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Abstract 

On average, men and women differ in brain structure and behaviour, raising the possibility of 

a link between sex differences in brain and behaviour. But women and men are also subject 

to different societal and cultural norms. We navigated this challenge by investigating 

variability of sex-differentiated brain structure within each sex. Using data from the 

Queensland Twin IMaging study (N=1,040) and Human Connectome Project (N=1,113), we 

obtained data-driven measures of individual differences along a male-female dimension for 

brain and behaviour based on average sex differences in brain structure and behaviour, 

respectively. We found a weak association between these brain and behavioural differences, 

driven by brain size. These brain and behavioural differences were moderately heritable. Our 

findings suggest that behavioural sex differences are to some extent related to sex differences 

in brain structure, but that this is mainly driven by differences in brain size, and causality 

should be interpreted cautiously.  

 Keywords: masculinization, brain structure, neuroimaging, MRI, twin modelling 
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Statement of Relevance 

Females and males differ on average in brain structure and in behaviour. A long-

standing question is the extent to which these sex differences are related. The question is 

difficult to address because men and women are subject to different societal and cultural 

norms. In this research, to navigate this challenge, we examined individual differences in 

brain structure along the male-female dimension separately for each gender group. We then 

determined whether the differences were associated with physical and behavioural measures 

such as endurance, body mass index, cognition, and personality traits. We found that brain 

differences on the male-female dimension were weakly associated with behaviour, but this 

association was driven by differences in brain size. Importantly, the associations were small, 

suggesting that brain structure is only one of many factors explaining behavioural sex 

differences. 
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Are sex differences in human brain structure associated with sex differences in behaviour? 

 

Females and males differ, on average, in many ways. Obvious physical differences in 

measures such as height and strength are generally accepted to have a biological and 

evolutionary basis. But the basis of average differences in male and female behaviour – for 

example, specific cognitive abilities (Gur & Gur, 2016) and personality traits (Archer, 2019) 

– is not well understood and is subject to controversy. On one hand, there is little doubt that 

historically and culturally ingrained social expectations and gender roles contribute to 

observed sex differences in behaviour. On the other hand, there is strong resistance in some 

quarters to the idea that evolved predispositions – stemming from different selection 

pressures on our female and male ancestors – may also contribute to the observed behavioural 

sex differences (Eagly & Wood, 2013). Indeed, because many behavioural sex differences 

appear to fit with predictions from both evolutionary biology and social role theory, it is 

difficult to determine whether behavioural sex differences reflect evolved dispositions at all. 

 One clue is the observation of structural differences, on average, between female and 

male brains. In adulthood, male brains are on average 10-15% larger than female brains 

(Ruigrok et al., 2014), even after adjusting for body height (Ritchie et al., 2018). Also, 

several regional sex differences remain after adjusting for overall brain size: for instance, the 

largest single-sample study to-date (N=5,216) (Ritchie et al., 2018) showed that after 

adjusting for brain size, female UK Biobank participants had smaller volumes than males in 

the amygdala, pallidum, and putamen, while males had smaller nucleus accumbens. A recent 

large voxel-wise study (N=2,838) (Lotze et al., 2019) also found sex differences in 

subcortical and cortical grey matter in adults. Other studies (Bruner, de la Cuétara, Colom, & 

Martin-Loeches, 2012; Kim et al., 2012) have reported sex differences in the shape of 

regional brain structures. Moreover, several studies have succeeded in predicting an 
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individual’s biological sex based on brain structure differences, showing an accuracy between 

69 to 93% (Anderson et al., 2019; Chekroud, Ward, Rosenberg, & Holmes, 2016; Del 

Giudice et al., 2016; Joel et al., 2018; Tunç et al., 2016; Xin, Zhang, Tang, & Yang, 2019), 

even after correction for height (Chekroud et al., 2016) or brain size (grey matter volume) 

(Anderson et al., 2019) – despite the substantial overlap on brain structure measures between 

males and females (Ritchie et al., 2018). However, although these studies adjusted for global 

brain size, the findings may still be driven by differences in brain size as brain regions scale 

differently with brain size (de Jong et al., 2017). 

 Importantly, the well-established existence of sex differences in brain structure does 

not necessarily mean that these differences relate to behavioural sex differences. Indeed, 

some researchers propose that sex differences in brain structure may instead promote 

similarity in women and men’s behaviour, by compensating for scaling differences due to the 

sex difference in body and brain size (De Vries, 2004). A key obstacle to examining the 

association between sex differences in brain structure and behaviour is that men and women, 

as well as having brains that differ on average, are also, on average, subject to different 

societal and cultural norms and expectations that might lead to behavioural sex differences. 

One way to eliminate sex-differentiated socialization as a confound is to examine brain 

differences among individuals of the same sex. Individuals vary in genetic predispositions as 

well as exposure and sensitivity to gonadal hormones: some men will develop a more female-

like brain, while other men an exaggeratedly male-like brain (and conversely, for women).  

Such an approach has recently been applied successfully by predicting sex based on 

differences in the structural connectome, i.e. how the brain is wired. Using a large imaging 

dataset of the Philadelphia Neurodevelopmental Cohort (N=900) (Tunç et al., 2016), a weak 

but significant association was found between sex predictor scores based on the structural 

connectome and those based on motor and cognitive test performance. Using the same 
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dataset, Philips et al. (2019) constructed a ‘sex differentiation score’ from several other brain 

structure measures – surface area, volume, thickness, and diffusion measures, which 

correlated in the expected direction with externalizing symptoms within males but not within 

females; predicted correlations with internalizing symptoms were not significant in either sex. 

However, the question remains whether such association between brain and behavioural sex 

predictor scores exist once we control for brain size on a regional level – that is, to take into 

account that different brain regions scale differently with brain size.  

In this paper, we obtained a measure of brain differences along a male-female 

dimension based on sex differences in brain shape and structure, while adjusting for brain 

size on a regional level. Next, we derived a composite measure of behavioural differences 

along a male-female dimension from sex differences in behaviour, and tested whether 

individual differences along a male-female dimension for brain and behaviour were 

correlated (within sex). Lastly, we used the classical twin design to estimate the extent to 

which these individual differences in brain and behaviour can be explained by genetic and 

environmental influences. 

 

Methods 

Participants 

We analysed two large independent imaging datasets to obtain a measure of brain 

differences along a male-female dimension, and to test the relationship between individual 

differences along a male-female dimension for brain and behaviour.. Both datasets were 

drawn from the general population. The first consisted of 1,040 individuals from 616 families 

as part of the Queensland Twin IMaging (QTIM) study (ages 15 to 30 years, mean age of 

22.42 ± 3.33, 64.81% female), including 157 identical (monozygotic; MZ) twin pairs, 261 

nonidentical (dizygotic; DZ) twin pairs and their siblings. Behavioural measures were 
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collected as part of the Brisbane Longitudinal Twin Study (Gillespie et al., 2013), also known 

as the Brisbane Adolescent Twin Study (Wright & Martin, 2004). In addition, a sub-sample 

of 40 individuals (mean age = 23.36 ± 2.27, 55% female) was scanned a second time within 

three months. Diffusion tensor imaging scans were available for 460 individuals (ages 16.85 

to 29.16 years, mean age of 22.20 ± 2.71, 63.10% female) after excluding 36 individuals, 

including 26 due to incidental findings of potential clinical relevance and 10 due to poor scan 

quality. Individuals with developmental, neurological, or psychiatric disorders, impaired 

intellectual functioning, or head trauma were excluded. Only right-handed twins were 

recruited in the study. All individuals gave written informed consent. Ethics approval for the 

study was given by the Human Research Ethics Committees of the QIMR Berghofer Medical 

Research Institute, University of Queensland, and UnitingCare Health. 

The second dataset was provided as part of the Human Connectome Project (HCP) 

(Van Essen et al., 2012), and comprised 1,113 (left and right-handed) individuals (ages 22 to 

37 years, mean age of 28.80 ± 3.70, 54.40% female) from 428 families, including 129 MZ, 

72 DZ twin pairs, and their siblings. In addition, 46 individuals were scanned a second time 

(mean age of 30.29 ± 3.34, 68.89% female). Diffusion tensor imaging scans were available 

for 972 individuals (ages 22 to 37 years, mean age of 28.73 ± 3.70, 53.60% female). Test-

retest diffusion scans were available for 41 individuals (mean age of 30.46 ± 3.15, 70.73% 

female). Individuals with severe neurodevelopmental disorders, documented neuropsychiatric 

disorders, neurologic disorders, diabetes, high blood pressure, or those born premature were 

excluded. All individuals gave written informed consent. Ethics approval was given by the 

institutional review board. 
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Image acquisition 

For the QTIM dataset, structural MRI scans were obtained at 4-Tesla (Siemens 

Bruker), acquiring a 3D structural T1-weighted image (T1/TR/TE = 700/1500/3.35 ms; flip 

angle = 8°, voxel size = 0.9375 × 0.9375 × 0.9 mm3). 81% with a coronal acquisition, 19% 

with a sagittal acquisition. The test-retest sample included only participants scanned with a 

coronal acquisition on both occasions. Diffusion-weighted images were also collected 

(TR/TE= 6090/91.7 ms, number of slices= 55, voxel size = 1.79 x 1.79 x 2 mm3, 94 

directions with b = 1159 s/mm2 and 11 b = 0 images). 

For the HCP dataset, structural MRI scans were obtained at 3-Tesla (Siemens 

Connectome Skyra), acquiring a 3D structural T1-weighted image (T1/TR/TE = 

1000/2400/2.14 ms; flip angle = 8°, slice thickness = 0.7 mm, voxel size = 0.70 x 0.70 x 0.70 

mm3). Diffusion-weighted images were also collected (TR/TE= 5520/89.5 ms, number of 

slices = 111, voxel size = 1.25 x 1.25 x 1.25 mm3, 90 directions with b = 1000/2000/3000 

s/mm2 and 6 b=0 images). 

 

Image preprocessing 

All structural scans were preprocessed to remove signal inhomogeneity using the 

Statistical Parametric Mapping (SPM) (Friston et al., 1995) version 12 software package in 

Matlab version R2018a. Scans were not registered to common template space to avoid 

distortions in the shape of the brain structures. Using the FMRIB Software Library (FSL) 

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) software package, diffusion-

weighted images were corrected for eddy current distortions, a brain mask was applied, and 

the images were registered to the structural scan. For more details, see Jahanshad et al. (2011) 

for the QTIM dataset, and Glasser et al. (2013) for the HCP dataset. 
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Obtaining a measure of brain differences along a male-female dimension 

Using two different approaches, we obtained a measure of individual differences 

along a male-female dimension based on sex differences in brain shape (using the landmark-

approach) or structure (using the vertex-wise approach). 

 

The landmark approach: A measure derived from brain shape 

For the landmark approach, we developed and placed subcortical landmarks, and 

placed existing cortical landmarks (called Dense Individualized and Common Connectivity-

based Cortical Landmarks; DICCCOLs (Zhu et al., 2013)) (Fig. 1). The initial landmark 

approach included landmarks placed in both subcortical and cortical regions using the T1-

weighted scan only. Landmarks were placed on a mask on the standard template (MNI152 

1mm) in FSL’s FSLVIEW (Jenkinson et al., 2012) to serve as an example for automatic 

placement. Automatic placement to each individual scan was done using SPM’s function 

‘normalize’. While visually inspecting the landmarks, the placement of landmarks in cortical 

regions showed too much error using the method described above, so all cortical landmarks 

were excluded.  
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Fig. 1. 

The different stages to obtain a measure of brain differences along a male-female dimension, 

either derived from the landmark or vertex-wise approach; brain size was used as a crude 

proxy for comparison.  

1 From FreeSurfer; 2 From Ou et al. (2015); 3 From the ENIGMA Shape protocol; Abbreviations: 

DICCCOLs=Dense Individualized and Common Connectivity-based Cortical Landmarks; CSF=CerebroSpinal 

Fluid; UKB= UK Biobank; QTIM=Queensland Twin IMaging; HCP=Human Connectome Project. 



11 ARE BRAIN SEX DIFFERENCES LINKED TO BEHAVIOUR? 

 

This process resulted in 467 subcortical landmarks per hemisphere (934 in total) 

placed in seven subcortical regions: amygdala, caudate nucleus, hippocampus, lateral 

ventricle, pallidum, putamen, and thalamus (Supplementary Fig. 1). We visually inspected 

the placement of the 934 landmarks for ten individuals each to confirm the accuracy of the 

placement method. Next, the 3D coordinates of the landmarks were extracted for each 

landmark. On a rare occasion, landmarks were not transformed to native space, which led to 

missing data. Missing data (0.035% of the data points) was imputed with the R statistics 

package ‘Geomorph’ TPG option. 

In addition, we included 358 existing cortical landmarks (DICCCOLs) based on 

diffusion-weighted images (Zhu et al., 2013). These data-driven cortical landmarks are placed 

by using consistent white-matter fiber connection patterns derived from diffusion tensor 

imaging data. Fibers were extracted using the software package medInria for the QTIM 

dataset and MRtrix for the HCP dataset, using an FA threshold of 0.2 and a minimum length 

of 20. We then placed the cortical landmarks by using the DICCCOL toolbox1, and we 

extracted the 3D coordinates for each landmark.  

Then, we brought the landmark coordinates from each individual into standard space 

by applying a Generalized Procrustes Analysis, which removes variation in size, position, 

orientation, and rotation of the brains (Supplementary Fig. 2). During this process a Principal 

Component Analysis was also performed (Fig. 1), rotating the data into uncorrelated 

components, using the R statistics package ‘Shapes’. We ran this analysis separately for the 

cortical and subcortical landmarks, because the cortical landmarks were extracted from 

diffusion space while the subcortical landmarks were extracted in native (individual) T1-

space. These analyses were performed while scaling for brain size in the Procrustes Analysis, 

to obtain a measure of brain shape independent of brain size.  

                                                 
1 https://www.nitrc.org/projects/dicccol_0_1 
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Next, the first 52 principal components, with an eigenvalue larger than or equal to 

one, from both Procrustes Analyses were used as predictors for the variable ‘sex’. We used 

the package ‘MASS’ in R statistics version 3.4.4 (R Core Team, 2018) to perform a linear 

discriminant analysis (LDA) (Fig. 1), which gives a linear combination of the shape variables 

that best discriminates males from females, and assigns each individual a score reflecting the 

position of their brain shape along this male-female dimension.  

 

The vertex-wise approach: A measure derived from brain structure 

For the QTIM dataset, the program FreeSurfer version 5.3 (Fischl, 2012) was used to 

segment the brain from the structural T1-weighted scan, and to extract the vertex-wise 

measures for thickness and surface area (Fig. 1). For the HCP dataset, the processed images 

were downloaded. This segmentation also yielded a measure of brain size, i.e. Brain 

Segmentation Volume (BSV), which includes grey and white matter and cerebrospinal fluid2. 

For processing in FreeSurfer, all individuals’ brain images were transformed to the 

FreeSurfer template. Then, the ENIGMA Shape pipeline3 was run to extract vertex-wise 

measures for deep grey matter volume as well (Fig. 1). For both the FreeSurfer and shape 

segmentation, we performed a detailed post-processing quality check in line with procedures 

used by the ENIGMA consortium4. Next, FreeSurfer’s cortical and subcortical vertex-wise 

measures were included to predict sex to obtain a measure of brain differences along a male-

female dimension derived from brain structure (Fig. 1).  

Using the software package OSCA5 (a tool for omic-data-based complex trait 

analysis) (Zhang et al., 2019), we predicted the participants’ sex using Best Linear Unbiased 

Prediction (BLUP) scores, which allow handling the large number of vertex-wise 

                                                 
2 https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats 
3 http://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/ 
4 http://enigma.ini.usc.edu/protocols/imaging-protocols/ 
5 http://cnsgenomics.com/software/osca/#Overview 

https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats
http://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://cnsgenomics.com/software/osca/#Overview
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measurements. BLUP scores are powerful and efficient predictors, which do not require 

hyper-parameter estimation (Robinson, 1991), unlike other machine learning algorithms (e.g. 

SVM or penalised regression). In practice, BLUP scores constrain the weights given to the 

vertices to follow a normal distribution (Robinson, 1991). To improve the prediction 

accuracy, our BLUP scores were trained on the first 9,888 participants of the UK Biobank 

who underwent MRI imaging (Miller et al., 2016) and had usable cortical and subcortical 

data from processed T1-weighted and T2-FLAIR MRI images (Couvy-Duchesne et al., 

2019). The UK Biobank participants were aged between 44.6 and 79.6 (mean age of 62.60, 

SD=7.5), and 52.40% of the sample were female (Couvy-Duchesne et al., 2019). 

For the vertex-wise measure, we included three different approaches to obtain a 

measure of brain differences along a male-female dimension. Most importantly, as brain 

regions scale differently with brain size, we used an allometric scaling approach, adjusting 

the vertex-wise measures for brain size on a regional (vertex by vertex) level. For this we 

applied a log-log regression – regressing out brain size (brain segmentation volume; BSV) for 

each vertex by using the logs for brain size and the respective vertex, and using the residuals 

of the vertices in the next analyses. For comparison, we regressed out brain size from the 

uncorrected prediction scores (instead of for each vertex as in the allometric approach). As 

another alternative, we only regressed out brain size differences associated with sex from the 

vertex-wise measures before predicting sex, to ensure sex differences in brain size were not 

driving the prediction accuracy.  

 

Obtaining a measure of behavioural differences along a male-female dimension 

In a similar way to the derivation of our brain measures, we derived a measure of 

individual differences in behaviour along a male-female dimension by using the behavioural 

variables to predict sex in an LDA. Behavioural data comprised of a variety of measures 
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including physical measures (e.g. body mass index, blood pressure), measures of intelligence 

(e.g. total, verbal and performance intelligence), neurocognitive subtests (e.g. vocabulary, 

working memory, and visuospatial skills), and other measures (e.g. personality traits, anxiety 

and depression symptoms). 

Unlike the brain imaging data, the behavioural variables were different in the QTIM 

and HCP samples (Supplementary Table 4) – therefore, we divided each sample and trained 

the prediction in one half before predicting in the other half. For this we used the package 

‘MASS’ in R statistics version 3.4.4 (R Core Team, 2018). Note that this approach excluded 

data for several behavioural measures and individuals to deal with missing values: We 

removed behavioural variables with scores for less than 75% of the individuals, resulting in 

12 of 27 variables for QTIM and 26 of 26 measures for HCP retained in the prediction. 

Participants with missing values on one of the behavioural variables could not receive a 

prediction score (QTIM=324; HCP=69), resulting in including 1760 of the 2153 individuals 

in the analyses.  

 

Genetic analyses 

For our genetic analysis, up to two siblings per family were included and half siblings 

were excluded. We used a saturated univariate ACE model in the R package OpenMx (Boker 

et al., 2011) to examine how much of the variation in brain size, as well as the individual 

differences along a male-female dimension for brain and behaviour can be explained by 

genetic (A), common environmental (C), and residual effects including idiosyncratic 

environmental factors and measurement error (E), adjusting for sex and age. This model 

relies on the principle that MZ twins are genetically identical, while DZ twins share 

approximately half of their segregating genes. Non-twin siblings were added to the classical 

twin design to improve statistical power.  
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We also tested the assumptions for twin modelling. These include 1) testing a mean 

and variance difference between the first and second twin; 2) testing a mean and variance 

difference between MZ and DZ (same-sex) twin pairs within females and within males; 3) 

testing a mean and variance difference between male MZ and DZ groups and female MZ and 

DZ groups; 4) testing a mean and variance difference between females and males. We also 

examined whether we could identify sex-limitation (which would indicate that the magnitude 

of the genetic effect differs between the sexes, or that different genes in males and females 

affect the expression of the phenotype), while including sex and age as covariates in the 

model. All twin modelling assumptions were met, and no significant sex-limitation (i.e. 

different influences on males and females) was found (except for brain size, for which 

variances were greater in males than females). Therefore, only one mean and one variance 

were estimated in the ACE-model (and two variances were estimated for brain size) as well 

as two covariances (MZ versus DZ twins), while a sex effect was modelled to account for 

differences in means. We performed the above analyses for all measures of brain differences 

along a male-female dimension, as well as brain size and the measure of behavioural 

differences along a male-female dimension.  

Next, using a bivariate Cholesky decomposition model (including sex and age as 

covariates), we examined the influence of genetic and environmental influences on the 

covariance between individual differences along a male-female dimension for brain and 

behaviour as well as brain size and behavioural differences along a male-female dimension. 

As we found robust associations between brain differences along a male-female dimension 

with both brain size and height, we also examined these variables for a common genetic and 

environmental factor. Due to the excellent prediction of sex when using the vertex-wise 

measure, the moderate-to-strong correlation between the brain measures with one another, 

and the similar heritability results for the different brain measures, only the brain measure 
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derived from the vertex-wise approach (trained on the UK Biobank dataset) was used for this 

analysis. 

 

Results 

Obtaining a measure of brain differences along a male-female dimension 

Using data from either the landmark or the vertex-wise approaches, we trained the 

algorithm to predict sex based on brain shape or structure, and predicted sex in an 

independent imaging sample, to derive a score for each individual reflecting the position of 

their brain shape or structure along a male-female dimension (Fig. 1). Both the landmark and 

vertex-wise approaches yielded scores that differed substantially (though with considerable 

overlap) between the sexes, as expected (Supplementary Figure 3, Panel B-H). Brain size also 

showed a comparable difference in female and male distributions (Supplementary Figure 3, 

Panel A). Although the landmark-approach already scaled the brains to the same size, it is 

possible that brain shape covaries with brain size. If this were the case, then the brain 

measures based only on shape (i.e. brain size-controlled) may still contain brain size 

information. To derive a brain measure that is independent of brain size, we also used an 

allometric scaling approach to adjust for brain size (BSV) on a regional (vertex-wise) level. 

Specifically, we regressed out brain size for each vertex within each sex and used the 

residuals of the vertices in the prediction. This adjustment for brain size yielded a brain 

measure that showed more overlap between males and females than the vertex-wise measure 

where only brain size differences associated with sex were removed (Supplementary Figure 

3, Panel H), but the measure could still accurately discriminate between the sexes (d =1.01 

(0.88; 1.14); red lines in Fig.2). We found similar results when regressing out brain size from 

the uncorrected prediction scores (orange lines in Fig.2; Supplementary Figure 3, Panel G).  
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Validity and reliability of the brain measures 

Brain measures based on both approaches showed good-to-excellent test-retest 

reliability (Supplementary Table 1), defined as the correlation between the brain scores from 

both time points. The validity (i.e. to what extent the measure could predict sex in an 

independent sample) was measured with the Area Under the Curve (AUC) – defined by the 

true positive rate against the false positive rate – using the ‘pROC’ package. The AUC is, 

unlike accuracy, insensitive to class imbalance. Both approaches predicted sex well (Fig. 2; 

Supplementary Table 1) – as reflected in the “good-to-excellent” AUC – and the prediction 

was often better when brain size was not filtered out (Supplementary Table 1).  
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Fig. 2.  

Predicting sex based on the brain data, using two approaches (landmark and vertex-wise), as 

well as brain size as a crude proxy for comparison. The landmark approach includes the 

subcortical, cortical, and both subcortical and cortical landmarks. The vertex-wise approach 

includes scores controlled for brain size (BSV) by 1) regressing out brain size differences 

associated with sex, 2) applying allometric scaling, or 3) regressing out brain size from the 

uncorrected scores. Predictions of sex in the QTIM sample are displayed with a dashed line, 

and predictions for HCP are displayed with a solid line. BSV=Brain Segmentation Volume (measure 

of brain size). BMF=Brain differences along a male-female dimension; QTIM=Queensland Twin IMaging; 

HCP=Human Connectome Project; UKB=UK Biobank. 
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Comparing the two approaches, the landmark approach (including the subcortical, or 

both subcortical and cortical landmarks) resulted in a more accurate prediction than the 

vertex-wise approach once controlling for brain size (Supplementary Table 1 B2 and B4 

versus B5), until we trained the vertex-wise model on the large UK Biobank dataset 

(N=9,888), which improved the prediction markedly (green lines in Fig. 2; Supplementary 

Table 1 A2). However, in both datasets, once we applied an allometric scaling approach to 

adjust for brain size (red lines in Fig. 2; Supplementary Table 1 A3), the prediction worsened 

and was no longer better than when using the landmark approach - results were similar when 

we regressed out brain size from the uncorrected vertex-wise scores (orange lines in Fig. 2).  

Further, the prediction based only on cortical landmarks was not significantly better 

than chance when predicting from the QTIM (N=1,040) to the HCP (N=1,113) dataset, and 

vice versa (Fig. 2; Supplementary Table 1 B3), or when dividing the QTIM dataset in two 

halves (Supplementary Table 1 C3). In contrast, when dividing the HCP dataset in two 

halves, the cortical landmarks were predictive of sex (Supplementary Table 1 D3). Due to the 

poor predictive power of the QTIM cortical landmarks in comparison to the HCP cortical 

landmarks, only the prediction scores derived from cortical landmarks for the HCP dataset 

were included for further analysis. The poor performance of the QTIM cortical landmarks 

prediction may be explained by the poorer resolution and lower signal-to-noise ratio of the 

diffusion scans of the QTIM dataset compared to the HCP dataset, which may have led to 

more error in landmark placement. For all further analyses, outliers (z-scores  3.29) were 

winsorized within each sex. 

 

Correlations among brain measures 

Brain measures derived from the landmark and vertex-wise approaches were 

associated with one another (Table 1), after adjusting for sex, age, and scanning acquisition 
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in the total sample. The vertex-wise scores for which brain size is regressed out of the 

uncorrected prediction scores showed high overlap with the allometric scores (r = 0.999, p ≤ 

0.001), and were therefore excluded from further analyses. As expected, brain measures were 

associated with brain size across samples (p ≤ 0.001) (Table 1), even after adjusting the brain 

measures for brain size (by scaling brains to the same size, or by regressing out BSV). This 

association raised the question of whether sex differences in brain size may still be 

confounding the brain measures, i.e. the prediction of sex. To further examine this possibility, 

we used two subsamples where female and male brains were matched for brain size 

(maximum of 10 ml difference in BSV) (QTIM, N=262; HCP, N=372) (for more details see 

van Eijk et al., 2020). The association between brain measures and brain size remained in 

both subsamples where males and females are matched for brain size (Supplementary Table 

2). This finding shows that our prediction of sex (and resulting brain measures) are not driven 

by potential confounding sex differences in brain size, and provides additional evidence for 

the scaling relationship between brain differences along a male-female dimension and brain 

size. 
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Table 1. 

Correlation matrix for the measures of brain differences along a male-female dimension 

(BMF) controlled for covariates (sex, age, and scan acquisition), displaying correlations for 

the QTIM dataset in the lower triangle (grey), and for the HCP dataset in the upper triangle. 

Measures were derived from the landmark (subcortical, cortical, and both landmarks) and 

vertex-wise (controlled for sex differences in brain size (BSV), and allometric brain size-

corrected) approaches, as well as from brain size as a crude proxy for comparison. 

 

 BMF 

(subcortical) 

BMF 

(cortical) 

BMF 

(subc+ 

cort) 

BMF 

(vertex-wise 

contr for 

sex diff in 

BSV) 

BMF 

(vertex-

wise 

allometric) 

Brain 

size 

BMF 

(subcortical 

landmarks) 

 0.242** 0.686** 0.227** 0.116** 0.110** 

BMF 

(cortical 

landmarks) 

0.114*  0.278** 0.208** -0.097* 0.322** 

BMF 

(subc+cort 

landmarks) 

0.535** 0.271**  0.210** 0.045 0.178** 

BMF 

(vertex-wise 

contr for sex 

diff in BSV) 

0.222** 0.041 0.084  0.531** 0.491** 

BMF 

(vertex-wise 

allometric) 

0.072* -0.062 0.039 0.664**  -0.452** 

Brain size 0.173** 0.149** 0.065 0.370** -0.389**  

Brain Segmentation Volume is used as a measure of brain size. As the prediction of sex using brain measures 

derived from cortical landmarks in the QTIM dataset was no better than chance, these prediction scores were 

excluded from further analysis. BMF=Brain differences along a male-female dimension; subc=subcortical; 

cort=cortical; QTIM=Queensland Twin IMaging; HCP=Human Connectome Project.  

* p ≤ 0.05. ** p ≤ 0.001 

 

Association between sex differences in brain and behaviour 

We tested for a link between sex differences in brain and behaviour by computing a 

composite score of brain differences along a male-female dimension and testing its 
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association with a score of behavioural differences along a male-female dimension. This 

follows a similar approach to that of Tunç et al. (2016). Further, we examined the 

associations between the brain scores with specific behavioural measures. 

 

Association between brain and behavioural scores 

Prediction of individuals’ sex based on behavioural measures (Supplementary Table 

3) yielded a good AUC (74.94-78.89%). After combining both samples and adjusting for sex, 

age, and a dummy variable for study (QTIM/HCP), the resulting behavioural score correlated 

significantly with the brain scores derived from the landmark and vertex-wise approaches 

(with the exception of the measure based only on cortical landmarks) (Table 2). We also 

tested the same correlations within each sex – these tests have lower power (due to the split 

sample), but would reveal if the brain-behaviour association was markedly different in each 

sex (Table 2). Statistical significance was inconsistent across methods, but the point 

estimates were small and positive. For the vertex-wise measure we found a significant 

correlation within both sexes, with effect sizes similar to those found by Tunç et al. (2016) 

(within females: r = 0.129 (95% CI: 0.068; 0.188), p ≤ 0.001; within males: r = 0.137 (95% 

CI: 0.065; 0.207), p ≤ 0.001). Note that brain size itself showed a stronger association with 

the behavioural score than any of the shape-based brain scores (r = 0.162 (95% CI: 0.116; 

0.207), p ≤ 0.001). After controlling for brain size the association between brain and 

behavioural scores was no longer significant (Table 2), while the association remained 

significant when adjusting for body size (height) instead of brain size, in the total sample and 

within males (though the effect became smaller) (r = 0.066 (95% CI: 0.018; 0.114), p = 

0.007; females r=0.034 (95% CI: -0.029; 0.096), p =0.294; males r= 0.105 (95% CI: 0.031; 

0.178), p =0.006). 

 

Association between the brain scores with behavioural measures 
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Next, we aimed to gain more insight into whether and how the brain scores are 

associated with specific physical and behavioural measures. We also examined associations 

within each sex, under the hypothesis that we would find a similar correlation within each 

sex. As we found an association between the brain scores with brain size (Table 1), brain size 

may possibly confound the correlations between the brain scores with behavioural traits, 

which is why we adjusted correlations for brain size, as well as sex and age.  

The brain scores showed only very weak associations with physical and behavioural 

measures regardless of the approach used (Supplementary Table 6-14), and not always in the 

direction of the sex effect found for these measures (Supplementary Table 5). One association 

that remained across samples and across the different brain measures (except the allometric 

approach) was the association between the brain scores with height (r = 0.064 to 0.203) 

(Supplementary Table 6-14). However, no association showed a trend (p ≤ 0.05) in both the 

total sample and within-sex analyses and was consistent across the different brain measures 

(Supplementary Table 6-14). As a comparison, brain size showed more and stronger 

associations with behavioural measures (r = 0.059 to 0.243, p ≤ 0.05; Supplementary Table 

17-18) than did any of the brain scores (r = 0.059 to -0.207, p ≤ 0.05; Supplementary Table 

6-14). After adjusting the brain scores for body size (height) instead of brain size 

(Supplementary Table 12-13 right panel), several associations remained for the brain 

measures with physical and behavioural measures (Supplementary Table 15-16) –suggesting 

that the associations are driven by brain size more so than body size. 
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Table 2.  

Association between measures of brain and behavioural differences along a male-female dimension – adjusted for sex, age, and study (first 

panel), or sex, age, study, and brain size (BSV) (second panel). 

Brain measures derived 

from: 

total within females within males 

 r CI t dfs p r CI t dfs p r CI t dfs p 

Brain size 0.162 0.116; 

0.207 

6.869 1758 <0.001 0.145 0.085; 

0.204 

4.718 1033 <0.001 0.181 0.109; 

0.250 

4.943 723 <0.001 

Subcortical landmarks 0.060 0.013; 

0.106 

2.510 1758 0.012 0.014 -0.047; 

0.075 

0.453 1033 0.651 0.119 0.046; 

0.190 

3.218 723 0.001 

Cortical landmarks1 0.044 -0.019; 

0.107 

1.361 953 0.174 0.017 -0.070; 

0.104 

0.383 506 0.702 0.077 -0.016; 

0.168 

1.602

0 

445 0.106 

Both subcortical and 

cortical landmarks1 

0.073 0.009; 

0.135 

2.247 953 0.025 0.044 -0.043; 

0.131 

0.993 506 0.321 0.108 0.016; 

0.199 

2.300 445 0.022 

Vertex-wise controlled for 

sex differences in BSV 

0.132 0.090; 

0.178 

5.580 1758 <0.001 0.129 0.068; 

0.188 

4.165 1033 <0.001 0.137 0.065; 

0.207 

3.711 723 <0.001 

Adjusted for brain size 

Subcortical landmarksr 0.040 -0.007; 

0.086 

1.652 1758 0.100 -0.005 -0.066; 

0.056 

-0.159 1033 0.873 0.097 0.024; 

0.169 

2.618 723 0.009 

Cortical landmarks1,r -0.017 -0.081; 

0.046 

-0.549 953 0.583 -0.027 -0.114; 

0.060 

-0.605 506 0.545 -0.001 -0.094; 

0.092 

-0.020 445 0.984 

Both subcortical and 

cortical landmarks1,r  

0.037 -0.026; 

0.1000 

1.144 953 0.253 0.022 -0.065; 

0.109 

0.500 506 0.618 0.057 -0.036; 

0.149 

1.200 445 0.231 

Vertex-wise allometrica -0.004 -0.051; 

0.043 

-0.165 1736 0.869 0.009 -0.052; 

0.070 

0.288 1023 0.773 -0.020 -0.094; 

0.053 

-0.544 711 0.586 

1 Based on HCP cohort only, including 972 of 1113 individuals of the HCP cohort due to diffusion data not being available for 89 subjects with a behavioural score. 

r=Pearson correlation; CI=95% confidence interval; t=t-statistic; dfs= degrees of freedom; p=p-value; Brain Segmentation Volume (BSV) is used as a measure of brain size.  
r BSV was regressed out of the brain scores before testing the correlation with the behavioural score, a BSV was regressed out of the brain data before deriving a brain score 

on a (vertex) regional level using an allometric scaling approach.  
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Genetic analyses 

In both datasets and all brain measures, intra-class correlation in MZ twin pairs was 

greater than in DZ twin pairs or non-twin siblings, which suggests the influence of genetic 

effects (Supplementary Table 19-21). Consistent with previous work (Rentería et al., 2014), 

brain size was highly heritable (Supplementary Table 22): 86-92% of the variation in brain 

size could be explained by genetic influences (A), 0-7% by shared environmental influences 

(C), and 7-8% by residual effects (E), which include idiosyncratic environmental factors and 

measurement error. In contrast, the brain measures showed more modest heritability: 

depending on the measure used, 33-50% of the variance could be explained by genetic 

influences, 0-10% by shared environmental influences, and 40-67% by residual effects 

(Supplementary Table 22). The behavioural measure was also moderately heritable: 32-51% 

of the variation in the behavioural measure could be explained by genetic influences, 0-6% 

by shared environmental influences, and 43-68% by residual effects (Supplementary Table 

22). Results were similar when excluding opposite-sex twin or sibling pairs (Supplementary 

Table 23). 

Next, we examined the extent to which common genetic, shared environmental, or 

residual factors underlie the association of brain and behavioural differences along a male-

female dimension, brain size, and height, and of brain size with height. As there was no 

evidence for shared environmental influence, we used a bivariate model with an AE-model. 

To improve the power of our analyses, we combined the two samples. Our analyses showed a 

genetic correlation between brain and behavioural measures (combined rg = .296; within 

females rg = .220; within males rg = .409) when deriving the brain measure from the vertex-

wise scores (for which brain size differences associated with sex were removed). However, 

this correlation was no longer significant when using the vertex-wise allometric scores, 

suggesting brain size may be driving this correlation. In line with this possibility, we found a 
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similar genetic correlation between brain size and the behavioural measure (combined rg = 

.261; within females rg = .208; within males rg = .333), and we found a genetic correlation 

between brain size and the brain measure (combined rg = .566; within females rg = .526; 

within males rg = .602) when deriving the brain score from the vertex-wise scores (for which 

brain size differences associated with sex were removed), and also when using the allometric 

approach (removing all brain size differences) though the association became negative 

(combined rg = -.571; within females rg = -.640; within males rg = -.455). 

Further, we found a genetic correlation between the brain measures with height 

(combined rg = .162; within females rg = .128; within males rg = .145), but only for the vertex-

wise scores (for which brain size differences associated with sex were removed) and not for 

the vertex-wise allometric scores. In comparison, brain size showed a similar genetic 

correlation with height (combined rg = .195; within females rg = .147; within males rg = .205). 

 

Discussion 

We investigated whether sex differences in brain structure are associated with sex 

differences in behaviour within sex, thereby circumventing the confound of different 

socialization of females and males. We obtained a data-driven measure of brain differences 

along a male-female dimension (derived from sex differences in brain shape and structure) 

and behavioural differences along a male-female dimension (derived from sex differences in 

behaviour), while adjusting brain measures for brain size using an allometric scaling 

approach. Our key finding is that there is a small positive association between sex differences 

in brain and behaviour, but that association disappears when we take into account differences 

in brain size. 

Previous research (Phillips et al., 2019; Tunç et al., 2016) showed some (mixed) 

evidence of an association between brain and behavioural differences along a male-female 
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dimension, but ours uses two independent samples (total sample size more than double as 

Tunç (2016) and Phillips (2019)) and two different methods for deriving the brain measures, 

and carefully considers whether brain size may drive the brain-behaviour association. It is 

possible brain size could drive the association between brain and behaviour found previously, 

as the previous two studies (Phillips et al., 2019; Tunç et al., 2016) did not adjust (all) brain 

measures for brain size, and did not apply an allometric approach to consider that different 

brain regions scale differently to brain size. As a consequence, their brain data could still 

contain shape differences that are associated with the original size differences, and their score 

reflecting brain differences along a male-female dimension could be driven by these size 

differences.  

Our findings are consistent with this possibility. First, we showed that the brain 

measures were substantially correlated with brain size in the total sample and within each 

sex, even though all brains were scaled to the same size from the start. This is consistent with 

the concept of allometry, i.e. that a structure’s shape is not independent of its size. Larger 

brains tend to have a different shape from those of smaller brains, for example showing more 

folding on average. Second, we found an association between individual differences in brain 

and behaviour similar to that previously reported by Tunç (2016), but once we applied an 

allometric approach, adjusting for brain size on a regional (vertex-by-vertex) level, the 

correlation between brain and behaviour disappeared. Our results suggest that any previous 

findings of a relationship between sex differences in brain structure and behaviour may have 

been driven by brain size.  

The brain measures were associated with both physical and behavioural variables 

(although possibly driven by brain size differences), which implies that brain and behavioural 

sex differences may be subject to the same underlying processes of masculinization without 

being directly causally related. This possibility is strengthened by the correlation of the brain 
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measures with height, as there is no obvious reason to suspect that brain differences along a 

male-female dimension and height are causally related. Further, although it is well 

established that brain size is functionally relevant – for example, it is correlated at around 

0.24-0.33 with IQ after adjusting for differences in body size (Goriounova & Mansvelder, 

2019) – its relation to the nexus of brain and behavioural sex differences is less clear. Van der 

Linden et al. (2017) found that brain size partially mediated the small sex difference in IQ in 

the HPC sample (which also forms part of our sample) – but many studies find a negligible 

sex difference in IQ, and when van der Linden et al. (2017) used male and female samples 

matched on IQ, males still had larger brains. This finding raises the possibility that there are 

sex differences in brain structure that compensate for size differences between the sexes. On 

the one hand, it could be that some sex differences in brain structure are compensatory and 

make female and male behaviour more similar despite different average brain sizes. On the 

other hand, other sex differences in brain structure may result in adaptive behavioural sex 

differences and, due to joint hormonal mediation, also covary with brain size. We are not able 

to resolve these complexities here. Also, the weakness of the associations suggests that sex 

differences in brain structure are among many other factors related to sex differences in 

behaviour.  

We also estimated the heritability of brain and behavioural differences along a male-

female dimension. Using twin modelling, we estimated that variance in the brain and 

behavioural measures can be attributed in roughly similar proportions to genetic (32-50%) 

and unshared environmental (40-68%) influences. Phillips et al. (2019) estimated the 

heritability of sex-differentiated brain structure at 0-1.5% using single nucleotide 

polymorphism (SNP) data. SNP heritability estimates are extremely imprecise in samples of 

that size (N=900), and in any case SNPs typically do not capture most of the total heritability 

of complex traits (Wainschtein et al., 2019). Twin studies like ours estimate a trait’s total 
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heritability. As for behaviour, our heritability estimates were in line with those of a previous 

twin study using a different method with different data (Verweij, Mosing, Ullen, & Madison, 

2016).  

This project has some limitations. Most importantly, our research does not imply that 

no association could exist between behaviour and sex differences in regional (as opposed to 

global) brain structure, microstructure, or brain function, all of which our study is silent on. 

Second, the range of sexually dimorphic behaviours we analysed was limited by the measures 

that happened to have been collected in the QTIM and HCP studies, and they may not be the 

most sensitive to detect sex differences in behaviour compared to more sexually 

differentiated behavioural traits. However, our prediction performance was similar to that 

previously reported by Tunç (2016). In addition, several behavioural measures in the QTIM 

dataset were obtained at a different time to when the imaging scans were acquired. Further, it 

is unclear to what degree the sex differences from which our measures are derived are 

influenced by genetic factors (e.g. number of X chromosomes, the presence of a Y 

chromosome, and mitochondrial DNA inheritance (Pearse & Young-Pearse, 2019)) as well as 

sex hormone levels. In addition, despite our efforts to remove the confound of socialisation 

between females and males by looking at within-sex differences, our measures may capture 

environmental differences among females and among males beyond those based on biology. 

Future research with even larger samples and richer brain and behavioural measures, 

and a longitudinal study design, will further elucidate the biological and social influences on 

brain and behavioural sex differences. Such an approach will help to answer questions such 

as at what stage(s) across the lifespan sex hormones play the most prominent role in 

influencing brain and behaviour, and whether specific sex hormones have distinct influences 

on brain and behaviour. It will also provide insights into the directionality of the association 
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between sex differences in brain and behaviour, and shed light on the distinction between 

biological sex and gender differences. 
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