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ABSTRACT 

Archaeological data and demographic modelling suggest that the peopling of Sahul required 

substantial populations, occurred rapidly within a few thousand years, and encompassed 

environments ranging from hyper-arid deserts to temperate uplands and tropical rainforests. 

How this migration occurred, and how humans responded to the physical environments they 

encountered have, however, remained largely speculative. By constructing a high-resolution 

Digital Elevation Model for Sahul and coupling it with fine-scale viewshed analysis of 

landscape prominence, least-cost pedestrian travel modelling, and high-performance 

computing, we create over 125 billion potential migratory pathways, whereby the most 

parsimonious routes traversed emerge. Our analysis revealed several major pathways—super-

highways—transecting the continent, that we evaluated using archaeological data. These 

results suggest that the earliest Australian ancestors adopted a set of fundamental rules 

shaped by physiological capacity, attraction to visually prominent landscape features, and 

freshwater distribution to maximise survival, even without previous experience of the 

landscapes they encountered.  

  

Introduction 

The ability of humans to expand our range rapidly and efficiently exploits a capacity to 

modify the environment for our benefit1, and to occupy a wide ecological niche. Humans are 

capable not only of switching food sources when required2–4, but also of migrating to more 

favourable environments quickly as the need arises5, and adapting to changing environmental 

conditions6. This ecological versatility7 has enabled our rapid global expansion without 

requiring expensive evolutionary adaptation to micro-environments or even extensive 

technological modifications.  

But have modern humans always had the capacity to exploit novel environments rapidly 

and efficiently? One way to answer this question is to examine the ecological limits of 

migrations of the groups of modern humans who exited Africa as early as 120,000 years ago 

to people the rest of the world. Foundational studies of these migratory events can be traced 

to the 19th Century8,9, and they continue to be refined as researchers investigate the first Out-

of-Africa events10, the peopling of the Americas11, the exploration of the South Pacific12, and 

the peopling of Australia13. Yet our understanding of such movements is often only 

conceptual, the result of interpolation or inference among points across landscapes where 

sparse archaeological investigations have occurred. Genomic research has shed some light on 
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movements of people across Eurasia and elsewhere14; however, even these analyses are 

constrained by the availability of underlying data and the temporal resolution of the genetic 

process underlying the patterns. While increasingly complex analytical approaches are being 

adopted to fill the gaps among rare spatial data, such as spatio-temporal analysis of 

radiocarbon dates15 and agent-based/cellular-automaton models5,16–19, such models frequently 

have to make assumptions about demographics and speed of dispersal. 

We overcome these limitations here by developing an approach that objectively generates 

parsimonious corridors of movement over an entire continent without assuming any 

particular human demographic rates or any other variables for which few data currently exist; 

the From Everywhere To Everywhere approach20 (see Methods). This allows an agnostic 

identification of the most-probable routes by which people would have first populated an 

entire continent.  

The super-continent of Australia and New Guinea that was connected during much of the 

late Quaternary—known as the continent of Sahul (Fig. 1)—provides a case study to test and 

examine human migration into novel landscapes using this approach. We apply this method 

to generate corridors of movement over Sahul at the broadest spatial scales yet considered. 

We couple fine-resolution palaeo-geographic and hydrological data with physiological 

characteristics of hunter-gatherers21 to identify optimal routes across the continent—super-

highways—that we then evaluate against the available archaeological data. In addition to 

providing an improved quantification of likely routes traversed during the initial peopling of 

this landscape, our methodology can be applied to any of the current spatio-temporal debates 

on human migration events since the late Pleistocene.  

Studying migratory events into Sahul 50,000–70,000 years ago is potentially illuminating, 

providing the challenge of a novel landscape, novel faunal types, and a landscape devoid of 

other hominins. While our understanding of the possible oceanic-voyaging pathways through 

the islands of modern eastern Indonesia into Sahul is relatively more advanced—derived 

from studies of least-cost paths22, palaeogeography23–25, inter-visibility24–26, and coupled 

demographic-drift voyaging models27—explaining how people likely traversed the large and 

diverse continent of Sahul once they arrived so far remains largely speculative28. 

There have been even fewer attempts to quantify how this movement of people occurred 

or where likely impacts were concentrated. Birdsell29 speculated that people moved rapidly in 

all directions from their arrival point, whereas Bowdler30 hypothesised that people initially 

followed the coasts before occupying the interior. Horton31 and Tindale32 further argued that 

people initially moved through the relatively wetter northern and eastern inland woodlands 
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along riverine corridors and then the coast. More recent studies have reworked these various 

hypotheses to consider a range of biogeographic33,34, ecological/climatic35,36, and 

sociological/technological37,38 determinants. For example, O’Connell and Allen28,39 drew on 

the concept of optimal foraging theory to propose a conceptual model of human movement 

throughout the continental interior driven by resource availability, with the major river basins 

representing the most-attractive environments to human foragers. Most recently, Bird et al.40 

hypothesised pathways for movement based on the distance to water and a travel-cost 

surface, leading the way toward identifying the mechanisms underlying how these 

movements might have occurred.  

Of course, several challenges arise with examining the movement of people 70,000 years 

ago, including attempting to capture the demographics of the travellers, the ways that 

geography and ecology provided constraints to, or opportunities for, movement, and the 

choices people made to explore the open space. Yet, previous research has established that 

extant hunter-gatherers use space in similar ways to other animals41–43. The models we 

present here build on this literature and show how human decision-making in novel 

landscapes can lead to distinct patterns of movement that are detectable via advanced 

computational methods. 

By exposing the underlying geological attributes—or baseline landscape structure—of the 

continent while incorporating models that encapsulate decision-making via visual landform 

prominence44, water distribution, and anisotropic (directionally dependent) movement, we 

identified a network of optimal movement corridors transecting one of the driest inhabited 

continents on Earth31. Comparing the emergent corridors to the distribution of known 

archaeological sites dating to ≥ 35,000 years ago, we demonstrate that the most parsimonious 

paths correspond closely to regions of earliest occupation. Our results emphasise the 

extraordinary cultural plasticity of humans to adapt to novel and challenging environments 

rapidly and efficiently. Our findings are also critical for modern policy and land-management 

issues; since our results suggest fundamental rules for migration, highlighting the important 

routes and pathways that populations used to survive arid conditions and climatic disruption 

in the past, these same rules could be used to highlight important routes and pathways that 

populations may employ in the future in other regions, according to certain climate 

scenarios45,46.  

 

 

 



 
 

  5

 

Summary of Methods 

To examine how people entered Sahul >50,000 years ago, we first created a Sahul digital 

elevation model that links modern New Guinea, Australia, and Tasmania into one 

supercontinent (Supplementary Figures 1-2). Then, to examine how people traversed Sahul, 

we applied various weighting layers, including (i) a layer that calculates the visibility of all 

landforms across Sahul based on the topography from our Sahul digital elevation model (500 

m resolution; Supplementary Figure 4), and (ii) a layer that calculate streams with Strahler 

Order 9 (representing the most probable permanent bodies of water) extended to the coastline 

(Supplementary Figure 3). These layers are collated for our simulations to create Sahul’s 

topography, visual prominence, and a layer of permanent streams and rivers. 

To model the travellers, we applied ethnographic data on the movement characteristics of 

a typical 25-year-old woman, suggesting that, while male travellers might make longer 

forays, female travellers would likely be leading families into new territories and holding 

groups together. Using the physical characteristics of these women, we then simulate various 

scenarios of travel across Sahul using the From Everywhere To Everywhere modelling 

platform. We parameterise the travel function assuming the least anisotropically ‘costly’ 

movement (in terms of caloric expenditure) across the landscape, incorporating the weighting 

layers outlined above. Travellers in our simulations attempt to move from their origin point to 

their input destination point while minimising caloric costs. We ran these models enough 

times to create over 125 billion pathways, tracking every time a traveller passes through a 

pixel (500 m grid cells), thus creating pathways that transect Sahul. The number of times a 

pixel is crossed indicates the ‘attractiveness’ of that cell for movement. We then applied 

crossing thresholds to the pathways to indicate those in the 1%, 5%, and 10% attractiveness 

considered across simulations. 

To estimate which modelled paths were most likely migration routes, we developed 

statistical methods to compare the network of pathways against our archaeological data. We 

compiled a database of sites of ≥ 35,000 years old to create a concordance dataset. Next, we 

developed several goodness-of-fit metrics, including approximation of the Bayesian 

information criterion weight (wBICa) that assesses portions of paths, stitching together the 

paths that provide the highest likelihood of performance against our concordance 

archaeological dataset. This then gives relative probabilities of likelihood that paths were 

traversed. This taken together creates the paths we report below. We describe all methods in 

greater detail in the Methods, provide code in the Supplementary Data, and all model outputs 

are available freely on our GitHub repository. 
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Results 

Our results show several optimal pathways across Sahul according to the underlying datasets 

we applied: (1) a harmonised bathymetry/topography layer at 500 m resolution covering 

Sahul ~ 50,000 years ago combined with, (2) a hydrological network, propagated to the Sahul 

palaeocoastline and based on the topographic layer (Fig. 1), and (3) visual prominence, also 

developed from the topographic layer (Fig. 2).  

 Several highly ranked ‘super-highways’ are clearly visible (Fig. 3, Supplementary 

Figures 5-7, Table 1; see Methods), both around the continental margin (probability of 

choosing path p = 0.9947) and, perhaps more unexpectedly, through the continental interior 

(p = 0.9729). Table 1 reports the probability that Besag’s L, a multi-distance spatial cluster 

analysis (see Methods), exceeds the upper confidence limit of 10,000 random permutations. 

We discuss the ensuing probabilities in terms of equality (‘=’) to indicate a precisely 

estimated value, and the inequality (‘>’) to indicate that the estimated value is larger than 

what is stated, which is only used when the probability is close to 1.0 but exceeds the 

precision used for reporting (e.g., p = 0.99997 reported as p > 0.9999).  

Many ‘feeder’ routes extend from the hypothesised ‘southern route’ landfall26,27 in the 

northwest (p = 0.8496), to highly ranked corridors connecting known, old archaeological sites 

in the Kimberley, Pilbara, and Arnhem Land regions (Fig. 3; Supplementary Figure 13). The 

lesser-travelled fork of the highway that meanders along the edge of the Great Sandy Desert 

(p = 0.6489) aligns well with archaeological data including Parnkupirta (Lake Gregory) and 

Puritjarra (Cleland Hills), two of the earliest archaeological sites in the arid centre. This 

corridor, along with several others, converge to a single super-highway linking the northwest 

of Sahul through the centre (p = 0.9861), to Lake Eyre (LE, Fig. 3), and on to the southeast 

of the continent. A corridor through southern Sahul also passes close (20-50 km, a long day 

of walking) to known ≥ 35,000 year-old archaeological sites, including Devils Lair (Margaret 

River), Koonalda Cave (Nullarbor) and Warratyi rock shelter (Flinders Range), linking the 

southwest and southeast of the continent along the southern coast (p = 0.9709), close to the 

modern coastline. This super-highway runs east-west toward the south-eastern highlands 

through the northern Murray-Darling River system, close to well-documented early sites near 

Menindee Lakes (ML, Fig. 3). South-eastern Sahul is linked to Tasmania (p > 0.9999) via a 

corridor east of Lake Bass (LB, Fig. 3) (see Supplementary Data and Code for individual 

route probabilities). 
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Table 1. 0.005 DEGREE RESOLUTION Rank of models used to produce optimal path 
network. Origin = origin starting points; destination = destination points; thresh (%) = 
percentile of most frequent paths; c = proportion of Sahul land cells with a path generated at 
that percentile threshold for all Sahul; BICa = approximate Bayesian information criterion; 
wBICa = relative BICa weight of model (across all models, ΣwBICa = 1); p = probability that 
Besag’s L (multi-distance spatial cluster analysis) exceeds the upper confidence limit after 
10,000 random permutations (see Methods). Two parameters held constant in these tests: k 
number of model parameters, set to 4; n points = total number of points (archaeological sites) 
used to calculate statistics, set to 40 archaeological sites older than 35,000 years. Models that 
do not perform highly (p < 0.9) are reported in Supplemental Tables 2-7. 
 

rank origin destination weighting thresh (%) c BICa wBICa p 

1 coastline grid prominence 1 0.0012 4.2330 0.2644 0.9913 

2 grid grid prominence 1 0.0034 4.6730 0.2122 0.9602 

3 water grid prominence 1 0.0026 6.2100 0.0984 0.9835 

4 coastline coastline prominence 5 0.0019 6.9861 0.0667 0.9918 

5 coastline grid prominence 5 0.0058 7.4484 0.0530 0.9931 

6 water water prominence 1 0.0020 7.8145 0.0441 0.9946 

7 grid grid prominence 5 0.0172 7.9753 0.0407 0.9209 

8 coastline coastline prominence 10 0.0037 8.3627 0.0335 0.9966 

9 coastline water prominence 5 0.0036 8.6438 0.0291 0.9985 

10 coastline grid prominence 10 0.0116 8.9469 0.0250 0.9388 

11 grid grid prominence 10 0.0343 9.3189 0.0208 0.9408 

12 water grid prominence 5 0.0129 9.4852 0.0191 0.9562 

13 coastline coastline prominence 20 0.0075 9.7473 0.0168 0.9974 

14 coastline water prominence 10 0.0072 10.0304 0.0146 0.9981 

15 water grid prominence 10 0.0258 10.8737 0.0096 0.9552 

16 water water prominence 5 0.0099 11.0241 0.0089 0.9985 

17 water water rivers 5 0.0108 11.2172 0.0080 0.9909 

18 coastline water prominence 20 0.0144 11.4226 0.0073 0.9952 

19 coastline water rivers 20 0.0175 11.8649 0.0058 0.9696 

20 water water none 5 0.0160 12.0708 0.0053 0.9570 

21 water water prominence 10 0.0198 12.4105 0.0044 0.9984 

22 water water rivers 10 0.0216 12.5940 0.0040 0.9955 

23 water water none 10 0.0320 13.4515 0.0026 0.9597 

24 water water prominence 20 0.0396 13.8029 0.0022 0.9954 

25 water water rivers 20 0.0433 13.9809 0.0020 0.9953 

26 water water none 20 0.0640 14.8309 0.0013 0.9630 
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From the ‘northern route’ entry27,47 (Fig. 3) into the modern western tip of New Guinea, 

the main movement corridor is along the southern slopes of the New Guinea highlands (p = 

0.9112) linking to southern Sahul via the then-exposed Torres Strait region (p = 0.9171). 

From the southern Torres Strait region this corridor bifurcates, one corridor linking to 

Arnhem Land (p > 0.9999) around the northern shore of Lake Carpentaria, the other linking 

to south-eastern Sahul offshore of the modern eastern coastline (p = 0.9827). A more diffuse 

network of lower-ranked corridors crosses north-eastern Sahul (p = 0.5061)—aligning with 

ecological refuges centred on Lawn Hill and Gregory River systems—and south-western (p = 

0.5274) Sahul and its northernmost coast (p = 0.5484).  

No old archaeological sites are currently known within the large areas that are distant from 

identified movement corridors, apart from the Willandra Lakes system (WL, Fig. 3). In the 

case of Willandra Lakes, river avulsion after the Last Glacial Maximum led to the irreversible 

drying of what were permanent waterbodies during the period of early human arrival, which 

accounts for the lack of pathways revealed by our model in this area48–50. As our modelled 

freshwater comes from the Water Observations from Space dataset51, the lack of pathways 

approaching the Willandra Lakes system reflects the lack of forcing the model to conform to 

expectations, and rather allowing the paths to emerge parsimoniously from empirical data. 
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Fig. 1. Data layers used to create optimal pathways. Legend: Combined data layers used to 

create optimal pathways. Inset map: modern country boundaries superimposed on the 

coastlines of Sahul c. 50,000 years ago (during the approximate time of first human arrival). 

Main: Combined contemporary elevation data and bathymetric data. We defined the coastline 

as the -85 m isobath27 demonstrating the extent of the Sahul landmass toward the continental 

shelf. The approximated extent of large inland lakes (in blue) is delineated by palaeoshoreline 

elevation. A hydrologically-modelled stream network (Strahler order 9 and higher, in red) 

indicates the likely locations and extents of major rivers and their courses to the ancient coast 

during the time of initial peopling of the continent.  
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Visual-prominence aggregate viewshed for the entire Sahul landmass. Legend: Visual-

prominence aggregate viewshed for the entire Sahul landmass. Yellow = visually prominent 

features; dark blue = low visual prominence. Each cell (grid resolution of 0.004 degrees) 

contains a normalised value indicating how visible it is compared to every other cell. Red 

lines in the insets show sample output from a FETE run that used prominence weighting, 

which illustrates how much influence prominence has on the resulting network in that 

scenario. To create a layer of visual prominence for human travellers, the most visible 

locations are determined by beginning with the mean visibility after log-transforming the 

aggregate viewshed and keeping cells with values ≥ 3 standard deviations above the mean 

(i.e., only the most prominent locations remain). The prominence of several important 

mountain ranges, rocky ranges, and landforms are identifiable at this scale. The raw data 

underlying Figures 1 and 2 provide the foundation for our analyses. The modern coastline is 

visually prominent at the lower sea level around much of the continent, likely due to the 

modern coastline creating strong erosional features. LC = Lake Carpentaria; LE = Lake 

Eyre; LF = Lake Frome; LB = Lake Bass; LW = Lake Woods. 
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Fig. 3. Model-averaged pathway probabilities. Legend: Model-averaged pathway probability 

calculated from ~ 125 billion paths across the continent of Sahul. Areas that are marked 

green have paths that were never or rarely chosen, while paths of bright red have higher 

probabilities of optimal paths present in a grid cell across all models (grid resolution of 0.1 

degrees); paths of yellow-tan have a 50% probability. Black dots indicate locations of 

archaeological sites older than 35,000 years. ML = Menindee Lakes; WL = Willandra Lakes; 

LC = Lake Carpentaria; LE = Lake Eyre; LF = Lake Frome; LB = Lake Bass; LW = Lake 

Woods. Inset map: modern country boundaries superimposed on the coastlines of Sahul 

<50,000 years ago (during the approximate time of first human arrival). 
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Table 2: Total number of paths generated for each set of origins and destinations for six 
travel scenarios. Scenario values are multiplied by 3 to account for the three weighting 
conditions used (no weighting, prominence, and rivers). Combined, we generated more than 
125 billion paths to examine peopling of Sahul. 
 

Origins Destinations Scenario 
Total paths 
generated for each 
scenario  

Total paths 
generated under all 
weighting conditions 

grid grid 

generalized 
landscape 
movement and 
exploration 
across entire 
continent 

1,473,024,400 4,419,073,200 

coastline grid 

generalized 
movement from 
periphery to 
anywhere on 
continent 

3,620,462,160 10,861,386,480 

coastline water 

movement from 
periphery to 
reliable water 
sources 

10,639,328,952 31,917,986,856 

coastline coastline 
continent 
traversal 

8,898,526,224 26,695,578,672 

water grid 

movement from 
reliable water 
sources to 
anywhere on 
continent 

4,328,726,680 12,986,180,040 

water water 
movement 
between reliable 
water sources 

12,720,681,796 38,162,045,388 
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Discussion 

The debate on the patterns and drivers of the peopling of Sahul began in the 1950s52–55, 

and continues to be a subject of research and controversy. Our results move this debate 

beyond conceptual models to identify empirically the optimal corridors of movement 

throughout the continent. While underlying geological attributes generally structure 

movement pathways56, ignoring constraints like the need for freshwater (Fig. 1) and the 

attraction to visible environmental cues (Fig. 2) always led to poor-fitting models (Supp. 

Tables 2-7; Supp. Figures 8-12); when ranked by explanatory power, the top 16 models are 

driven by visual prominence (Table 1). Two models account for almost half (0.47) of the 

explanatory power (wBICa). The first model (wBICa=0.2644) corresponds to a scenario of 

moving from the coasts inland, while the second model (wBICa=0.2122) focuses on 

transecting the interior. Including the model with the third-most explanatory power 

(wBICa=0.0984), which has routes connecting known water sources and brings total 

explanatory power up to 0.575, our models suggest a strategy of first moving inland, then 

discovering water sources in the interior, then travelling among them, all while navigating by 

prominent landscape features. The super-highways that emerge from our models (Fig. 3) are 

both the least-calorically costly and most ‘attractive’ paths, while also corresponding most 

closely to known early archaeological sites. This concordance demonstrates that while there 

were a range of routes available to facilitate the rapid and efficient movement of people 

throughout the continent, people likely chose the most optimal visually, calorically, and 

hydrologically most frequently. These suggest fundamental rules guiding human 

movement—people orient themselves using visual cues, they search for freshwater, and they 

minimise caloric expenditure as much as possible as they enter new regions. 

Our resulting network explicitly identifies vectors of connectivity among regions that have 

so far only been qualitatively inferred from linguistic57,58, genetic59,60, or archaeological24,27,28 

data (although see recent work by Pedro et al.61 that suggested vectors of connectivity); our 

findings are complimentary to these studies. Recent genetic mapping of O, S, P and M 

haplotypes suggest that people moved down the eastern and western coastlines before joining 

in the Australian Bight and moving into the interior13,61. Conversely, linguistic mapping—

acknowledging that this is constrained to the Holocene—suggests a general transmission 

from the northeast to the southwest. Our results broadly support these findings, while also 

adding additional nuance and detail across Sahul during this time. Few of the previously 

published studies identified the importance of a major corridor through the arid centre, nor 
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for many of the lesser, but still probable, routes running through the semi-arid and channel 

country of inner south-western Queensland.      

Several of the major routes our models identified that traverse central Australia are echoed 

by well-documented ethnographic trade routes, including Cape York to South Australia via 

Birdsville in the trade of pituri native tobacco (Duboisia hopwoodii), greenstone axes, 

Flinders Ranges greenstones, and baler shell62,63, and Kimberley to Eyre Peninsula via the 

trade of pearl and baler shell64,65. While these ethnographic trade routes are considerably 

younger than the period we modelled, the main edaphic features dictating the network of 

optimal pathways would have remained largely intact even over tens of millennia, suggesting 

extraordinary persistence of these routes as primary corridors of movement. As people 

expanded across the continent and distinct cultural and linguistic groups formed, the deeply 

established connections across these physical networks would have facilitated the movement 

of people, objects, and stories that led to the rich and highly interconnected Aboriginal, 

Torres Strait Islander, and Melanesian cultures encountered at European contact. 

A limitation of this study is that our methods intentionally avoid considering many types 

of potential biases, including concerns of demographic composition or traveller velocity, the 

types of ecosystems encountered, and perhaps most controversially, cultural influence. 

However, it is telling that the similar pathways between the period of first peopling of the 

continent and late Holocene trade networks suggest the underlying environmental variables 

structuring pathway persistence likely influenced socio-economic and ritual practices. The 

facilitation of movement that these super-highways provided would have enabled efficient 

spatial use of the continent.  

Our models also provide understanding of the underlying baseline landscape structure for 

the most plausible migratory pathways across the entire continent of Sahul. In turn, our 

results link with previous work predicting the most-likely pathways of entry into Sahul from 

Wallacea22,24,27. Basic behavioural and landscape features enable the calculation of ‘cost’ of 

movement, which provide a foundation for understanding how different demographic 

processes or dispersal capabilities would have influenced these early humans’ relationship 

with the landscape. For example, we can now use these pathways in agent-based or other 

dynamic models to examine how groups might have progressed through the landscape with 

demographic and other environmental constraints5. Our methods also are applicable to other 

migratory events beyond Sahul, such as the peopling of the Americas or the waves of Out-of-

Africa migration. For example, combining maritime path models66 with land-based models 

developed using the From Everywhere To Everywhere approach (see Methods) could identify 
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links from Alaska67 to South America68,69. While these models would not definitively solve 

the Clovis First controversy70, the ability to detect pathways would be an important step in 

this regard. 

The routes we identified also suggest potential target areas for archaeological prospection 

by pinpointing the regions that humans would have frequently traversed and where 

archaeological material would have likely accumulated71. Extant terrestrial locations along 

these identified corridors therefore should become priority locations to search for new 

archaeological data. We recommend that future archaeological prospection focus on where 

modern shores intersect major ancient corridors, and along the identified super-highways 

transecting the continent. Many of the predicted corridors are now located on the flooded 

continental shelf, making prospection of these routes challenging, although not impossible 

with the use of modern technologies66,72,73. Combining our approach with maritime path 

models22,74, we might be able to predict where migrations likely occurred, helping focus 

exploration into those regions.  

The ways that people migrate have not changed in the hundreds of generations since the 

first people entered Sahul. The cognitive capacity of these early explorers and their 

behavioural plasticity enabled the rapid expansion across a diverse range of arid, tropical and 

temperate environments. The consistency of these abilities and behaviours have implications 

for predicting future migrations. As climate disruption impacts the liveability of many parts 

of the globe46, we will be confronted with large-scale migration events as people escape 

drowning coastlines, wildfires, violence, or drought. Predicting where populations are likely 

to move will be crucial for international planning and coordination. The methods we employ 

can be used to examine these issues, both within Australia and other landmasses across the 

globe.  
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Methods 

Developing a digital elevation model 

Our Sahul digital elevation model is an amalgamation of existing regional- and global-scale 

digital elevation models. The primary bathymetry data used the ausbathytopo grid75 for 

Australia, with a pixel size of 0.0025° (~ 250 m) and clipped to 110–156° E, 8–46° S. 

Additional bathymetric data for the Australian region included the gbr100 grid76 with a pixel 

size of 0.001° (~ 100 m), clipped to 142–156° E, 10–29° S, and the nthaus100 grid77 with a 

pixel size of 0.001° (~ 100 m) and an area of 121–133° E, 8–18° S. Bathymetric data for 

areas north of Australia toward New Guinea used the latest GEBCO grid78 with a pixel size 

of 15 arc-seconds (~ 416 m) and clipped to 110–156° E, 5°–8.2° S. A small area of Gulf of 

Papua bathymetry used the gop100 grid79, with a pixel size of 0.001 (~ 100 m) and clipped to 

142.6–146.7° E, 7–8.2° S. The primary land-elevation data used the 3 arc-second (~ 83 m) 

Shuttle Radar Topographic Mission (SRTM) digital surface model for Australia80. We 

defined the coastline as the -85 m isobath27. Additional land elevation north of Australia used 

the 3 arc-second (~ 83 m) SRTM data sourced from the Consortium of International 

Agricultural Research Centres–Consortium for Spatial Information81 and clipped to 110–155° 

E, 5–15° S. We removed anomalous land elevation < 0 m height in the SRTM datasets using 

the ArcGIS SetNull tool. We created an ArcGIS mosaic dataset with all bathymetry and 

elevation source grids added and the ZOrder changed to reflect the priority viewing of 

datasets: Australia SRTM82, other SRTM83, gbr10084, nthaus100 (GEBCO Compilation 

Group, 2019), ausbathytopo85, gop10080, GEBCO81. We then applied the ArcGIS Resample 

tool to generate a compiled digital elevation model with a pixel size of 0.0025° (~ 250 m), 

which corresponds to the coarsest resolution of the above datasets, and clipped to the final 

grid area of 111–155° E, 3–45° S. This provides the best resolution DEM possible that can 

then be used for future products. 

 

Model inputs 

We based our construction of theoretical pedestrian-transportation networks on the Sahul 

digital elevation model described above (see Developing a digital elevation model) merged 

with a reprocessed version of the Shuttle Radar Topography Mission digital surface model 

data that was one of the sources used during its creation. The reason for doing so was to 

extract the most accurate topographic information possible across the entire region, which 

required processing modern land surfaces and their bathymetric counterparts separately due 



 
 

  23

 

to how the best available spatial resolution for each was quite different (30 m per cell for 

land, 250 m per cell for bathymetric). This was especially important for identifying and 

preserving small, but visually prominent, landscape features that are missing in the Sahul 

model, which used the SRTM model in a very different way. As part of the processing, both 

models were independently resampled twice to a common coarser resolution of 500 m, where 

cells in the first represented the average height of all contributing data from the original 

products, and the cells in the second represented the absolute maximum height. We selected a 

cell size of 500 m for analysis because it was computationally tractable, i.e., the original 

elevation model (at 250 m) was simply too large to process in a reasonable amount of time—

even on a supercomputer. The resampling techniques used preserved critical information 

from the original model that we discuss in more detail below. We then merged those 

resampled surfaces to create two new mean- and maximum-height surfaces for Sahul, 

applying a 3×3 grid cell smoothing kernel along the merge boundaries to mitigate artefacts 

such as prominent landscape features created by coastline erosion that might negatively 

impact subsequent processing. We used the mean- and maximum-height surfaces as direct 

inputs to the transportation and aggregate viewshed-modelling applications discussed below, 

respectively. We also masked out ancient lakes in the mean-height dataset to prevent 

travellers from walking over them, and to treat those regions as filled with water in the 

maximum-height dataset to reflect actual visibility. Leveraging accepted elevation values for 

known lakes, we created a continuous contour for each one to either create impassable 

(mean) or flat (maximum) regions in the surfaces.  

We used both height surfaces to create what we call a ‘visual prominence’ weighting layer 

that represents how close each elevation cell is to the most noticeable landscape features 

across the entire continent, where closeness is based on three-dimensional walking distance. 

We first processed the maximum-height surface, which preserves the most contrast in vertical 

information from the higher-resolution source elevation model and facilitates identifying 

prominent points, using an aggregate viewshed application that is accelerated by a graphical 

processing unit to shorten runtime, resulting in a visibility-frequency map whose cell-value 

distribution closely resembles a power law; this is the first time such an application has been 

applied at a continental scale 86. We then log-transformed the data to approximate a normal 

distribution, and selected cells whose values were ≥ 3 standard deviations (σ) from the mean 

as the most visible locations. We selected the 3σ threshold after generating location maps at 

multiple thresholds (from 1σ to 6σ) and empirically evaluating the results. Fewer multiples of 

σ led to a large number of locations, and more multiples of σ resulted in few locations. Both 
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would have provided little-to-no value because they would produce roughly equal weights 

everywhere, because a traveller would either never be far away from one of them or almost 

never close to one of them.  

Next, we supplied those locations as a binary raster to a least-cost surface-generator 

application that accumulates three-dimensional travel distance, along with the mean height 

surface, which is smoother than the maximum-height surface and facilitates more realistic 

estimates of travel distance, to produce a cost-distance surface that we then normalised to 

create the final weighting layer. We treated each cell with a value of 1 in the binary raster as 

an ‘origin’ location for travel, and ignored cells with 0, which is a standard way to provide 

origins to least-cost surface-generator applications. While we used a custom application 

(separate from FETE) due to its computational efficiency, both commercial and open-source 

GIS software packages contain similar capabilities, e.g., Path Distance in ArcMap and 

r.walk in GRASS. Once normalised, each cell communicates how attractive it is with 

respect to being physically proximal to noticeable features, meaning that they act as potential 

magnets for travellers depending on their values. A value closer to zero mean that a cell is 

within a short walking distance of a noticeable feature and a value closer to one is much 

farther away, but this is with respect to the entire continent, so “close” is a relative term.  

We processed a binary raster representing the locations of all streams at Strahler Stream 

Order 9 or higher in a similar fashion as the visibility layer to create the second normalised 

weighting layer. Briefly, we used standard GIS hydrological flow-modelling tools in 

conjunction with the original Sahul digital elevation model to create the stream network, 

which represents the likely locations and extents of major rivers and their courses to the 

ancient coast during the time of initial peopling of the continent. We selected Order 9 as the 

threshold after empirically evaluating the results of selecting higher and lower values. Much 

like with visual prominence, values < and > 9 produced either far too many or far too few 

locations, respectively, to be useful. In this case, Order 9 represents all major streams and 

rivers potentially present on the continent during the period of interest. Using empirically 

ranked streams also removes researcher bias in deciding which streams are ‘important’, 

allowing for the most parsimonious model to emerge. 

 

Modelling travel 

We created theoretical pedestrian-transportation networks using the From Everywhere To 

Everywhere (FETE) modelling application to generate many candidate least-cost routes. 
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FETE leverages elevation data, optional land cover (not employed here due to annual 

changes in land cover87), an optional weighting layer (developed for use in this study), 

physical traveller characteristics (age, height, weight, sex, additional load carried) to identify 

the least calorically costly walking paths, and sets of origin and destination points88. We 

needed both general and specific sets of origins and destinations for travel to test several 

hypotheses. For the general sets of points, we created a regularly spaced grid with spacing 

selected as one point every 50 surface cells in each direction, which was empirically 

determined to represent a reasonable balance between point density and computational cost. 

We did test runs with spacings that ranged from 10 to 100, with the resulting normalised 

outputs not containing enough new information at densities > 50 to justify the substantial 

computational resources required to create them (38,380 points total). For the specific sets of 

points, we converted the vector shoreline associated with the mean-height surface into a 

series of individual points (one per relevant surface cell; 94,332 points total), and also 

converted the Water Observations from Space40,51 dataset, which maps the presence/absence 

of surface water, into a series of individual points (variable point density based on location; 

112,786 points total). This allowed for several hundred thousand potential starting and ending 

points for travel across all modelled scenarios, which used the individual sets as origins or 

destinations (e.g., grid-to-grid, grid-to-coastline, grid-to-water), resulting in billions of 

pathways. Given that the New Guinea portion of the Sahul landmass is substantially smaller 

than the Australia portion, there are many more points in the latter that can be used as origins 

and destinations for travel. This means that there is a higher likelihood of creating the kinds 

of ‘super-highways’ in that region that are the focus of this study. While that algorithmic 

behaviour aligns well with our aims to examine movement into Australia, it also highlights an 

opportunity to look at New Guinea more closely on its own in a future study. 

While the full methodology is described in White and Barber88, we present the main 

elements of FETE’s per-cell movement cost-estimation process here. FETE ingests either 

user-supplied sets of origin and destination points to explore specific connectivity questions, 

or can automatically generate regularly spaced grids of origin and destination points at user-

specific densities to explore more general movement trends. The locations of calculated 

routes are mapped onto a regularly spaced raster grid and accumulated to produce a 

frequency-based surface where each cell indicates how likely it is to be used for travel with 

respect to the supplied origins and destinations. We then applied a threshold frequency to 

create networks of routes representing corridors for movement. FETE’s anisotropic cost-

minimisation function relies on well-established caloric expenditure89–93 and travel time94 
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equations for pedestrians (Equations 1–7 below). Traditional GIS software can be used to 

create similar outputs, but least-cost route generation—especially for large areas, many origin 

points, and many travel scenarios—is computationally expensive. FETE is specifically 

designed to address those challenges efficiently, enabling the calculation of tens of billions of 

routes for the entire continent of Sahul each time it is run, compared to tens or perhaps 

hundreds that are generally created for smaller areas (Supplemental Table 9). 

When estimating the energetic cost of travel from one grid cell to another, FETE first 

calculates a generalized estimate of walking speed for the traveller in m hr-1, ve, using an 

appropriately scaled version of Tobler’s hiking function94: 

 

𝑣 ൌ 1000 ∙  ൫6𝑒ିଷ.ହห௦ା.ହห൯    [Equation 1] 
 
where sf is fractional slope (rise over run) of the terrain between the two grid cells. Since the 

traveller is potentially walking on two different surface types as she moves from one grid cell 

to another, a metabolic rate of travel (MRT) is calculated for each surface type using one of 

two equations:  
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where w is the weight of the traveller in kg, l is the optional load carried by the traveller in 

kg, sp is % slope (converted from sf), and η is a unitless terrain coefficient associated with 

surface type91. FETE’s selection of Equation 2 or Equation 3 is driven by the slope present 

between the two cells. For uphill or flat surfaces (fractional slope ≥ 0), Equation 2 is used89. 

For downhill surfaces (fractional slope < 0), Equation 3 is used92,93. In this way, From 

Everywhere to Everywhere’s cost estimation is anisotropic, or direction-dependent, because 

the cost of travelling uphill from point A to point B (positive slope or no slope) is different 

than the cost of travelling downhill from Point B to Point A (negative slope). This is clearly 

seen in the asymmetric cost output from Tobler’s hiking function on its own, but is also 

reflected in Equation 3, which includes an empirically derived nonlinear corrective term that 

is associated only with downhill movement.  
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The two calculated MRTs, MRT for surface type in the origin cell (η1) and MRT for 

surface type in the destination cell (η2), are then combined, converted from watts (J s-1) to 

kcal s-1 via multiplication by a conversion factor (1 W = 0.000239 kcal s-1), and used in 

combination with the travel velocity and travel distance (the length is split between both 

calculated MRTs) to calculate the energy expended during travel, kcalt: 

 

𝑘𝑐𝑎𝑙௧ ൌ
.ଶଷଽ ∙ ൫ெோ ആ்భାெோ ആ்మ൯ሺ.ହௗሻ

௩
    [Equation 4] 

 
where dt is the three-dimensional travel distance in m. Estimates of kcalt at slow speeds on 

downhill slopes sometimes under-predict actual expenditure93, so a sex-specific alternative 

estimate, kcala, is calculated using the Mifflin St. Jeor basal metabolic rate equation95,96 and a 

scale factor: 

 
𝑆𝑀𝑅 ൌ 1.2 ∙  ሺ5.0  10.0𝑤  6.5ℎ െ 5.0𝑎ሻ   [Equation 5] 

 
𝑆𝑀𝑅 ൌ 1.2 ∙  ሺെ161.0  10.0𝑤  6.5ℎ െ 5.0𝑎ሻ  [Equation 6] 
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where h = the height of the traveller in cm and a = the age of the traveller in years. FETE 

selects the larger of kcalt or kcala as the final energetic cost estimate, kcalf. If a normalised 

weighting layer is supplied, the final cost estimate is scaled by the weight value present in the 

destination cell prior to use: 

 
 𝑘𝑐𝑎𝑙௪ ൌ 𝑤𝑒𝑖𝑔ℎ𝑡 ∙ 𝑘𝑐𝑎𝑙    [Equation 8] 

 
A normalised weighting value of 1.0 for a destination cell results in no change to the travel 

cost associated with reaching that cell (a smaller value will reduce the cost and thus make 

travel to the cell more attractive). With respect to the two weighting layers that we used, 

smaller weights were assigned to cells in closer spatial proximity to rivers and visually 

prominent locations, and larger weights were assigned to more distant ones. We treated each 

weighting layer equally and used them independently to support the scenarios of visual 

prominence and river-travel. 

The traveller characteristics we selected are an average of data extracted from Binford21 

combined with our own ethnographic interviews among Martu Aboriginal foragers3: female, 

23 years old, 155.8 cm height, 45 kg weight. From our own ethnographic work, we 

determined that travellers walking long distances carry loads of an average of 10 kg, 
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including water- and food-procurement tools. We assigned all our travellers as female and 

mid-way through their reproductive years, suggesting that, while male travellers might make 

longer forays, female travellers would likely be leading families into new territories and 

holding groups together. Since female travellers will travel with different efficiencies than 

male travellers, this downscales our models to those that would accommodate women and 

families, on average. From our ethnographic work we determined that foraging decisions 

would be highly local and provide fewer constraints to a continent-wide model than search 

for fresh water would. However, incorporating an optimal foraging theory framework to 

future models that examine highly localised conditions for movement would be an 

opportunity for future study. 

We ran FETE a total of 18 times to explore six different feasible origin/destination travel 

scenarios for people moving into a new region, with and without the influence of visually 

prominent landscape features and Strahler Stream Order 9 streams (Table 2). This added up 

to a total of 125,042,250,636 paths. 

 

Outputs 

We put the frequency surface output for each FETE run through a multi-step process with the 

goal of producing layers that can be evaluated statistically for evidence of non-random 

distribution. The first step was to use four different thresholds of the frequency surface 

representing the top 20%, 10%, 5%, and 1% of all cells with respect to the number of paths 

that crossed through them. This produced four binary masks for each run that show networks 

with potential explanatory value. We inputted each binary mask into the three-dimensional 

least-cost travel distance application discussed above, along with the mean-height surface, to 

produce a new surface where the value in each cell represents the shortest travel distance 

from that cell to the threshold-based network. 

 

Reference archaeological data  

We constructed the reference archaeological site dataset for Sahul by building on the 

AustArch compilation97; for more information on age reliability we recommend reviewing 

that publication, although we detail our process below. We removed sites younger than 

35,000 years old and sites with ages more than 35,000 years old that are documented as not 

directly related to human occupation (e.g., ages taken on samples below archaeological 

deposits). We selected 35,000 years ago as a threshold to encompass ages representing the 

earliest phases of human occupation of the continent, and before significant societal change 
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from the Last Glacial Maximum. We systematically compiled Australian sites published 

since the completion of AustArch in 2014 from the literature, ages missed in the original 

AustArch compilation, and extended the dataset to include New Guinea to encompass all of 

Sahul. We did not include archaeological sites on islands that have never formed part of the 

Sahul landmass (e.g., the Bismarck and Solomon Archipelagos) in the dataset.  

We consulted the original sources for all sites, where available, to compile details about 

the dating technique, with a particular focus on sample pretreatment, provenance, and cultural 

associations. Missing sample pretreatment information was, where available, provided by the 

University of Waikato Radiocarbon Dating Laboratory and the Australian National 

University Radiocarbon Laboratory, or in some cases we obtained this information directly 

from the original researchers. 

We quality-rated ages largely following the protocol developed by Rodríguez-Rey et al.98 

for evaluation of ages associated with Sahul megafauna deposits. Quality rating comprised a 

two-step process resulting in allocation of ages to one of four categories of reliability. The 

first step evaluated the dating technique itself resulting in assignment of the age to one of 

four categories (best to worst: m*, m, B, C). The second step evaluates the strength of 

association of ages rated m* and m with the dating target, in this case the association of the 

sample with cultural deposits, resulting in a final reliability rating (best to worst: A*, A, B 

and C). Where a sample is reported as directly associated with a stratigraphic unit containing 

cultural deposits, we have accepted it as ‘associated’.  

Quality ratings for other dating techniques such as optically stimulated luminescence 

follow the criteria outlined in detail in Rodríguez-Rey et al.98. We reduced the dating quality 

of any infinite age or any age without a reported error to C. We reduced the overall quality 

rating of any age > 75 ka to a C, because this is beyond the accepted age of initial peopling of 

Sahul. We reduced the overall quality rating of any age to a C where the authors reporting the 

age state that it is unreliable, or where the authors note that it is not associated with cultural 

material. 

We deviated from the Rodríguez-Rey et al.98 approach in accepting charcoal ages 

pretreated with acid-base oxidation (ABOx) as ‘m*’ (rather than ‘m’) and acid-base-acid 

(ABA) or acid-alkali-acid (AAA) as ‘m’ (rather than ‘B’). We also rated hydrogen pyrolysis 

(hypy) as ‘m’, which was not included in Rodríguez-Rey et al.98. For marine shells, we rated 

samples subject to either x-ray diffraction or Feigl staining as ‘m*’ rather than ‘m’. The 

original protocol only accepted charcoal ages pretreated with ABOx. Although ABOx 

remains the standard for pretreatment of older charcoal samples (> 30 ka) 99, recent studies 
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have shown that ABA- and hypy-treated pairs produce comparable results to each other and 

to ABOx-pretreated samples 100,101. Only a few samples in Sahul have been subjected to 

ABOx pretreatment, so this permits a much broader consideration of the available data. 

ABOx pretreatment is also unsuitable for many samples because it results in losses of sample 

material102.  

To avoid spatial bias, we collapsed two landscapes with closely spaced clusters of sites 

into single sites. Here, we collapsed four sites from the Ivane Valley (AAXD Airport Mound, 

AAXE South Kov, AAXF Vilakuav, AER Kosipe Mission Trench 2) into a single site 

designation (‘Ivane Valley’); these sites are all within 2 km of one another. Likewise, we 

collapsed fifteen sites from Willandra Lakes (Lake Arumpo (Top Hut Site 3), Outer Arumpo 

(Top Hut Site 3), Lake Arumpo (Top Hut Site 1), Leaghur Peninsula, Mungo (WOC-4), 

Mungo 76E, Mungo B Trench, Mungo Hearth F12, Mungo Hearth F7, Mungo Hearth F8, 

Mungo I Residual, Mungo I Transect, Mungo III Transect, Mungo WLH3, Mungo WLH4) 

into a single site (‘Willandra Lakes’); these fifteen sites were within 25 km of one another.  

Using the processes above, we ultimately included 40 sites  with ages ≥ 35,000 ka and 

quality-rated as A*, A or B in the reference archaeological site dataset used in the modelling 

process. 

 

Model performance 

To examine the correspondence of each threshold-based network for each From Everywhere 

to Everywhere run to the locations of archaeological sites during this early time period, we 

first created a way to treat the network as a single point, which enabled the use of traditional 

point-based statistical tests for complete spatial randomness. These tests normally compute 

the distances between all possible pairs of points in two similarly sized sets, one of which is 

held constant while the other is randomly generated from a Monte Carlo process. We instead 

substituted the estimates of shortest travel distance to the network associated with the points 

of interest and the same number of points generated 10,000 times randomly. Here we are in 

effect creating a new coordinate system where the origin (single point) represents the entire 

network and the points of interest (and their randomly generated counterparts) are arranged 

around it based on how far away they are from the network. This establishes a common frame 

of reference for statistically evaluating the spatial distributions of points of interest and 

similar sets of randomly generated points: one that is focused on the most salient metric for 

this study — the proximity of sites to the network. We are interested in understanding how 

sites are distributed with respect to the network as a whole, not with respect to any one part 



 
 

  31

 

of it, and this new coordinate system enables that kind of analysis. We began with the most 

simple and straightforward Kolmogorov-Smirnov complete spatial randomness test to check 

for basic randomness before proceeding to the more sophisticated Besag’s L test (itself a 

normalisation of Ripley’s K-function103), which tests for clustering at user-specified distance 

thresholds. Given the continental scale at which this analysis occurs, we applied 20 evenly 

spaced thresholds, ranging from 5 to 100 km. This allowed for the possibility of local 

clustering, regional clustering, or both. We pooled the results of the threshold tests for a 

specific network prior to doing a final test to calculate overall statistical significance and 

pooled probability estimates. We include all code in the Supplementary Data and Code. 

 

Model comparisons and averaging 

We tested the ability of a given network to reproduce the spatial pattern of archaeological 

sites by using a multi-staged process. We first calculated the shortest, three-dimensional 

travel distance from each archaeological site to the network, depending on surface elevation, 

using a standard anisotropic approach for generating a least-cost surface. Each cell in the 

resulting grid (here corresponding to our 500-m resolution cells) represents the shortest travel 

distance from that location to the network, and we averaged the values for a 1-km 

neighbourhood of cells around each site to produce more comprehensive distance estimates. 

This creates a new coordinate system where the entire network is represented by the origin 

(0, 0) as a single point. In other words, the frame of reference, and per-site distances from 

that point, can be used as a metric in two standard statistical clustering tests for complete 

spatial randomness—Kolmogorov-Smirnov104,105 and Besag’s L-function106—to determine 

how well the network explains site locations. The stronger the clustering, the stronger the 

relationship. 

Both clustering tests require the comparison of site distances to those obtained from the 

same number of randomly generated points—a process that is generally repeated many times 

to estimate an empirical value; for this analysis we selected 10,000 trials. The Kolmogorov-

Smirnov test is straightforward and indicates whether two samples are drawn from the same 

distribution. If a large enough number of the comparisons between site distances and those 

for random points pass the test, which is based on a standard uniform distribution probability, 

complete spatial randomness cannot be ruled out and the network in question is declared 

uninformative. 

If enough simulated estimates do not pass the Kolmogorov-Smirnov test, indicating that 

site locations are not random with respect to the network, Besag’s L-function evaluates how 
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resilient the relationship is by examining it at multiple spatial scales. The greater the number 

of scales where it passes, the stronger the explanatory power. Instead of comparing site 

distances to each set of randomly generated points, we use all sets of randomly generated 

points to create a single empirical estimate of randomness against which the set of sites can 

be compared at a series of distances (5 to 100 km, in 5-km increments). We then pooled 

results across all distances to create a single probability estimate for the network. The L-

function can test for either clustering or dispersion with respect to a given frame of reference. 

For this analysis, we considered clustering. 

To assess the information-theoretic weight of evidence (the parsimony-weighted index of 

maximum likelihood) of each network, we calculated an approximation of the Bayesian 

information criterion (BICa). We defined BICa for a given network (i) as: 

 

BIC ൌ 𝑘log 𝑛 െ 2 log ቀ𝑝 ቀ
୫ୟ୶ሺሻ
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where k = the number of model parameters (4; origin type, destination type, weighting 

layer/no weighting layer as one option, and surface elevation), n = the number of 

archaeological sites (40), p = the pooled probability of Besag’s L-function, C = the number of 

land cells used, OD = the number of origin and destination pairs supplied (equal to the 

number of paths generated), and ε = 1.0×10-16 (small error term to ensure 0 is not used in 

logarithm calculations). This version of the equation ranks the most efficient and 

parsimonious models most highly by rewarding high-probability networks that are 

simultaneously compact and for which a smaller number of origin and destination pairs were 

supplied. We used pooled probability instead of residual sum of squares because that 

goodness-of-fit estimate is already included in Besag’s L-function. We examined 20 spatial 

scales from 5 to 100 km, resulting in a more robust estimation of network performance. 

We assumed that no single network can explain all site locations, and that each network i 

has some value, so we calculated the network weights as the relative weight of its BICa 

(wBICa): 
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     [Equation 10] 

 
where M is the total number of networks, 
 

 ∑ 𝑤BIC ൌ 1ெ
ୀଵ ,     [Equation 11] 
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and 
 

∆BIC ൌ BIC െ minሺBICሻ    [Equation 12] 
 

We applied the per-network 𝑤BIC weights to reduced-resolution (0.1 degrees) binary 

representations of the networks and summed the results across all modelled networks to 

create a single, model-averaged, composite grid. These provide the probabilities of paths 

chosen reported above in the Results. 

 

Data availability statement 
 
All thresholded binary masks created from all FETE runs, the model-averaged composite 

grid, lakes, and archaeological sites are made publicly available in standard geospatial data 

formats as part of our Supplementary Data and Code. Due to large file size, we provide the 

two digital elevation models and aggregate viewshed in standard geospatial data formats via 

GitHub: github.com/dawhite/sfa. 

 

Code availability statement 
 
Due to how the development of FETE was funded, it is not currently possible to make the 

source code available to the public. As an alternative to public release of the code, the full 

methodology of the baseline version of FETE is described in White and Barber88 and we 

describe modifications made to support our study here. Researchers who are interested in 

replicating the functionality of FETE can do so either by using an open-source or commercial 

GIS software package in combination with basic scripting in a high-level programming 

language like Python and following the methodology described herein. We provide all code 

used for analyses via GitHub: github.com/dawhite/sfa.  


