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Abstract

Continuous and non-invasive respiratory rate (RR) monitoring would significantly improve

patient outcomes. Currently, RR is under-recorded in clinical environments and is often

measured by manually counting breaths. In this work, we investigate the use of respiratory

signal quality quantification and several neural network (NN) structures for improved RR

estimation. We extract respiratory modulation signals from the electrocardiogram (ECG)

and photoplethysmogram (PPG) signals, and calculate a possible RR from each extracted

signal. We develop a straightforward and efficient respiratory quality index (RQI) scheme

that determines the quality of each moonddulation-extracted respiration signal. We then

develop NNs for the estimation of RR, using estimated RRs and their corresponding quality

index as input features. We determine that calculating RQIs for modulation-extracted RRs

decreased the mean absolute error (MAE) of our NNs by up to 38.17%. When trained and

tested using 60-sec waveform segments, the proposed scheme achieved an MAE of 0.638

breaths per minute. Based on these results, our scheme could be readily implemented

into non-invasive wearable devices for continuous RR measurement in many healthcare

applications.

Introduction

Respiratory rate (RR) is a fundamental physiological parameter, and abnormality in this vital

sign is one of the earliest indicators of critical illness. One recent study found that elevated

respiratory rate was a key predictor of clinical deterioration within 48 hours of discharge from

the emergency department [1]. Another classical study determined that the occurrence of at

least one RR� 27 breaths per minute (BrPM) in a 72 hour period was a strong predictor of

cardiac arrest [2]. Elevated RR has also been linked to increased mortality [3], while relative

changes in RR have been shown to indicate patient stability [4]. In children, elevated RR is a

primary indicator of pneumonia, an infection that is the most common cause of death in
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children aged 0-5 [5, 6]. Clearly, abnormalities or variations in the RR are key indicators of

clinical deterioration.

Despite the clinical significance of RR, several studies have noted that it is historically less

recorded than other vital signs [1, 7–9]. This has somewhat improved with the introduction

of the Modified Early Warning Score [7], which incorporates measurement of RR. However,

one study observed that nurses still don’t measure RR in 50% of cases [9]. Time constraints

and the lack of equipment for measuring RR were both cited as reasons for not monitoring

this parameter.

This lack of recording can be partially attributed to the fact that there is a lack of tools avail-

able for automatically measuring RR. Currently, most methods for automatic RR measure-

ment rely on oronasal systems incorporating sensors including capnography, temperature,

and moisture sensors [5]. However, these have not been widely adopted, with issues related to

cost, wearability, and accuracy identified for existing automated devices [5].

Manual measurement remains the accepted method for determining RR. To obtain RR, it is

recommended that healthcare staff count the number of breaths a patient takes over a one-

minute period [6]. However, several studies have found that both doctors and nurses estimate

respiratory rate over shorter time periods, or without counting the breath at all [10, 11]. Accu-

racy of manual RR calculations can be affected by patient awareness [9], as well as time con-

straints, interruptions from patients and other staff, and patient agitation [5, 11].

In addition to the complications associated with obtaining an accurate manual RR mea-

surement, there is also a significant time cost. One study found that as much as 7.2% of nurses’

time was spent performing patient assessment, including measurement of RR [12]. There are

approximately 3 million registered nurses in America, earning an average of $75,510 USD per

annum each as of May 2018 [13]. Thus, the total financial cost incurred by time nurses spend

on patient assessment exceeds 16 billion USD per year.

Given the major limitations in measuring RR, it is clear that a reliable method of automatic

and continuous monitoring of this vital sign in a non-invasive manner would significantly

improve patient outcomes in hospitals. Additionally, given the usefulness of RR as an early

indicator of critical illness, continuous at-home measurement of RR could be lifesaving for at-

risk patients living alone.

Several recent studies have investigated the use of photoplethysmogram (PPG) and electro-

cardiogram (ECG) signals to derive RR in a wearable and non-invasive manner [14–19]. Res-

piration modulates the ECG and PPG signals in three main ways—baseline wander (BW)

modulation, amplitude modulation (AM) and respiratory sinus arrhythmia (RSA) modula-

tion, more commonly known as frequency modulation (FM). These modulations are caused

by movement associated with breathing, and various responses to the change in intrathoracic

pressure during respiration [20].

In order to accurately estimate RR, several recent studies have developed respiratory quality

indices (RQIs) to determine which of the extracted modulations are of the highest quality [17,

18, 21]. This in turn allows for identification of which modulation-extracted RRs are realistic,

thus allowing for more accurate estimation of actual RR.

Interestingly, there are very few studies that have attempted to estimate RR from PPG and

ECG using machine learning (ML). The best performing ML-enabled technique was presented

in [17], where a mean absolute error (MAE) of 0.71 BrPM was achieved using linear regres-

sion. While these are reasonably good results, we will demonstrate that they can be improved

upon by instead using neural networks (NNs) in combination with our own novel RQI

scheme.

In this work, we develop an RQI scheme for assessing the quality of modulation-extraction

respiration signals. The proposed scheme uses statistics regarding the signal variation to assign
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‘good’ or ‘bad’ ratings to RRs calculated from modulation-extracted signals. We train and test

multiple neural networks, comparing the performance in two scenarios: one where only RR

features are used as features, and the other where both RR and corresponding RQIs are used.

The remainder of this paper is structured as follows. Section II describes the methodology

utilized for obtaining signal quality and an overall RR estimation using various NN structures.

Section III presents results and discussion before Section IV concludes the paper and provides

recommendations for future work. Acronyms and abbreviations used throughout this work

are defined in Table 1 below for the convenience of the reader.

Methodology

Obtaining data

Data for this work was obtained from the open-source Medical Information Mart for Intensive

Care (MIMIC-III) database [22], which features an extremely large number of records from

patients admitted to intensive care units (ICUs) between 2001-2012. Data used to conduct this

research was first accessed in 2019. To train the neural networks, ECG and PPG signals were

needed to derive RR from the BW, AM, and FM modulations. Additionally, a reference “true”

RR signal was needed to provide the neural networks with an expected output RR. As such, the

PhysioBank ATM tool [23] was used to obtain a list of all records containing ECG, PPG, and

respiratory waveforms from the MIMIC-III database. Then, a Python script was developed to

download all relevant records as MATLAB-compatible files, utilizing several functions from

Table 1. Acronyms and abbreviations.

Abbreviation Definition

AM Amplitude modulation

BiLSTM Bidirectional long short-term memory

BrPM Breaths per minute

BrTBr Breath-to-breath

BTB Beat-to-beat

BW Baseline wander

DCV Differential coefficient of variation

ECG Electrocardiogram

FM Frequency modulation

HR Heart rate

ICU Intensive care unit

LOA Limit of agreement

LSTM Long short-term memory

MAE Mean absolute error

MD Mean difference

MIMIC Medical Information Mart for Intensive Care

ML Machine learning

NN Neural network

PCC Pearson’s correlation coefficient

PPG Photoplethysmograph

RMSE Root mean square error

RQI Respiratory quality index

RR Respiratory rate

RSA Respiratory sinus arrhythmia

SQI Signal quality index

https://doi.org/10.1371/journal.pone.0249843.t001
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the Waveform Database Toolbox [24]. After running this script, a total of 8,781 records were

obtained. No exclusions were made based on patient demographics, diagnoses or treatments

received, as we aimed to develop an all-inclusive scheme that could measure respiratory rate

irrespective of whether respiration was being affected by health conditions or respiratory sup-

port treatments. Patient demographics are also not attached to many of the waveform records

used, however an overview of patient demographics across the entire MIMIC-III database is

presented in the original paper describing the database [22].

Preprocessing data

The primary preprocessing performed was the denoising of ECG and PPG signals. Many of

the ECG and PPG signals were affected by baseline wander that could be attributed both to res-

piration and other movement. Thus, baseline wander was removed from each signal using a

low-pass Chebyshev filter and stored for later use.

After removing the low-frequency BW components from the signals, it was observed that

many ECG signals still appeared noisy. To denoise the ECG signals, a seventh-order Savitsky-

Golay filter was utilized. This filter type was chosen due as they are well-known to preserve

small details of a waveform, such as the Q- and S-waves found in ECG signals.

After signals were denoised, all records including ECG, PPG and respiratory signals were

split into segments. In this work, we trialled three different segment lengths to determine the

most suitable length for accurate RR prediction. The segments chosen were 20, 30, and 60 sec-

onds. These segment lengths are commonly used in the literature, allowing for fair compari-

son. They also each enable very frequent RR estimation, while also providing a wide enough

window to accurately calculate even very low RRs. At this point, any segment with a missing

signal or flat-lining signal was discarded.

For each record segment, the R-waves (or peaks) of the ECG signals were found, as well as

the peaks of the PPG and reference RR signals. Additionally, the beat-to-beat intervals were

calculated for PPG and ECG signals, and the breath-to-breath (BrTBr) interval was calculated

for RR signals. Heart rate (HR) was then calculated from both the PPG and ECG signals,

before RR was calculated from the reference respiration signal. This extracted information was

then used by our purpose-built signal quality index (SQI) as described in the next section, to

determine the overall quality of the segment and thus the segment’s suitability for training and

testing the neural networks.

Furthermore, the RR of each segment was calculated by finding the average period between

peaks of the respiration signal. This period represents one full breath, and thus the RR was cal-

culated using the following formula:

RRtrue ¼
60

meanðBrTBr1;BrTBr2; . . . ;BrTBrnÞ
ð1Þ

where ‘BrTBr’ represents a breath-to-breath interval measured in seconds, ‘n’ is the number of

BrTBr intervals within the respiratory signal segment, and the ‘RRtrue’ is taken as the “true RR”

for that segment.

Signal quality assessment

Signal quality assessment is vital to ensure that neural networks are learning from realistic

data. One significant work [25] found that simple conditional statements can be used to effec-

tively assess the quality of PPG, ECG, and blood pressure signals. In these works, various sanity

checks were performed to determine the quality of a signal, such as ensuring that heart rate
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(HR) and beat-to-beat (BTB) intervals were within reasonable ranges. Reasonable range for

RR were determined based on clinical medicine resources

In this work, PPG and ECG signals are considered with respect to calculating RR, and as

such the quality of the respiration signal is also vital. As such, this work develops an SQI tool

based on conditional statements relevant to the problem in order to successfully classify a

record containing PPG, ECG and respiration signals as either “good” or “bad” based on a

series of conditional statements. This is described by the following algorithm:

Algorithm 1 Signal quality index algorithm
Input: hr_ppg, hr_ecg, ppg_peak_ratio, ecg_peak_ratio, ppg_btb_ratio,
ecg_btb_ratio, true_rr, true_rr_peak_ratio, true_rr_brtbr_ratio
Output: signal_quality
1: if [(abs(hr_ppg—hr_ecg) < 10) & (hr_ppg > 40) & (hr_ppg < 180) &
(ppg_peak_ratio < 1.5) &
(ecg_peak_ratio < 1.5) & (ptp_btb_ratio < 1.5) &
(ecg_btb_ratio < 1.5) & (true_rr > 8) &
(true_rr < 35) & (true_rr_peak_ratio < 1.5)
& (true_rr_brtbr_ratio < 1.5)] then

2: signal_quality = 1
3: else
4: signal_quality = 0
5: else if

In this algorithm, hr_ppg and hr_ecg are the HR values calculated from the PPG and ECG

signals, respectively. They are compared to each other to verify that they were acceptably simi-

lar, then hr_ppg was checked to ensure that HR was within the physiologically probable range

of 40-180 bpm [26]. Meanwhile, ppg_peak_ratio, ecg_peak_ratio and true_rr_peak_ratio repre-

sent the ratio of the maximum to minimum peak heights for the PPG, ECG and reference RR

signals respectively, and ppg_btb_ratio, ecg_btb_ratio and true_rr_brtbr_ratio represent the

ratio of maximum to minimum PPG signal BTB intervals, ECG signal BTB intervals and refer-

ence RR signal BrTBr intervals respectively. It was checked that each of these ratios was <1.5

to ensure that there was acceptable consistency within each individual signal, as consistency is

a strong indicator of signal quality. Lastly, true_rr represents the RR extracted from the refer-

ence signal using Eq 1, and it was checked that this fell within the conservative range of 8-35,

substantially broader than the 15-30 BrPM defined as normal RR [27]. Records that met all cri-

teria were assigned a signal_quality of 1, meaning “good”, while failure to meet any criteria

resulted in a signal_quality of 0, or “bad”.

After testing all segments with the SQI tool, there were 19,084 “good” 20-second segments,

7,301 “good” 30-second segments, and 1,300 “good” 60-second segments for use in training

and testing the model. The next stage was to extract features from each of these signals for use

in training the neural networks. This was a multi-step process, which begins with the extrac-

tion of respiration-induced modulations from the ECG and PPG signal as discussed in the fol-

lowing subsection.

Extracting respiratory signals from ECG and PPG

Respiration can modulate the ECG and PPG signals in three key ways—baseline wander (BW)

modulation, amplitude modulation (AM) and frequency modulation (FM) caused by respira-

tory sinus arrhythmia. These modulations are shown in comparison to signals unaffected by

respiration (without modulation) in Fig 1. As previously discussed, one or more respiratory

modulations may be absent from the PPG and ECG signals of some patients. As such, endeav-

ouring to extract all three key modulations from both the ECG and PPG signal will greatly

enhance a neural network’s ability to estimate true RR.
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Extracting respiratory signals. In the context of respiration, BW is the overall shift in the

baseline of an ECG or PPG signal due to respiration, as is shown in Fig 1B. BW was obtained by

low-pass filtering the ECG and PPG signals. Hereafter the BW signals extracted from the PPG

and ECG signals are denoted as PPG-BW and ECG-BW, respectively. Meanwhile, AM presents

as the variation in peak heights in the ECG and PPG signals, after BW has been removed, as

shown in Fig 1C. Finally, FM presents in ECG or PPG signals as varying beat duration, as

shown in Fig 1D. Thus, AM and FM respiration signals are easily derived from the peak heights

and BTB intervals of the waveforms, respectively. The AM and FM signals extracted from PPG

and ECG are henceforth denoted as PPG-AM, PPG-FM, ECG-AM, and ECG-FM.

After BW, AM and FM signals were extracted from the PPG and ECG signal, peaks and

troughs of each signal were calculated and stored in six separate vectors. Breath-to-breath

intervals, as well as the intervals between trough locations, were also calculated and stored in

six additional vectors. These parameters were then used by the developed respiratory quality

index (RQI) tool described in the following subsection.

Finally, a possible respiratory rate was derived from each signal by finding the average

period between peaks (the breath-to-breath interval), and thus determining the number of

breaths per minute. This process is mathematically defined as:

RRsignal ¼
60

meanðBrTBr1;BrTBr2; . . .BrTBrnÞ
ð2Þ

where ‘BrTBr’ is a breath-to-breath interval, ‘n’ is the number of BrTBr intervals within the

extracted signal, and the ‘signal’ of RRsignal is the PPG-BW, PPG-AM, PPG-FM, ECG-BW,

ECG-AM or ECG-FM.

Overviews of the distribution of modulation-derived respiratory rates, along with the distri-

bution of true respiratory rates, are presented for the 20-second segment dataset in S1 Table,

the 30-second segment dataset in S2 Table, and the 60-second segment dataset in S3 Table.

Respiratory quality assessment

The development of an RQI scheme that assigns each modulation-extracted respiratory signal

a quality rating on some scale could improve RR estimation algorithms, as knowledge about

the quality of each estimated RR can enhance the networks ability to determine true RR based.

Fig 1. Sample ECG and PPG signals with and without effects of respiratory modulation. (A) unaffected by

respiratory modulation. (B) affected by baseline wander. (C) affected by amplitude modulation. (D) affected by

frequency modulation.

https://doi.org/10.1371/journal.pone.0249843.g001
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In this work, we propose a efficient and effective RQI scheme that considers the variance in

peak heights (ph), trough depths (td), and the distances between peak pairs (p-p) and trough

pairs (t-t) for any given extracted RR signal.

Consistency is a key indicator of respiratory signal quality, and as such we propose the dif-

ferential coefficient of variation (DCV) metric, a variation on the the coefficient of variation,

to quantify how much variation is in the signal. We calculate the DCV for peak heights, trough

depths, peak-to-peak distances and trough-to-trough distances as follows:

DCV ¼ 1 �
s

m
ð3Þ

where σ represents the standard deviation (SD) and μ represents the mean of the vector of

data. Then, we calculate the DCV for the four properties of interest—peak height, trough

depths, distance between peak pairs, and distance between trough pairs. These are denoted as

DCVph, DCVtd, DCVp-p and DCVt-t in Eq (4), respectively.

As is shown in Eq (4), we then find the average of the four DCVs. In Eq (3), most values

will fall between 0-1, but there is a possibility of negative values where there is no consistency.

The max calculation in the following equation is used to ensure that the resulting RQI-C value

falls between 0 and 1, even in the highly unlikely case where there is no consistency in any of

the DCVs.

RQI ¼ maxð
PDCVph þ DCVtd þ DCVp� p þ DCVt� t

4
; 0Þ ð4Þ

The calculated RQI will be 0 in the case where there is no consistency, and 1 in the case

where there is perfect consistency. As consistency is the best indicator of signal quality, higher

RQI values indicate better quality signals.

This scheme was used to calculate an RQI for each of the six modulation-extracted respi-

ratory signals in every record; PPG-BW, ECG-BW, PPG-AM, ECG-AM, PPG-FM, and

ECG-FM.

Feature selection

We developed two separate feature vectors to analyse the performance of neural networks with

and without the RQI features as inputs. For the first test, we selected solely the modulation-

extracted RRs, resulting in a six-feature input vector as follows:

½RRECG� BW;RRPPG� BW;RRECG� AM;

RRPPG� AM;RRECG� FM;RRPPG� FM�

For the second test, we created a feature vector that included RQIs calculated using our pro-

posed scheme, along with the modulation-extracted RRs. The resultant twelve-feature vector is

as follows:

½RQIECG� BW;RRECG� BW;RQIPPG� BW;RRPPG� BW;

RQIECG� AM;RRECG� AM;RQIPPG� AM;RRPPG� AM;

RQIECG� FM;RRECG� FM;RQIPPG� FM;RRPPG� FM; �

These two feature vectors were constructed for every record that was classified as ‘good’ by

the SQI tool.
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Neural network structure

In this work, we use a bidirectional long short-term memory (BiLSTM) network structure to

predict respiratory rate from the input features. BiLSTM cells are updated using the same

mathematical structure as unidirectional long short-term memory cells, but the data is passed

through the network both as-is (forwards) and in reversed order (backwards). The results of

these operations is then concatenated before passing to the next layer. The mathematical struc-

ture of a single forward or backwards pass is described by the following equations, with inter-

ested readers referred to the original paper that introduced LSTM for further details regarding

mathematical theory [28].

~ct ¼ tanhðwc½ aðt� 1Þ; xt� þ bcÞ ð5Þ

ft ¼ sðwf ½ aðt� 1Þ; xt� þ bfÞ ð6Þ

ut ¼ sðwu½ aðt� 1Þ; xt� þ buÞ ð7Þ

ot ¼ sðwo½ aðt� 1Þ; xt� þ boÞ ð8Þ

ct ¼ ut � ~ct þ ft � cðt� 1Þ ð9Þ

at ¼ ot � tanhðctÞ ð10Þ

where wc, wf, wu and wo refer to the learned weights for their respective operations, while bc,

bf, bu and bo are the learned biases. These are learnt during training using the Adam optimiza-

tion algorithm [29], a common optimization algorithm that uses adaptive learning rates and

momentum to converge quickly and efficiently on the true optimal solution. Additionally, the

parameter a(t-1) refers to the output of the previous layer, while xt is the input for timestep t. Eq

(9) utilizes the results of Eqs (5)–(7) as well as the cell state of the previous time step, c(t-1) to

update the cell state, and Eq (10) uses the resultant cc as well as the output gate results. The ‘•’

symbol in Eqs (9) and (10) represents element-wise matrix multiplication, and the function σ()

in Eqs (6)–(8) is the sigmoid activation function, which is defined as sðzÞ ¼ 1

1þe� z.

The neural network structure utilised in this work includes three hidden BiLSTM layers

each comprised of the forward and backwards passes followed by the concatenation operation.

The first two hidden layers return a sequence of all hidden cell states, hence the high number

of concatenation operations. The third hidden layer outputs only the final state of each cell

from both the forward and backwards pass, and these are then concatenated. The network

structure is illustrated in Fig 2 below.

The NN structure included 128 hidden units per hidden layer and a batch size of 1024 to

enable good generalization without overfitting. The aforementioned Adam optimization [29]

function is used to update weights and biases during training, while the mean absolute error

(MAE) is used as the loss function.

Training and testing

In this work, the NN structure was trained and tested six times to compare the performance of

the network using the six different feature vectors, as follows:

• All 12 features, as calculated from 20-second segments

• The 6 RR features only, as calculated from 20-second segments
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• All 12 features, as calculated from 30-second segments

• The 6 RR features only, as calculated from 30-second segments

• All 12 features, as calculated from 60-second segments

• The 6 RR features only, as calculated from 60-second segments

The data was pseudorandomly shuffled before being split into subsets for training, validat-

ing, and testing. 80% of the data was used for training the NNs, 10% was used for fine-tuning

hyperparameters through the validation process, and the remaining 10% of unseen data was

utilized to fairly test the models.

Results and discussion

After training and testing all of the NN configurations, statistical and graphical analysis was

conducted to assess the performance of each network. In terms of statistical analysis, several

informative metrics were considered: mean absolute error (MAE), root mean square error

Fig 2. Structure of the BiLSTM model.

https://doi.org/10.1371/journal.pone.0249843.g002
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(RMSE), and Pearson’s correlation coefficient (PCC). Furthermore, Bland Altman analysis

was conducted by calculating the bias or mean difference (MD), the difference or width

between the limits of agreement (LOAs), and the percentage of results (of mean vs. difference

between true and predicted RRs) that fall between said LOAs.

MAE gives key insight into how skilled the network is at producing a reasonable prediction

for RR. RMSE is indicative of how many high-range errors there are, and thus provides infor-

mation about whether the network has fit appropriately to the data. PCC indicates the level of

linear correlation, and will give a result between 0 and ±1, representing no correlation and

total positive/negative correlation respectively.

In terms of the Bland Altman analysis metrics, a low MD along with narrow LOAs is a

good indicator of strong agreement between the two methods of measurement. In Bland Alt-

man analysis, each data point is the result of comparing the mean of the two measurement

methods with the difference between their predictions. If the majority of these results fall

within the LOAs, then this further indicates a strong level of agreement between the two mea-

surements. As such, a high-performing network would have low MD, low LOA width, and a

high percentage of results within the LOAs.

The results of calculating these metrics for the BiLSTM NNs trained using each feature vec-

tor are shown in Table 2. These results clearly indicate that the inclusion of RQIs calculated

using our proposed scheme greatly improves the success of machine learning in estimating

true RR. Table 2 shows that the inclusion of RQI features reduced the MAE by up to 36.89%

when compared to the equivalent networks that were trained using solely the modulation-

extracted RRs. Significant improvements RMSE and PCC are all also visible across all NN

structures considered. In all cases, including RQI features increased the level of agreement

between true and predicted RR measurements, narrowing the LOA width. MDs were

extremely small across all networks.

Table 2 also shows that the BiLSTM network model performs strongly regardless of the seg-

ment length used to derive the RR and RQIs, however MAE is shown to decrease as segment

length is increased. The overall lowest MAE was 0.638, achieved by the network trained on

RRs & RQIs extracted from 60 second segments. As the inclusion of RQI features is shown to

reduce MAE, the remainder of our analysis will focus on the networks trained with both RR &

RQI features.

To further analyse the predictive performance of the BiLSTM network, the error histograms

in Fig 3 were created to graphically investigate the spread of errors in RR predictions. To create

these figures, all errors were rounded to the nearest 0.25 to allow for better visualisation. These

figures reiterate the high accuracy of the systems trained using both RR and RQI features.

We further analyse the performance of the BiLSTM network when trained on records with

different segment lengths via the Bland Altman plots in Fig 4. Bland Altman plots are used to

assess the level of agreement between two measurement methods—in this case, we compare

the predictions made by our proposed BiLSTM model against the reference RR measurement

Table 2. Performance of BiLSTM NN using various feature vectors for estimating respiratory rate.

Segment Length Features MAE (BrPM) RMSE (BrPM) PCC MD LOA Width % in LOAs

20 seconds RR & RQIs 0.821 2.236 0.891 -0.08 8.76 95.44%

RR Only 1.301 2.776 0.829 -0.16 10.87 92.77%

30 seconds RR & RQIs 0.747 1.926 0.901 0.14 7.54 95.21%

RR Only 1.116 2.430 0.839 -0.04 9.53 93.43%

60 seconds RR & RQIs 0.638 1.575 0.932 -0.15 6.17 95.38%

RR Only 0.711 1.731 0.919 -0.14 6.79 96.15%

https://doi.org/10.1371/journal.pone.0249843.t002
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Fig 3. Error Histograms for RR Estimation using RR & RQI features derived from: (A) 20-second PPG & ECG

segments. (B) 30-second PPG & ECG segments. (C) 60-second PPG & ECG segments.

https://doi.org/10.1371/journal.pone.0249843.g003

PLOS ONE Determining respiratory rate from heart activity signals using respiratory quality indices and neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0249843 April 8, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0249843.g003
https://doi.org/10.1371/journal.pone.0249843


from the MIMIC-III database. The difference between the two measurements is plotted against

the mean of the two measurements, and as such a high density around the central ‘mean differ-

ence’ line within the ‘limits of agreement’ indicates strong agreement between two schemes. In

each plot, the difference vs. mean results were often extremely close together and appeared to

overlap. As such, density color scales are included in Fig 4 to better illustrate the concentration

of points. As can be seen from this plot, there is a high density of points along the mean differ-

ence line, with 95.44%, 95.21%, and 95.38% of results falling within the limits of agreement for

the models utilising features extracted from 20-second, 30-second, and 60-second ECG and

PPG segments, respectively. This indicates a strong correlation between the true RRs and

those predicted by our proposed network, regardless of the segment length used for feature

extraction.

To further assess the correlation between the true and predicted values for RR, the regres-

sion plots in Fig 5 were constructed. In each figure, the thick black line represents what ‘per-

fect’ correlation would look like, while the dashed black line is the actual correlation achieved

by the network. From this regression plot, it is clear that there is a strong correlation between

the predictions made by the BiLSTM model and the reference RRs obtained from the MIMI-

C-III database, regardless of the segment length used to derive the features. In each plot, the

actual correlation line falls very close to the ideal correlation line, and very few data points are

outliers in the trend.

Overall, the proposed BiLSTM model shows low error and a high level of agreement with

gold-standard measurement, regardless of which segment length is used for feature extraction.

Performance increased as segment length increased, but even shorter segments showed strong

results. In all cases, the inclusion of features calculated based on our proposed RQI scheme

greatly improves the performance of the BiLSTM neural network. Therefore, it is clear that a

BiLSTM model utilising extracted RRs and our proposed RQIs would significantly improve

RR calculation in clinical and at-home environments, with longer ECG and PPG segments for

feature extraction leading to the most accurate predictions.

Comparison to previous works

The results obtained by our BiLSTM models compare well to previous works when the feature

vectors with both modulation-extracted RRs and corresponding RQIs were used, regardless of

the segment length that these features were extracted from. This is shown in Table 3. It is clear

that the proposed model outperforms the previous state-of-the-art schemes for RR estimation

from ECG and PPG signals, achieving significantly better MAE and comparable RMSE.

Unfortunately, PCC was not provided by previous works in Table 3 so could not be considered

when making comparisons to the literature.

Compared to the works presented in Table 3, our BiLSTM models with RR and RQI fea-

tures perform extremely strongly regardless of segment length used to extract these parame-

ters. The RMSEs of all models were lower than the previous works in the literature. In terms of

MAE, the model trained using 60s segments outperformed all previous works. One work [17]

reported a lower MAE of 0.71 BrPM on the Capnobase database than was achieved by our

models based on 20s and 30s signal segments, however the MAE of [17] rose to 3.12 BrPM

when the scheme was applied to the larger and more comprehensive MIMIC database. As our

work is based on MIMIC data, the latter result is more comparable. Overall, our LSTM models

both outperform the literature in terms of MAE.

Interestingly, our enhanced results were achieved even where the short window length of

20 seconds was used. Accuracy increased with time, however the risk of artefacts impacting
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Fig 4. Bland Altman Plots for RR Estimation using RR & RQI features derived from (A) 20-second PPG & ECG

segments. (B) 30-second PPG & ECG segments. (C) 60-second PPG & ECG segments.

https://doi.org/10.1371/journal.pone.0249843.g004
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Fig 5. Regression Plots for RR Estimation using RR & RQI features derived from: (A) 20-second PPG & ECG

segments. (B) 30-second PPG & ECG segments. (C) 60-second PPG & ECG segments.

https://doi.org/10.1371/journal.pone.0249843.g005
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the signal quality also increases with the length of the segment. This suggests that our scheme

could predict RR faster, while also achieving a lower error.

It is also worth noting that the previous works largely relied on very small datasets.

Through using a large database for this work, it has been possible to thoroughly validate

the performance of the network across a large and diverse set of patients. Our results were

obtained through testing our scheme on 1,909 segments, compared to other recent works

such as [17, 19] where 95 and 29 records were used to obtain the results in Table 3, respec-

tively. This ultimately means that our network is more likely to translate to real-world appli-

cation with success, while many of the previous works would need to be validated on larger

databases.

Conclusion

In this work, an RQI scheme was developed to enhance the performance of neural networks

utilizing the respiratory modulations of ECG and PPG signals to estimate true RR. The pro-

posed RQI scheme was implemented and tested to evaluate improvements in the performance

of NNs in predicting RR from modulation-extracted RR estimates, with exceptional results.

When RQIs were used alongside modulation-extracted RRs as input features, a bidirec-

tional LSTM model was able to achieve the low MAE of 0.821 BrPM. This is a significant

improvement when compared to other works in the literature, and proves that RQIs can

greatly enhance the performance of neural networks.

With further validation on non-ICU data, this scheme would likely be suitable for at-home

healthcare monitoring due to the wearable nature of PPG and ECG sensors. In our future

work, we will investigate this application.

The results of this paper show that a device implementing our proposed RQI scheme with a

BiLSTM NN would be suitable for continuous and non-invasive monitoring of respiratory

rate, using hardware that is already in place in many healthcare environments. We suggest that

this algorithm would be suitable for clinical use. With further validation on persons outside

of ICU, it would also be suitable for at-home health monitoring. This scheme could greatly

improve early prediction of potentially fatal conditions, enhance remote healthcare, and ulti-

mately improve patient outcomes.

Table 3. Comparison to previous works.

Error Metrics (BrPM)

Segment Length (s) MAE (BrPM) RMSE (BrPM)

Orphanidou [14] 60 1.80 N/A

Karlen [15] 60 N/A 2.3

Birrenkott [17] 32 0.711, 3.122 N/A

Pirhonen [19] N/A 1.764 3.996

BiLSTM + RQI 20 0.821 2.236

BiLSTM + RQI 30 0.747 1.926

BiLSTM + RQI 60 0.638 1.575

1 Based on testing against 42 Capnobase [30] records
2 Based on testing against 53 records MIMIC-II [31] records
3 Based on testing against 42 Capnobase [30] records, results varied based on window length selected and on signal

used (PPG or ECG)

https://doi.org/10.1371/journal.pone.0249843.t003
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