al. (2005) experimentally
enriched a detritus-based pristine stream for two years. Whilst there was no growth effect
on the stoneflies, the growth rate of chironomids increased by ~50% and production
(by area) increased 183%, which had cascading impacts altering the nutrient stoichiometry
of the entire ecosystem (Cross et al., 2003, 2005). Nutrient enrichment can, therefore, result
in a dominance of small-bodied, fast-growing invertebrates, such as chironomids and
snails (Elser et al., 1996; Frost et al., 2006; Singer & Battin, 2007; Evans-White et al., 2009;
Back & King, 2013). Invertebrate assemblages with small-bodied individuals may be less
energetically rewarding for fish and may alter fish communities (Schindler & Eby, 1997;
Vinson & Baker, 2008; Shearer & Hayes, 2019). Clearly, nutrient enrichment can alter
macroinvertebrate communities via multiple mechanisms.

While the mechanisms and impacts of excessive nutrient enrichment of waterways have
been well documented (Le Moal et al., 2019; Wurtsbaugh, Paerl & Dodds, 2019; Mallin &
Cahoon, 2020), deriving nutrient criteria that are both protective of ecosystems and
politically acceptable has proven challenging. Aside from management conflicts due to
competing priorities, difficulties typically arise from uncertainty in relationships,
discrepancies in criteria between different derivation methods, and a lack of suitable data
(Huo et al., 2018; Phillips et al., 2019; Poikane et al., 2021). Often (but not always) setting
instream nutrient criteria involves establishing relationships between biological metrics,
such as those for macroinvertebrate assemblages, and nutrient concentrations, and then
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setting nutrient criteria that correspond to desired outcomes (Dodds, 2007; Evans-White,
Haggard & Scott, 2013; Huo et al., 2018; Poikane et al., 2019a). While the principle is
similar, approaches and metrics for establishing nutrient criteria that correspond to
desired macroinvertebrate outcomes have differed considerably between regions.
For example, methods include: regression trees and two-dimensional Kolmogorov-
Smirnov techniques in Wisconsin, USA (Wang, Robertson & Garrison, 2007; Weigel &
Robertson, 2007); Threshold Indicator Taxa Analysis and quantile regression in Central
Europe (Kail, Arle & Jähnig, 2012); regressions and regression trees in Ohio, USA (Miltner,
2010); multivariate analysis in Ozark, USA (Justus et al., 2010); cluster analysis in New
York State, USA (Smith, Bode & Kleppel, 2007); nonparametric changepoint analysis in
Florida, USA (King & Richardson, 2003); regressions in England (Everall et al., 2019); and a
compilation of methods based on their weight of evidence in New York State, USA (Smith
& Tran, 2010). There is no ‘one size fits all’ approach to deriving nutrient criteria, with
methods often reflecting different data availability and the policy framework/ambitions
they support. Regression approaches often try to derive nutrient criteria that correspond to
desired biological targets, with the desired stringency (and certainty of outcome)
dependent on the quantile used for the regression. While regression tree and changepoint
methods seek nutrient criteria to prevent reaching ecological tipping points, rather than
desired biological targets.

New Zealand (NZ), like many other parts of the world, faces eutrophication of its
waterways, primarily from the intensification of agriculture. Fertilizer use in NZ has
increased by 627% between 1990 and 2015, with 70% of rivers, by length, experiencing
nutrient enrichment above natural levels, and many sites in declining condition (Ministry
for the Environment & Statistics New Zealand, 2020). Despite the declining water quality,
the implementation and enforcement of suitable nutrient criteria have been the subject of
intensive debate, with little resolution in recent national freshwater policy reforms (Joy &
Canning, 2020).

The development of suitable nutrient criteria for New Zealand’s rivers and streams has,
in part, been constrained by a lack of suitable data (Death et al., 2018; Canning, 2020).
The monitoring of New Zealand’s waterways is non-random, often reflecting points of
interest and the objectives of environmental managers. As a result, many nutrient
monitoring sites do not have biological monitoring and vice-versa, constraining the ability
to form relationships between nutrients and biological responses. This limited dataset
comprising only sites where both nutrients and biological monitoring occurs
simultaneously may fail to encapsulate the range of possible responses, particularly if
different river geomorphologies, land uses, or nutrient concentrations are
under-represented (Canning, 2020). One way to circumvent the mismatch of data could be
to use data predicted from national water quality models that cover all river reaches
(Whitehead, 2018). While modelled data may fail to encapsulate localised nuances,
advantages may include the smoothing of noisy data and full representation across the
entire river network (Özkundakci et al., 2018). In-situ nutrient monitoring data is
notoriously prone to high variability, with grab samples often influenced by hydrological
patterns, geology, temporal variability in land uses/practices (e.g., time of fertiliser
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application), variability in biological uptake from diurnal processes and predator-prey
cycling, and variation in other physicochemical conditions (e.g., dissolved oxygen and
temperature) (e.g., Jordan, Correll & Weller, 1997; Glibert et al., 2008; Aguilera, Marcé &
Sabater, 2012). Examining the differences in nutrient criteria derived from using measured
data and from modelled data may build confidence in derived criteria if there is strong
convergence or help elucidate whether further data collection is required.

In moves seeking to improve the health of the nation’s freshwaters, the New Zealand
Government developed the National Policy Statement for Freshwater Management
(NPS-FM 2020). This new national policy prescribes three riverine macroinvertebrate
indicators (termed ‘attributes’) of ecological health: (1) the Macroinvertebrate Community
Index (MCI; Stark & Maxted, 2007); (2) the quantitative variant of the MCI (QMCI;
Stark & Maxted, 2007); and (3) the average score per metric (ASPM) (Collier, 2008).
The MCI and QMCI indicate the overall community’s sensitivity to organic enrichment
from weighted averages of species tolerance scores from presence-absence invertebrate
surveys (MCI) or relative abundance surveys (QMCI). The ASPM is an overall indicator of
community health and is the normalised average of the richness of Ephemeroptera,
Plecoptera and Trichoptera taxa excluding Hydroptilidae (EPT), % EPT and the
macroinvertebrate community index (MCI) (Collier, 2008). The NPS-FM (2020) requires
local authorities to improve the attributes for each river to at least the ‘national bottom
line’ or better. The national bottom line targets are described by the NPS-FM (2020) as
being broadly indicative of a moderate level of ecological integrity and organic pollution,
with a mix of taxa sensitive and insensitive to organic pollution/nutrient enrichment.
Local authorities must then also set nutrient criteria for dissolved inorganic nitrogen
(DIN) and dissolved reactive phosphorus (DRP) at concentrations appropriate for
achieving desired outcomes. Ideally, nutrient criteria would not be more stringent than
required to support the desired ecological outcome (i.e., biology pass, yet nutrients fail
prescribed criteria), or too weak to support the desired ecological outcome (i.e., biology
fail, yet nutrients pass prescribed criteria).

The minimisation of mismatch between nutrients and biology (‘minimisation-of-
mismatch’) approach, as described by the European Union’s ‘Best practice for establishing
nutrient concentrations to support good ecological status’ guidelines, provides an
objective and robust method for deriving nutrient criteria (Phillips et al., 2018, 2019).
The minimisation-of-mismatch approach seeks to identify nutrient criteria that are most
likely to pass or fail when the ecological indicators also pass or fail respectively, is little
affected by weak, nonlinear biology-nutrient regressions or data distribution.
Minimisation-of-mismatch avoids the adoption of arbitrary percentiles that quantile
regression approaches require; while changepoint analysis approaches are unable to
benchmark nutrient criteria against pre-defined biological criteria–whereas minimisation-
of-mismatch can (Phillips et al., 2018, 2019). Poikane et al. (2019b) applied the method
to derive nutrient criteria to support healthy European lakes and found the approach
yielded similar nutrient criteria to the other methods examined. Broad agreement
with other methods, tolerance of data structures, and the avoidance of arbitrary
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decision-making, would make the method attractive to decision-makers faced with
politically contentious issues.

Here we aim to use the minimisation-of-mismatch approach to derive nutrient criteria
for dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) that
support the achievement of the national bottom line targets for the three riverine
macroinvertebrate attributes, as stipulated by New Zealand’s NPS-FM 2020. Given that
New Zealand’s monitoring data is largely non-random (with some localised examples of
randomised surveys), with nutrients measured at all biological monitoring sites, we also
aim to compare the nutrient criteria derived when modelled nutrient data is used instead
of measured data.

MATERIALS & METHODS
Macroinvertebrate and nutrient data
Macroinvertebrate data used in this study was sourced from New Zealand’s regional
environmental monitoring network of rivers and streams (Ministry for the Environment &
Statistics New Zealand, 2019). Benthic macroinvertebrates were surveyed annually for five
years during summer by regional authorities between 2012 and 2016, and the MCI, QMCI
and ASPM scores calculated using a consistent taxonomic resolution by Clapcott et al.
(2017). Macroinvertebrates were typically sampled in riffles using either kick nets or Surber
samplers, with five to seven replicates, stored in either ethanol or formalin, and identified
using common keys (e.g., Winterbourn, Gregson & Dolphin, 1989; Moore, 1998). Surber
sampling aimed to capture all invertebrates within a 0.1 m2 area to a depth of ~10 cm,
whereas kick net sampling typically involved shuffling gravel for ~1–2 min until several
hundred invertebrates are collected. While kick nets and Surber samplers may result in
different invertebrate assemblages being collected, investigations by Stark (1993) suggest
that differences in MCI and taxa richness are rarely significant. Surveys were collected
from 1851 sites nationwide (Fig. 1).

DIN and DRP monitoring data was also sourced from New Zealand’s regional
environmental monitoring network of rivers and streams (Ministry for the Environment &
Statistics New Zealand, 2019). Between 2012 and 2016, grab samples testing DIN and DRP
were collected monthly at 856 and 878 sites respectively, and summarised over the entire
five-year period as a median for each site.

All modelled nutrient data was sourced from Whitehead (2018), and is also used in
national environmental reporting (Ministry for the Environment & Statistics New Zealand,
2019). Modelled nutrient data includes predictions of DIN (calculated as NO3-N + NH4-
N) and DRP for every river reach across New Zealand’s riverine network (N = 593,373
reaches).

Two datasets were compiled for this analysis: (1) measured MCI, QMCI and ASPM
scores at sites with DIN and DRP concentrations measured concurrently (NMCI = 450,
NQMCI = 294, &NASPM = 389; Table 1); and (2) measured MCI, QMCI and ASPM scores at
all invertebrate survey sites (regardless of whether nutrients were measured or not) with
modelled DIN and DRP concentrations (NMCI = 1,729, NQMCI = 1,450, & NASPM = 1,729;
Table 1).
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To evaluate the efficacy of the nutrient models, using R 3.5.3 (R Development Core
Team, 2019) linear regression analysis was used to examine the ability of the modelled
nutrients to reflect the concentrations measured at sites in dataset (1). As a pre-cursor to
the minimization-of-mismatch analysis, regression analysis was carried out between
nutrient concentrations and the ecosystem health metrics for both datasets to ascertain the
direction of change with nutrient enrichment, as recommended by Phillips et al. (2018).

Minimization-of-mismatch analysis
Using both datasets, minimization-of-mismatch analysis was used to estimate the DIN and
DRP concentrations that corresponded to the national bottom line targets, as per the
NPS-FM 2020, for each metric (MCI = 90, QMCI = 4.5, & ASPM = 0.3). The national
bottom line targets used in the NPS-FM were established based on the advice on the advice
of the Scientific and Technical Advisory Group informing the policy development
framework, as informed by a review of macroinvertebrate indicators (Clapcott et al., 2017;

Figure 1 The location of sites with concurrent macroinvertebrate and nutrient monitoring across
New Zealand. Sites are surveyed as part of New Zealand’s state of environment monitoring between
2013 & 2017 (Ministry for the Environment & Statistics New Zealand, 2019). Macroinvertebrates are
surveyed annually and nutrients are sampled monthly. Full-size DOI: 10.7717/peerj.11556/fig-1
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Essential Freshwater Science & Technical Advisory Group, 2019). Minimization-of-
mismatch analysis estimates the nutrient concentration target that maximizes the
probability of a site passing both the ecological metric target and the nutrient
concentration target, while seeking to minimize the passing of the ecological target and
failing on the nutrient target (vice-versa)–i.e., the mismatch in passing and failing grades is
minimized (Phillips et al., 2018). The approach involves three steps: (1) plotting the
percentage of water bodies that have a passing score for an ecosystem health metric but a
failing nutrient status for different potential nutrient criteria values; (2) then plotting a
similar, but inverse, plot with the percentage of water bodies where the ecosystem health
metric fails but the nutrient criteria would pass; and then (3) identifying the intersect
between the two plots, this indicates the nutrient concentration that minimizes the
mismatch of passing and failing grades. For each relationship, this was repeated 1500 times
with a random sub-sample using 75% of the total data (with replacement), with the median
(mean, range and quantiles also calculated) representing the final nutrient criteria
(Phillips et al., 2018, 2019; Poikane et al., 2019b).

RESULTS
Negative relationships were observed between all nutrient and ecosystem health metrics
regressions, regardless of dataset (Figs. S1 & S2; Table S1). Across the sites with measured
nutrients, mismatch minimization analysis suggests, using the median (range), the best
DIN criteria to achieve the national bottom lines for MCI, QMCI and ASPM were 1.07
(0.93–1.21) mg/L, 0.62 (0.46–0.77) mg/L and 1.12 (1.00–1.29) mg/L respectively, while the
DRP criteria were 0.028 (0.025–0.030) mg/L, 0.018 (0.015–0.020) mg/L and 0.028
(0.026–0.032) mg/L respectively (Table 2; Fig. 2). While the nutrient criteria derived using
all sites and using modelled nutrients suggests, using the median, the best DIN criteria to
achieve the national bottom lines for MCI, QMCI and ASPM were 0.64 (0.60–0.68) mg/L,

Table 1 Summary statistics of raw invertebrate and nutrient data. The minimum, median, mean,
maximum, 25th and 75th percentiles of MCI, QMCI, ASPM, measured DIN and DRP (ug/L), and
modelled DIN and DRP across New Zealand’s state of environment monitoring network data used in this
analysis.

Dataset Metric Statistic

Min 25th percentile Median Mean 75th percentile Max

Measured MCI 54.8 91.0 103.5 103.2 116.0 148.0

QMCI 2.0 4.1 5.0 5.1 6.0 7.9

ASPM 0.11 0.33 0.44 0.42 0.52 0.78

DIN 1.0 51.5 241.0 567.3 670.0 1,0578.8

DRP 0.3 5.0 9.5 16.1 16.0 250.0

Modelled MCI 34.8 88.4 104.1 103.0 118.0 161.3

QMCI 2.0 4.3 5.6 5.7 6.6 106.2

ASPM 0.07 0.28 0.43 0.41 0.54 0.83

DIN 10.9 79.2 224.2 397.4 567.3 5,215.6

DRP 1.1 7.7 12.6 15.3 20.2 109.7
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0.59 (0.57–0.63) mg/L and 0.63 (0.59–0.65) mg/L respectively, while the DRP criteria were
0.021 (0.020–0.021) mg/L, 0.020 (0.195–0.021) mg/L and 0.021 (0.020–0.021) mg/L
respectively (Table 2; Fig. 3). Modelled nutrients were highly correlated to measured
nutrients at sites with concurrent macroinvertebrate monitoring (DIN: R2 = 0.90,
F1,444 = 4,146, P < 0.001; DRP: R2 = 0.89, F1,445 = 3,589, P < 0.001).

Figure 2 Minimisation-of-mismatch analysis to derive DIN criteria that support New Zealand’s
national macroinvertebrate targets. The proportion of water bodies that pass for ecosystem health
but fail for nutrients (full line) and the proportion failing ecosystem health and passing DIN (dashed).
A & B represent MCI targets, C & D represent QMCI targets, and E & F represent ASPM targets, using
measured and modelled nutrients respectively. Full-size DOI: 10.7717/peerj.11556/fig-2
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DISCUSSION
When using measured nutrient data, the nutrient criteria derived to support achieving the
national bottom line targets for QMCI were more stringent than those for MCI and ASPM.
Although the MCI and QMCI are often correlated and similar criteria would be
anticipated (Wright-Stow & Winterbourn, 2003), the QMCI may be more sensitive to
change as it accounts for changes in species abundance, whereas MCI and ASPM scores
only change when a species becomes present or absent entirely. Interestingly, when the
larger macroinvertebrate dataset was used with modelled nutrients, the nutrient criteria
across all three metrics converged very closely to give a DIN criteria at ~0.6 mg/L and DRP
criteria at ~0.02 mg/L–similar to those derived for the QMCI using measured nutrients.
The criteria derived using the measured nutrient dataset were, however, more variable than
those derived using modelled nutrients. By using modelled nutrients, a larger invertebrate
metric dataset was permissible, potentially allowing for greater refinement of nutrient
criteria and mitigating against the uncertainty arising from the presence-absence based
indicators.

The divergence in criteria between those produced with the measured versus modelled
nutrient concentrations, may also arise from uncertainty in estimating high nutrient
concentrations. In-situ nutrient concentrations are highly variable, particularly influenced
by season and rainfall, with the range of variability typically increasing with increased
nutrient concentrations (e.g., Jordan, Correll & Weller, 1997; Glibert et al., 2008; Aguilera,
Marcé & Sabater, 2012). The modelled concentrations were well correlated to measured
concentrations, as observed in Fig. 4, the modelled concentrations systematically
under-estimate high concentrations and over-estimate low concentration. This may be
attributed to having fewer residuals at the extremities to anchor the model, leading to

Table 2 Nutrient criteria to support New Zealand’s national bottom line riverine macroinvertebrate targets. Statistics summarizing the DIN
and DRP criteria (mg/L) produced using the minimization-of-mismatch method to support New Zealand’s three macroinvertebrate national bottom
lines set out in the NPS-FM 2020.

Nutrient dataset Metric Nutrient Statistic

Min Lower quartile Median Mean Upper quartile Max

Measured MCI DIN 0.93 1.04 1.07 1.07 1.10 1.21

DRP 0.025 0.027 0.028 0.028 0.028 0.030

QMCI DIN 0.46 0.57 0.63 0.62 0.67 0.77

DRP 0.015 0.017 0.018 0.018 0.019 0.020

ASPM DIN 1.01 1.09 1.12 1.13 1.16 1.29

DRP 0.026 0.028 0.028 0.028 0.029 0.032

Modelled MCI DIN 0.60 0.63 0.64 0.64 0.65 0.68

DRP 0.020 0.021 0.021 0.021 0.021 0.021

QMCI DIN 0.01 0.02 0.02 0.02 0.02 0.02

DRP 0.019 0.020 0.020 0.020 0.020 0.021

ASPM DIN 0.59 0.62 0.63 0.63 0.64 0.65

DRP 0.020 0.020 0.021 0.021 0.021 0.021
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greater uncertainty when predicting high concentrations. Incorporating more data from
new sites with very high nutrient concentrations may help increase the confidence of
derived nutrient criteria; however, this was not available at the time of analysis, and finding
numerous highly enriched sites may not be possible if they do not exist. The level of
uncertainty accepted for environmental management will inevitably depend on the values

Figure 3 Minimisation-of-mismatch analysis to derive DRP criteria that support New Zealand’s
national macroinvertebrate targets. The proportion of water bodies that pass for ecosystem health
but fail for nutrients (full line) and the proportion failing ecosystem health and passing DRP (dashed).
A & B represent MCI targets, C & D represent QMCI targets, and E & F represent ASPM targets, using
measured and modelled nutrients respectively. Full-size DOI: 10.7717/peerj.11556/fig-3

Canning et al. (2021), PeerJ, DOI 10.7717/peerj.11556 10/20

http://dx.doi.org/10.7717/peerj.11556/fig-3
http://dx.doi.org/10.7717/peerj.11556
https://peerj.com/


guiding the management and policy framework they sit within. If a precautionary
approach to environmental management of national bottom lines is desired, then this
analysis suggests the DIN and DRP criteria would need to be ~0.6 mg/L and ~0.02 mg/L
respectively, or better, particularly given that both measured and modelled nutrient
datasets both yielded similarly stringent criteria for supporting the QMCI targets.
The nitrogen criteria derived here also fit within the range recommended by Camargo &
Alonso (2006), who conducted a global review of inorganic nitrogen pollution in rivers and
suggested levels should be less than 0.5-1 mg/L to prevent eutrophication and protect
against toxicity.

In addition to the differences arising from sample size and whether measured or
modelled nutrients are used, variability in nutrient criteria can also arise from unaccounted
external environmental influences and normative decisions made in the derivation
process. While nutrient enrichment is highly influential in driving New Zealand’s
macroinvertebrate assemblages, other factors such as sedimentation, riparian habitat,
pesticides, water hardness, pH, temperature, flow and substrate composition are also
influential (Wagenhoff, Townsend & Matthaei, 2012; Burdon, McIntosh & Harding, 2013;
Death et al., 2015; Matthaei & Piggott, 2019; Salis et al., 2019). In consequence, these
factors may be limiting or altering the restoration of macroinvertebrate communities, and
failure to address other stressors may result in the desired ecological outcomes not being
realized. While uncertainty can also arise from nutrient grab samples, as nutrients can
fluctuate diurnally, and seasonally with rainfall patterns and agricultural practices (Withers
& Jarvie, 2008; Causse et al., 2015). Therefore, an assessment period too short may be
highly influenced by temporal variability, while variability in very long assessment periods
may arise from an improving or declining trend – consequently, deciding the period
of assessment to ascertain the state and assess against criteria presents a balance. In this
study, grade assessment was made against data summarised at a site over a five-year
period, in line with New Zealand’s NPS-FM (2020) and State of Environment reporting
(Ministry for the Environment & Statistics New Zealand, 2019). It is also encouraging that

Figure 4 Regressions between measured and modelled nutrient concentrations. Regressions (log-log
transformed) between (A) modelled DIN and measured DIN, and (B) modelled DRP and measured DRP
at all sites in Data S1 and Fig. 1. Data sourced from New Zealand’s state of environment monitoring
between 2013 & 2017 (Ministry for the Environment, Statistics New Zealand, Environment M for the
Zealand SN, 2019). Full-size DOI: 10.7717/peerj.11556/fig-4
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the ranges, particularly the interquartile ranges, of nutrient criteria produced for each
metric were generally low, suggesting the criteria would be broadly applicable.

Other published nutrient criteria derived for New Zealand rivers include those from the
Australia and New Zealand Guidelines (ANZG), those derived by models to support
periphyton objectives (Biggs, 2000; Biggs & Kilroy, 2000; Snelder, Moore & Kilroy, 2019),
and those derived for macroinvertebrates within the Manawatu-Whanganui region
(Wagenhoff et al., 2017a, 2017b; Canning & Death, 2021). The nutrient criteria derived
here are considerably more lenient than the ANZG criteria. The ANZG criteria for NZ
rivers are derived from the arbitrary percentile of nutrient concentrations predicted to
occur in reference conditions for different river typologies. The ANZG criteria are not
intended to support a desired ecological state but are to trigger the indication of nutrient
concentrations significantly greater than natural state. The nutrient criteria required to
achieve the national bottom line targets for periphyton were generally more stringent
than those derived here to support the macroinvertebrate metrics, though they vary
substantially depending on river geology and hydrology. While explorations using data
from the Manawatu-Whanganui region suggest the impact of nutrients on various
macroinvertebrate community metrics, macroinvertebrate assemblage turnover,
and metrics of food web function, ceased at nitrogen concentrations in excess of
0.5 mg/L – similar, but slightly more stringent than those derived here (Wagenhoff et al.,
2017a, 2017b; Canning & Death, 2021). Adopting any of these alternative nutrient criteria
would likely provide sufficient nutrient protection to support achieving any of the three
macroinvertebrate national bottom line target states, though the relative stringency of
alternative nutrient criteria would vary with hydrology, geology and values being managed.

While other jurisdictions have developed nutrient criteria for separate eco-regions
(e.g., Zhou & Zheng, 2008; Chambers et al., 2012; USEPA, 2019), we consider that New
Zealand likely falls within its own eco-region and did not consider it necessary to develop
eco-regionalized nutrient criteria. Given New Zealand’s small size, mountainous geology,
short-run rivers and highly variable flood frequency, previous studies have shown that
New Zealand rivers share a common core assemblage of macroinvertebrates that are
ecologically flexible and have poorly synchronised life histories (Winterbourn, Rounick &
Cowie, 1981; Quinn & Hickey, 1990; Thompson & Townsend, 2000). Previous explorations
using machine learning have also shown that nutrient concentrations and land use are,
by considerable margins, the most influential variables predicting the three metrics, despite
an array of other potential predictors covering hydrology, geology and climate
(Clapcott et al., 2012, 2017; Canning, 2020). A New Zealand freshwater macroinvertebrate
eco-region is also considerably smaller than those in other regions. For example, the
eco-regions for USA rivers are, on average, 13 times larger than New Zealand
(USEPA, 2019), while those described in China are six times larger (Zhou & Zheng, 2008).
Splicing New Zealand into smaller eco-regions when deriving nutrient criteria would
mean substantially fewer sites. These sites may fail to encapsulate the range of possible
responses, particularly if different river geomorphologies, land uses, or nutrient
concentrations are under-represented and yield more uncertain criteria than that from a
larger, nationally derived dataset (Canning, 2020). Finally, the mismatch rates were low,
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ranging between 10–15% (Figs. 2 & 3), and ranges of derived criteria generally narrow,
suggesting that the nutrient criteria produced correspond well to the desired biological
outcomes for most rivers.

While the nutrient criteria derived here will be useful for supporting the achievement of
national macroinvertebrate targets, New Zealand’s National Policy Statement for
Freshwater Management (2020) also requires regional authorities to set nutrient criteria to
support achievement of other ecological and social targets, which can vary between
rivers. Setting nutrient criteria is a multi-disciplinary challenge, involving the political
judgement of the implications arising from multiple potential criteria designed to support
different ecological, social, cultural, and economic values and objectives. For example,
more stringent criteria may be required to achieve other ecological objectives, such as those
for algal biomass and dissolved oxygen. Social values affected by nutrient criteria may
include recreation (e.g., sports fishing, swimming and boating), identity (i.e., how society
views, and connects with, the environment as part of their identity), or human health.
For example, a recent meta-analysis observed a statistically significant positive association
between nitrate exposure and risk of colorectal cancer (Temkin et al., 2019). Cultural
values, such as traditional practices (e.g., indigenous food collection) and New Zealand’s
‘Te Mana o Te Wai’, may also affect nutrient criteria. Te Mana o Te Wai is a Māori
(New Zealand Indigenous) concept that is now embedded within, and mandated by,
New Zealand’s NPS-FM (2020), refers to the continued protection and restoration of water
and sets the priority by which water use must occur (Te Aho, 2018). Te Mana o Te Wai
mandates that the health and wellbeing of waterways must be prioritized first, followed
by the needs of people (e.g., drinking water), and then the social, cultural and economic
needs (Te Aho, 2018; Essential Freshwater Kahui Wai Maori Advisory Group, 2019).
While economic values affected by nutrient criteria may include the extent to which
productive land can be farmed intensively or the extent to which New Zealand’s ‘clean and
green’ branding is improved, maintained, or eroded (Tait et al., 2013; Foote, Joy & Death,
2015; McDowell et al., 2020b). The integration of these values influenced by nutrient
criteria, the levels of precaution they require, and the implications within the legislative
framework, are beyond the scope of this paper but are clearly important considerations.

CONCLUSIONS
New Zealand’s waterways have been experiencing considerable and widespread nutrient
enrichment. We use the minimization-of-mismatch analysis to derive nutrient criteria
that could support achievement of national aspirations for three macroinvertebrate
indicators of riverine health. This analysis suggests that median DIN concentrations
of ~0.6 mg/L and median DRP concentrations of ~0.02 mg/L would be suitable for
supporting macroinvertebrate targets.
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