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Abstract 

Reef disturbance regimes are changing and accelerating in the Anthropocene, compromising 

the capacity of corals to recover between disturbance events. These changes raise concerns 

about the long-term viability of coral populations, and even entire species. Our understanding 

of coral population viability is largely based on changes in total coral cover. More nuanced 

ecological data, measuring trends in the abundance of individual species and on the 

composition and reproductive capacity of coral populations, are scarce. They are even more 

scarce at large spatial and temporal scales, where populations disappear, and species go 

extinct. This thesis examines demographic trends in corals beyond coral cover, at spatial and 

temporal scales relevant to the persistence of metapopulations and species. Such large-scale 

assessments of demographic trends in corals are urgently needed due to the unprecedented 

spatial scale, and pace, at which reef disturbances like mass bleaching events caused by global 

warming deplete coral populations in the Anthropocene.  

 

Assessments of species extinction risk are predominantly based on the size and change in 

population abundance. These data are unavailable for corals at relevant biogeographic scales, 

and risk assessments have therefore been based on regional trends in total coral cover, and on 

expert elicitation. My first objective was therefore to estimate the total number of coral 

colonies and the population sizes of more than 300 coral species on shallow-water reefs in the 

Pacific, to provide a new perspective on their risk of extinction. My estimates show that the 

65 most common species have population sizes greater than one billion colonies, one fifth of 

which are currently considered at elevated risk of extinction. Two thirds of the 318 examined 

species have population sizes exceeding 100 million and even the most range-restricted and 

locally rare species have population sizes greater than one million individual colonies. These 

estimates call into question earlier inferences that one third of all reef-building coral species, 

and one quarter of the species examined in this thesis, face an elevated risk of global 

extinction within the next few decades.  

 

Changes in the colony size structure of coral populations can reveal important insights into 

the demographic processes underlying population decline. However, data limitations mean 

that long-term regional trends in size structure are rarely studied. My second objective was 
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therefore to measure and examine shifts in the colony size structure of coral populations along 

Australia’s Great Barrier Reef, relative to historical baselines, following decades of declines 

in cover, and widespread mass coral bleaching events in 2016 and 2017. For this analysis, I 

used line intercept transect data, routinely collected to measure the percent benthic cover of 

corals, as proxy for colony size. The abundance of coral colonies declined sharply across all 

colony size classes in all taxa, habitats and sectors, with the exception of reefs in the far south 

which escaped mass mortality events in recent history. While the relative abundance of large 

colonies changed comparatively little, their absolute abundance declined by more than 50% in 

8 out of 12 taxa on the crest and in 5 out of 12 taxa on the slope. The disproportionate loss of 

small colonies, particularly in slow-growing, long-lived taxa, indicates that this depletion of 

large fecund colonies has resulted in suppressed recruitment rates and in the erosion of 

population resilience.  

 

Demographic inference beyond changes in cover, and beyond the relative abundance of small 

and large colonies, requires knowledge of the distribution of projected colony areas. These are 

not readily approximated from distributions of intercept length (i.e. lengths of transect 

segments that intersect particular colonies), which often intersect colonies only partially, or at 

odd angles. I present a method to reconstruct the distribution of projected colony areas that is 

most likely have produced a given distribution of measured intercept lengths. The method 

exhibits low, non-systematic biases and performs significantly better than two standard 

alternatives: using the intercept as the colony radius or diameter. I demonstrate the potential 

of the method for demographic inference by examining long-term trends in the reproductive 

output of coral populations on the Great Barrier Reef. In many taxa, fecundity declined more 

steeply than percent cover, signalling the depletion of brood stocks and illustrating the need 

for more detailed demographic data to assess the viability of coral populations.  

 

In demographically open populations like corals, the capacity for recovery following 

disturbance depends on the proximity to undisturbed populations within the distance of larval 

dispersal, and thus on the spatial footprint and patchiness of reef disturbances. I examined 

differences in the spatial patterns of mass coral bleaching events and cyclones on Australia’s 

Great Barrier Reef and their implications for population connectivity and recovery. In 

particular the bleaching events in 2016 and 2017 had markedly larger spatial footprints and 

were less patchy than a severe category 5 tropical cyclone (Yasi in 2011). Severely bleached 

reefs in 2016 and 2017 were isolated from the nearest lightly affected reefs by up to 146 and 
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200 km respectively, whereas reefs severely damaged by Cyclone Yasi were isolated from the 

nearest reefs with minor damage by a maximum of 77 km. I present a model of coral reef 

disturbance and recovery dynamics to illustrate that the substantially larger and less patchy 

footprints of recent mass bleaching events undermine the connectivity and resilience of coral 

populations – even in long-distance dispersers.  
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Chapter 1: General introduction 1 

Chapter 1: General introduction 

Coral reefs in the Anthropocene 

In the last 500 years, human activity has become the dominant influence on Earth’s geology 

and ecosystems (Crutzen 2006; Lewis & Maslin 2015). This new geological epoch – the 

Anthropocene – is already visible in the climatic and geological record, but it is particularly 

marked by the diametrically opposed population trajectories of humans and the world’s wild 

animal and plant species (Ceballos & Ehrlich 2002; Butchart et al. 2010; Pereira et al. 2010; 

Barnosky et al. 2011; Dirzo et al. 2014). By the end of the 21st century, 11 billion humans are 

expected to inhabit the planet. By comparison, since the onset of human civilization, the 

global abundance of fish and wild mammals has declined by a factor of two and six 

respectively (Bar-On et al. 2018), species are going extinct at a rate 1000 times the 

background rates of extinction (Pimm et al. 2014), and the International Union for 

Conservation of Nature (IUCN) currently lists 41% of the world’s amphibian species, 25% of  

mammal species and 14% of bird species as threatened (IUCN 2020).  

 

In an attempt to match the global scale of human impact on the planet, scientists study the 

Earth’s geosphere, atmosphere and biosphere at unprecedented scales. Technological 

advances in remote sensing, computer modelling and big data have facilitated breakthroughs 

in our understanding of global climate change (IPCC 2018), the wider planetary boundaries of 

human development (Steffen et al. 2015), but also of trends in the global distribution and 

abundance of the Earth’s flora and fauna. For instance, a recently developed map of global 

tree densities revealed that the global number of trees has halved since the start of human 

civilization – from approximately 5.6 to 3.0 trillion – and continues to decline at a rate of 15.3 

billion trees per year (Crowther et al. 2015). Similar global scale assessments exist for a 

variety of taxa such as soil nematodes (van den Hoogen et al. 2019), Antarctic krill (Atkinson 

et al. 2009) or birds (Gaston & Blackburn 1997). However, for the vast majority of species, 

including many of global ecological importance, the spatial and temporal scale of available 

ecological data is too limited to assess and predict their demographic trends in the 

Anthropocene.  
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Reef-building corals, and the ecosystems they engineer, are of immense global ecological and 

economic value. The calcium carbonate skeletons of both live and dead corals build complex 

three-dimensional topographies that provide habitat to an estimated one million reef species 

(Fisher et al. 2015), the vast majority of which remains undiscovered or unnamed (Fisher et 

al. 2015; Brandl et al. 2018). Coral reef ecosystems provide a wide variety of ecosystem 

services to humans including food production, coastal protection and revenue from tourism 

(Moberg & Folke 1999). Combined, the world’s coral reefs have an estimated economic value 

of more than $350 billion per year (Costanza et al. 1998, 2014). Australia’s Great Barrier 

Reef alone contributes an estimated $56 billion to the Australian economy per year and 

supports 64,000 jobs (O’Mahony et al. 2017).  

 

Disturbances have always shaped life on coral reefs (Connell 1978). The cumulative impact 

of natural and anthropogenic disturbances has, however, led to a steady depletion of coral 

abundances on reefs around the world (Gardner 2003; Wilkinson 2008; De’ath et al. 2012). 

Stressors include hurricanes or cyclones (e.g. Woodley et al. 1981), poor water quality 

(Fabricius 2005), outbreaks of corallivorous starfish (Pratchett et al. 2017) and diseases in 

corals (Green & Bruckner 2000) and key herbivores (Lessios et al. 1984), overfishing 

(Jackson et al. 2001), and, more recently, large-scale marine heatwaves caused by global 

warming (Hoegh-Guldberg 1999; Hughes et al. 2003). The increasing frequency, extent and 

intensity (Hughes et al. 2018a) of coral mass bleaching events is taking an unprecedented toll 

on coral populations (Hughes et al. 2017b) transforming coral assemblages (Hughes et al. 

2018b) and impairing reef connectivity and recovery (Hughes et al. 2019a). Under a business-

as-usual scenario of global greenhouse gas emissions (IPCC scenario RCP8.5), virtually all of 

the world’s coral reefs are predicted to experience annual severe bleaching conditions before 

the end of the 21st century (Van Hooidonk et al. 2016). 

 

Coral demography 

Demographic data are statistical data collected about the characteristics of a population, 

including its size, density, composition, migration and vital rates. These data are essential to 

measuring and predicting trends in the abundance of a population or species and to detecting 

processes, such as reproductive failure, that may compromise its long-term viability. In 

humans, census data on the size of a population, its age and sex structure as well as fertility 

and mortality rates are routinely collected. In contrast, demographic data in wild animal and 

plant species are typically sparse and highly restricted in space and time. Invertebrate 
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(Cardoso et al. 2012; Régnier et al. 2015) and marine (Webb & Mindel 2015) taxa are 

particularly understudied. Instead, assessments and predictions of trends in their abundances 

rely typically on expert opinion and proxies of population decline such as percentage habitat 

lost or decline in total community abundance (McCarthy et al. 2001; Martin et al. 2012). 

While this approach provides rapid and inexpensive first-order approximations of population 

declines, it often ignores interspecific and intraspecific differences in biology and distribution 

and provides limited insights into the demographic and ecological processes underlying 

population decline.  

 

As benthic colonial organisms with a pelagic larval phase, reef building corals have size 

rather than age-dependent life histories (Hughes 1984) and rely on larval dispersal to 

recolonize lost habitat. Colony sizes typically vary by several orders of magnitude. The few 

large, highly fecund colonies contribute disproportionately to future generations (Hughes et 

al. 1992; Hall & Hughes 1996), are more likely to undergo partial than whole-colony 

mortality, can, in some species, reach lifespans of several hundred years and thus allow 

species to persist despite ongoing recruitment failure (Hughes & Tanner 2000). Broadcast 

spawning coral species release both sperm and eggs into the water column where fertilization 

occurs. By contrast, in brooding species, egg fertilization and embryogenesis occur inside the 

colony before large, well developed planula larvae are released and disperse. As a result, 

brooder larvae typically settle close to their natal reef, whereas spawner larvae can disperse 

over distances of 10s to 100s of kilometres. While the populations of both brooders and 

spawners are considered open, differences in dispersal kernels determine how coral species 

explore space and have ramifications for their capacity to recover from disturbances. These 

life history characteristics, in combination with the limited spatial and temporal scope of in-

water surveys, pose unique challenges to the study of coral populations. Consequently, 

demographic data at spatial and temporal scales that capture key demographic processes such 

as stock-recruitment dynamics and the response to changing reef disturbance regimes are 

scarce, particularly at the species level.  

 

Conservation demography of coral reefs 

As reef disturbance regimes continue to escalate, coral reef scientists and managers are tasked 

to study and manage phenomena at large spatial and temporal scales, at which ecological data 

is notoriously scarce (Figure 1.1). Long-term regional trends in coral abundances are 

typically based on measurements of the overall percentage benthic cover of hard corals. Cover 
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is an apt abundance metric for modular organisms like trees and corals, whose individuals 

compete for limited space and typically vary in size by orders of magnitude. However, it 

limits our ability to infer interspecific and intraspecific trends in abundances and to predict the 

future fate of coral populations, species and assemblages. For instance, assessments of 

extinction risk in corals have relied heavily on regional trends in coral cover and expert 

opinion in the absence of species-level abundance data at biogeographic scales (Carpenter et 

al. 2008) (Figure 1.1). The conclusion that one third of the world’s reef-building coral species 

faces an elevated risk of global extinction (Carpenter et al. 2008), for example, has attracted 

criticism for not reflecting the vast geographic ranges of most Indo-Pacific coral species 

(Hughes et al. 2014).  

 

 

Figure 1.1 Schematic Stommel diagrams showing a) the spatial and temporal scales on which 
key ecological (orange) and physical (blue) processes determining coral demography operate; 
and b) the spatial and temporal scales at which different types of demographic data (green) 
are available in corals and the methods with which they are collected (purple). The spatio-
temporal delineation of survey methods depicts the typical scale trade-offs of methods.  
 

Trends in overall coral cover also provide limited insights into the demographic processes 

underlying population decline, likely future population trajectories, and long-term population 

viability. For instance, the role of reproduction and recruitment in regulating population 

dynamics, historically understudied due to the open nature of coral populations and 

intractability of larval dispersal (Caley et al. 1996), is increasingly shifting into focus as 

concerns arise over the capacity of coral populations to recover from increasingly frequent 
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and severe disturbances. Coral recruitment rates on Australia’s Great Barrier Reef decreased 

by 89% relative to their historical baselines following unprecedented back-to-back mass 

bleaching events in 2016 and 2017 (Hughes et al. 2019a). While coral cover was found to be a 

good predictor of differences in recruitment rates, it masks potential shifts in colony size 

structure and their implications for the reproductive output of a population and population 

viability. A systematic decline in the abundance of small colonies may, for instance, indicate 

ongoing recruitment failure while declines in the abundance of large, highly fecund 

individuals implicate a decline in fecundity. Long-term regional trends in colony size 

structure have been reported for the Red Sea (Riegl et al. 2012), Kenya (McClanahan et al. 

2008) and the Caribbean (Bak & Meesters 1998) but comparable examinations for the Great 

Barrier Reef are currently missing (Figure 1.1).  

 

As the world’s coral reefs, and the scientists studying them, enter uncharted territory, we 

urgently need a better understanding of the demographic challenges faced by coral 

populations in the Anthropocene (Edmunds & Riegl 2019). The ever expanding scope of 

remote sensing and computer modelling (Hedley et al. 2016; Madin et al. 2019), innovative, 

scalable survey methods (González-rivero et al. 2014; Chirayath & Earle 2016), meta-

analyses (Darling et al. 2019), curated databases (Madin et al. 2016), and long-term 

ecological studies (Lindenmayer et al. 2012b) are all instrumental for the required expansion 

of the spatial and temporal scope of demographic data. The integration of existing 

demographic, ecological and biophysical data across spatial, temporal and taxonomic scales 

(Robinson et al. 2014) as well as the recycling and repurposing of historical data (Hawkins et 

al. 2013) also present promising avenues to overcome the data crisis in biodiversity 

conservation (Kindsvater et al. 2018). Historical data, for instance, can be used to examine 

departures from historical baselines and, in particular, slowly unfolding shifts in ecosystems 

(Pauly 1995; Hughes et al. 2011, 2013b).  

 

Few phenomena illustrate better the novel challenges faced by reef organisms and reef 

scientists in the Anthropocene than large-scale marine heat waves. Three mass coral bleaching 

events within the past five years (2016, 2017 and 2020) have disturbed coral populations on 

the Great Barrier Reef and unprecedented spatial scales (Hughes et al. 2017b, 2019b). While 

the capacity for long-distance larval dispersal is an integral adaptation to life in the 

fragmented and frequently disturbed reef environment, disturbances that simultaneously 

deplete populations over large swaths of reef area may undermine the connectivity of 
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populations by diminishing external recruitment subsidies. Historically, cyclones have been 

the dominant large-scale disturbance on coral reefs. On the GBR, cyclone impact is typically 

patchy and limited to within 100-200km of its track (e.g. Done 1992; Beeden et al. 2015). In 

contrast, the mass bleaching event in 2016 alone affected the Northern third of the Reef 

severely and the Central third moderately (Hughes et al. 2017b). We currently know little 

about the differences in spatial patterns of large-scale reef disturbances, namely their extent 

and patchiness, and whether mass bleaching events present an unprecedented challenge the 

resilience of coral populations and assemblages.  

 

Coral demography in the Anthropocene 

The overarching aim of this thesis is to fill important knowledge gaps in our understanding of 

the large-scale demographic challenges that corals face in the Anthropocene. Each of my 

chapters approaches coral reef conservation with a focus on how coral demography is 

changing in an era of global human influences. Each of the chapters examines these questions 

at the wide, metapopulation to biogeographic scale that is so important to coral reef ecosystem 

dynamics but understudied. 

 

In Chapter 2, I estimate the population sizes of more than 300 Indo-Pacific coral species at 

biogeographic scales. For this, I integrate ecological and physical data from different sources 

and across varying scales of spatial and taxonomical coverage (Figure 1.1). These estimates 

provide a novel perspective on the global extinction risk of coral species, the assessment of 

which has hitherto relied heavily on proxies of percentage coral habitat lost and expert 

opinion rather than species abundances. Chapter 3 fills important knowledge gaps in our 

understanding of long-term demographic changes in coral populations on Australia’s Great 

Barrier Reef. Specifically, I examine decadal trends in the colony size frequency distribution 

of coral populations, an important indicator of population viability in corals, along the length 

of the GBR by recycling and repurposing historical line-intercept transect (LIT) data (Figure 

1.1). LIT data are commonly used to measure coral abundances and provide a valuable proxy 

for shifts in colony size structure. However, more advanced demographic inferences about, 

for instance, changes in the reproductive output of coral populations require knowledge of the 

true colony size frequency distribution of a population. In Chapter 4, I present a new method 

that allows the reconstruction of the true colony size frequency distribution that most likely 

underlies a measured distribution of intercept lengths. This method presents an important 

bridge between routinely collected monitoring data of coral abundances and size-based 
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demographic tools such as structured population models. I demonstrate the potential of the 

method for advanced demographic inference by examining decadal changes in the fecundity 

of coral populations on the GBR. Finally, in Chapter 5, I investigate differences in the spatial 

footprint and patchiness of large-scale reef disturbances on the GBR. Specifically, I contrast 

the spatial patterns of four mass coral bleaching events (in 1998, 2002, 2016 and 2017) and 

Severe Tropical Cyclone Yasi (in 2011), for which spatially extensive survey data of 

disturbance impact are available. For this chapter, I harness ecological data collected by 

satellites, planes and in-water surveys (Figure 1.1) and, subsequently, complement the 

empirical evidence with theoretical modelling to explore the implications of different spatial 

disturbance patterns for the population connectivity and recovery dynamics of coral species 

with different dispersal capacities.   
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Chapter 2: The population sizes of reef-building coral 

species at biogeographic scales 

Currently in review in Nature Ecology and Evolution 

 

2.1 INTRODUCTION 

 

The abundance of corals on the world’s coral reefs, typically measured as percent benthic 

cover, has declined for many decades due to a broad range of anthropogenic stressors 

(Wilkinson 2008; Jackson et al. 2014). The rate and scale of this decline is accelerating as the 

spatial extent and frequency of mass coral bleaching and mortality events increases due to 

global warming (Baker et al. 2008; Eakin et al. 2010; Hughes et al. 2018b, a). While some 

regional trends in overall coral cover are relatively well understood (Gardner 2003; De’ath et 

al. 2012), we currently know little about the numerical abundance of reef-building corals and, 

in particular, of individual coral species at biogeographic scales. Consequently, recent 

assessments of the global extinction risk of coral species have relied on expert opinion and on 

regional trends in overall coral cover rather than data on the abundance of individual species 

(Carpenter et al. 2008). For other ecologically important taxa (Table 2.1), global estimates of 

species-level abundances have helped to fill critical gaps in our understanding of their 

extinction risk (ter Steege et al. 2015), their role in global biogeochemical cycles (Fauset et 

al. 2015), and the ecological challenges of setting and achieving conservation and restoration 

targets (Crowther et al. 2015). 

Here, I calculate the total abundance of reef-building corals, and the population sizes of more 

than 300 Indo-Pacific coral species on reef flats, crests and slopes between Indonesia and 

French Polynesia. These estimates are derived from species abundance data collected along a 

10,000 km long biodiversity gradient, coral cover data from more than 900 Indo-Pacific reef 

sites in marine provinces stretching from Indonesia to French Polynesia, and on spatial data 

on reef habitats (Figure 2.1). Approximately 70% of the global shallow-water coral reef area 

and more than 600 of the estimated 800 hard coral species of the world occur in the domain of 

this study. To enhance comparability with estimates of global population size for other taxa 
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(Table 2.1), I follow convention and present population size estimates as total counts of 

colonies (Hughes & Jackson 1985; Connell et al. 1997) rather than the total area occupied by 

individual species. Individual colonies are capable of conducting independently all biological 

functions, including growth, reproduction and mortality (Hughes & Jackson 1985; Connell et 

al. 1997). However, I also examine the extent to which numerical abundances of colonies are 

representative of relative extent of coral cover. I reveal patterns of hyperdominance that are 

similar to those observed for the Amazonian tree flora (ter Steege et al. 2013), and I test for 

correlations between population size estimates and the current conservation status 

classifications of coral species under the International Union for Conservation of Nature’s 

(IUCN) Red List.  

 

 

2.2 MATERIALS AND METHODS 

 

Because ecological data at the scale of this study are scarce, I combined data from different 

sources to derive estimates of the total abundance of scleractinian corals and the population 

sizes of 318 species. I first mapped the availability of coral habitat across the study region 

using data on the global distribution of the world’s coral reefs (UNEP-WCMC et al. 2010). 

The total reef area in the study domain is 107,700 km2. However, these global data provide no 

estimates of the availability of different habitat types and include habitats not suitable for 

corals. I therefore complemented these data with detailed habitat maps from 61 reef locations 

(Table C-3) to estimate the average proportion of a reef that is reef crest, flat and slope 

habitat dominated by live coral (rather than e.g. rubble or sand). To account for variations in 

overall community abundance, I then interpolated more than 900 measurements of coral cover 

(Bruno 2016; Bruno & Valdivia 2016) across the study region. Finally, I used species 

abundance data collected on reef crest, flats and slopes across the study domain to apportion 

the total abundance of corals in the study region to 318 species. A graphical overview of the 

steps in the analysis is given in Figure C-4. 
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Figure 2.1 The Indo-Pacific biodiversity gradient and the locations where coral abundance 

and reef habitat data were collected. Shading indicates species richness of corals. White 

triangles (s) indicate the location of the 15 islands across five regions where species 

abundances were measured, blue circles (¡) show the locations of coral cover measurements, 

and black circles (¡) indicate the location of coral reef habitat surveys.  

 

 

Coral abundance data 

Coral abundances were measured on reef slopes, crests and flats in five regions (Indonesia, 

Papua New Guinea, Solomon Islands, American Samoa, French Polynesia) along a 10,000 km 

gradient in species richness (Figure 2.1 and Error! Reference source not found.). In each 

region, four sites were selected on each of three islands. At each of the 60 sites, ten 10 m line 

intercept transects were run on the upper reef slope (6-7m depth), reef crest (1-2m) and reef 

flat (tidal). All intercepted, physically discrete (i.e. with contiguous tissue) coral colonies 

larger than 1cm in diameter were identified to species in-situ by a highly trained team of coral 

taxonomists, with the exception of a species cluster of sub-massive Porites (e.g. Porites 

lobata, P. lutea, P. solida) which I excluded from the present analysis (Karlson et al. 2004; 
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Connolly et al. 2005; Hughes et al. 2014). When necessary, close-up high-resolution digital 

photographs were taken to record small-scale features, or colony samples were collected, to 

confirm species identifications later using taxonomic monographs or archived type specimens 

in the Museum of Tropical Queensland, which houses the world’s largest collection of 

modern scleractinians. To allow for comparisons with current IUCN threat status 

classifications in corals (Carpenter et al. 2008), I adhered to the species taxonomy and 

phylogeny currently used by the IUCN and reconciled minor inconsistencies where necessary. 

I adopted recent revisions of coral taxonomy and phylogeny (Huang et al. 2011) which 

reassigned some species among genera or families. Along the total of 1,800 transects, 37,129 

intercepted colonies were recorded belonging to 318 species, which represents approximately 

half of all known coral species that occur in the study region (n = 618). Only a subset of those 

species would occupy the specific habitat types that were sampled. To estimate how many 

such species there were, I estimated the number of unobserved species for those particular 

metacommunities from the multi-site species-abundance distribution, using previously-

published methods (Connolly et al. 2017). Missing species likely also occur in additional 

habitats or regions that were not sampled (e.g. lagoon floors, deeper slopes). Elsewhere, these 

species abundance data were used to explore the size of the metacommunity species pool 

(Connolly et al. 2005, 2017) and a range of other ecological and biogeographic questions 

(Karlson et al. 2004; Cornell et al. 2007, 2008; Connolly et al. 2009; Hughes et al. 2014). To 

estimate species abundances within the domain of this study (Figure C-5), I complemented 

the species abundance data at 60 sites with an extensive dataset of more than 900 

measurements of local coral cover (Bruno 2016; Bruno & Valdivia 2016) (Figure 2.1). 

Species abundance data were collected between 1999 and 2002 and coral cover data between 

1997 and 2006 (Bruno 2016; Bruno & Valdivia 2016).  

 

Reef habitat quantity, quality and composition 

I collated 61 coral reef habitat maps throughout the study domain from different sources 

(Table C-3) to (a) quantify the extent of reef habitat with live coral as the dominant benthic 

cover (rather than e.g. sand, rubble, rock or algae) and (b) to estimate the average proportions 

of different reef habitat types. Reef polygons in the Global Distribution of Coral Reefs data 

(UNEP-WCMC et al. 2010) classified as “deep reef” or “shallow non reef” were excluded 

from the analysis. Proportional reef habitat composition for habitat maps from the Khaled bin 

Sultan Living Oceans Foundation (KSLOF) was calculated using the “habitat analysis tool” of 
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the KSLOF’s online, interactive World Reef Map. For each habitat map, I identified the 

habitat classifications that matched the habitat types in the surveys of species abundances 

(reef slope, crest and flat). Reef habitat classifications with live coral as dominant benthic 

cover that could not be attributed to reef crest, slope or flat were identified as “others”.  

I calculated for each habitat map the proportion of live-coral dominated reef slope, crest, flat 

and “other” habitat relative to the total mapped reef. Reef parts classified as, for instance, 

land, mangroves or deep water were excluded. I applied a cubic root and logistic 

transformation of these proportions to satisfy normality, and fitted a Bayesian linear model 

with brms (Bürkner 2017) to the transformed (Warton & Hui 2011) proportions yi, where 

habitat type (slope/fore reef, crest, flat/back reef) was the explanatory variable:  

yi ~ N(μi, σ) 

μi = β0 + βXi	

β0, β ∼	N(0,100) 

σ ∼	cauchy(0,5) 

I then used the posterior distributions of the parameters to estimate uncertainty (Figure C-6). 

I assume that the estimated proportions of live-coral dominated reef habitat types at the 61 

sites (Table C-3 and Figure 2.1) are largely representative for Indo-Pacific reefs but 

acknowledge the potential for bias introduced by regional differences in geomorphology, 

bathymetry and mapping precision, an additional source of uncertainty that could not be 

formally incorporated in the confidence intervals. The ongoing improvement of reef habitat 

maps from around the world will help refine future analyses. 

 

Reef habitat types differ not only in their spatial extent, or proportions of the total reef, but 

also in colony densities (Figure C-6). I accounted for differences in colony densities by 

calculating the relative colony densities in each habitat type and using them to rescale the 

proportions of the total reef classified as live-coral dominated slope, crest, flat and “other” 

habitat (Figure C-6). Because no data on colony densities in “other” habitat types were 

available, I assumed the average of the three surveyed habitat types. The posterior distribution 

of the proportion of the total reef with live coral as dominant benthic cover LCTotal is 

calculated as the sum across the four habitat classifications. The proportion of the total reef 

with live coral as dominant benthic cover and the proportion of the total reef classified as live-

coral dominated crest were affected only marginally by the rescaling. The rescaled proportion 
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of live-coral dominated slope habitat increased, while the rescaled proportion of live-coral 

dominated flat habitat decreased (Figure C-6). 

 

Estimating coral abundances and population sizes 

I created a gridded base map (resolution 50km by 50km) of the domain of the study (Figure 

C-5). I interpolated coral cover data across the study domain using an inverse-distance 

weighted model (function idw(), R package ‘gstat’, inverse distance power value of 2.0) 

following a similar study that estimated the global conservation status of more than 15,000 

Amazonian tree species (ter Steege et al. 2015). Using interpolated rather than raw coral 

cover data accounts for regional variation in sampling intensity but assumes that coral cover is 

spatially autocorrelated and varies predictably between regions, particularly where 

observations are sparse. However, as noted in the main text, the conclusions are robust even if 

the extreme assumption is made that there are no corals at all outside the regions where 

colonies were sampled. All analyses were carried out in R (R Core Team 2019) using a 

cylindrical equal-area projection with a custom prime meridian of 160ºW. The narrower 

distribution, and increased median, of interpolated cover values relative to the frequency 

distributions of the raw data (Figure C-7) likely occurs for two reasons. First, areas of sparse 

observations tend to have above-average cover estimates, and these estimates make a larger 

contribution to the spatial interpolation. Second, the inverse-distance weighted method 

calculates a spatial average between sample data points which reduces the influence of 

extreme values.  

For each of the 60 sites at which species abundances were surveyed, I calculated total coral 

cover and colony densities following an approach (Marsh et al. 1984) that allows calculation 

of coral colony densities from line intercept transect data. I regressed colony densities against 

cover using a generalised additive model with normal error structure (thin-plate regression 

splines with 3 knots and weakly informative priors, function ‘stan_gamm4’, package 

‘rstanarm’, Stan Development Team 2016). I then used the regression model to predict for 

each grid cell the upper and lower bound of the 95% credible interval of colony density ρg 

(Figure C-7). I then estimated the total number of corals in the study domain NScl as 

1)						𝑁!"# 	= &(	𝑨𝑹𝒆𝒆𝒇	𝒈		𝑳𝑪𝑻𝒐𝒕𝒂𝒍			𝝆𝒈			)
𝒏

𝒈/𝟏

 

where ρg is the predicted colony density of coral-dominated reef habitat in grid cell g, AReef g 

the reef area in grid cell g and LCTotal the rescaled proportion of the total reef with live coral 
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as dominant benthic cover (Figure C-6). My estimates of coral colony densities (median of 

28.9 colonies per m2, Figure C-7) fall well within the bounds of other reported densities 

(Connell et al. 1997).  

Here I calculate and report population sizes of corals as counts of colonies rather than total 

area occupied, or counts of polyps or genets. Specifically, I define an individual in the 

analysis as a physically discrete colony. While I acknowledge that the demographic 

contribution of an individual colony depends on its size (Hughes 1984; Hall & Hughes 1996), 

estimating population sizes as counts of individuals follows the convention in conservation 

biology and demography, allowing a comparison with similar estimates in other organisms of 

global ecological importance (Table 2.1), including trees that resemble corals in their size-

dependent life histories. I show, furthermore, that numerical abundance and total area 

occupied by each species are very closely correlated (Figure 2.4).  

To estimate the population sizes of the 318 Indo-Pacific coral species in this analysis I first 

predicted their relative abundances in each of the five surveyed regions and three habitat types 

using the species abundance data described above. To each of the 15 surveyed meta-

communities (3 habitats in each of 5 regions, 12 sites each) I fitted a recently developed 

unified model (Connolly et al. 2017) that captures multiple macroecological patterns in coral 

abundances (local species abundance distribution, interspecific variation in the strength of 

spatial aggregation, patterns of community similarity, species accumulation and the size of the 

species pool). The unified model describes the probability distribution of abundances among 

species and sites in a metacommunity with only four fitted parameters: Taylor’s power-law 

scaling parameters a and b and the mean and variance of log abundance in the 

metacommunity µ and σ2. The unified model also provides an estimate of the size of the 

species pool and thus an estimate of the number of species too rare to be sampled (the veil 

effect) (Connolly et al. 2005, 2017) (Table C-1). 

The observed abundance of a species inevitably constitutes a biased estimate of a species’ true 

abundance given the large proportion of rare species and intraspecific patterns of spatial 

aggregation. I therefore used the fitted parameters to simulate, for each surveyed meta-

community, 100,000 new meta-communities to find a range of likely true species abundances 

that underlie a given observed species abundance, using a parametric bootstrap simulation 

approach from Connolly et al. (2017). First, I randomly drew a vector of n (n = estimated size 

of species pool) mean site-level abundances µi (henceforth referred to as simulated true mean 

abundance) by repeatedly sampling from a lognormal distribution described by the fitted 
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parameters µ and σ2. The power-law scaling parameters a and b then specify an among-site 

variance in abundance that is conditional on that species-specific mean: 𝜎!" = 𝑎	𝜇!#. For 

species with greater variance than mean site-level abundance (σi2 > a • µib), I randomly drew 

12 site-level abundance values from a negative binomial distribution with mean µi and 

variance 𝜎!". For species with greater mean than variance in site-level abundance (where the 

negative binomial distribution is undefined), I randomly drew 12 site-level abundance values 

from a Poisson distribution fully specified by a species’ simulated true mean abundance µi. 

See Connolly et al. (2017) for further details and justification of this parametric bootstrap 

simulation approach. 

I thus obtained, for each surveyed meta-community with fitted parameters a, b, µ and σ2, a 

range of simulated true species-level mean abundances µi that can underlie a simulated 

observed mean abundance (i.e., a mean of the observed counts across all sites). Finally, to 

derive relative abundances I divided each simulated true mean abundance by the sum of 

simulated true mean abundances of all species in the species pool in each simulated meta-

community. I estimate the number of unobserved species in each metacommunity as the 

difference between the size of the species pool and the number of observed species. Note that 

this also allows an estimate of the proportion of colonies likely to belong to those unobserved 

species. Specifically, in the Monte Carlo simulations, some species that have non-zero mean 

abundance will nevertheless be simulated to have sampled abundance zero everywhere. I 

could therefore normalize the mean abundances across all species: 𝜌! =
$!

∑ $!"
#$%

, where S is the 

number of species in the metacommunity species pool. The proportion of the metacommunity 

that belongs to the unobserved species is thus the sum of the 𝜌! values across all species 

whose simulated sampled abundances were zero. I took the average of this quantity across all 

Monte-Carlo simulated data sets as an estimate of the proportion of the metacommunity 

represented by unobserved species in the abundance data. 

To estimate total population sizes for each region, I assume that the modelled range of 

simulated relative true mean abundances µijk is representative of the relative contribution that 

a species i with observed mean abundance µi makes to overall metacommunity abundance in 

region j and habitat type k. I calculate a species’ population size as  

2)						𝑁! 	=, 		,(𝝁𝒊𝒋𝒌		𝑵𝑺𝒄𝒍	𝒊𝒋𝒌	)
𝒎

𝒌.𝟏

		
𝒏

𝒋.𝟏
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where µijk is a species’ mean relative abundance in region j and habitat k, NScl ijk the total 

number of scleractinian corals in region j and habitat k within the geographic range of species 

i. With this approach, I obtain first-order approximations of species-level abundances based 

on assumptions similar to those underpinning comparable analyses in trees (ter Steege et al. 

2013, 2015; Crowther et al. 2015). I fully acknowledge that these are preliminary estimates 

and that species-level abundances, especially of rare species, have a high degree of 

uncertainty.  

I assigned each grid cell to one of the five geographic regions based on its proximity to the 

regional centroids of the species abundance survey locations. I then calculated the total 

number of corals NScl ijk in region j and habitat k within the geographic range of species I 

(range data from Hughes et al. (2013)) by first calculating the number of corals in each grid 

cell for each habitat type using the rescaled proportions of live-coral dominated crest, flat and 

slope habitat (Figure C-6) and then summing across all grid cells for each region. I 

additionally accounted for gradients in species richness. I assume that a species’ relative 

abundance is inversely proportional to the species richness in a grid cell: i.e. a hypothetical 

species i with relative abundance µi contributes twice as many individuals in a grid cell with 

100 species as in a grid cell with 200 species within the same region. I calculated the species 

richness in each grid cell based on the number of overlapping geographic ranges (Hughes et 

al. 2013a) (Figure 2.1). I rescaled the total number of corals within each grid cell by its 

relative species richness compared to the species richness at the closest regional centroid. This 

allowed me to collapse the calculation of a species’ global population size into a simple, 

spatially implicit rather than spatially explicit equation (equation 2).  

Uncertainty about true metacommunity abundance, conditional on observed abundance in the 

samples, is formally accounted for in the Monte Carlo procedure. However, two additional 

sources of uncertainty cannot be formally quantified. One source is the relative abundances of 

coral species outside of the regions where abundances were sampled (which I assume to equal 

the mean relative abundance within the study region within a species’ geographic range, and 

to be zero elsewhere). A second is the amount of reef area in the entire study area, which, 

given the geographically patchy distribution of relative habitat availability estimates, may 

differ from the estimates I used. To produce an extreme lower bound estimate, I assumed that 

species abundances were zero outside of the five countries that were sampled (Indonesia, 

Papua New Guinea, the Solomon Islands, Samoa, and French Polynesia), and I recalculated 

“global” population sizes. Combined, the reef area of these five countries accounts for 30.8% 
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of the total reef area in the study domain. I first calculated the reef area in each country from 

data provided by UNEP-WCMC et al. (2010). Assuming a spatially homogeneous colony 

density of 28.9 colonies per m2 (median density, Figure C-7) rather than extrapolating coral 

cover across the spatial grid, I then calculated the total number of colonies in each country, 

which I apportioned to each habitat type using the estimates of live-coral dominated crest, 

slope and flat habitat presented in Figure C-6. I then projected abundances for individual 

species based on the estimates of species’ relative abundances in the study regions as in the 

baseline analysis. 

 

Coral abundances and IUCN conservation status 

To examine the relationships between coral population sizes and IUCN conservation status, I 

log-10 transformed population sizes to satisfy the statistical assumption of normality and 

fitted a Bayesian linear regression model to the log-10 transformed population size data 

(Figure C-3) with brms (Bürkner 2017) using weakly informative priors:  

yi ~ N(μi, σ) 

μi = β0 + βXi	

β0, β ∼	N(0,100) 

σ ∼	cauchy(0,5) 

I examined model diagnostics (chain mixing, effective sample size, convergence statistic R-

hat), carried out pairwise contrasts and calculated Bayes’ R2 (function ‘bayes_R2’, package 

‘rstanarm’, Stan Development Team 2017) as a measure of the total variance explained by the 

model. I additionally compared differences between species with low (least concern or near 

threatened) and elevated (vulnerable or endangered) extinction risk. For all Bayesian 

regression models I initiated 4 MCMC chains of 17,500 steps, each with a 5,000-step warm-

up and thinning rate of 5, yielding a total of 10,000 samples, which were subsequently drawn 

from to propagate uncertainties.  

 

Propagation of uncertainty analysis 

I provide uncertainty bounds for the population size estimates following a bootstrap 

resampling approach. Specifically, I repeatedly (n = 10,000) sampled from the distribution of 

possible values of each parameter in equations 1 and 2 (ρg, NScl ijk, LCk and µi), solved 
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equations 1 and 2 for each bootstrap run and summarised across all runs to calculate the 

composite uncertainty of NScl and Ni. To capture the uncertainty in LCk, I used the respective 

posterior distributions of the fitted parameter estimates. To reconstruct the posterior 

distribution of NScl ijk I sampled from the posterior distribution of LCk, and from the upper and 

lower bound of the 95% credible interval of predicted coral colony densities in each grid cell 

ρg. Lastly, to propagate the uncertainty in µi, I randomly sampled for each species i with a 

given observed mean site-level abundance a simulated true mean site-level abundance µi from 

the previously derived range of simulated pairs of true and observed abundances in each of 

the 15 surveyed meta-communities. The composite uncertainties of NScl and Ni were then 

calculated as the mean and 95% confidence intervals across the 10,000 bootstrap runs. 

 

 

2.3 RESULTS AND DISCUSSION 

 

I estimate that approximately half a trillion (95% Bayesian credible interval (CI): 0.3 x 1012 – 

0.8 x 1012) coral colonies inhabit the shallow-water coral reefs in the marine provinces 

extending between Indonesia and French Polynesia, comparable in magnitude to the estimated 

number of trees in the Amazon rainforest (ter Steege et al. 2013), or to the estimated number 

of birds in the world (Gaston & Blackburn 1997) (Table 2.1). Together, the acroporid, poritid 

and favid (now mostly reclassified as merulinid) corals comprised two-thirds of the 318 

species that were encountered, and they accounted for three-quarters of the combined 

abundance of all species (Figure 2.2a). Massive, branching and encrusting growth forms are 

the most common (Figure 2.2b), whereas functionally important tabular corals that provide 

understory habitat(Kerry & Bellwood 2015) and other growth forms are less prevalent.   
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Figure 2.2 Taxonomic and morphological composition of the Pacific coral fauna. a, The total 

abundance of coral colonies by family (summed across species). b, The total abundance of 

coral colonies by colony growth form (summed across species). Sample sizes (number of 

species) are given on the right plot margin. 
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Table 2.1 Global and regional abundances of Earth’s flora and fauna. 
Taxa No. of species No. of individuals 

Prokaryotes in the world (Bar-On et al. 2018) 400,000 1031 

Soil nematodes in the world (van den Hoogen et al. 2019) - 4.4 x 1020 

Birds in the world (Gaston & Blackburn 1997) 9,946 3.0 x 1011 

Trees in the world (Crowther et al. 2015) 45,000 3.0 x 1012 

Trees in the Amazon (Hubbell et al. 2008) 15,200 4.0 x 1011 

Corals in the Pacific (present study) 618 5.9 x 1011 

Individual species   

Antarctic krill (Atkinson et al. 2009)  7.8 x 1014 

Humans (May 2020 estimate (Worldometer 2020))  7.8 x 109 

Individual tree species in the Amazon (ter Steege et al. 2013, 

2015) 

 104 - 109 

Individual coral species in the Indo-Pacific  105 - 1010 

California condor (US Fish and Wildlife Service 2017)  4.6 x 102 

Tigers (wild) in the world (Goodrich et al. 2015)  3.1 x 103 
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The estimated population sizes of individual coral species differ by five orders of magnitude 

(Figure 2.3). While the population sizes of each of the eight most common coral species 

exceed the global human population size of 7.8 billion, the six rarest species each have 

population sizes below one million. The majority (65%) of the examined species, however, 

number in excess of 100 million colonies, with one out of every five species exceeding one 

billion colonies. Given that the geographic ranges of most of the examined species extend to 

varying degrees beyond the spatial extent of this study (Figure C-1), with 81% extending 

westwards into the Indian Ocean, their global population sizes are even larger. Patterns of 

commonness and rarity varied substantially between the five regions where species abundance 

data were collected. That is, both the overall variance in species abundance, and the relative 

abundances of different species, changed from one region to another in the species abundance 

data. For example, the species Isopora palifera was relatively rare on replicate reefs and sites 

in American Samoa (compared to regions to the west and east) despite ranking among the 20 

globally most common species, with an estimated global population size of about 3.6 billion 

colonies (Figure C-2). The numerical abundance of each species explained over 90% of the 

variation among species in benthic cover (Figure 2.4), with a slope of approximately 1, 

indicating that numerically abundant corals tended to dominate space occupancy in proportion 

to their numerical advantage (i.e., a species 10 times more abundant than another will also 

tend to occupy about 10 times as much space, on average).  
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Figure 2.3 The population sizes of Indo-Pacific coral species and their conservation status. a, 

Rank abundance distribution for 318 Indo-Pacific coral species (l) and 4953 Amazonian tree 

species (l) (ter Steege et al. 2015). Vertical lines demarcate the small fraction of 

hyperdominant tree species (227 out of 4953) and coral species (17 out of 318) respectively. 

b, Species abundance distribution of 318 Indo-Pacific coral species. c, The distribution of 

coral population sizes by IUCN conservation status. Boxplots show centre line (median), box 

limits (upper and lower quartiles) and whiskers (×1.5 interquartile range). Note that the much 

higher abundances of Indo-Pacific corals relative to Amazonian trees in panel a, despite the 

similar total number of individuals, arises because there approximately an order of magnitude 

fewer coral species than tree species. 
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Figure 2.4 Correlation between numerical abundance and the area occupied by each species. 

The total number of intercepts and total intercept length is shown of each of 318 Indo-Pacific 

coral species sampled across the five regions and three habitat types. Ten thousand 

centimetres of intercept length on 1,800 transects equates to 1.8% benthic cover. 

 

Patterns of hyperdominance 

A small fraction of the examined species (17 out of 318) numerically dominates the Indo-

Pacific coral fauna (Figure 2.3a, b). Combined, these 17 hyperdominant species (defined as 

the species whose pooled abundance accounts for half of total community abundance(ter 

Steege et al. 2013)) account for as many coral colonies as the remaining 301 species, 

indicating their disproportionate contribution to the assemblage structure and ecological 

functioning of shallow-water Indo-Pacific coral reef ecosystems. I estimate that in each 

metacommunity between 7 and 66 rare species were undetected in the samples of species 

abundances (Connolly et al. 2005, 2017) (the veil effect)). Combined, these missing species 

accounted for 0.2% to 3.5% of the combined abundance of all species in the species pool of 

each metacommunity (Table C-1). 

Hyperdominant species are generally characterised by both high local abundances and vast 

geographic ranges, although some rank among the rarest in some regions within their ranges 

(Figure C-2). Poritid, pocilloporid, favid and acroporid taxa, as well as taxa with encrusting, 

digitate or closed branching growth form were overrepresented among the 17 hyperdominant 
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species. In contrast, the 50% of sampled species with lower than the median abundance 

accounted for less than 4% of the combined abundance of all species. These comparatively 

rare species nevertheless can have population sizes of up to 200 million colonies. 

Even Stylocoeniella cocosensis – a species that is both range-restricted and numerically rare – 

has an estimated population size of approximately 23 million colonies (95% CI: 20.2 – 25.5 x 

106).  

Whereas the Indo-Pacific coral fauna exhibits hyperdominance (Figure 2.3a), hyperrare coral 

species (defined as species with population sizes < 1000 individuals (Hubbell 2015)) are 

unlikely to be prevalent in the five regions that were examined. Hyperrare tropical tree species 

comprise more than a third (5800 out of 16,000 species) of the Amazonian tree flora (ter 

Steege et al. 2013). These tree species are highly endemic, whereas the geographic ranges of 

Indo-Pacific coral species are typically very large (Hughes et al. 2002), with few species 

facing the double-jeopardy of being both range-restricted and locally rare (Hughes et al. 

2014). Even for coral species restricted to the Coral Triangle, range sizes of these endemics 

are close to the area of the continental United States of America (Hughes et al. 2002). 

Consequently, the hypothetical population densities of an evenly dispersed hyperrare species 

in the Coral Triangle hotspot would be unviably low, averaging approximately one colony per 

8,000 km2. Similarly, an aggregated hyperrare species of 1,000 colonies, with a higher density 

of one colony per 10m2, would have a range size of just 1 km2 of reef habitat, making it 

highly vulnerable to local disturbances. These discrepancies in hyperrarity and endemicity 

between corals and trees are likely due to fewer barriers to dispersal in the sea, and the 

dispersal capacity of marine larvae (Kinlan & Gaines 2003). 

 

Extinction risk 

The presented estimates of population size provide a new perspective on the extinction risk of 

Indo-Pacific coral species. Currently, one third of the world’s reef-building coral species and 

about one quarter of the 318 species examined in this study are listed by IUCN as either 

vulnerable to extinction (VU), endangered (EN) or critically endangered (CR) (Carpenter et 

al. 2008). The overlap in population sizes between risk categories was considerable (Figure 

2.3c) and differences in IUCN conservation status explained only a small proportion of the 

overall variance in population sizes (Bayes R2 = 0.04), although pairwise comparisons 

revealed that the population sizes of species with elevated (VU, EN or CR) extinction risk 
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were significantly different from those with low extinction risk (near threatened: NT, least 

concern: LC) (Figure C-3).  

Remarkably, of the 80 species in the analysis that are considered by IUCN to have an elevated 

extinction risk (listed as vulnerable, endangered or critically endangered), twelve have 

estimated population sizes exceeding 1 billion colonies. For instance, Porites nigrescens 

ranks among the 10 most abundant species I examined, is not considered to be highly 

susceptible to coral bleaching (Carpenter et al. 2008), and yet is currently listed by IUCN as 

vulnerable to global extinction. Conversely, one third of the rarest species in the analysis that 

comprise the bottom 10% of species abundances, are listed by IUCN as of Least Concern. 

Notably, many species currently listed by IUCN as Data Deficient also have the smallest 

population sizes (Figure 2.3c), indicating that our poor knowledge of their ecology and 

abundance is reflective of their rarity and that their extinction risk may be relatively high and 

unrecognized. 

The presented population size estimates inform and refine earlier estimates of extinction risk 

in Indo-Pacific corals, which relied heavily on qualitative expert opinion (Carpenter et al. 

2008). In particular, my findings call into question earlier inferences that a considerable 

proportion (one quarter) of the examined Indo-Pacific coral species could go globally extinct 

within the next few decades. For typically widespread, highly abundant Indo-Pacific coral 

species, local depletion and functional extinction are likely to pose more tangible and 

imminent threats, and large-scale shifts in assemblage structure (Hughes et al. 2018b) and 

mass rarity (Hull et al. 2015) present more likely scenarios than global extinction. A major 

revision of current Red List classifications of corals (Carpenter et al. 2008) is urgently 

needed, based on an adaptation of Red List criteria that better reflect the life histories and 

population sizes of invertebrates (Cardoso et al. 2011, 2012) like corals. 

Local depletion of functionally important coral species may trigger cascades of extinctions in 

associated organisms long before the global extinction of the depleted coral species itself 

(Gaston & Fuller 2008; Säterberg et al. 2013). For instance, my findings highlight the 

comparative rarity of tabular corals, both in terms of total numbers and species richness. 

Declines in their abundance may compromise their ability to provide important shelter habitat 

(Kerry & Bellwood 2015) and food resources for obligate corallivores such as butterflyfishes, 

some of which (e.g. Chaetodon trifascialis) feed almost exclusively on tabular corals 

(Pratchett 2005). The capacity of a numerically and functionally impoverished reef 
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community to provide vital ecosystem services to people will also likely be severely 

compromised. 

Estimates of the global abundance of organisms, while inevitably uncertain, can provide 

robust insights into their biology, global ecological role and extinction risk. I have formally 

accounted for some sources of uncertainty, such as uncertainty about the metacommunity-

scale mean abundances of coral species. In other cases, a formal accounting of uncertainty is 

not feasible. In particular, I suspect that the areal extent of different types of reef habitat, and 

variation in species’ relative abundances outside the regions where those abundances were 

directly sampled, are likely to be important additional sources of uncertainty. Indeed, our 

knowledge of the biology, ecology and abundance of individual coral species at large spatial 

scales is notoriously limited, as illustrated by ongoing revisions of the taxonomy of 

scleractinian corals (Knowlton & Jackson 1994; Huang et al. 2011). The presented population 

size estimates are therefore preliminary, similar to comparable estimates for other organisms 

(ter Steege et al. 2015). However, the estimated total number of coral colonies in the Pacific 

and presented range of population sizes are plausible. In particular, they are several orders of 

magnitude larger than sizes that would put them at risk of global extinction, a conclusion that 

is unlikely to be materially altered by improvements in the precision of the estimates due to, 

e.g., higher-resolution or more spatially extensive measurements of habitat area. Indeed, even 

an extreme lower-bound scenario where I assume that the abundances of all of the sampled 

coral species is zero outside of the five regions where species abundance data were collected 

(which excludes approximately 70% of the total reef area in the study domain) yields 

estimates of population sizes that range from approximately one million colonies for the rarest 

species to more than a billion colonies for the most common species. (Note that this estimate 

also makes the pessimistic assumption that the study species are not present in habitat types 

other than the three where sampling was conducted.) 
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Table 2.2 Exemplary rates of decline in population size and coral cover. Calculations are 

based on an initial population size of 200 million colonies, or a moderately high total coral 

cover of 30%, with each declining by half every decade.  
Years Population size 

(million colonies) 

Coral cover 

(%) 

0 200.0 30.0 

10 100.0 15.0 

20 50.0 7.5 

30 25.0 3.8 

40 12.5 1.9 

50 6.3 0.9 

 

The presented results suggest that global extinctions of Indo-Pacific corals will likely unfold 

over a much longer timeframe than local or regional-scale depletions, because of the broad 

geographic ranges and huge population sizes of many coral species. While regional-scale data 

on species-level abundances are scarce, coral cover for all species combined has declined in 

recent decades in many parts of the Caribbean (Gardner 2003) and on the Great Barrier Reef 

(De’ath et al. 2012), but has remained relatively stable in the wider Pacific (Moritz et al. 

2018). A simple depletion model illustrates how a halving of coral cover each decade would 

reduce a moderately high cover of 30% to close to 1% after 50 years (Table 2.2). A collapse 

in coral abundances of such magnitude would no doubt be ecologically devastating, but the 

global extinction of coral species would remain unlikely. A single species with an initial 

modest population size of 200 million colonies, would still retain 6.25 million colonies after 

half a century (Table 2.2). The results highlight the opportunity for action to mitigate the 

threats to reef species, well before climate change could cause global extinctions, to make 

possible an eventual recovery of reef coral assemblages (Hughes et al. 2017a).  
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Chapter 3: Long-term shifts in the colony size structure 

of coral populations along the Great Barrier 

Reef 

Currently in review in Proceedings of the Royal Society B 

 

3.1 INTRODUCTION 

 

Population biology is fundamentally concerned with changes in population size and structure, 

and with rates of birth and death that depend on sex, size and/or age. Shifts in population 

structure arise from temporal and spatial variation in the underlying demographic processes. 

Human demographers have long used the age structure of populations to reveal the impact of 

past mortality events such as wars or famines, and to forecast future population growth or 

declines (Graunt 1662; Franklin 1751). Changes in the population structure of keystone taxa 

affect not only their demographic performance but can have cascading effects on community 

composition and ecosystem functioning. The global decline in large, old trees (Lindenmayer 

et al. 2012a), for instance, implies a loss of critical habitat, food and carbon storage 

(Lindenmayer & Laurance 2017). Such detailed demographic data are, however, rarely 

available for populations of wild animal and plant species, which limits our ability to identify 

the processes underlying population decline and to assess long-term population viability. 

 

Reef-building corals resemble trees in their pivotal role as primary habitat providers, and in 

the importance of the size of individuals for population dynamics (Hughes 1984; Hall & 

Hughes 1996; Madin et al. 2014). Consequently, changes in the size structure of coral 

colonies have major implications for demographic performance, and for the structural 

complexity of the reef environment, which in turn affects fish abundance and the productivity 

of coral reef fisheries (Graham 2014). The size structure of coral colonies often differs 

markedly between species (Meesters et al. 2001) and is sensitive to environmental conditions 

(Bauman et al. 2013) and disturbances (Bak & Meesters 1998, 1999). However, the size 
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structure of local populations rarely attains a stable equilibrium due to stochastic pulses of 

recruitment and disturbance (DeAngelis & Waterhouse 1987; Hughes & Tanner 2000). Non-

equilibrial, transient dynamics are particularly likely to be prevalent in long-lived species with 

highly persistent life stages (Koons et al. 2005).  

 

Coral population biology and demography is commonly based on measurements of 

recruitment and of the size-specific survivorship, growth, fecundity and mortality of colonies 

(Hughes 1984; Hall & Hughes 1996). While declines in coral cover have been well 

documented on many reefs (Gardner 2003; De’ath et al. 2012), trends in the size structure of 

coral populations, particularly over long temporal and large spatial scales, are rarely 

examined. Existing studies of long-term changes in size structure have been both consistent 

(Miller et al. 2016) and inconsistent (McClanahan et al. 2008; Riegl et al. 2012) with an early 

hypothesis that coral populations will respond to changing disturbance regimes with shifts 

towards relatively more larger colonies due to reduced recruitment (Bak & Meesters 1999). 

These studies have, however, been constrained in their spatial scale (McClanahan et al. 2008; 

Miller et al. 2016) or taxonomic scope (Riegl et al. 2012). A better understanding of long-

term and regional shifts in the colony size structure of coral taxa with different life history 

strategies is urgently needed. Declines in the abundance of large, highly fecund colonies (Hall 

& Hughes 1996) would compromise a population’s fecundity, reducing its viability and 

ability to provide structurally complex reef habitat for other reef organisms. Conversely, a 

reduced abundance of small colonies may indicate declines in recruitment (Hughes & Tanner 

2000; Miller et al. 2016). 

 

Here, I document decadal changes in the colony size structure of coral populations in 2016 

and 2017 relative to their historic baselines in 1995 and 1996, on reef crests and slopes along 

the 2,300 km length of the Great Barrier Reef. I examine changes in colony size structure as 

changes in size-class abundances and as changes in the mean, standard deviation and 10th and 

90th percentiles of colony size on a logarithmic scale to allow for comparison with similar 

studies in other regions (Bak & Meesters 1999; McClanahan et al. 2008; Riegl et al. 2012; 

Miller et al. 2016). I explore these shifts in latitudinal regions with different disturbance 

histories, and in all major coral taxa. I place particular emphasis on changes in the abundance 

of large, fecund colonies and of very small colonies, as indicators of declines in reproductive 

output and recruitment. 

 



 

Chapter 3: Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef 31 

3.2 MATERIALS AND METHODS  

 

Survey locations 

Coral communities and their colony size structure were assessed on the reef crest and reef 

slope using a nested sampling design, on replicate sites and reefs in five sectors along the 

length of the Great Barrier Reef (Figure 3.1a). Crest communities were surveyed at 1-2 m 

depths on 15 mid-shelf reefs, three per sector, in 1995 and again in 2017. Reef slope 

communities were assessed at 6-7 m depths on 15 additional mid-shelf reefs in 1996 and in 

2016. At each of the 30 reefs, eight to ten 10 m line-intercept transects were run at each of 

four sites. All intercepting colonies were identified using the following 12 morpho-functional 

benthic groups of hard corals: Isopora, Montipora, tabular Acropora, other Acropora, favids 

(species and genera from the formerly recognized family Faviidae, now mostly reclassified as 

merulinids (Huang et al. 2011)), Porites, Pocillopora damicornis, Stylophora, Seriatopora, 

Mussidae, other Pocillopora and other scleractinians. A total of 40,105 intercepts was 

recorded across all years, habitats, taxa and sectors. Elsewhere, spatial patterns in the 

taxonomic composition of these coral assemblages (Hughes et al. 2012) and long-term shifts 

in coral recruitment onto settlement panels on the 30 reefs were examined (Hughes et al. 

2019a). 

 

Statistical analyses 

To examine trends in colony size structure, I used colony intercept lengths as a proxy for 

colony size (McClanahan et al. 2008; Riegl et al. 2012). I examined trends in the colony size 

structure of individual taxa and entire communities (i.e. pooled across all taxa), both in terms 

of changes in size-class abundances and as changes in the mean and standard deviation, as 

well as the 10th and 90th percentile of colony size as indicators of changes in the relative 

abundance of small and large colonies (Figure 3.1b). Notably, an increase in the 10th 

percentile of colony size indicates a decline in the relative abundance of small colonies. 

Colony size frequencies typically follow a lognormal distribution (Bak & Meesters 1998). I 

therefore log-transformed intercept data for all analyses. Because sample sizes of some taxa 

were small at the scale of individual reefs and sectors, I pooled and analysed taxon-specific 

trends at the scale of the GBR. To examine changes in size-class abundances, I binned log-

transformed intercept lengths into quintiles (1st quintile: small, 2nd to 4th quintile: medium-

sized, 5th quintile: large) (Figure 3.1b). Colony size structures often vary widely between 
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taxa, habitats and regions (Meesters et al. 2001). Bin boundaries were therefore allowed to 

vary between taxa, habitats and sectors, but fixed across survey years. I used bootstrap 

resampling (n = 1000) to assess uncertainties in size-class abundances. 

 

 
Figure 3.1 Map of survey locations and colony size metrics. (a) Map showing locations of 

reefs on which crest (red) and slope (orange) communities were surveyed in five sectors along 

the length of the Great Barrier Reef. Blue polygons show the locations of individual reefs. (b) 

Size structure metrics used to measure changes in size-class abundances (small, medium, 

large: based on quintiles) and changes in the moments of colony size structure (mean (μ), 

standard deviation (σ), 10th percentile, 90th percentile).  
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To examine changes in the mean (μ), standard deviation (σ), and the 10th and 90th percentile of 

colony size, both in communities and individual coral taxa, I fitted multi-level multiple linear 

regression models to the log-transformed intercept data, in which μ and σ of size structure 

were modelled as functions of year, habitat and sector (and their interactions) for community-

level analyses, and as functions of year, habitat and taxon (and their interactions) for taxon-

specific analyses (pooled across sectors). All modelling analyses were carried out in a 

Bayesian framework with brms (Bürkner 2017). This procedure allowed me to estimate 95% 

Highest Posterior Density Intervals (HPDI) for μ and σ, and to derive HPDIs for the 10th and 

90th percentiles of colony size using the posterior draws of μ and σ. All models were run with 

weakly informative priors, 2000 iterations (warmup = 200) in each of three chains, and with a 

thinning rate of 5. I examined chain mixing, carried out posterior predictive checks to 

examine model fit, and used the Gelman-Rubin convergence statistic (R-hat) to examine 

model convergence.  

 

3.3 RESULTS 

 

The abundance of coral colonies declined sharply across all size classes in all sectors, with the 

exception of the far south, on both the reef crest and slope, and in almost all taxa (Figure 3.2 

and Figure 3.3). These declines were accompanied by declines in coral cover, on average 

(mean ± SD, n = 30), from 41.0% (± 15.6%) to 16.3% (± 15.3%) on reef crests and from 

34.6% (± 12.5%) to 22.3% (± 13.8%) on reef slopes. At the scale of the Great Barrier Reef, 

the abundance of small colonies (in the first quintile in 1995 or 1996) declined by 76.1% 

(95% CI: 74.3% - 77.7%) on the crest and 57.2% (54.2% - 60.1%) on the slope (Figure 3.2b). 

The overall abundance of large colonies (in the 5th quintile) also decreased sharply, by 62.7% 

(59.9% - 65.1%) on the crest and 30.7% (26.3% - 35.6%) on the slope. The overall abundance 

of medium-sized corals (in the 2nd to 4th quintile) also declined, on crests by 52.2% (50.4% - 

54.0%) and on slopes by 27.5% (24.4% - 30.2%) (Figure 3.2b).  
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Figure 3.2 Changes in the colony size structure of crest (left) and slope (right) communities 

by sector. (a) Coral colony size structure of historic (1995/1996) and recent surveys 

(2016/2017) are shown for each of five sectors (1: Far North to 5: Far South) and pooled 

across all sectors (top). (b) Changes in the abundance of small, medium-sized and large 

colonies by sector and habitat. Percentage changes in reef-level abundances are defined as 

changes in the number of intercepts in the 1st quintile (small), 2nd to 4th quintile (medium) and 
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5th quintile (large) of colony size. All estimates are shown as 95% highest density intervals. 

The point indicates the median, the thick line the 66% confidence interval and the thin line the 

95% confidence interval. 

 

Declines in size-class abundances were most pronounced on all reefs in sectors 1-3 in the 

northern half of the Great Barrier Reef (Figure 3.2a), which experienced extreme thermal 

stress in 2016 and 2017. In these three sectors, the abundance of large colonies (in the 5th 

quintile) on the crest dropped by 88.2% (95% CI: 85.1% - 91.1%), 97.9% (96.7% - 98.9%) 

and 62.0% (55.0% - 68.1%) respectively, and by 48.1% (38.6% - 56.6%), 86.4% (73.9% - 

86.4%) and 55.3% (47.4% - 61.4%) on the slope (Figure 3.2b). The declines were less severe 

on reefs in sector 4 where large colonies declined by 57.1% (50.5% - 62.7%) on the crest and 

by 24.5% (14.3% - 35.5%) on the reef slope. In marked contrast, on southern reefs in sector 5 

the abundance of large colonies increased by 25.8% (10.1% - 41.1%) on the crest and by 

46.9% (28.4% - 66.4%) on the slope (Figure 3.2b).  

 

Similar geographic patterns emerged in trends in the abundances of small colonies (in the 1st 

quintile). On the reef crest, the abundances of small colonies declined consistently across all 

sectors. In sectors 1 to 4 the abundance of small colonies dropped by 74.3% (95% CI: 69.5% - 

78.5%), 90.1% (87.8% - 92.2%), 91.0% (88.5% - 93.4%) and 75.2% (71.9% - 78.5%), 

respectively (Figure 3.2b). Although reefs in the far south recorded the lowest declines, small 

colonies were still 43.6% (36.2% - 50.1%) less abundant on crests in 2016 than in 1996. On 

the reef slope, the abundances of small colonies declined by 54.3% (46.7% - 61.6%) in sector 

1, 91.5% (87.6% - 94.5%) in sector 2, 76.1% (71.8% - 79.9%) in sector 3, and 62.7% (57.6% 

- 67.1%) in sector 4 (Figure 3.2b), and remained stable in sector 5 (95% CI: -15% - +9.1%).   

 

The decline in numbers of small, medium and large colonies was remarkably consistent 

across all major taxa, on both crests and slopes (Figure 3.3). The abundance of small colonies 

on the reef crest declined by at least 50% in 11 of the 12 major taxa, with half of them losing 

>75% of their small colonies (Figure 3.3b). The exception was other Pocillopora, which lost 

28.0% (1.7% - 52.0%) of its small colonies. Declines were less severe on the reef slope, 

where 9 out of 12 taxa lost at least half of their small colonies. Small colonies of tabular 

Acropora and other Pocillopora were comparatively less affected, but still declined, on 

average, by 12.2% (-32.9% - +13.6%) and 30.2% (-71.6% - +18.9%) respectively (Figure 

3.3b).  
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Changes in the abundances of large colonies (in the 5th quintile) varied between taxa. 

Numbers of large colonies declined by > 50% in 8 out of 12 of the taxa on the crest and in 5 

taxa on the reef slope (Figure 3.3b). Slow-growing, long-lived groups like the Poritidae and 

Mussidae suffered comparatively minor losses of large colonies. Large colonies of Poritidae 

declined by 14.9% (-30.6% - +1.6%) on crests, and 23.8% (10.3% - 35.2%) on slopes. Large 

Mussidae increased by 8.8% (-41.4% - +81.3%) on crests but declined by 50.5% (28.1% - 

71.1%) on slopes. Large colonies (in the top quintile) of the genus Seriatopora declined by 

100% (100% - 100%) on the reef crest, and by 49.6% (29.6% - 87.9%) on the reef slope.  

 

 
Figure 3.3 Changes in the colony size structure of major coral taxa. (a) Colony size structure 

of historic (red, 1995/1996) and recent surveys (blue, 2016/2017) are shown for each of 12 

coral taxa on reef crests (left) and reef slopes (right). (b) Changes in the abundance of small, 

medium-sized and large colonies by taxa and habitat. Percentage changes in absolute 

abundances are defined as changes in the number of intercepts in the 1st quintile (small), 2nd to 

4th quintile (medium) and 5th quintile (large) of intercept lengths. All estimates are shown as 

95% highest density intervals. The point indicates the median, the thick line the 66% 

confidence interval and the thin line the 95% confidence interval. 
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The abundance of medium-sized colonies (2nd to 4th quintile) also declined in most taxa and 

habitats. On the crest, 7 of the 12 examined taxa lost at least half of their medium-sized 

colonies. Medium-sized colonies of the genera Seriatopora (-63.9% - -86.1%) and Stylophora 

(-62.5% - -78.5%) were the most affected. On the slope, the abundance of medium-sized 

colonies approximately halved in 4 of the 12 taxa, remained stable in tabular Acropora (-

17.5% - 11.3%) and Poritidae (-17.6% - +0.8%), and increased by 55.1% (-6.2% - +134.3%) 

in other Pocillopora (Figure 3.3b).  

 

While before-after coral abundances on both the reef crest and reef slope declined across all 

size classes (Figure 3.2 and Figure 3.3), colonies in the 10th percentile were larger in 2016 

and 2017 (Figure 3.4), due to the disproportionate loss of small colonies. In contrast, colonies 

in the 90th percentile of colony size remained stable in size. The disproportionate decline in 

small colonies resulted in a systematic narrowing of colony size structures, across habitats, 

sectors and taxa (Figure 3.4), as indicated by declines in the standard deviation (sigma) of 

colony size. For both crest and slope communities the standard deviation of colony size was 

remarkably similar between sectors in 1995 and 1996 but was consistently lower across all 

sectors and more variable between sectors in the recent surveys. Increases in the 10th 

percentile of colony size, indicating declines in the relative abundance of small colonies, were 

particularly pronounced in the central and southern regions of the GBR (sectors 3 to 5), and 

changed comparatively little in crest communities of sectors 1 and 2 (Figure 3.4). 

 

The size of the largest colonies (90th percentile) remained stable on reef slopes in all sectors 

and on crest communities in sectors 3 to 5 (Figure 3.4). Combined with the disproportionate 

loss of small colonies, this resulted in consistent increases in mean colony size across all 

sectors and habitats, with the exception of crest communities in sector 1 and 2, where mean 

colony size decreased by 20.0% (14.7% - 24.7%) and 27.7% (21.9% - 32.9%) respectively. 

On the crests in sectors 3 to 5, mean colony size increased by 23.3% (16.5% - 29.8%), 21.0% 

(14.5% - 28.2%) and 30.4% (24.6% - 36.3%) (Figure 3.4). On the reef slope, mean colony 

size increased consistently across sectors, by up to 32.1% (17.5% - 48.2%) (sector 2). A 

North-South gradient was particularly evident on the reef crest, where size structures shifted 

more in the south towards larger mean colony sizes, with relatively fewer small and more 

large colonies (Figure 3.4). By contrast, shifts in colony size structure were consistent across 

sectors on the reef slope. 
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Figure 3.4 Changes in the mean, standard deviation (sigma) and 10th and 90th percentile of the 

colony size structure of crest and slope communities in five sectors, and of individual taxa 

(pooled across sectors). Percentiles are indicators for the relative abundance of small (10th) 

and large (90th) colonies, where an increase in the 10th percentile indicates a decrease in the 

relative abundance of small colonies. All estimates are shown as 95% highest posterior 

density intervals (HPDI) where the point indicates the median, the thick line the 66% credible 

interval and the thin line the 95% credible interval. 

 

The size structure of individual taxa also changed markedly (Figure 3.4). The size of the 

smallest colonies (10th percentile) increased consistently across all taxa and habitats (Figure 

3.4), while the size of the largest colonies (90th percentile) remained comparatively stable 

except for crest populations of tabular Acropora and Seriatopora (Figure 3.4). As a result, 

mean colony size increased, and the standard deviation of colony size (sigma) decreased in 

most taxa and habitats. Changes were particularly pronounced in corals of the genus 

Seriatopora and the family Poritidae. The colony size structure of Poritidae shifted towards 

larger colonies indicated by increases in mean colony size (crest: 72.7% (60.6% - 88.9%), 

slope: 24.1% (15.3% - 32.2%)), increases in the size of large colonies (90th percentile, crest: 

78.2% (60.2% - 95.8%), slope: 11.0% (-0.8% - +20.9%)), and by marked increases in the size 

of small colonies (10th percentile, crest: 67.5% (49.5% - 85.9%), slope: 38.0% (26.2% - 

51.3%)). Corals of the genus Seriatopora suffered sharp declines in the relative abundance of 

both small and large colonies, as indicated by increases in the 10th percentile of colony size 

(crest: 21.5% (-10.8% - + 54.2%), slope: 50.2% (28.2% - 70.0%)) and decreases in the 90th 

percentile (crest: 44.8% (29.1% - 57.4%), slope: 9.8% (-20.7% - +4.1%)), resulting in a 

pronounced narrowing of their colony size structure (Figure 3.4a). Large colonies of tabular 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crest Slope

mean sigma

−50 0 50 −50 0 50
tabular Acropora

Stylophora
Seriatopora

Poritidae
P damicornis

other scleractinians
other Pocillopora

other Acropora
Mussidae
Montipora

Isopora
Faviidae
Sector 5
Sector 4
Sector 3
Sector 2
Sector 1

change (%)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crest Slope

10th percentile 90th percentile

−50 0 50 −50 0 50
change (%)

−50 0 50 −50 0 50
change (%)

−50 0 50 −50 0 50
change (%)

Crest SlopeCrest Slope



 

Chapter 3: Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef 39 

Acropora declined in size by 26.7% (19.3% - 33.2%) on the reef crest and by 16.0% (4.7% - 

25.5%) on the reef slope (Figure 3.4).  

 

 

3.4 DISCUSSION 

 

This study documents the systematic decline of absolute coral abundances across size classes, 

habitats, sectors and taxa on the Great Barrier Reef over the last two decades. Sharp declines 

in the abundances of medium-sized and, in particular, highly fecund large colonies signal the 

depletion of coral brood stock required to replenish diminished populations (Figure 3.2 and 

Figure 3.3). The simultaneous, disproportionate decline in the abundance of small colonies, 

by 76.1%  on the crest and 57.2% on the slope (Figure 3.2 and Figure 3.3), corroborates 

findings that the depletion of coral brood stocks impaired coral recruitment rates on the Great 

Barrier Reef following mass coral bleaching in 2016 and 2017 (Hughes et al. 2019a).  

 

Here I used colony line-intercept lengths as proxy for colony size to estimate shifts in colony 

size structure from commonly collected line-intercept transect data. This quantity is not a 

direct measure of colony size, in the sense that a larger colony could theoretically have a 

smaller line intercept than a smaller colony, depending on which part of the colony is 

intersected by the transect. However, the conclusion that the colony size structure of coral 

populations has fundamentally shifted along the Great Barrier Reef over the last decades is 

robust because (1) I examine relative rather than absolute changes in size-class abundances 

and size structure, (2) because a long intercept is always statistically more likely to stem from 

a large colony than a shorter intercept, and thus locations where intercept lengths tend to be 

longer, on average, will also tend to have larger colonies on average, and (3) because, for 

studies of this kind, sampling biases are unlikely to vary systematically between taxa, or over 

space and time, given sufficient sample size (McClanahan et al. 2008).  

 

The presented results support the hypothesis that, in deteriorating reef environments, coral 

populations can exhibit a disproportionate loss of small coral colonies due to the depletion of 

brood stocks and the resulting decline in recruitment rates, as witnessed on reefs in the 

Caribbean (Bak & Meesters 1999). In contrast, my findings are inconsistent with alternative 

suggestions that naturally higher recruitment rates on many Indo-Pacific (compared to 
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Caribbean reefs (Smith 1992)) may instead effect increases in the relative abundance of small 

colonies, as reefs recover, as well as decreases in mean colony size and in the abundance of 

large colonies, as found in the Red Sea (Riegl et al. 2012) and Kenya (McClanahan et al. 

2008). In the Red Sea, recruitment rates remained constant following coral mass bleaching 

(Riegl et al. 2012) but declined by 89% compared to historic baselines on Australia’s Great 

Barrier Reef in the aftermath of back-to-back mass bleaching events in 2016 and 2017 

(Hughes et al. 2019a). In demographically open populations, the relationship between brood 

stocks and recruitment may be obscure at local scales but emerges at the scale of larval 

dispersal (Hughes et al. 2000, 2019a). Discrepancies in post-disturbance changes in 

recruitment between reefs in the Red Sea and on the GBR may reflect differences in the 

severity, extent or patchiness of disturbance impact. 

 

Geographic patterns in trends in size-class abundances are likely to reflect the history of 

recent reef disturbances on the Great Barrier Reef. Changes were most pronounced in the 

Northern and Central sectors of the Reef, which experienced extreme thermal stress in 2016 

and 2017. Size-class abundances on reefs in the far South remained comparatively unchanged 

(Figure 3.2 and Figure 3.3). Although crest communities in sectors 1 and 2 shifted towards 

relatively more small colonies, declines in their absolute abundances of 74.3% and 90.1% 

respectively (Figure 3.2b) indicate that this outcome should not be misconstrued as signs of 

resilience or recovery. Shifts towards smaller colonies may be attributable to the lower 

bleaching susceptibility of recruits (Mumby 1999) and juveniles (Álvarez-Noriega et al. 

2018), and to the partial mortality of medium-sized and large colonies.  

 

As reef disturbance regimes continue to change and escalate (Hughes et al. 2018a), with 

virtually all reefs in the world projected to experience annual severe bleaching conditions 

before the end of the century under current emission trajectories (Van Hooidonk et al. 2016), 

the window for the recovery of populations and assemblages between consecutive mass 

mortality events is shrinking. Populations, in particular of slow-growing and late-maturing 

taxa, may no longer be afforded sufficient time to recover pre-disturbance brood stocks and 

population-levels of reproductive output (Hall & Hughes 1996). Allee effects at low densities 

of sexually-mature conspecific colonies may further impair the successful fertilization of 

eggs, particularly in rare and severely depleted species (Oliver & Babcock 1992; Teo & Todd 

2018). Lower mortality rates of large individuals may provide temporary refuge from 

population decline and recruitment failure, but may mask the erosion of population viability if 
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trends in the decline in smaller colonies are overlooked (Hughes & Tanner 2000). For 

instance, the abundance of large slow-growing, long-lived poritid and mussid corals changed 

comparatively little in this study, but both taxa suffered dramatic losses of small colonies, 

particularly on the reef crest (poritids: 91.3%, mussids: 77.6%) (Figure 3.3b).  

 

The implications of shifts in colony size structure extend beyond demography because they 

also affect the ability of corals to perform ecological functions. Most notably, the largest 

colonies in a population or community contribute disproportionately to reproduction (Hall & 

Hughes 1996), and therefore to the genetic make-up of future generations (Hughes et al. 

1992), but also provide essential habitat for other reef organisms like fish (Kerry & Bellwood 

2015). Declines in the abundance of large colonies thus reduce the productivity of reef 

ecosystems, and fisheries (Graham 2014), both directly, through declines in the availability of 

coral gametes, larvae and recruits, which constitute important sources of food for fish 

(Pratchett et al. 2001) and other reef organisms including corals (Fabricius & Metzner 2004), 

and indirectly, through the loss of structural complexity and habitat. In the Caribbean, the 

abundance of Acropora cervicornis and Acropora palmata, two branching coral species with 

complex morphology, has declined steeply, especially since the 1980s (Bruckner 2002; 

Gardner 2003), indicating that the historical baseline of what constitutes the colony size 

structure of an “undisturbed” population or assemblage has likely shifted on many reefs for 

decades, if not centuries or millennia (Jackson et al. 2001). Large-scale long-term trends in 

the abundance of large old corals and their unique ecological roles remain largely under-

explored, compared to similar studies in trees (Lindenmayer et al. 2012a; Lindenmayer & 

Laurance 2016, 2017).  

 

This study demonstrates the importance of examining the abundance of colony sizes beyond 

the traditional focus on coral cover (Dornelas et al. 2017), to improve our understanding of the 

demographic processes underlying declines in coral cover, such as recruitment failure and the 

depletion of brood stock, and our ability to predict the likely trajectories of coral populations. 

As the depletion of coral populations and the erosion of the structural complexity of reef habitat 

continues, and the frequency of reef disturbances increases (Hughes et al. 2018a), we urgently 

need better data on demographic trends in corals (Edmunds & Riegl 2019). 
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Chapter 4: Beyond cover: reconstructing the population 

size structure from line-intercept data for 

demographic inference 

Manuscript in preparation 

 

4.1 INTRODUCTION 

Measuring the abundance and characteristics of organisms requires trade-offs between the 

quantity (spatial and temporal coverage and replication) and quality (accuracy, detail, 

taxonomic resolution, invasiveness) of the data collected. Technological advances have 

expanded the scope of what is measurable and alleviated, or eliminated, some trade-offs in 

sampling design. However, as measurement methods proliferate, are continuously refined and 

replaced, the compatibility of methods and data becomes an increasing problem. For instance, 

alterations to the sampling protocol of a long-term study or comparisons to historical data 

require careful consideration of the backward compatibility of methods and data. Similarly, 

data collected on the same study system but by different methods can only be integrated if 

measurement units are compatible or convertible. 

 

Ecologists traditionally gather data on the abundance of organisms to examine trends in 

populations and ecosystems. The abundance of solitary organisms like mammals and birds is 

commonly measured as counts of individuals, the abundance of sessile organisms like plants 

and benthic invertebrates as percent cover, particularly for monitoring purposes. Detailed 

studies of population dynamics are typically too time-consuming and costly to conduct at 

spatial and temporal scales relevant for the conservation of populations and species. For 

instance, data on trends in demographic composition (e.g. age and sex structure), which have 

long informed projections of population growth in humans (Graunt 1662; Franklin 1751), are 

rarely available for wild animal and plant species. Changes in population structure and density 

can have profound implications on population dynamics by affecting growth, mortality and 

reproduction, and thus population viability. Such demographic shifts can be masked by 

invariant abundance data, which makes it hard to predict long-term population viability, and 
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can lead to unjustified optimism about the conservation status of species and ecosystems. For 

example, population changes in the abundance of organisms in capture fisheries has often 

proven much less dramatic than reductions in their size distributions, even though the latter is 

a better prediction of collapse (Pauly et al. 2013; Clements et al. 2017). 

 

The line intercept transect method 

The line-intercept transect (LIT) method (Canfield 1941) has been widely used for decades to 

measure the percent cover of sessile organisms like plants and benthic invertebrates (Loya 

1978). A transect tape is extended to create a transect across the study site. Individuals 

intercepted by the tape are identified and intercept lengths are recorded. By dividing the sum 

of all intercept lengths by the total length of the transect an estimate of percent cover is 

derived. Both basal and canopy cover can be measured. The LIT method thus implies a 

sequential reduction in dimensionality from the three-dimensional habitat to the one-

dimensional intercept length to the typically reported 0-dimensional estimate of percent cover 

(Figure 4.1). Percent cover is an efficient and effective way to measure the abundance of 

organisms that compete for limited space and light and typically vary widely in individual 

size, but does not capture population size structure and density, important indicators of 

reproductive output (e.g. Hall and Hughes 1996) and fertilization success (e.g. Oliver and 

Babcock 1992) in modular sessile organisms.  

 

The distribution of intercept lengths can be used as a proxy for the distribution of individual 

colony sizes, with longer intercepts statistically more likely to be contributed by larger 

individuals. However, because most demographic quantities tend to be measured as functions 

of projected area (or less commonly surface area or volume) (Madin et al. 2014; Álvarez-

Noriega et al. 2016; Dornelas et al. 2017) LIT data need to be transformed into these latter 

dimensions in order to quantitatively assess the demographic implications of changes in size 

structure. Simply squaring the linear measurement, or treating it as the diameter (e.g. 

Connolly et al. 2005) or radius (e.g. Zawada et al. 2019) of a circle, may introduce biases for 

several reasons. First, linear intercepts of colonies are secants, not necessarily diameters, and 

the probability distribution of secant lengths, relative to diameter, may be complex and size-

dependent. Second, because the likelihood of an individual being intercepted by the transect 

tape is proportional to its size, larger individuals will be statistically overrepresented in the 

distribution of intercept lengths. Consequently, attempts to reconstruct the distribution of 
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individual sizes underlying a measured distribution of intercept lengths that fail to address 

these biases are unlikely to produce reliable results. 

 

 
Figure 4.1 The spatial dimensionality of line intercept transects and demographic data. Line 

intercept transects reduce the three-dimensionality of the environment to zero-dimensional 

estimates of percent cover via one-dimensional measures of intercept length. In contrast, more 

detailed demographic data are usually based on two-dimensional estimates of individual size 

(planar area). Such data include matrix projection models (MPMs) and integral projection 

models (IPMs) and size-dependent trait data like the size-fecundity relationship. New survey 

methods capture the full three-dimensionality of the habitat. 

 

 

Here I present a new method that allows the size structure of individuals in a population or 

community to be reconstructed from line-intercept transect data. The method explicitly 

accounts for the two statistical biases through an optimisation algorithm that reverse-engineers 

the sampling process of the LIT method. I demonstrate how this method can leverage the 

potential of routinely collected LIT data for demographic inference using the example of reef-

building corals on Australia’s Great Barrier Reef (GBR). I first reconstruct the colony size 

structure of coral populations from LIT data collected along the length of the GBR, across a 

period of unusual and substantial population disturbances, including mass bleaching events, 

severe tropical cyclones, and outbreaks of the crown-of-thorns starfish Acanthaster planci. I 
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then use the reconstructed colony size structures to examine decadal changes in the reproductive 

output of different coral taxa per m2 reef habitat, using knowledge of a taxon’s size-fecundity 

relationship (Hall & Hughes 1996). I contrast changes in colony size structure, fecundity and 

colony density with changes in coral cover to emphasise the value of understanding changes in 

coral size, and to provide a more comprehensive overview of long-term demographic trends in 

corals on the GBR. 

 

4.2 MATERIALS AND METHODS 

Survey data 

Crest and slope communities were repeatedly surveyed using LIT methods, on 30 reefs along 

the entire length of the Great Barrier Reef. Crest communities were surveyed on 15 reefs both 

in 1995 and again in late 2017 and slope communities on 15 reefs in 1996 and again in late 

2016. In between these two surveys, the region experienced a series of large-scale 

disturbances including several cyclones, four mass bleaching events (in 1998, 2002, 2016 and 

2017) as well as two outbreaks of the crown-of-thorns starfish Acanthaster planci. In 

response, coral abundances declined significantly (De’ath et al. 2012), community 

composition shifted (Hughes et al. 2018b) and coral recruitment rates declined by 89% 

(Hughes et al. 2019a). The exception was reefs at the far southern end of the Great Barrier 

Reef, which escaped recent mass mortality events relatively unscathed, but were heavily 

impacted by a recent bleaching event in 2020. 

 

At each reef, eight to ten 10m line-intercept transects were conducted at each of four sites. All 

intercepted colonies were identified using the following key of 12 morpho-functional groups 

of benthic hard corals: Isopora, Montipora, tabular Acropora, other Acropora, favids (species 

and genera from the formerly recognized family Faviidae but now largely reclassified as 

merulinid corals), Porites, Pocillopora damicornis, Stylophora, Seriatopora, mussids, other 

Pocillopora and other scleractinians. In total, 41,105 intercepted colonies were recorded 

across all years, habitats, taxa and sectors.  

 

Reconstruction of size structure from LIT data 

This LIT data describes the intersection of several line transects with an underlying 

distribution of non-overlapping polygons in the plane (Figure 4.2a). The goal of this method 
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is to reconstruct the size distribution of the underlying polygons from a recorded distribution 

of intercept lengths. This inverse problem is a geometric and statistical challenge not unique 

to the survey of coral communities. The process (illustrated in Figure 4.2) involves five major 

steps:  

(1) A theoretical population of circular coral populations is simulated, with planar areas 

that follow a lognormal distribution defined by initial parameter guesses of the mean 

(μ) and standard deviation (σ) of the lognormal distribution.  

(2) Line intercept transects are simulated through this population by randomly intersecting 

each colony in the population to obtain a simulated distribution of intercept lengths 

Fsim. 

(3) The divergence between the simulated distribution of intercept lengths Fsim and the 

empirical distribution of intercept lengths recorded in the field Femp. is statistically 

examined. 

(4) The divergence between Fsim and Femp is minimized to find the parameters μ and σ of 

the lognormal distribution that are most likely to underlie a measured distribution of 

intercept lengths Femp. 

(5) The goodness of fit is examined.  

 

In this process, I make two major assumptions. First, that coral colonies can be approximated 

by non-overlapping circles in the plane. This assumption arguably oversimplifies the often 

complex three-dimensional coral morphologies, and reef topographies consisting of canopies, 

understories and cryptic habitats (Goatley & Bellwood 2011) and disregards growth-form 

dependent departures from roundness, particularly in taxa with frequent partial colony 

mortality events.  

 

My second major assumption is that the distribution of colony areas follows a lognormal 

distribution. I opt for the lognormal distribution because the distribution of log-transformed 

colony sizes, commonly measured as their planar or projected areas (Hughes 1984; Hall & 

Hughes 1996; Bak & Meesters 1998; Madin et al. 2014; Dornelas et al. 2017), typically 

follows a normal distribution (e.g. Vermeij & Bak 2000). The lognormal distribution 

commonly arises in other natural phenomena including the distribution of coral abundances 

(Connolly et al. 2005), is a flexible model that can take a variety of shapes and has only two 

parameters. However, the method is flexible with regard to assumptions about the underlying 

distribution of individual sizes. Alternative distributions commonly used to describe size 
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spectra include the exponential distribution, the heavy-tailed Weibull distribution and the 

power law probability distribution (e.g. Muller-Landau et al. 2006; White et al. 2008).  

 

 
Figure 4.2 Reconstructing population size structure from line intercept transect data. (a) 

Schematic representation of the line-intercept transect method. Blue polygons indicate 

contours of coral colonies, the grey line the transect tape, the orange lines the intercepts of 

each colony with the transect tape and the dashed circles the approximation of colony sizes by 

using the intercept as the radius (Zawada et al. 2019) or diameter (Connolly et al. 2005) of a 

circle. (b) Optimisation algorithm used to reconstruct the colony size structure from recorded 

LIT data. Best-fit parameters μ and σ of the lognormal distribution of colony sizes are 

determined by minimizing the Kullback-Leibler divergence between the empirical distribution 

of intercept lengths and the simulated distribution of intercept lengths, which is generated by 

drawing n (proportional to colony diameter) random intercepts through each colony drawn 

from a lognormal distribution of colony sizes. (c) Density plot showing the distribution of 

intercept lengths recorded in the field (empirical) and the distribution of intercept lengths 

iteratively simulated by the optimisation routine. (d) Density plots showing the best-fit 

distribution of colony sizes and intermediate steps. 

 

I adopted and modified an approach proposed by Pandi & Ranade (2016) to estimate the 

colony size structure from the measured distribution of intercept lengths (the method was 

developed to estimate particle sizes from focused beam reflectance measurements). Pandi & 

Ranade (2016) applied an optimisation routine to solve the inverse problem of finding the 

distribution of circle geometries that is most likely to underlie a measured distribution of 
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intercept lengths. I adapt it as follows. I start with an initial guess of the parameters μ and σ of 

a lognormal distribution (Figure 4.2b). I randomly draw 1,000 samples from a lognormal 

distribution with random initial parameters μ and σ to obtain a sample distribution of colony 

sizes LN (μ, σ). For each of these colonies, I generate n random intercepts where n is 

proportional to the diameter of the colony. This addresses the sampling bias of the LIT 

method that the likelihood of an individual intercepting with the transect tape is proportional 

to its size.  

 

To address the second bias, the generation of random intercepts, I consult Bertrand’s 

probability paradox (Bertrand 1889), according to which three methods exist for generating 

the chord length distributions that result from a random intersection with a circle of a given 

radius: the random endpoints method, the random radius method and the random midpoint 

method. Bertrand’s paradox is that these methods are all equally valid but produce different 

results. I followed an approach (Aerts & de Bianchi 2014; Li 2017) that treats each method as 

equally likely or plausible to generate a joint distribution of chord lengths through a circle 

with a unit diameter (Figure 4.3). I randomly draw from this chord distribution n times for 

each simulated colony, where n is proportional to colony diameter and chosen to be 1 for the 

smallest colony in the sample, and multiply each drawn intercept by the actual diameter of the 

colony. The result is a distribution of intercept lengths Fsim that results from the initial 

parameter choices	𝐿𝑁(𝜇, 𝜎). 
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Figure 4.3 Random intercept generation. Distribution of intercept or chord lengths randomly 

generated using the random endpoint, random midpoint and random radius method (top) and 

the joint distribution of the three methods combined (bottom).  

 

I then use a Nelder-Mead optimisation algorithm to search for values of μ and σ that minimize 

the Kullback-Leibler divergence (Kullback & Leibler 1951) between the empirical and the 

simulated distribution of intercept lengths. This algorithm was chosen because it is robust to 

noisy reward surfaces and does not require the function to be continuous or differentiable (an 

important factor, given that the theoretical distributions 𝐿𝑁(𝜇, 𝜎) are generated by Monte 

Carlo sampling). 
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To validate the reconstructed distribution of colony sizes I inspected quantile-quantile-plots of 

the empirical and simulated distribution of intercept lengths. I also compared the actual coral 

cover at a survey site, readily calculated as the sum of intercept lengths relative to the total 

transect length, with the coral cover predicted by combining the best-fit distribution of colony 

sizes with estimates of local colony density, which can be estimated from LIT data (Marsh et 

al. 1984). I compared the predictive accuracy of the presented approach with the predictive 

accuracy of two simplified approaches that assume that treating the intercept as the diameter 

(Connolly et al. 2005) or the radius (Zawada et al. 2019) of a circle provide reasonable first-

order approximations of the distribution of colony sizes (Figure 4.2a). 

 

I applied this method to reconstruct the colony size structure of coral populations on the Great 

Barrier Reef. Specifically, I investigated decadal changes in the colony size structure of coral 

communities and individual taxa on reef crest and slopes. Changes in community size 

structure were examined at the scale of sectors for each habitat. For taxon-specific analyses 

data were pooled at the scale of the Great Barrier Reef for each habitat due to insufficient 

sample sizes at the scale of individual sectors. Only the results of the taxon-specific analysis 

are presented here but community-level analyses were included for validation purposes. I 

compare trends in size structure derived from the reconstruction method with trends based on 

raw LIT data.  

 

I demonstrate how the reconstructed colony size structures can be used for demographic 

inference by estimating changes in the reproductive output of coral populations on the GBR. 

For this, I first estimate the colony density of each taxon using a method developed by Marsh 

et al. (1984). I then use estimates of a species’ size fecundity relationship to calculate the 

reproductive output of each colony in the population and sum across all colonies to derive an 

estimate of reproductive output per m2 reef. For the taxa Faviidae, other Acropora, Stylophora 

and tabular Acropora I used published estimates of size-dependent colony fecundity (Hall & 

Hughes 1996). I modified the approach of Hall and Hughes (1996) to simulate a linear 

increase in the percentage of fecund colonies from 0% to 100% between the reported 

minimum size of a fecund colony and the size at which all colonies were fecund using the 

equation 

log 𝑦 = log 1012#	 345%& 6 	
(log 𝑥 −	 log 𝑥7!8)
(log 𝑥199 −	log 𝑥7!8)
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where y is the fecundity of a colony measured as the total volume of testes produced (mm3), x 

is the size of the colony measured as its projected area (cm2), xmin the minimum size of a 

fecund colony, xall the size at which all colonies were fecund, and a and b are the coefficients 

of models fitted by Hall and Hughes (1996). For Poritidae, Pocillopora damicornis and other 

Pocillopora, I calculated the total number of eggs produced by a colony of a given size using 

published estimates of size at maturity, polyp density and polyp fecundity. I assume that once 

a colony reaches sexual maturity 90% of its polyps are mature. The resulting size-fecundity 

relationships are indicated in Figure 4.5.  

 

Because both colony density estimates (Marsh et al. 1984) and reconstructed size structures 

constitute approximations prone to deviations, estimates of colony densities were 

standardized by coral cover as follows: 

ρ; 	= 	 ρ:;< ∗ 	
C:;<
C=>?@

 

where ρ; is the standardized or corrected estimate of colony density, ρLIT the colony density 

estimated from the LIT data following Marsh et al. (1984), CLIT the percent coral cover 

estimated from the LIT data and Cpred the cover predicted by combining estimates of colony 

densities and colony size structure (see method validation). This standardization ensures that 

estimates of changes in the reproductive output of populations are not an artefact of 

overestimates or underestimates of coral abundance due to errors underlying estimates of 

colony densities and size structure. 
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4.3 RESULTS 

Method validation 

The presented method performs significantly better at reconstructing the likely colony size 

distribution underlying a measured distribution of intercept lengths than two alternative 

approaches, which use each intercept as either the radius or diameter of a circle. Both 

alternative approaches, but in particular the radius method, overestimate the frequency of 

large colonies (Figure 4.4a), and as a result perform poorly at predicting coral cover (Figure 

4.4b). While the optimisation routine exhibits minor, non-systematic deviations between 

predicted and true coral cover (mean ± SD = +13% ± 21%), the diameter and radius methods 

systematically overestimate coral cover, on average by a factor of 2 (+90% ± 119%) and 8 

(+677% ± 501%) respectively (Figure 4.4b).  

 

 

Figure 4.4 Validation of reconstruction method. Quantile-quantile plot showing the correlation 

between the quantiles of the empirical line-intercept data and the quantiles of the distribution 

of intercept lengths predicted by the optimisation algorithm and the intercept-as-diameter and 

intercept-as-radius methods. Thin lines indicate the q-q correlation for each taxon, thick lines 

the q-q correlation across all predictions, the dashed diagonal the unity-line and vertical dashed 

lines the position of the average empirical quantile across all taxa. (b) Correlation between 

actual coral cover of taxa, calculated as the sum of all intercept lengths divided by the length of 

the total transect, and the 2-dimensional estimate of coral cover derived from estimates of 

colony density and the reconstructed colony size structures. The dashed diagonal line indicates 

the unity line. The inset plot shows the predictive accuracy of the optimisation routine in more 

detail. 
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Table 4.1 Predictive accuracy of size structure approximation methods across range of sizes 
measured as the mean percent deviation of the predicted percentiles of intercept length from 
the corresponding empirical percentiles of intercept length. 
 

Percentile Intercept as diameter Intercept as radius Optimisation routine 

5% -17% (±19%) 54% (±36%) -21% (±17%) 

10% -5% (±23%) 88% (±41%) -6% (±17%) 

15% 8% (±28%) 111% (±52%) 3% (±19%) 

20% 15% (±28%) 124% (±52%) 2% (±14%) 

25% 19% (±26%) 134% (±51%) 4% (±14%) 

30% 24% (±29%) 146% (±55%) 7% (±13%) 

35% 26% (±32%) 149% (±61%) 5% (±10%) 

40% 30% (±32%) 157% (±65%) 6% (±10%) 

45% 34% (±35%) 163% (±68%) 5% (±9%) 

50% 35% (±36%) 169% (±71%) 3% (±9%) 

55% 40% (±38%) 175% (±75%) 3% (±7%) 

60% 44% (±44%) 186% (±87%) 2% (±6%) 

65% 47% (±45%) 191% (±89%) 0% (±7%) 

70% 51% (±51%) 201% (±100%) -1% (±7%) 

75% 54% (±56%) 207% (±111%) -3% (±7%) 

80% 61% (±69%) 220% (±138%) -5% (±8%) 

85% 69% (±93%) 238% (±186%) -9% (±9%) 

90% 79% (±119%) 257% (±238%) -12% (±12%) 

95% 94% (±154%) 286% (±306%) -17% (±16%) 

 
 

Quantile-quantile plots corroborate these differences in predictive accuracy (Figure 4.4a). 

The optimisation routine tends to underestimate the frequency of very small and very large 

colonies, indicated by minor deviations at the smallest and largest percentiles between the 

empirical and predicted distribution of intercept lengths (Table 4.1). In contrast, the 

percentiles of the intercept distributions simulated by the diameter and radius methods deviate 

systematically across the range of empirical percentiles (Figure 4.4a). Trends in reconstructed 

colony size structures were highly consistent with trends in raw intercept length distributions 

(see chapter 3, Figure 3.4). 

 

Demographic trends beyond cover 

Changes in colony size structure varied markedly between taxa. Corals of the families 

Poritidae and Mussidae and of the genera Isopora and Montipora experienced pronounced 
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shifts towards relatively more large colonies on both the crest and slope (Figure 4.5). In 

contrast, the disproportionate loss of both small and large seriatoporids resulted in a narrowed 

distribution, particularly on the reef crest. Faviids experienced a similar narrowing of the 

colony size distribution on the crest but shifted towards relatively more large colonies on the 

slope. The relative distribution of colony sizes of tabular acroporids remained comparatively 

unchanged (Figure 4.5). 

 

Shifts in size structure resulted in marked shifts in the reproductive output of populations 

(Figure 4.5). While the fecundity of faviids, other Acropora, tabular Acropora and 

Stylophora decreased consistently across habitats, by up to 50% relative to their historical 

baselines (Stylophora), the fecundity of pocilloporid and poritid corals remained stable or 

even increased (Figure 4.6b). Declines in the abundance and reproductive output of large P. 

damicornis corals were compensated by increases in the abundance and reproductive output 

of medium-sized, or small mature colonies. In contrast, shifts in the size structure of poritid 

corals resulted in lower abundance and reproductive output of medium-sized colonies but 

increases in the abundance and reproductive output of large colonies. Other Pocillopora 

experienced declines in abundance and reproductive output on the crest but increases on the 

slope (Figure 4.5). Declines in the fecundity of favids, acroporids and Stylophora were driven 

by declines in the abundance of large fecund colonies. This trend was particularly pronounced 

in Stylophora, whose fecundity exhibits the steepest increase with colony size (Figure 4.5).  
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Figure 4.5 Change in cumulative size-class fecundities by taxa and habitats. Histograms show 
for different taxa the total reproductive output of different size classes in historic (blue) and 
recent (yellow) surveys, as well as the deficit or gain in fecundity (recent-historic, red). Density 
plots (black lines) indicate the colony size structure in historic (solid) and recent (dashed) 
surveys. The blue line indicates the size-fecundity relationship, with fecundity on the arithmetic 
scale.  
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At the community-level, the combined volume of testes produced by faviids, acroporids and 

Stylophora declined from 0.32 litres to 0.17 litres per m2 on the crest and from 0.3 litres to 

0.22 litres on the slope (Figure 4.6). In contrast, the combined number of eggs produced by 

poritids and pocilloporids remained comparatively stable, with 0.8 million eggs produced per 

m2 on the crest and 2.0 million eggs per m2 on the slope.  

 

 

Figure 4.6 Community-level changes in fecundity. (a) Stacked barplots show the change in 
size-class fecundities (recent – historic) of different taxa on the reef crest and reef slope. (b) 
Stacked barplots show the total fecundity of taxa in historic and recent surveys.  
 

 

Trends in coral cover, the most widely used measure of demographic trends in corals, can 

differ markedly from trends in colony densities and population fecundity (Figure 4.7). For 

instance, the moderate decline of poritid cover on the crest (-20%) and slope (-5%), masked 

steep declines in colony densities (-64% and -38%) caused by shifts towards relatively more 

large colonies while declines in fecundity were less pronounced (-6% and -19%). Similarly, 

the density and fecundity of faviids, other Acropora and Stylophora declined faster than their 

cover on the reef crest. The reproductive output of Stylophora declined by 56%, whereas 

cover declined by only 33%. In contrast, tabular acroporids suffered similar losses in cover 

and fecundity on the crest and even experienced increased reproductive output despite minor 

declines in cover on the slope due to shifts towards larger colonies. Similar shifts towards 

relatively more large colonies in crest and slope populations of the genus Isopora resulted in 

pronounced declines in densities (-24% and -44%) despite stable cover (-2% and +3%). While 
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the cover of mussid corals remained constant, they experienced disproportionate declines in 

colony densities on both the reef slope and the reef crest, concomitant with a shift towards 

larger colonies (Figure 4.7).  

 

 

Figure 4.7 Demographic trends beyond cover. Changes in coral cover, colony density and 
fecundity of major taxa on the crest and slope. Colony densities are calculated as colonies per 
m2 and fecundity as egg volume per m2 (tabular Acropora, Stylophora, other Acropora and 
Faviidae) or eggs per m2 (Poritidae, P. damicornis, other Pocillopora). 
 

 

4.4 DISCUSSION 

Discrepancies between trends in coral cover, colony densities and population fecundity 

demonstrate the importance of examining demographic trends beyond coral cover alone, and 

the importance of data on trends in colony size structure (Figure 4.7). For instance, an 

examination of trends in the abundance of poritid corals based on trends in cover alone would 

fail to detect steep declines in colony density, pivotal for egg fertilization success (Oliver & 

Babcock 1992). However, the reproductive output of poritid populations, measured as eggs 

produced per m2 reef habitat, remained stable or increased (Figure 4.7) due to the increased 

abundance and reproductive output of large colonies (Figure 4.5). The ability to store past 

gains in population growth, commonly referred to as the storage effect (Chesson 2000), 

allows, in particular, slow-growing, long-lived taxa like poritid corals to persist despite 
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ongoing recruitment failure but masks the gradual erosion of their population viability if only 

trends in cover are examined (Hughes & Tanner 2000).  

 

Changes in the reproductive output of coral populations illustrate the demographic importance 

of large, highly fecund colonies, and the necessity of reliable estimates of colony size 

structure. Taxa with steep size-fecundity relationships like Stylophora (Hall & Hughes 1996) 

are particularly sensitive to declines in the abundance of large colonies, and even minor 

changes in colony size structure can result in marked changes in population fecundity (Figure 

4.5). Consequently, while the presented method tends to underestimate the abundance of both 

small and large colonies (Figure 4.4) and the lognormal distribution is light-tailed, estimated 

changes in fecundity are sensitive to deviations from (log-)normality, particularly in the right 

tail. The alternative approaches of using the intercept of a colony as its diameter (Connolly et 

al. 2005) or radius (Zawada et al. 2019) consistently deviate from the true size structure 

(Figure 4.4a) and overestimate coral cover (Figure 4.4b). They are thus likely to 

overestimate the reproductive output of populations.  

 

Declines in the abundance of large colonies disproportionately affect the reproductive output 

of coral populations (Figure 4.5) but also diminish their capacity to provide important 

ecological functions. Large table corals, for instance, provide important shelter habitat for fish 

species (Kerry & Bellwood 2015). The erosion of reef structural complexity has been linked 

to shifts in energetic dynamics and reef productivity (Morais et al. 2020). Further, while most 

coral species reproduce only once per year, coral propagules constitute an important food 

source for fish (Pratchett et al. 2001) and other reef organisms including corals (Fabricius & 

Metzner 2004). Declines in the fecundity of coral populations (Figure 4.6b) may therefore 

have unrecognized consequences for the productivity of reef communities, similarly to the 

overlooked role of cryptobenthic fish species for reef trophodynamics (Brandl et al. 2019).  

 

The presented method allows colony size structure to be reconstructed from traditional LIT 

data. While further validation using extensive field data on coral cover and colony size 

frequency distributions is required, the new method performs significantly better than two 

alternative methods, and exhibits comparatively minor, non-systematic biases in its predictive 

accuracy (Figure 4.4). Neither of the two alternative methods accounts for the two biases 

underlying the collection of line intercept transect data: (1) the size-dependent detectability of 

coral colonies and thus the under-representation of small colonies in the intercept data, and (2) 
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the distribution of randomly drawn intercepts through approximately round planar colony 

shapes. Using the intercept as the diameter of a circle consistently underestimates the likely 

size of each intercepted colony because and intercept an approximately round colony is 

always at least as long as its diameter but typically longer. This method thus compensates, to 

a degree, for the under-representation of small colonies, and, as a result, performs better than 

the radius method.  

 

By reverse-engineering population size structure using knowledge of the underlying sampling 

processes and corrections of their inherent geometrical and statistical biases, the optimisation 

routine can be adapted to reflect different sampling designs. Similarly, it allows users to 

examine whether statistical distributions such as the exponential, the power-law or the 

Weibull distributions, frequently used to describe size spectra (White et al. 2008; Gillespie 

2015), provide better fits to their data than the lognormal distribution commonly used to 

describe the distribution of coral colony sizes (e.g. Bak & Meesters 1998).  

 

The presented method bridges the gap between routinely collected monitoring data and data 

required for demographic inference beyond trends in coral cover. I illustrated its usefulness at 

the example of examining trends in fecundity of coral population on the Great Barrier Reef. 

Knowledge of a population’s colony size structure can, however, also be used to project 

population dynamics into the future using structured population models which have been 

published for a range of coral taxa (e.g. Hughes 1984; Done 1988; Babcock 1991; Hughes & 

Tanner 2000; Edmunds 2015; Kayal et al. 2018) but also various other animal and plant 

species with size-dependent life histories (Jones et al. 2015; Salguero-Gómez et al. 2016a). 

Interesting research questions include the investigation of transient population dynamics 

under ongoing recruitment failure, impacts on and implications of density-dependent gamete 

fertilization success (Oliver & Babcock 1992), time to (quasi-) extinction, or recovery to pre-

disturbance abundances and size structures. Similarly, the identification of shifts in the 

morphological composition of coral communities and its implications for topographical reef 

complexity rely on sound data on colony sizes (Zawada et al. 2019).  

 

Technological advances in reef survey methods are likely to complement or replace LIT 

methods in the near future. These include photogrammetry (Ferrari et al. 2017), remote 

sensing (Hedley et al. 2016), drones (Chirayath & Earle 2016) and robotics (González-rivero 

et al. 2014). These new tools not only help overcome the scarcity of ecological data on coral 
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populations (Kindsvater et al. 2018; Madin et al. 2019), but may also help alleviate the 

mismatch between routine monitoring data and data required by demographic tools. However, 

the legacy of historical LIT survey data provides an invaluable resource for the examination 

of long-term demographic trends and departures from historic baselines. Baselines are 

particularly important for the detection of slow transient dynamics such as the gradual erosion 

of the viability of long-lived taxa due to recruitment failure (Hughes & Tanner 2000), tipping 

points or impending regime shifts (Hughes et al. 2013b).  

 

In times of declining coral abundances (Gardner 2003; De’ath et al. 2012) and escalating reef 

disturbance regimes (Van Hooidonk et al. 2016; Hughes et al. 2018a), I urgently need a better 

understanding of demographic trends in corals (Edmunds & Riegl 2019). The role of 

reproduction and recruitment in shaping coral population dynamics was historically neglected 

due to the open nature of coral populations and the intractability of larval dispersal (Caley et al. 

1996), but increasingly attracts the attention of coral biologists. Severely suppressed 

recruitment rates (Hughes et al. 2019a) following unprecedented back-to-back regional mass 

bleaching events on Australia’s Great Barrier Reef in 2016 and 2017 (Hughes et al. 2017b, 

2019b) testify that the cumulative impact of natural and anthropogenic disturbances 

increasingly jeopardizes the capacity of coral populations to replenish between bouts of 

disturbance. Our ability to track and predict population recovery depends on the collection of 

more detailed demographic data that better reflect the size-dependent life histories of corals 

(Dornelas et al. 2017; Edmunds & Riegl 2019). 
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Chapter 5: The spatial footprint and patchiness of large-

scale disturbances on coral reefs 

Currently in review in Global Change Biology 

 

5.1 INTRODUCTION 

Disturbances are recurrent pulses of mortality that shape the structure and dynamics of 

ecosystems on both ecological and evolutionary time scales (MacArthur & Wilson 1967; 

White & Jentsch 2001). The emergence of novel disturbance regimes due to climate change 

and other anthropogenic impacts can overwhelm recovery processes, reshuffle the 

composition of communities and accelerate species extinction (Turner 2010; Urban 2015; 

Hughes et al. 2018b; Turner et al. 2020). For example, populations of slow growing, late 

maturing species may be unable to recover fully if the interval between consecutive 

disturbances becomes too short (Hansen et al. 2018). Similarly, species with limited dispersal 

capacity may fail to recolonize damaged habitat following an unusually large and spatially 

homogeneous disturbance (Moloney & Levin 1996). To understand the short and long-term 

effects of disturbances on a species or ecosystem, we need to examine the spatial extent and 

patchiness of their impacts – particularly for those disturbances whose spatiotemporal patterns 

are rapidly changing. 

 

The impact or severity of a disturbance is generally measured as the area affected, the 

reduction in the size of the population, or the proportion of the biomass lost. Other critical 

dimensions of disturbances include their selective impacts on different species, genotypes, 

size or age classes, their spatial and temporal characteristics, as well as potential interactions 

between different disturbance events (White & Jentsch 2001). Conceptual models tailored to 

the system or species of interest can help to explore, for example, how disturbance 

characteristics interact to influence population dynamics (e.g. Moloney & Levin 1996), 

species coexistence (Liao et al. 2016) and species extinction thresholds (Liao et al. 2015). 

However, the paucity of spatially extensive, long-term empirical data on recurrent 
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disturbances means that our understanding of their spatial patterns is limited, particularly in 

marine ecosystems where remote sensing (e.g. aerial or satellite) is restricted.  

 

On most coral reefs, recurrent hurricanes (or cyclones) are the dominant large-scale acute 

disturbance that has shaped the structure and evolution of reef communities (Connell 1978). 

Different species of corals have a range of strategies to resist hurricane damage, or to rebound 

quickly afterwards. However, the long-term decline of corals on reefs around the world 

(Gardner 2003; Bruno & Selig 2007) indicates that the cumulative impact of chronic human 

impacts and acute disturbances has often outstripped reef recovery processes. Local, chronic 

stressors such as water pollution and overfishing, and recurrent cyclones are increasingly 

compounded by bouts of thermal stress causing mass coral bleaching. Severe mortality due to 

thermal extremes can transform the composition of coral communities (Baker et al. 2008; 

Hughes et al. 2018b), impair stock-recruitment dynamics (Hughes et al. 2019a) and is 

increasingly unfolding at unprecedented spatial scales and frequencies (Hughes et al. 2018a; 

Eakin et al. 2019). To date, we have witnessed three pan-tropical mass bleaching events in 

1997/1998, 2010/2011 and 2015/2016, each of which severely affected 50-70% of the world’s 

coral reefs (Hughes et al. 2018a). 

 

Cyclones and mass bleaching events differ markedly in spatial and temporal scale. On 

average, one or two cyclones cross the 2,300km length of the Great Barrier Reef (GBR) each 

year, with individual reefs experiencing an average return time of about 1-3 decades 

(Puotinen et al. 2016). The return-time and severity of cyclones has not changed on the GBR 

in recent decades (Puotinen et al. 2016). In contrast, regional-scale mass bleaching of corals 

on the Great Barrier Reef was first recorded in 1998, the hottest year then on record, which 

triggered an unprecedented global bleaching event (Berkelmans & Oliver 1999; Hughes et al. 

2018a). A second bleaching episode occurred on the GBR in 2002 (Berkelmans et al. 2004), 

then a 14 year gap, before unprecedented back-to-back bleaching occurred in 2016 and 2017 

(Hughes et al. 2019b). So far, approximately 94% of the world’s coral reefs have bleached 

severely (>30% of corals bleached) at least once since 1980, on average 3-4 times, and the 

interval between recurrent events is shrinking (Hughes et al. 2018a). Without rapid 

acclimation and reductions in greenhouse gas emissions, virtually all reefs are projected to 

experience annual bleaching by the end of the century (van Hooidonk et al. 2013). 
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The responses of coral assemblages to disturbances vary between habitats due to differences 

in exposure, assemblage structure, and other variables. For example, bleaching rates of many 

coral taxa decrease with depth due to the attenuation of heat and light (Baird et al. 2018). 

Similarly, physical forcing during storms affects communities in shallow-water habitats 

disproportionately (e.g. Woodley et al. 1981). Environmental background conditions as well 

as past disturbances (Middlebrook et al. 2008; Hughes et al. 2019b) can modulate the impact 

of a disturbance by selecting both species and individuals better acclimated to local 

conditions. Corals adapted to extreme thermal conditions such as intertidal reef flats are 

typically more tolerant to heat stress than corals in more thermally stable habitats, but the 

benefits of acclimation are limited under extreme heat stress conditions (Schoepf et al. 2015). 

 

Cyclones and mass bleaching are both highly selective, disproportionately affecting 

susceptible species (Pratchett 2007; Madin et al. 2014; Hughes et al. 2018b) and, within 

species, vulnerable genotypes and size classes (Madin et al. 2014; Álvarez-Noriega et al. 

2018). Coral species with encrusting or massive morphologies are relatively resistant to wave 

damage compared to branching species, and rates of recovery also vary among taxa 

depending on their life histories (Hughes & Jackson 1985). Mild and moderate levels of heat 

exposure are also selective, affecting so-called “winners” more than “losers”, depending on 

their thermal tolerance (Marshall & Baird 2000; Loya et al. 2001). However, the disparity 

between winners and losers is diminished during temperature extremes, when even the 

toughest species have high rates of mortality (Hughes et al. 2018b).  

 

The spatial extent and patchiness of large-scale disturbances is important for subsequent 

population connectivity (Hughes et al. 2019a), recovery dynamics (Turner et al. 2020) and 

extinction risk (Johst & Drechsler 2003; Kallimanis et al. 2005; Liao et al. 2015). However, 

the patchiness of multiple disturbance is rarely quantified due to the scarcity of spatially 

extensive data over long time periods. On coral reefs, patterns of cyclone impact are often 

inferred from proxies such as cyclone tracks (Wolff et al. 2016) or models of wave height 

(Puotinen et al. 2016). Direct observations on the Great Barrier Reef show that the effects of 

cyclones on corals is typically very patchy among local sites, and among adjoining reefs close 

to the cyclone’s track (Done 1992; Beeden et al. 2015). Similarly, on the GBR, the spatial 

footprints of each of four mass bleaching events have now been documented (Berkelmans & 

Oliver 1999; Berkelmans et al. 2004; Hughes et al. 2018b), allowing a direct comparison of 

the spatial characteristics of each event.  
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Larval dispersal allows corals and other sessile organisms to recover and persist in highly 

fragmented and frequently-disturbed habitat. Corals release either well-developed brooded 

larvae (brooders), or eggs and sperm that fertilize externally (broadcast spawners). Brooding 

species settle predominantly locally and are largely self-seeding at the scale of an individual 

reef (Ayre & Hughes 2000). In contrast, broadcast larvae can disperse over markedly greater 

distances of 10s-100s of km (Jones et al. 2009; Figueiredo et al. 2013). Consequently, their 

ability to recolonize damaged habitat is likely to be less sensitive to the scale and spatial 

heterogeneity of a disturbance. The recruitment rates of both brooding and spawning corals 

were severely depressed on GBR following the recent back-to-back mass bleaching events in 

direct proportion to the loss of adult breeding stocks (Hughes et al. 2019a), suggesting that 

mass coral bleaching events deplete coral populations at spatial scales that exceed even the 

dispersal capacity of spawning coral species.  

 

We currently lack a quantitative comparison of the spatial footprint and patchiness of different 

events and types of disturbance. Here, I quantify and contrast the spatial footprint of four 

mass bleaching events and a Severe Tropical Cyclone on Australia’s Great Barrier Reef. 

Specifically, I quantify their spatial extent, the magnitude of their impact (which I define as 

spatial extent weighted by impact severity) and the spatial distribution or patchiness of their 

impact. I then use a model of reef disturbance and recovery dynamics to demonstrate how the 

spatial patterns of disturbances can modify the dynamics of reef recovery, and how a species’ 

dispersal capacity alters its vulnerability to disturbance. 

 

5.2 MATERIALS AND METHODS 

 

Spatial data on disturbance impacts 

In order to quantify the spatial footprint of different large-scale reef disturbances, I examined 

the spatial extent, magnitude and patchiness of five coral mass mortality events on the Great 

Barrier Reef. Detailed and spatially-extensive survey data are available for four mass coral 

bleaching events in 1998, 2002 (Berkelmans et al. 2004), 2016 and 2017 (Hughes et al. 

2017b, 2018c, 2019b) and for Severe Tropical Cyclone Yasi in 2011, a Category 5 system, 

and one of the most severe tropical storms on the GBR in recent decades (Beeden et al. 2015, 

2016).  
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Each bleaching episode was assessed on 540 to 1156 individual reefs (Hughes et al. 2017b). 

The severity of coral bleaching in each event was recorded using aerial surveys of reefs along 

the length and breadth of the GBR. Bleaching was recorded from the air using the following 

five categorical scores: no bleaching, 0-10% of colonies affected, 10-30%, 30-60%, and 

>60% (Table D-1). Bleaching scores were recorded separately for major habitats – reef 

crests, flats and upper slopes. The accuracy of the aerial scores was ground-truthed during the 

bleaching event in 2016, on 168 reefs that were assessed extensively underwater as well as 

from the air (Hughes et al. 2017b).  

 

The impact of Cyclone Yasi was measured by surveys on 71 reefs at varying distances from 

the cyclone’s track, along a 350km section of the central Great Barrier Reef (Beeden et al. 

2015). More than 800 damage scores were recorded across a range of different habitat types. 

The following six damage levels were distinguished: no damage, minor, moderate, high, 

severe, and extreme coral damage (Table D-1, for more details see Beeden et al. (2015)). A 

further 13 tropical cyclones of category 3 or higher have occurred on the GBR since 1998 

(Figure 5.1c), but in each case surveys of coral communities afterwards were too sparse to 

quantify large-scale spatial patterns (Done 1992; Fabricius et al. 2008). Over the study period, 

cyclones of category 3 or higher were more than three times more frequent than larger-scale 

bleaching events (i.e. 14 versus 4). 

 

Data analyses 

I began by calculating the overall magnitude of a disturbance, which I define as the area it 

affected weighted by its severity. I represent the overall magnitude as the proportion of the 

total reef area of the Great Barrier Reef affected by different severities of each of the five 

disturbance events, following a similar approach devised by Beeden et al. (2015). For this 

calculation, I created a gridded base map of the GBR (50 x 50 km), and calculated the area of 

reef (UNEP-WCMC et al. 2010) and the frequency of different severity levels for each 

disturbance event in each grid cell. I then apportioned reef area in each grid cell to the 

different severity levels based on their relative frequency. Grid cells without a survey score 

were treated as unaffected. To assess the cumulative magnitude of the back-to-back bleaching 

event in 2016 and 2017, I used the scores from 590 reefs that were surveyed in both years. I 

calculated for each reef the average proportion of corals bleached in 2016 and 2017 using the 

interval mid-points (Table D-1) of the bleaching categories. I then calculated for each reef the 
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cumulative bleaching across the two events as the sum of the proportion of corals bleached in 

2016 and the proportion of the corals that survived the 2016 bleaching but bleached in 2017. I 

acknowledge that the ordinal severity scores for bleaching and cyclone are based on different 

methodologies and are not equivalent (Table S1). Nonetheless, the consistent changes in coral 

cover at sites with different severity levels suggest that their impacts on coral abundance were 

broadly comparable (Figure D-1). 

 

Measuring spatial disturbance patterns 

I followed three approaches to quantify and contrast the patchiness or spatial clustering of the 

five disturbance events, and the combined 2016 and 2017 bleaching events. First, I produced 

for each disturbance event a spline cross-correlogram, a common geostatistical tool that 

estimates the spatial dependence of observations, based on an index of spatial autocorrelation 

such as Moran’s I. A correlogram provides a visual representation of the decay in the 

similarity or autocorrelation of observations as the distance between them increases. A value 

of Moran’s I of zero indicates a random spatial distribution of damage severity, positive 

scores signify that damage levels are more similar at a particular distance than expected by 

random chance, and negative scores indicate that values which are a given distance apart are 

more different than random.  

 

The two types of disturbance data are represented at different spatial scales because bleaching 

severity was scored from the air at the scale of kms, while cyclone damage severity was 

scored in-water at the scale of 10s to 100s of meters. To minimise potential biases due to the 

different scales of observation (Levin 1992), I calculated an average severity score for each 

individual reef using the mid-points of the severity score intervals (proportion bleached and 

cyclone damage score, Table D-1) as a continuous measure of disturbance severity. I binned 

ordinal severity scores for bleaching or cyclone damage into two categories with 

approximately equal sample size: highly disturbed (severity level ≥ 3) and lightly disturbed or 

undisturbed (severity level < 3).  

 

I produced spline cross-correlograms for each disturbance event using the ncf package in R, 

which is suitable for binary data (Bjørnstad & Falck 2001). I used the default degrees of 

freedom for the spline cross-correlograms calculated as the square root of the sample size of 

each event. Correlograms quantify the distance decay in the similarity of observations but do 

not discriminate between spatial clusters of affected and clusters of unaffected reefs. To 
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reduce the influence of unaffected regions on the autocorrelation analysis, I limited the 

analysis to the part of the GBR that experienced destructive or very destructive winds during 

Cyclone Yasi (see Beeden et al. (2015) for delineation) and the latitudes most affected during 

the bleaching events in 2016 (9-20°S), 2017 (14-22°S), 2002 (14-23°S) and 1998 (15-23°S) 

(Hughes et al. 2019b). To explore the sensitivity of cross-correlograms to the binning 

threshold (Table D-1) and to averaging of severity scores at the scale of individual reefs, I 

also produced cross-correlograms based on the original ordinal and interval mid-point data as 

well as site-level observations. Patterns of spatial autocorrelation were highly consistent 

(Figure D-3 and Figure D-4). 

 

As a complementary, ecologically more intuitive approach to measuring spatial clustering, I 

measured the degree to which severely disturbed reefs were spatially isolated from reefs that 

escaped severe damage. For each severely disturbed reef, I calculated (1) the distance to the 

nearest relatively undamaged reef and (2) the proportion of relatively undamaged reefs within 

100 km of a severely disturbed reef. These two metrics of spatial isolation are sensitive to the 

density of survey locations and the relative proportion of severely disturbed sites, which 

complicates comparisons between events. I therefore constructed for each event and each 

metric a null model of the expected distance to the nearest undisturbed or moderately 

disturbed reef and the proportion of relatively undisturbed reefs within 100 km of a severely 

disturbed reef, with a random spatial distribution of damage scores. I calculated null 

expectations by randomly resampling from the observed distributions of damage scores (n = 

100). I fitted a Bayesian linear model to the log-transformed minimum distance data and a 

Bayesian multi-level model with variance structure to the logistically transformed proportion 

data, using the six disturbance events as predictors. I divided the obtained posterior 

distributions for minimum distances and proportions by the corresponding average null 

expectations (mean across 100 permutations) to calculate how many times greater are (1) the 

distance to the nearest undamaged reef and (2) the proportion of undamaged reefs within 100 

km of a severely disturbed reef, than expected by chance. 

 

I also produced spline cross-correlograms separately for each of the three dominant habitat 

types, the reef slope, reef crest and reef flat, for the 2017 bleaching event and Cyclone Yasi, 

the two disturbances for which habitat-specific observations were available. All statistical 

analyses were conducted in R (R Core Team 2019) and all statistical models were fit with 

Stan (Stan Development Team 2019) and brms (Bürkner 2017). 
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Model of reef recovery dynamics 

I used a spatially explicit cellular automata model, parameterised to mimic the population 

dynamics of coral species with different dispersal capacities, to examine how differences in 

the spatial patterns of large-scale reef disturbances may alter recovery dynamics. I modelled a 

reefscape that consists of a network of local coral populations (a grid of 100 by 100 cells) 

connected by propagule dispersal. Local coral cover changes through deterministic growth, 

random background mortality, local recruitment through larval retention in each cell and 

external recruitment from adjacent cells (Table D-2). I assumed density-dependent 

fertilisation success (Oliver & Babcock 1992; Teo & Todd 2018), and therefore allowed local 

propagule production to scale quadratically with local coral cover. I repeated the model 

simulations using two species with different dispersal kernels, to mimic the different dispersal 

capacities of brooding and broadcast spawning corals. One kernel simulates the local retention 

of larvae, with short-distance dispersal to adjacent cells, and the other mimics long-distance 

dispersal to second-degree neighbours (Figure D-8). Local recovery can occur even in the 

absence of a recruitment subsidy, via growth of remnant corals. The model was written and 

run in MATLAB (version 9.4.0.813654; MathWorks 2018). 

 

After the model system attains its dynamic equilibrium, I subjected it to a catastrophic 

mortality event (60% loss of cover) with varying degrees of spatial autocorrelation and 

magnitude. I used fractal structures (Lennon 2000; Yearsley 2016) to generate spatial 

disturbance patterns with varying degrees of spatial autocorrelation, ranging from randomly 

distributed to highly spatially autocorrelated (Figure D-7). I did not vary the level of 

disturbance severity but rather I varied the overall magnitude of a catastrophic disturbance 

event by changing the proportion of cells affected.  

 

The impact of a disturbance is often reported as its spatial extent E or (as above) its overall 

magnitude M (e.g. proportion of reefs or reef habitat affected, often weighted by some 

measure of disturbance severity S, or its impact, such as percentage decline in coral cover). 

Here, I used the integral of suppressed community abundance N (t) over time as an 

ecologically meaningful measure of the impact of a disturbance, assuming that this abundance 

increases asymptotically towards some maximum K:  

𝑀 = 𝑆 ⋅ 𝐸 
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𝐼 = C[𝐾 − 	𝑁	(𝑡)	] ⋅ 𝑑𝑡	
A

B&

 

I ran the model 25 times for each combination of degree of spatial autocorrelation, magnitude 

of a disturbance and short- and long-distance dispersal type. 

 

5.3 RESULTS 

 

The spatial extent and magnitude of large-scale reef disturbances 

Each of the four recorded mass bleaching events extended over much larger spatial scales 

than severe Cyclone Yasi, one of the largest category-5 cyclones on the Great Barrier Reef in 

recent decades (Beeden et al. 2015) (Figure 5.1). The bleaching in 1998 affected mainly 

inshore reefs in the central and southern regions. The 2002 event damaged many inshore and 

mid-shelf reefs in the centre and south, and the north was again unaffected. In 2016, the 

northern third of GBR experienced an unprecedented heat wave that caused the most spatially 

extensive and severe bleaching event recorded so far on the GBR. Less severe bleaching, 

comparable to levels in 2002, also occurred in the central region in 2016. In 2017, bleaching 

was most severe in the central region and to a lesser extent in the north already affected in 

2016. Across all four bleaching events, the southern GBR experienced the least damage. In 

comparison, category 5 Tropical Cyclone Yasi affected a smaller region of the GBR, within 

100-200 km of its track. 

 

The overall spatial extent of individual bleaching events, across all bleaching severity 

categories, was 28% of the GBR’s total reef area in 1998, 37% in 2002, 83% in 2016, and 

68% in 2016 (Figure 5.1b).  In combination, the two back-to-back bleaching events in 2016 

and 2017 affected 89% of the GBR. In contrast, Cyclone Yasi affected 13% of the GBR in 

2011, or about one sixth the reef area of the most extensive bleaching event in 2016. Severe 

bleaching disturbance (affecting >30% of colonies) was experienced by 50% of the GBR in 

2016 (Figure 5.1b). In contrast, severe disturbance recorded from Cyclone Yasi was 

restricted to 5% of the GBR, generally on reefs that were less than 100-200 km from the track 

of the cyclone’s eye (Figure 5.1). 
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Figure 5.1 The spatial extent and magnitude of large-scale reef disturbances. (a) The spatial 

footprint of four coral mass bleaching events (1998, 2002, 2016 and 2017) and Cyclone Yasi 

(2011) on the Great Barrier Reef. Impact severity was grouped into not severe (scores 0-2) 

and severe (scores > 2). (b) The proportion of the total reef area on the Great Barrier Reef 

affected by different levels of damage for each of four bleaching events (1998, 2002, 2016, 

2017), Cyclone Yasi (2011), as well as the back-to-back mass bleaching event (cumulative 

impact of 2016 and 2017). (c) Approximate tracks of the eye of 14 cyclones that reached 

category 3 or higher and crossed the Great Barrier Reef since 1998, as well as the cumulative 

hours (1998 to 2017) that each reef experienced wind speeds with elevated damage potential 

are shown. For details on generation of wind speed data see (Matthews et al. 2019). 



  

Chapter 5: The spatial footprint and patchiness of large-scale disturbances on coral reefs 73 

 

The spatial clustering of large-scale reef disturbances 

Bleaching events are not only larger, but within the affected regions their impacts are also 

substantially less patchy between reefs than Cyclone Yasi. The correlograms reveal that 

bleaching damage is spatially autocorrelated at distances over 100s of kilometres (Figure 

5.2a). For example, the 2017 mass bleaching event exhibited patterns of spatial clustering up 

to distances of 300 km. In comparison, damage by Cyclone Yasi exhibited only weak signals 

of local-scale autocorrelation (Figure 5.2a). Notably, when site-level observations rather than 

reef averages were used to construct the correlograms, local patterns of spatial autocorrelation 

in Cyclone Yasi disappeared (Figure D-4). In contrast, the scale and extent of spatial 

autocorrelation of bleaching was less sensitive to pooling data from replicate sites per reef 

(Figure S4). For the 2017 bleaching event, patterns of spatial autocorrelation were consistent 

across three major habitat types (upper reef slope, crest and flat), indicating that the spatial 

extent of bleaching was similar across habitats (Figure D-2).  

 

The distance of a severely disturbed reef to its nearest undisturbed or lightly disturbed 

neighbour (Figure 5.2c), and the proportion of relatively undamaged reefs within 100 km of a 

severely disturbed reef (Figure 5.2b), both corroborate the patterns of patchiness revealed by 

the correlograms. More than a quarter of the severely bleached reefs were isolated from the 

closest unbleached or lightly-bleached reef by at least 75 km in 2016, and by more than 100 

km in 2017 (Figure 5.2c). The shorter distance in 2016 reflects an inshore-offshore gradient 

in the severity of bleaching in the worst affected, northern region (Figure 5.1a). In 2017, 

severe bleaching – most of it in the central region - was spread more uniformly across the 

continental shelf. The cumulative impact of the back-to-back bleaching event in 2016 and 

2017 resulted in average distances of almost 70 km to the nearest unbleached or lightly 

bleached neighbour (Figure 5.2c), whereas the most isolated severely bleached reefs were 

>400 km away from the closest undisturbed or lightly-bleached reefs. In comparison to 2016 

and 2017, estimated mean distances to the closest relatively undisturbed neighbours (Figure 

5.2b) were substantially shorter for the bleaching events in 1998 (17 km), for bleaching in 

2002 (15 km), and Cyclone Yasi (20 km). Distances to the nearest unbleached or lightly 

bleached reef were, on average, more than eight times greater (8.3 times) for the back-to-back 

bleaching than expected by chance, i.e. under a random spatial distribution of impact (Figure 

D-6b). In contrast, distances following Cyclone Yasi were, on average, less than double the 
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distance expected (1.5 times) (Figure 5.2d) and the posterior distribution overlapped with the 

null expectation (Figure D-6b). 

 

 
Figure 5.2 Spatial heterogeneity of large-scale reef disturbances. (a) Spline cross-

correlograms showing the spatial dependence or similarity of damage scores with increasing 

distance for each disturbance event. (b) Distribution of distances to nearest undisturbed 

neighbour across all disturbed sites. (c) Distribution of the proportions of undisturbed sites 

within 100km of a disturbed site. In (b) and (c), boxplots show the medians and quartiles of 

observations, black circles the posterior medians, black lines the 95% credible intervals and 
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red circles the average null expectations under random spatial distribution of impact (mean 

across all permutation runs). 

 

Similarly, the proportions of unbleached or lightly bleached reefs within 100 km of a severely 

bleached reef were the lowest for the 2016 bleaching event (Figure 5.2b). The modelled 

proportion was higher for the 2017 bleaching (1.4 times), Cyclone Yasi (4.7) and the 1998 

(5.5) and 2002 (7.4) bleaching events (Figure 5.2b and Figure D-5). For a quarter of the reefs 

that bleached in 2016 or 2017 the proportion of unbleached and lightly bleached reefs within a 

100 km radius dropped to 3%, and 0% respectively (Figure 5.2b). Only southern reefs largely 

escaped the two latest bleaching events. When I combined the impact of the 2016 and 2017 

bleaching events, proportions of unbleached and lightly bleached reefs within 100 km were 

consistently low over a vast proportion of the GBR, stretching for 1,400 km over the northern 

and central regions (Figure 5.3), with an estimated mean proportion of 1.4% (Figure 5.2c). 

Modelled mean proportions of unbleached or lightly-bleached reefs within 100 km of a 

severely disturbed reef were 2.0, 1.6 and 1.6 times, lower than expected by chance for the 

1998 and 2002 bleaching events and Cyclone Yasi respectively (Figure D-6a). In contrast, 

modelled mean proportions were 6.9, 6.7 and 30.1 times lower for the 2017, 2016 and back-

to-back bleaching events than expected under a random spatial distribution of impact (Figure 

D-6a).  
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Figure 5.3 Map showing the spatial isolation of severely disturbed reefs from not severely 

disturbed reefs. For each severely disturbed reef the proportion of not severely disturbed reefs 

within a radius of 100km is shown for each of the six examined disturbance events. Shaded 

blue polygons indicate location of reefs on the Great Barrier Reef.  

 

Modelling post-disturbance recovery 

The model illustrates how the spatial footprint and autocorrelation of a disturbance (Figure 

5.1, Figure 5.2 and Figure 5.3), can combine to shape the recovery trajectories of affected 

populations (Figure 5.4). In the model, two disturbance events of equivalent magnitude, that 

differ only in the spatial distribution or clustering of mortality (Figure 5.4a and Figure 5.4b), 

elicit markedly different metapopulation responses (Figure 5.4c). Specifically, populations 

subjected to a randomly distributed disturbance event recover to dynamically stable pre-

disturbance conditions more quickly than when mortality is spatially clustered (Figure 5.4c). 

As the magnitude and degree of spatial autocorrelation intensifies, the proportion of disturbed 

cells outside the dispersal range of undisturbed populations increases. The recovery of 

spatially isolated populations is particularly protracted in the model and depends on the slow 

recovery of local coral cover through growth, followed by the recovery of recruitment rates 

through multi-step dispersal processes. 
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Figure 5.4 Conceptual illustration of how spatial clustering modifies the impact of a 

disturbance. (a) The spatial footprint of two hypothetical disturbances ⍺ (random spatial 

distribution or low spatial autocorrelation) and β (high spatial autocorrelation). (b) The 

response of the modelled metapopulation to disturbances of equivalent magnitude (% coral 

cover lost) but different spatial autocorrelation and subsequent recovery. Recovery is 

protracted if the spatial distribution of disturbance impact is spatially autocorrelated (β) rather 

than random (⍺). I used the area under the recovery curves to quantify and compare the true 

impact of a disturbance on the reef system. (c) Magnitude and spatial autocorrelation combine 

to determine the overall impact of a disturbance on the recovery of community abundance. 

The two disturbances ⍺ and β have markedly different impacts on the recovery of community 

abundance.  
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Figure 5.5 Spatial autocorrelation and larval dispersal distance. (a) For both long-distance 

and short-distance dispersers, the correlation between the impact of a disturbance, measured 

as the integral of suppressed community abundance over time (Figure 5.4), and its magnitude 

- the proportion of cells disturbed - is shown for disturbance events with different degrees of 

spatial autocorrelation. (b) Division of the impact of disturbances with varying degrees of 

spatial autocorrelation on short-distance and long-distance dispersers illustrates their 

differential susceptibilities to disturbances of varying magnitudes and spatial clustering. (c) 

Division of the impact of a disturbance with low, moderate or high degree of spatial 

autocorrelation relative to a disturbance with random spatial distribution illustrates the 

amplification potential of spatial clustering for varying proportions of disturbed cells.  

 

 

The effect of spatial clustering on recovery trajectories is greatest for intermediate magnitudes 

of disturbance, and is negligible for very small and very large disturbances (Figure 5.5a). A 

greater amount of spatial clustering exacerbates the degree of isolation of affected sites from 

unaffected sites, which are potential sources of larvae. Shorter-distance dispersers are 

generally more vulnerable to large-scale disturbances, reflected by the greater impact on their 

community abundance, particularly under modelled scenarios of high spatial autocorrelation 

(Figure 5.5b).  

 

Species with greater long-distance dispersal are less affected by spatial clustering than species 

whose propagules are predominantly retained more locally (Figure 5.5c). Under scenarios of 
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high spatial autocorrelation, however, the degree of spatial isolation exceeds even the 

dispersal capacity of long-distance dispersers, protracting recovery. Disturbances with a high 

degree of spatial clustering had up to two times greater impact on the abundance of short-

distance dispersers compared to a randomly distributed disturbance. Even for long-distance 

dispersers, spatial clustering exacerbated the impact of a disturbance by up to 60% (Figure 

5.5c).  

 

5.4 DISCUSSION 

Coral reef ecosystems are profoundly shaped by recurrent large-scale disturbances and mass-

mortality events (Connell 1978; Woodley et al. 1981). The increasing frequency of regional 

and global-scale mass coral bleaching events presents an unprecedented threat to corals and 

other reef organisms. On the Great Barrier Reef, the spatial footprint of each of four mass 

bleaching events in 1998, 2002, 2016 and 2017 is much larger than the footprint of a severe 

tropical cyclone (Figure 5.1). Furthermore, the high degree of spatial clustering during 

bleaching also means that large parts of the ecosystem are affected simultaneously during 

each event, leaving fewer interspersed pockets of unaffected reef habitat compared to the 

patchier outcomes of a major cyclone (Figure 5.2 and Figure 5.3).  

 

The spatial isolation of severely disturbed reefs from potential sources of larvae was 

particularly severe during the two most recent mass bleaching events in 2016 and 2017, after 

which damaged locations were as far as 400 km away from the closest relatively undisturbed 

reef (Figure 5.2c) and proportions of unbleached reefs within the vicinity of severely 

disturbed reefs were consistently low over a vast stretch of reef reaching over 1,400 km 

(Figure 5.3). The frequency of mass bleaching events is increasing rapidly throughout the 

tropics due to anthropogenic warming (Hughes et al. 2018a), and the return times of recurrent 

events is projected to be annual (i.e. every summer) at most locations by mid-century, 

depending on future emissions of greenhouse gasses (Van Hooidonk et al. 2016). 

 

Consistent patterns of spatial autocorrelation of bleaching and cyclone impact occurred across 

the three major habitat types, reef flats, crests, and upper slopes (Figure D-2), indicating that 

habitat-specific responses are synchronized at large spatial scales. On the Great Barrier Reef, 

bleaching in most taxa decreased gradually with depth, likely due to the attenuation of light 

(Baird et al. 2018). Coral species in deep water are, however, unlikely to significantly 
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contribute to re-seeding badly damaged coral populations in shallower habitats at the scale of 

the GBR (Bongaerts et al. 2017). 

 

The frequency and intensity of cyclones has not increased on the GBR in recent decades (e.g. 

Callaghan & Power 2011). Moreover, the lower patchiness and larger footprint of regional 

and global-scale bleaching events indicates that they now pose a much more severe threat to 

reef connectivity, recovery and resilience. Most cyclones that affect the GBR – including 

Cyclone Yasi – form offshore in the Coral Sea and travel westwards towards the Queensland 

coast, leaving a relatively narrow track of damage. Reefs damaged by Cyclone Yasi were not 

significantly more isolated from not severely disturbed reefs than expected under a random 

spatial distribution of damage (Figure 5.2c and Figure D-6). The proportion of not severely 

disturbed reefs within 100 km of a severely disturbed reef, while lower than expected by 

chance and lower than for the bleaching events in 1998 and 2002, was on average 

substantially higher than for the more recent bleaching events in 2016 and 2017 (Figure 

5.2c). 

 

After a cyclone event, nearby undamaged reefs provide a source of larvae to aid a rapid 

recovery (Torda et al. 2018). In contrast, the mechanisms of recovery of severely damaged 

reefs following regional-scale bleaching may be similar to the protracted rebound of naturally 

isolated oceanic reefs after severe disturbance (Gilmour et al. 2013): In the short-term, 

recovery may be due largely to the re-growth of remnant survivors, followed later by recovery 

of pre-disturbance levels of reproduction and recruitment. Allee effects due to low colony 

densities, particularly in rare species and those most vulnerable to thermal stress, will likely 

hamper reproductive success (e.g. Oliver & Babcock 1992) and increase per-capita rates of 

predation (Knowlton et al. 1990). This scenario is particularly likely for reefs in the central 

and Northern section of the Great Barrier Reef that experienced spatially extensive, severe 

bleaching during the back-to-back bleaching events in 2016 and 2017 (Figure 5.3). Severely 

disturbed reefs can still act as sources of larvae, but their reproductive output is typically 

suppressed (Gilmour et al. 2013; Hughes et al. 2019a). The future capacity of distant 

undisturbed reefs to significantly supplement the larval pool settling on isolated disturbed 

reefs may be undermined by the higher rates of local retention and coral larval mortality 

predicted for warming oceans (Figueiredo et al. 2014), increasing the risk of metapopulation 

collapse and extinction (Riegl et al. 2018). 
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The simple model illustrates mechanistically how the spatial extent and patchiness of 

disturbance can affect recovery pathways: wide-spread events pose a greater recovery 

challenge, and a longer recovery timescale. These findings parallel similar studies in other 

systems (Moloney & Levin 1996; Kallimanis et al. 2005; Liao et al. 2015). Liao et al. (2015), 

for instance, found that spatially autocorrelated disturbances exacerbated the extinction risk of 

short-distance dispersers but not species with long-distance dispersal. Similarly, Moloney & 

Levin (1996) showed that plant species with local dispersal faced an elevated extinction risk 

under more severe disturbance regimes.  

 

The model captures only one axis of variation between species, their dispersal capacity, and 

thus neglects the full spectrum of coral life history strategies and important demographic 

trade-offs. For instance, brooding coral species have a comparatively limited dispersal 

capacity compared to mass spawners, but many brooding species reproduce multiple times per 

year. The potential advantages of short-distance dispersal such as higher rates of local 

retention in naturally isolated reefs (Keith et al. 2015), lower larval mortality rates due to 

shorter pelagic larval durations, and local adaptation (Warner 1997; Ayre & Hughes 2000; 

Burgess et al. 2016) are typically omitted from conceptual models (Moloney & Levin 1996; 

Kallimanis et al. 2005; Liao et al. 2015). Ultimately, the implications of reduced connectivity 

on assemblage structure and the persistence of individual species will depend on the complex 

interactions between a species’ entire life history, intra- and interspecific differences in 

disturbance susceptibility, and shifts in the extent, severity and frequency of recurrent 

disturbances.  

 

The study of ecological patterns requires careful consideration of the different spatial, 

temporal and organisational scales across which they can vary (Levin 1992), particularly 

when examining the spatial patterns of disturbances. The perceived homogeneity or 

heterogeneity of a disturbance can vary across spatial scales, and thus depends on the scale of 

observation. For my analysis, I aggregated scores at the scale of individual reefs to 

standardize the scale of observation of both the bleaching and cyclone surveys. While the 

reef-scale is appropriate for studying regional patterns along the length of the Great Barrier 

Reef and impacts on reef connectivity, the heterogeneity of disturbances at finer spatial scales 

affects many ecological processes, such as gamete fertilization success (10s to 100s of metres) 

(Oliver & Babcock 1992; Teo & Todd 2018) and natural selection (micro-habitat scale) 

(Hoogenboom et al. 2017). Although consistent patterns of spatial clustering across habitat 
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types (Figure D-2) and sites within reefs (Figure D-4) suggest that between-reef patterns of 

spatial clustering were not sensitive to the local-scale patchiness of disturbances (e.g. Green et 

al. 2019), the cross-scale spatial patterns of reef disturbances merit further exploration.  

 

As the Great Barrier Reef enters uncharted territory, characterised by record-low coral cover 

(Australian Institute of Marine Science 2019) and an increasing shift towards more frequent, 

larger and more intense disturbances, our ability to predict the response of individual species, 

communities and the entire ecosystem will depend on a comprehensive understanding of the 

multi-faceted shifts in reef disturbance regimes. Clearly, the larger spatial footprint and 

clustering, of mass coral bleaching events, and their increasing frequency, poses an 

unprecedented threat to coral reef ecosystems, superimposed on a pre-existing disturbance 

regime that is also changing. The simultaneous depletion of coral populations at the scale of 

hundreds of kilometres undermines the connectivity of populations, even of long-distance 

dispersers, and is already fundamentally altering reef recovery dynamics (Hughes et al. 2019a). 
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Chapter 6: General discussion 

Much has changed on the world’s coral reefs since the first detailed studies of coral population 

dynamics revealed the peculiarities of their colonial life histories (Hughes & Jackson 1980, 

1985; Hughes 1984). Coral abundances have declined dramatically in many parts of the world 

(Gardner 2003; Wilkinson 2008; De’ath et al. 2012) and the effects of global warming are 

taking an increasing toll on coral populations and coral reef ecosystems (Hughes et al. 2017b, 

2018b, a). Australia’s Great Barrier Reef, the world’s largest coral reef ecosystem, has 

experienced three mass coral bleaching events within the last five years (2016, 2017 and 2020). 

The effects have devastated coral populations, depleting brood stocks at spatial scales that 

undermine the connectivity and recovery of affected populations (Hughes et al. 2019a). 

Thermal conditions that induce heat stress in corals causing bleaching and mass mortality are 

expected to occur annually on most reefs around the world by the end of the 21st century. The 

unprecedented spatial scale, and frequency, of reef disturbances poses severe challenges to the 

resilience of coral populations, and the need for large-scale coral demography is greater than 

ever (Edmunds & Riegl 2019).  

 

This thesis explores multiple dimensions of the threats facing the viability of coral populations 

and species in the Anthropocene, by filling gaps in our understanding of demographic trends at 

large spatial and temporal scales (Figure 1.1). To overcome the scarcity of ecological data at 

such scales, I integrated ecological and biophysical data from various sources and devised a 

method that allows leveraging the potential of routinely collected monitoring data for 

demographic inference. I first estimated the total number of coral colonies inhabiting shallow-

water coral reefs in the Pacific Ocean, as well as the population sizes of more than 300 Indo-

Pacific coral species at biogeographic scales. These estimates show that while local and 

ecological extinctions may be plausible scenarios for the Indo-Pacific coral fauna, their risk of 

global extinction is lower than previously estimated (Carpenter et al. 2008) (chapter 2). For the 

remaining chapters I shifted my attention to Australia’s Great Barrier Reef. In chapter 3, I 

examined decadal shifts in the colony size structure of coral populations along the Great Barrier 

Reef. This study revealed a systematic depletion of coral brood stocks and a disproportionate 

decline in the abundance of small colonies, indicative of declines in recruitment rates. In chapter 

4, I developed a method that reconstructs the true colony size structure underlying a distribution 
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of measured intercept lengths. By facilitating the integration of routinely collected LIT data 

with size-dependent demographic traits (e.g. size-fecundity relationship) and tools (e.g. 

structured population models), this method allows demographic inference beyond changes in 

coral cover or relative shifts in colony size structure (chapter 3), which I demonstrated by 

calculating decadal changes in the reproductive output of coral populations on the GBR. 

Finally, in chapter 5, I contrasted the spatial footprint and patchiness of four mass coral 

bleaching events (in 1998, 2002, 2016 and 2017) and a severe tropical cyclone (Yasi, in 2011). 

This comparison revealed that mass bleaching events pose an unprecedented challenge to the 

connectivity and recovery of coral populations. These events deplete coral populations across 

wide spatial scales and thus undermining the resilience conferred by external recruitment.  

 

The findings of this thesis emphasize the urgent need to study demographic trends in corals 

beyond changes in total coral cover. Specifically, I examined interspecific (chapter 2), 

intraspecific (chapters 3 and 4) and spatial patterns (chapter 5) in coral abundance to reveal 

important insights into the viability of species and populations. While the collection of species-

level abundance data goes beyond the scope of most monitoring programs, abundance data that 

allow the examination of changes in colony size structure in major taxa would greatly enhance 

our ability to assess demographic trends such as trends in recruitment and fecundity not 

captured by changes in cover. Severely depleted populations are susceptible to Allee effects 

due to the density-dependent fertilization success of coral gametes (Oliver & Babcock 1992). 

In chapter 4, I demonstrated how commonly collected line-intercept data can be used to estimate 

the density of conspecific colonies, and the density of their gamete production. Colony size data 

will become increasingly important as coral populations continue to decline (Dornelas et al. 

2017; Edmunds & Riegl 2019). The implications of spatial disturbance patterns and habitat 

fragmentation for population connectivity, recovery and viability have long been recognized in 

landscape and disturbance ecology (Moloney & Levin 1996). The capacity for long-distance 

larval dispersal and external recruitment subsidy allows corals to persist in the naturally 

fragmented and frequently disturbed reef habitat. However, the spatial footprint of mass 

bleaching events increasingly depletes coral populations at scales that exceed even the dispersal 

capacity of broadcast spawning corals. Consideration of the spatial patterns of these recent mass 

mortality events may improve our understanding of post-disturbance recovery. 

 

The results presented in this thesis provide interesting avenues for further research. The 

approach outlined in chapter 2 may, for instance, be used to assess temporal trends in the 
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numerical abundance of metacommunities or species, or to estimate the total number of corals 

inhabiting the Great Barrier Reef or the total number of colonies lost during recent mass 

bleaching events in 2016, 2017 and 2020. Such estimates could inform the scalability of reef 

restoration projects, similar to comparable studies in trees (Crowther et al. 2015; Bastin et al. 

2019). They can also serve as benchmarks for DNA-based estimates of effective population 

sizes, an important parameter in population genetics and conservation biology (Frankham 

1995). The effective population sizes of marine invertebrates like corals are typically many 

orders of magnitude smaller than their census population sizes (Hughes et al. 1992; Ovenden 

et al. 2007). The presented method to reconstruct the colony size structure from line-intercept 

data (chapter 4) could be used, in combination with structured population models, to project 

likely population trajectories including recovery of pre-disturbance population sizes or size 

structures, or to estimate the time to extinction of different species. Beyond demography, this 

method may find application in studies of changes in the morphological composition of 

communities (Zawada et al. 2019) or of ecological processes and functions that depend on 

colony size such as the provision of structural habitat complexity. Further, a revision of analyses 

based on biased approximations of colony size, such as using the intercept as the radius (Zawada 

et al. 2019) or diameter (Connolly et al. 2005) of a circle, may also be worthwhile.  

 

Expanding the toolbox of coral reef ecologists 

Coral reefs are entering an uncertain future, marked by escalating disturbance regimes (Hughes 

et al. 2018a) causing frequent mass mortality events (Hughes et al. 2017b), shifts in assemblage 

structure (Hughes et al. 2018b), and impaired reef recovery processes (Hughes et al. 2019a). 

Our ability to predict the fate of these coral populations and communities will depend on the 

availability of ecological data (Edmunds & Riegl 2019). Advances in marine monitoring 

technologies (Hedley et al. 2016), curated databases of existing data (Madin et al. 2016; 

Salguero-Gómez et al. 2016a), the development of new quantitative tools, and the integration 

of data from different sources present promising new avenues for coral reef research at large 

spatial and long temporal scales. For instance, at the local scale, reef photo-mosaics provide an 

unprecedented resolution of the structure and dynamics of reef populations and communities 

(e.g. Edwards et al. 2017). At the regional to global scale, remote sensing data have become 

integral to the study and management of coral reef ecosystems, for instance, by facilitating the 

monitoring and forecasting of marine heatwaves (Liu et al. 2014) and the mapping of the global 

distribution of coral reefs in unprecedented detail (Allen Coral Atlas 2020).  
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Detailed studies of coral population dynamics have been conducted since the 1980s (Hughes 

1984) but are time-consuming and hence cost-prohibitive for the purpose of monitoring 

populations at large spatial scales. However, structured population models have been published 

for a wide variety of coral species and present a hitherto under-explored source of demographic 

data for corals. In other organisms structured population models have been used to discern 

patterns in life history strategies (Salguero-Gómez et al. 2016b; Healy et al. 2019), to identify 

life history characteristics that confer demographic resilience (Stott et al. 2010; Capdevila et al. 

2020) or to identify more easily measurable functional traits that can be used as proxies of life 

history strategy, such as wood density or seed mass in plants (Adler et al. 2014). Frameworks 

of coral life history strategies have thus far relied on functional traits such as corallite diameter 

and skeletal density and other ecological data such as depth range (Darling et al. 2012). A new 

quantitative framework of coral life history strategies based on available demographic data is 

urgently needed to cross-validate and complement trait-based approaches and would enhance 

our understanding of patterns in coral life history strategies and of trends in population and 

community changes.  

 

Conclusions 

In summary, this thesis provides new insights into demographic trends in corals at large spatial 

and long temporal scales. At such scales, studies have largely relied on trends in total coral 

cover (De’ath et al. 2012) and expert opinion (Carpenter et al. 2008) rather than quantitative 

analyses that reflect the size-dependent life histories of corals, their vast geographic ranges and 

their capacity for, but also dependence on, long-distance larval dispersal. While my analyses 

have shown that the long-term viability of coral populations is increasingly jeopardized, 

particularly due to the increasing frequency (Hughes et al. 2018a) and unprecedented spatial 

footprints (chapter 5) of mass coral bleaching events, the risk of global extinction within the 

next few decades is low for the vast majority of Indo-Pacific coral species. This highlights the 

urgent need and potential of curbing greenhouse gas emissions to mitigate anthropogenic global 

warming, to allow for an eventual recovery of coral reef assemblages.  
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Appendix B 

 

Publications not arising from this thesis 
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Global warming impairs stock–recruitment dynamics of corals. Nature, 568, 387–390. 
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Appendix C 

 

Supplementary Material for Chapter 2 

 

Table C-1 Fitted parameters of unified model. Table showing for each metacommunity, the 

fitted parameters of the unified model, the size of the species pool, the number of observed 

and unobserved species, as well as the combined abundance of all unobserved species relative 

to the combined abundance of all species in the species pool. 

Region Habitat mu sig a b 

Species 

pool Observed Unobserved 

% combined 

abundance of 

unobserved species 

Indonesia crest 0.31 1.56 4.41 1.59 256 205 51 1.9 

Indonesia flat 0.49 1.59 6.22 1.63 148 122 26 1.6 

Indonesia slope 0.26 1.71 4.54 1.70 293 227 66 1.7 

Papua New Guinea crest 0.26 2.04 4.87 1.63 177 130 47 1.1 

Papua New Guinea flat 0.41 1.60 5.64 1.49 137 108 29 2.1 

Papua New Guinea slope 0.39 1.59 4.16 1.70 251 211 40 1.1 

Solomon Islands crest 0.15 2.04 4.20 1.28 158 96 62 2.4 

Solomon Islands flat 0.32 1.43 5.11 1.47 101 79 22 3.5 

Solomon Islands slope 0.39 1.53 2.97 1.39 210 177 33 1.3 

American Samoa crest 0.43 1.45 5.45 1.37 64 51 13 2.8 

American Samoa flat 0.23 1.97 7.43 1.48 49 32 17 3.2 

American Samoa slope 0.56 1.81 4.38 1.73 102 88 14 0.5 

French Polynesia crest 0.12 2.94 4.43 1.43 69 40 29 0.5 

French Polynesia flat 0.57 1.67 4.26 1.43 46 39 7 1.0 

French Polynesia slope 0.58 2.46 3.56 1.51 69 56 13 0.2 
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Table C-2 Geographic location of the fifteen islands across five regions at which species 

abundances were measured. Coordinates are given in degrees latitude and longitude. 

 
Region Island/Location Latitude Longitude 

Indonesia Manado, North Sulawesi 1.62 N 124.76 E 

Indonesia Wakatobi, South Sulawesi 5.45 S 123.76 E 

Indonesia Bird’s Head, Irian Jaya  0.34 S 130.4 E 

Papua New Guinea Madang 5.21 S 145.82 E 

Papua New Guinea Kimbe Bay, New Britain 5.43 S 150.1 E 

Papua New Guinea Kavieng, New Ireland 2.62 S 150.7 E 

Solomon Islands Uepi Island 8.42 S 157.94 E 

Solomon Islands Munda, New Georgia 8.36 S 157.24 E 

Solomon Islands Gizo Island 8.11 S 156.86 E 

American Samoa Tutuila Island 14.32 S 170.7 W 

American Samoa Ofu Island 14.17 S 169.68 W 

American Samoa Tau Island 14.24 S 169.47 W 

French Polynesia Raiatea Island 16.79 S 151.49 W 

French Polynesia Moorea Island 17.54 S 149.83 W 

French Polynesia Tahiti Island 17.64 S 149.44 W 
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Table C-3 Coral reef habitat maps compiled from different sources 
 

Location Region Source Lat Lon 

Manua American Samoa NOAA_NCCOS -14.2 -169.7 

Rose Atoll American Samoa NOAA_NCCOS -14.5 -168.2 

Swains Island American Samoa NOAA_NCCOS -11.1 -171.1 

Tutuila American Samoa NOAA_NCCOS -14.3 -170.7 

Sarigan CNMI NOAA_NCCOS 16.7 145.8 

Tinian CNMI NOAA_NCCOS 15 145.6 

Saipan CNMI NOAA_NCCOS 15.2 145.7 

Rota CNMI NOAA_NCCOS 14.1 145.2 

Agrihan CNMI NOAA_NCCOS 18.8 139.7 

Alamagan CNMI NOAA_NCCOS 17.6 145.8 

Anatahan CNMI NOAA_NCCOS 16.4 145.7 

Asuncion CNMI NOAA_NCCOS 19.7 145.4 

Medinilla CNMI NOAA_NCCOS 16 146.1 

Guguan CNMI NOAA_NCCOS 17.3 145.8 

Pajaros CNMI NOAA_NCCOS 20.5 144.9 

Maug CNMI NOAA_NCCOS 20 145.2 

Pagan CNMI NOAA_NCCOS 18.1 145.8 

Aguijan CNMI NOAA_NCCOS 16.4 145.7 

Palmerston Cook Islands Living Oceans Foundation -18 -163.2 

Rarotonga Cook Islands Living Oceans Foundation -21.2 -159.8 

Danajon Fiji Roelfsema et al. 2013 10.2 124.1 

Kadavu Fiji Roelfsema et al. 2013 -19 178.2 

Cicia Fiji Living Oceans Foundation -17.7 -179.3 

Fulaga Fiji Living Oceans Foundation -19.1 -178.6 

Kobara Fiji Living Oceans Foundation -19 -179 

Mago Fiji Living Oceans Foundation -17.4 -179.2 

Moala Fiji Living Oceans Foundation -18.6 179.9 

Nayau Fiji Living Oceans Foundation -18 -179 

Totoya Fiji Living Oceans Foundation -18.9 -179.8 
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Tuvuca Fiji Living Oceans Foundation 17.7 -178.8 

VanuaBalavu Fiji Living Oceans Foundation -17.2 -178.9 

VanuaVatu Fiji Living Oceans Foundation -18.4 -179.3 

Aratika French Polynesia Living Oceans Foundation -15.5 -145.5 

Bellingshausen French Polynesia Living Oceans Foundation -15.8 -154.5 

Hao French Polynesia Living Oceans Foundation -18.2 -140.9 

Huahine French Polynesia Living Oceans Foundation -16.8 -151 

Maiao French Polynesia Living Oceans Foundation -17.7 -150.6 

Maria Oeste French Polynesia Living Oceans Foundation -21.8 -154.7 

Mopelia French Polynesia Living Oceans Foundation -16.8 -154 

Raivavae French Polynesia Living Oceans Foundation -23.9 -147.7 

Rimatara French Polynesia Living Oceans Foundation -22.6 -152.8 

Rurutu French Polynesia Living Oceans Foundation -22.5 -151.3 

Scilly French Polynesia Living Oceans Foundation -16.5 -154.7 

Tahaa and Raiatea French Polynesia Living Oceans Foundation -16.7 -151.5 

Tetiaroa French Polynesia Living Oceans Foundation -17 -149.6 

Tubuai French Polynesia Living Oceans Foundation -23.4 -149.5 

Tupai French Polynesia Living Oceans Foundation -16.3 -151.8 

Guam Guam NOAA_NCCOS 13.4 144.6 

Isle of Pines New Caledonia Living Oceans Foundation -22.6 167.8 

Palau Palau NOAA_NCCOS 7.3 134.5 

Kubulau Philippines Roelfsema et al. 2013 -16.9 179 

Roviana Solomon Islands Roelfsema et al. 2013 -8.4 157.3 

Gizo Solomon Islands Living Oceans Foundation -8 157 

Sikopo and Kerehikapa Solomon Islands Living Oceans Foundation -7.5 158.2 

Reef Islands Solomon Islands Living Oceans Foundation -10.2 166.4 

Marovo Solomon Islands Living Oceans Foundation -8.6 158.4 

Malakobi Solomon Islands Living Oceans Foundation -7.4 158.1 

Vanikoro Solomon Islands Living Oceans Foundation -11.7 167.1 

Utupua Solomon Islands Living Oceans Foundation -11.2 166.7 

Vavau Tonga Living Oceans Foundation -18.6 -174 
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Haapai Tonga Living Oceans Foundation -19.9 -173.9 

     
     
NOAA NCCOS: National Oceanic and Atmospheric Administration’s (NOAA) National 

Centers for Coastal Ocean Science (NCCOS).  

Link: https://products.coastalscience.noaa.gov/collections/benthic/default.aspx  

     
Living Oceans Foundation: Reef habitat data from the Khaled bin Sultan Living Oceans 

Foundation were obtained manually using the “habitat analysis tool” of the KSLOF’s 

online, interactive World Reef Map.  

Link: https://www.livingoceansfoundation.org/maps/  
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Figure C-1 The proportion of a species’ geographic range contained by the boundary of the 

study. For almost all examined species at least 70% of their geographic range (defined as total 

reef area or area of occupancy rather than extent of occurrence) lies within the domain of the 

study. Hence, the presented estimates of population size are conservative compared to global 

totals.  
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Figure C-2 The regional abundance ranks of hyperdominant coral species. For each of the 17 

hyperdominant species, their abundance ranks in each of the regions across their geographic 

range are shown. While most globally hyperdominant species rank among the most common 

species in regions throughout their range, some are rare or were not observed at all in parts of 

their geographic range. 
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Figure C-3 Coral population sizes and IUCN Red List status. a, The distribution of 

population sizes by IUCN Red List conservation status. b, The distribution of population sizes 

by regrouped conservation status (low risk: least concern or near threatened, elevated risk: 

vulnerable or endangered). Boxplots show centre line (median), box limits (upper and lower 

quartiles) and whiskers (×1.5 interquartile range). c, Effect size plot showing the estimates 

and 95% credible intervals of pairwise contrasts. An intersection of the 95% credible interval 

with the dashed vertical line (effect size = 1) indicates non-significant differences. 
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Figure C-4 Schematic overview of analysis. Flow diagram showing how physical and 

ecological data were used to estimate the total number of colonies in the study area and of the 

population sizes of 318 Indo-Pacific coral species.  
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Figure C-5 Map showing the spatial extent of the study. I used the marine provinces defined 

in Spalding et al. (2007) to delineate the spatial extent or domain of the analysis, stretching 

from Indonesia in the west to French Polynesia in the east.  

 

20°S

0°

20°N

100°E 140°E 180° 140°W
Longitude

La
tit

ud
e

Marine Province
Central Polynesia
Easter Island
Eastern Coral Triangle
Java Transitional
Lord Howe and Norfolk Islands
Marquesas

Marshall, Gilbert and Ellis Islands
Northeast Australian Shelf
Northwest Australian Shelf
Sahul Shelf
South China Sea
South Kuroshio

Southeast Polynesia
Sunda Shelf
Tropical Northwestern Pacific
Tropical Southwestern Pacific
Western Coral Triangle



  

Appendices 119 

 
Figure C-6 Proportion of total reef classified as live-coral dominated slope, crest, flat and 

“other” habitat. a, The proportions of live-coral dominated reef slope, crest, flat and other 

habitat types relative to the total mapped reef area. Boxplots show centre line (median), box 

limits (upper and lower quartiles) and whiskers (×1.5 interquartile range). Blue dots (l) and 

lines (—) indicate the fitted parameter estimates and the corresponding 95% credible interval. 

b, Boxplot showing distribution of colony density estimates for the reef flat, reef crest and 

reef at each of the 60 sites where species abundances were surveyed. c, Density plots showing 

the posterior distributions of the estimated proportions of the total reef classified as live-coral 

dominated crest, flat, slope and “other” habitat before (red) and after (blue) rescaling by 

relative colony densities. 
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Figure C-7 Model inputs and outputs for predicting coral abundances. a, Frequency 

distribution of coral cover from 931 locations throughout the study domain (Bruno 2016; 

Bruno & Valdivia 2016). b, Frequency distribution of coral cover for 60 sites where species 

abundances were surveyed. Medians (vertical black line) of coral cover estimates are 

comparable. c, Frequency distribution of colony density estimates at species abundance 

survey sites (reef slope, crest and flat at four sites on three islands in each of five regions). d, 

Frequency distribution of interpolated grid cell-level coral cover data. e, Model fit of 

Bayesian generalised additive model used to predict the colony density in each grid cell given 

its interpolated coral cover. Each point corresponds to one of 60 species abundance survey 

sites and the blue ribbon indicates the 95% credible interval of the fitted Bayesian generalised 

additive model. f, Frequency distribution of predicted colony density estimates at the grid cell 

level (only grid cells with reef area > 0 are included). 
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Appendix D 

 

Supplementary Material for Chapter 5 

 

Table D-1 Comparison of disturbance severity scores for coral mass bleaching (Hughes et al. 

2017b) and Cyclone Yasi (Beeden et al. 2015). 

 
Score  Coral bleaching  Cyclone Yasi 

Ordinal Binary  % bleached  Cyclone damage index Damage level description 

0 

0 (not severe) 

 < 1 %  0 No damage 

1  1 – 10 %  10 – 30 Minor coral damage 

2  10 – 30 %  40 – 75 Moderate coral damage 

3 

1 (severe) 

 
30 – 60 % 

 
100 – 120 

High coral damage/ 

Minor reef damage 

4 
 

> 60 % 

 
150 – 200 

Severe coral damage/ 

Moderate reef damage 

5 
  

300 - 400 
Extreme coral damage/ 

High reef damage 
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Table D-2 Overview of model parameters. 

Parameter Value 

Number of cells 100 x 100 

Annual percentage of cells experiencing background mortality 50% 

Background mortality rate (% decline in coral cover) 15% (of cover) 

Catastrophic mortality (% decline in coral cover) 60% (of cover) 

Deterministic annual growth 5% (of cover) 

Years till large-scale disturbance  30 years 

Total time horizon 150 years 

Degrees of spatial autocorrelation Random/none, low,  

medium, high 

Magnitude: percentage of cells affected by disturbance 0 – 100% 

“Larval” production of source cell spread across sink cells as 

contribution to coral growth 

10% (of cover) 
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Figure D-1 Loss of coral cover due to 2016 bleaching event and Cyclone Yasi. Four levels of 

damage from bleaching were recorded (Hughes et al. 2018b), and five levels from Cyclone 

Yasi (Beeden et al. 2015). The dashed vertical line indicates the threshold chosen to delineate 

threshold between not severe and severe.  
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Figure D-2 The spatial clustering of disturbances by habitat type. Spline cross-correlograms 

showing the distance decay of spatial autocorrelation in disturbance severity in three habitats 

– reef crest, flat and slope, for the bleaching event in 2017 and Cyclone Yasi in 2011. Ribbons 

show 95% uncertainty interval. 
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Figure D-3 Correlograms of disturbance events using different data transformations. Figure 

D-Three transformations – binary, interval mid-point and ordinal – were applied to Cyclone 

Yasi and the four bleaching episodes. 
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Figure D-4 Spline cross-correlograms of disturbance events using original, site-level data and 

reef aggregates.  
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Figure D-5 Pairwise comparisons of posterior effect sizes for spatial isolation metrics and 

each combination of disturbance events. (a) Pairwise comparison for proportion of not 

severely disturbed reefs within 100km of a severely disturbed reef. (b) Pairwise comparison 

for minimum distance to not severely disturbed reef for each severely disturbed reef. Shaded 

curves indicate the distribution of the posterior contrasts, circles the posterior medians, thick 

lines the 50% uncertainty intervals and thin lines the 95% uncertainty intervals. Effect sizes 

indicate differences in proportions (a) and fractional difference in distances (b) between the 

posterior distributions of two events and the dashed lines indicate the reference for no 

difference between two disturbance events. 

  

Back−to−back − 2002 Bleaching
2016 Bleaching − 2002 Bleaching
2017 Bleaching − 2002 Bleaching

Back−to−back − 1998 Bleaching
2016 Bleaching − 1998 Bleaching

Back−to−back − 2011 Cyclone Yasi
2017 Bleaching − 1998 Bleaching

2016 Bleaching − 2011 Cyclone Yasi
2017 Bleaching − 2011 Cyclone Yasi
2011 Cyclone Yasi − 2002 Bleaching

Back−to−back − 2017 Bleaching
2011 Cyclone Yasi − 1998 Bleaching

Back−to−back − 2016 Bleaching
2017 Bleaching − 2016 Bleaching
2002 Bleaching − 1998 Bleaching

−0.50 −0.25 0.00 0.25
Effect size

(a)

2002 Bleaching − 1998 Bleaching

2017 Bleaching − 2016 Bleaching

2011 Cyclone Yasi − 1998 Bleaching

2011 Cyclone Yasi − 2002 Bleaching

2017 Bleaching − 2011 Cyclone Yasi

2016 Bleaching − 2011 Cyclone Yasi

2017 Bleaching − 1998 Bleaching

2016 Bleaching − 1998 Bleaching

2017 Bleaching − 2002 Bleaching

Back−to−back − 2016 Bleaching

2016 Bleaching − 2002 Bleaching

Back−to−back − 2017 Bleaching

Back−to−back − 2011 Cyclone Yasi

Back−to−back − 1998 Bleaching

Back−to−back − 2002 Bleaching

0.5 1.0 2.0 4.0
Effect size

(b)



 

128 Appendices 

 

 
Figure D-6 Comparison of distance metrics to null expectation under random spatial 

distribution of impact. (a) For each disturbance event the posterior distribution of the 

proportion of not severely disturbed reefs within 100 km of a severely disturbed reef relative 

to the corresponding null expectation is shown. (b) For each disturbance event the posterior 

distribution of the distance to the nearest not severely disturbed reef relative to the 

corresponding null expectation is shown. Shaded area indicates posterior distribution, black 

circles the posterior medians, thick lines the 50% uncertainty interval and thin lines the 95% 

uncertainty intervals. Dashed lines indicate the reference for no difference from null 

expectation.  
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Figure D-7 Spatial patterns of disturbances with different degrees of spatial autocorrelation 

from highly spatially autocorrelated (top) to randomly distributed in space (bottom). Panels in 

the right column show discretisation of disturbance pattern for disturbances with magnitude 

equal to 0.5, i.e. half the cells are affected. 
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Figure D-8 Dispersal kernels of short-distance and long-distance dispersers. Top: Proportion 

of larvae dispersing from source (centre) to sink populations/cells. Long-distance dispersers 

have low levels of local retention and ability to disperse to second-order neighbours. Short-

distance dispersers retain half of their larvae locally and disperse only to adjacent cells. 

Bottom: total proportion of larvae locally retained, dispersing to adjacent cells and to second-

order neighbouring cells.  
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