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Simple Summary: Animals must be able to solve problems to access food and avoid predators. Prob-
lem solving is not a complicated process, often relying only on animals exploring their surroundings,
and being able to learn and remember information. However, not all species, populations, or even
individuals, can solve problems, or can solve problems in the same way. Differences in problem-
solving ability could be due to differences in how animals develop and grow, including differences in
their genetics, hormones, age, and/or environmental conditions. Here, we consider how an animal’s
problem-solving ability could be impacted by its development, and what future work needs to be
done to understand the development of problem solving. We argue that, considering how many
different factors are involved, focusing on individual animals, and individual variation, is the best
way to study the development of problem solving.

Abstract: Problem solving, the act of overcoming an obstacle to obtain an incentive, has been
studied in a wide variety of taxa, and is often based on simple strategies such as trial-and-error
learning, instead of higher-order cognitive processes, such as insight. There are large variations in
problem solving abilities between species, populations and individuals, and this variation could
arise due to differences in development, and other intrinsic (genetic, neuroendocrine and aging)
and extrinsic (environmental) factors. However, experimental studies investigating the ontogeny of
problem solving are lacking. Here, we provide a comprehensive review of problem solving from
an ontogenetic perspective. The focus is to highlight aspects of problem solving that have been
overlooked in the current literature, and highlight why developmental influences of problem-solving
ability are particularly important avenues for future investigation. We argue that the ultimate
outcome of solving a problem is underpinned by interacting cognitive, physiological and behavioural
components, all of which are affected by ontogenetic factors. We emphasise that, due to the large
number of confounding ontogenetic influences, an individual-centric approach is important for a full
understanding of the development of problem solving.

Keywords: behavioural flexibility; cognition; development; individual; innovation; ontogeny

1. Introduction

Increasing concerns over human-induced rapid environmental change has led to a
corresponding increase in interest in understanding how animals will cope with these
challenges. Rapid and unpredictable changes may have significant effects on survival and
coping ability [1]. In order to survive, animals need to gain information about the environ-
ment (e.g., relative predation risk and food availability). While this might sometimes be
easily attained, such as directly observing fruit on a tree, obtaining resources or avoiding
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predation may require an ability to solve a problem, such as obtaining fruit that is out
of reach.

Problem solving has been documented in all major vertebrate taxa, including mam-
mals (e.g., food-baited puzzles in various mammalian carnivores, [2]), birds (e.g., food-
baited puzzles given to multiple parrot and corvid species [3,4]), reptiles (e.g., multiple
species of monitor lizards Varanus spp. are capable of solving food-baited puzzle boxes, [5]),
amphibians (e.g., detour task, where the animal had to move around an obstacle in brilliant-
thighed poison frogs Allobates femoralis, [6]), fishes (e.g., foraging innovation in guppies
Poecilia reticulata, [7]), and some invertebrates (e.g., overcoming a physical barrier in leaf-
cutting ants Atta colombica [8]).

Currently, there is no universally accepted definition of problem solving (Table 1).
From our literature search (see below), most definitions consider mechanical (i.e., move-
ments required to solve problems), morphological (i.e., physical structure to manipulate
objects to solve a problem) and/or cognitive (i.e., assessing, learning, storing information
about problem) components as part of problem-solving ability. We consider problem solv-
ing to be the ability of an individual to integrate the information it has gained (knowledge
or behaviour) to move itself, or manipulate an object, to overcome a barrier, negative state
or agent, and access a desired goal or incentive, such as a resource [9,10]. Most reports of
problem solving are based on experimental evidence where animals are presented with a
feeding motivation task (e.g., a puzzle box or detour task), in which an animal manipulates
an object, or moves itself around the object, to access the food. Occasionally, animals are
experimentally presented with an obstacle blocking access to a location, and the animal
needs to move the obstacle to access a refuge or their nest. These solutions can be achieved
by innovation (the use of a new behaviour, or existing behaviour in a new context [11])
and/or by refining behaviour over repeated sessions with the stimulus (e.g., trial-and-error
learning). Our literature search has also demonstrated that problem solving is sometimes
assessed simply as a dichotomous skill, in which an animal either can or cannot solve
a problem, but other studies have focused on how animals vary in the way they solve
problems, and how efficiently they solve problems. Our definition encompasses all of
these aspects.

Table 1. Definitions of problem solving and innovation quoted from the literature and associated references. We highlight
the drivers (i.e., whether the ability to problem solve is linked to internal (e.g., physiology, cognition) or external (e.g.,
environmental) factors) and the properties of the animal (mechanical/morphological abilities or cognitive abilities) that
authors attribute to problem solving.

Terminology Drivers Animal Properties Definition Reference

Innovation Internal and
External

Mechanical/Morphology and
Cognitive

A new or modified learned behaviour not
previously found in the population [12]

Innovation Internal and
External

Mechanical/Morphology and
Cognitive

The ability to invent new behaviours, or to use
existing behaviours in new contexts

A new or modified learned behaviour not
previously found in the population

A process that results in new or modified
learned behaviour and that introduces novel

behavioural variants into a
population’s repertoire

[11]

Innovation Internal and
External

Mechanical/Morphology and
Cognitive The devising of new solutions [13]

Innovation Internal and
External Cognitive

An animal’s ability to apply previous
knowledge to a novel problem or apply novel

techniques to an old problem
[14]

Novel behaviour Internal Cognitive

The result of an orderly and dynamic
competition among previously established

behaviours, during which old behaviours blend
or become interconnected in new ways

[15]
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Table 1. Cont.

Terminology Drivers Animal Properties Definition Reference

Physical problem
solving External Mechanical/Morphology Use of novel means to reach a goal when direct

means are unavailable [16]

Problem solving Internal Cognitive Overcoming an obstacle that is preventing
animals from achieving their goal immediately [17]

Problem solving External Mechanical/Morphology and
Cognitive

A problem exists when the goal that is sought
is not directly attainable by the performance’ of
a simple act available in the animal’s repertoire;
the solution calls for either a novel action or a

new integration of available actions

[18]

Problem solving Internal Cognitive Any goal-directed sequence of
cognitive operations [19]

Problem solving Internal and
External

Mechanical/Morphology and
Cognitive

A goal-directed sequence of cognitive and
affective operations as well as behavioural
responses for the purpose of adapting to

internal or external demands or challenges

[20]

Problem solving Internal Cognitive An analysis of means–end relationships [21]

Problem solving External Mechanical/Morphology and
Cognitive

A subset of instrumental responses that appear
when an animal cannot achieve a goal using a

direct action; the subject needs to perform a
novel action or an innovative integration of

available responses in order to solve
the problem

[22]

Problem solving Internal Mechanical/Morphology The ability to overcome obstacles and achieve
a goal [23]

Successful problem solving has been theorised to be important for survival, as it
allows animals to adjust to changing environmental conditions [24] and even invade new
environments (e.g., bird species introduced to New Zealand, [25]), or to cope with harsh
or extreme conditions [26]. However, the ability of animals to solve problems [27], and
the specific strategy/manoeuvre that they use to solve problems [28], is highly variable,
and this variation can be observed at all taxonomic levels, including between families
(e.g., Columbida vs. Icteridae, [29]), genera (e.g., Molothrus vs. Quiscalus [30]), and species
(jaguar Panthera onca vs. Amur tiger P. tigris, [2]). It is even possible that problem solving is
phylogenetically conserved, with some groups having a greater potential to solve problems
than others [31]. However, variation in problem-solving ability also occurs within species,
including between populations (e.g., house finches Haemorhous mexicanus given extractive
foraging tasks [32]), and individuals (e.g., meerkats Suricata suricatta given food-baited
puzzle boxes [27]). Likely causes of this variation are the conditions that arise during
an individual’s development. This variation could then allow problem-solving ability
to be acted upon by natural selection [33], possibly impacting individual fitness. There-
fore, understanding the influence of developmental factors on problem-solving ability
is important.

An individual’s behaviour, physiology and morphology may change as it grows and
ages due to developmental changes in life history traits [34,35]. Furthermore, interactions
and experiences with other individuals and the immediate environment further feedback
into these systems [36]. These intrinsic and extrinsic factors, either independently or syner-
gistically, influence the individual’s ability to cope with, and respond to, environmental
challenges [37], although their outcomes are likely difficult to predict because of myriad
interacting factors.

Although aspects of behaviour, physiology and cognition have been studied in an
ontogenetic context [38,39], little is currently known about how problem-solving abilities
develop and change as individuals grow and age. Developmental differences between
individuals could fine tune or modulate the ability to solve problems, causing individual
variation in this ability. Importantly, this inter-individual variation in problem solving
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could have fitness consequences by influencing survival and/or reproductive success.
However, untangling the relative influence of intrinsic (genetic, neuroendocrine and aging)
and extrinsic (environmental) factors on the development of problem solving is challeng-
ing [40,41]. We propose that an integrated approach, focusing on the development of
problem solving, is needed to fully appreciate the ability and propensity of animals to
solve novel problems. Our aim was to review the literature on problem solving to docu-
ment and then construct the links between intrinsic and extrinsic factors that influence the
development of problem-solving.

We therefore conducted a literature search using Google Scholar and the Web of Science
database. We included the general search terms “problem solving” “innovation” and
“animal” in all searches and excluded all articles with the word “human”. This produced
6100 hits. We further refined the search by including the following as specific terms in
individual searches: “development”, “ontogeny”, “heritability”, “personality”, “cognition”,
“learning”, “experience”, “age”, “hormone”, “brain”, and “environment”. Articles that
were repeated in subsequent searches were ignored. Articles were excluded if: (1) the
researchers trained the animals to solve the problem before testing (and, therefore, tested
memory rather than natural problem-solving ability); (2) the authors referred to a type of
problem solving that did not meet our definition (e.g., relational problems where animals
needed to extract and transfer rules between tests); and/or (3) development of problem
solving was not investigated. If two papers found similar results (e.g., neophobia hinders
problem solving in a bird species), we only reported on one study to avoid repetition and
to reduce the overall number of citations.

Numerous studies have shown that animals can problem solve [42], and several
studies have explored the fitness consequences of problem solving in animals (e.g., [10]).
However, how problem solving develops is an area that has been little explored. In this
paper, we first discuss how intrinsic and extrinsic factors influencing the ontogeny of
individuals could affect the development of problem-solving ability. We focus on genetic
(direct and indirect), neuroendocrine, and environmental (physical and social) factors,
as well as age, learning and experience. Given the relative paucity of empirical studies
investigating the development of problem solving in general (42 publications found of
seven developmental factors), we demonstrate first how these factors impact other traits in
order to create a conceptual framework for addressing problem solving. We acknowledge
that limited information currently makes it challenging to separate developmental factors
underlying problem-solving ability from other causal mechanisms (e.g., hormones, genetic
effects). We then explore how interactions between intrinsic and extrinsic factors during
an individual’s development could influence problem solving indirectly. Specifically, we
focus on how personality (individual differences in behaviour) and behavioural flexibility
(ability to change behaviour in response to environmental cues) contribute to differences
in problem-solving ability. Finally, we briefly discuss aspects that have been overlooked
in studies investigating the development of problem solving, providing hypotheses for
future testing. Throughout this paper, we advocate for an individual-centric approach to
study the ontogeny of problem solving, where individual variation in solving ability is
considered, rather than only using simple population-level averages. Future studies should
be tailored to focus on individual differences within and between tests, as well as consider
a longitudinal approach to track how individuals change over their lifetimes. Analyses of
these experiments should then include individual data points as a measure of individual
ability and variation, and should not exclude outliers because these account for the species-
or population-level variation.

2. Factors Affecting the Development of Problem Solving

Problem solving is influenced by direct [43] and indirect (epigenetic and transgener-
ational) genetic [44], and neuroendocrine [45] factors (Figure 1). Furthermore, extrinsic
factors, including both the physical and social environments, can also affect the develop-
ment of problem solving (Figure 1). However, the development, and ultimately expression,
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of problem solving is more likely impacted by complex interactions between these intrinsic
and extrinsic factors (Figure 1), and is also likely to change as the animal ages and experi-
ences (i.e., learns) new situations (e.g., ravens Corvus corax [28]; North Island robins Petroica
longipes, [46]). Untangling these effects is likely to be challenging.
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(learning and experience) factors influencing an individual’s development directly (solid arrows) or
indirectly (dashed arrows). Arrow heads indicate direction of influence.

2.1. Instrinic Factors
2.1.1. Direct Genetic Effects

Heritable genetic effects influence the development of phenotypic traits. For example,
physiological stress (barn swallows Hirudo rustica, [47]), parental care (African striped mice
Rhabdomys pumilio [48]), exploratory behaviour (great tits Parus major [49]), multiple aspects
of cognition in chimpanzees Pan troglodytes [50], learning in hens Gallus gallus domesticus [51]
and spatial learning ability (C57BL/6Ibg and DBA/2Ibg mice Mus musculus [52]) all have a
heritable component (but see [53]).

Heritable genetic effects may also affect the development of problem solving (Figure 1),
although this has received little attention in the literature. Elliot and Scott [43] found that
different dog Canis lupus familiaris breeds solved a complex barrier problem in different
ways, and Audet et al. [54] showed that an innovative species of Darwin’s finches Loxigilla
barbadensis had higher glutamate receptor expression (correlated with synaptic plasticity)
than a closely related, poorly innovative species Tiaris bicolor. Tolman [55] and Heron [56]
also indicated underlying genetic effects on maze-learning ability in rats, although the
ability to learn a maze may not necessarily imply an ability to solve a problem (see [57]).
In contrast, Quinn et al. [58] and Bókony et al. [59] found little measurable heritability of
innovative problem-solving performance in great tits in a food-baited puzzle box and an
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obstacle-removal task, respectively. These studies suggest that the genetic architecture
underlying problem solving may provide a rich area for future research.

2.1.2. Indirect Genetic Effects

Indirect genetic factors, specifically epigenetic and transgenerational effects, influence
how genes are read (e.g., DNA methylation, [60]) or expressed (e.g., hormones activating
genes during sexual maturation, [61]) without altering the underlying DNA. These epige-
netic changes are underpinned by biochemical mechanisms that affect how easily the DNA
can be transcribed [62], subsequently influencing the development of different systems. For
example, the activation of thyroid receptor genes (TRα and β) in the cerebellum of 0–19 day
old chicks causes hormone-dependent neuron growth and development [63]. No studies
to date have explored the effects of epigenetic factors on the development of problem
solving, although this relationship can be postulated (Figure 1), since epigenetic factors
influence the development of behaviour (e.g., maternal care, [64]), and cognition (e.g., mem-
ory, [44]). Memory is an important component of problem solving [65]. Consequently, two
possible routes could be inhibited via transcriptional silencing of the memory suppressor
gene protein phosphatase 1 (PP1), and demethylation and transcriptional activation of the
synaptic plasticity gene reelin, both of which enhance long-term potentiation. These could
lead to increased memory formation (e.g., in male Sprague Dawley rats Rattus norvegicus
domesticus, [44]).

Transgenerational epigenetic effects can also influence development. These effects
result from parental or grandparental responses to prevailing environmental conditions,
which influence how offspring and grand offspring ultimately respond to their own en-
vironment [66]. For example, embryonic exposure to the endocrine disruptor vinclozilin
in female Sprague Dawley rats resulted in epigenetic reprogramming of hippocampal
and amygdala genes for at least three generations, with the resulting F3 males show-
ing decreased, and F3 females showing increased, anxiety-like behaviour, as adults [67].
An interesting avenue for research into transgenerational effects on the development of
problem solving is the NMDA (N-methyl-D-aspartate) receptor/cAMP (cyclic adenosine
monophosphate)/p38 MAP kinase (P38 mitogen-activated protein kinases) signalling cas-
cade. Exposure of newly weaned Ras-GRF1 (growth regulating factor) knockout mice to an
enriched environment enables this latent signalling pathway, rescuing defective long-term
potentiation and learning ability [68]. These epigenetic effects may therefore influence
problem-solving ability indirectly by affecting the individual’s learning ability, or possibly
directly by affecting the development of particular brain regions.

2.1.3. Neuroendocrine Effects—Brain Morphology

Many developmental processes are driven by neuroendocrine factors that are, them-
selves, impacted by other developmental processes [63]. While the development of many of
the brain’s circuits (e.g., those located near the sensory or motor periphery), are governed
by innate mechanisms [69], other parts (e.g., the basolateral nucleus of the amygdala and
the cerebellar cortex [70]; the CA1 region of the mammalian hippocampus [71]; the avian
hippocampus [72]) are considerably more plastic and more responsive to external stimuli,
maintaining a high degree of neural plasticity throughout life. As these brain regions can
be important for the expression of particular behaviours (e.g., the cerebellum is necessary
for tool use, [73]), this plasticity has particular relevance for problem solving. For example,
North American bird species with relatively larger forebrains were more likely to innovate
when foraging than bird species with smaller forebrains [74] and New Caledonian crows
Corvus moneduloides, which are renowned for their tool use and problem-solving abilities,
had relatively larger brains than other bird species [75]. Similarly, C57BL/6J laboratory
mice that received lesions to the hippocampus and medial prefrontal cortex initially showed
impairments in solving a puzzle box task, although the mice ultimately solved the task
over time, indicating the importance of experience and learning with repeated presentation
of the task [76].
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2.1.4. Neuroendocrine Effects—Hormones

The brain is also the central control of endocrine responses that can influence an indi-
vidual’s development (Figure 1). For example, the hypothalamic-pituitary-gonadal (HPG)
axis activates gonadotropin-releasing hormone (GnRH), which stimulates the pituitary to
produce luteinizing hormone (LH) and follicle-stimulating hormone (FSH, [77]). These
hormones regulate the production of steroid hormones (testosterone and oestrogen) via
the gonads [78], stimulating sexual maturity [79]. Fluctuations in steroids also influence
cognitive function [80,81]. For example, female rats injected neonatally with testosterone
show heightened learning of a Lashley III maze (contains start box, maze, and goal box;
used to test learning and memory) as adults compared to non-injected females, although
the underlying impacts on neural development or neuroendocrine processes were not
discussed [82].

Endocrine responses can also feedback to brain morphology (Figure 1), affecting
neural structure and function, which can impact behaviour, cognition, and development.
The hypothalamic-pituitary-adrenocortical (HPA) axis regulates the secretion of adrenocor-
ticotropic hormone (ACTH), which in turn regulates the secretion of glucocorticoid stress
hormones (e.g., corticosterone, [83]) from the adrenal glands [84]. Short-term exposure to
corticosterone can improve learning, since it allows important associations to be formed,
such as between threat and a behavioural response [85]. However, prolonged increased
corticosterone concentrations (chronic physiological stress) reduce hippocampal neuron
survival [86], which interferes with learning [87,88], memory retrieval [89] and problem
solving. For example, house sparrows Passer domesticus with prolonged elevated corti-
costerone concentrations were less efficient problem solvers of puzzle boxes than birds
with lower corticosterone concentrations, as stress impairs working memory and cognitive
capacity [45]. Prolonged physiological stress can also cause detrimental developmental
changes in morphology (e.g., chickens [90,91]) and behaviour (e.g., rats [83]).

In contrast to stress hormones, the mesolimbic dopaminergic system [92], which con-
sists of the substantia nigra and ventral tegmental region [93], regulates the production of
dopamine, a hormone associated with motivation and reward-seeking [94]. Motivation is a
physiological process [94] that increases persistence and thereby increases the likelihood
of successfully solving a problem [95]. Persistence is important for problem solving in
foraging tasks in house sparrows [96], common pheasants Phasianus spp. [97] and Indian
mynas Acridotheres tristis [98], and in puzzle box tasks in spotted hyenas Crocuta crocuta
and lions P. leo [99]. Changes to dopamine production can also negatively impact the
development of sensorimotor integration [100], disrupting approach, seeking and inves-
tigatory behaviours [101] and acquisition of spatial discrimination [102]. Disruption to
dopamine production, or other circuits, may also lead to an individual persisting with an
inadequate strategy if the individual lacks inhibitory control [103] and cannot recognise
when to terminate the behaviour [104]. Disruptions to these behaviours and cognitive
functioning therefore impact foraging and exploratory behaviours [87,104], which can lead
to undernutrition, and consequent negative impacts on growth and physical, behavioural,
and cognitive development [105].

Other hormones have also been implicated in the expression of problem solving. For
example, both norepinephrine and serotonin likely impact problem solving, since they
are related to cognitive flexibility (e.g., rhesus macaques Macaca mulatta [106,107]), with
serotonin activating, and norepinephrine deactivating, the prefrontal cortex [108]. However,
although some studies have investigated the role of these hormones in problem solving,
these relationships are not clearly defined. For example, dietary deficiency in n-3 fatty acids
during development increased serotonin receptor density and reduced dopamine receptor
binding in the frontal cortex of rats, and it also altered dopamine metabolism [109,110]. This
dietary n-3 fatty acid deficiency also impaired problem solving in a delayed matching-to-
place task in the Morris water maze [111]. However, whether problem-solving ability was
impacted specifically by down-regulation of dopamine receptor binding, or up-regulation
of serotonin receptor binding, is unclear.
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2.2. Extrinsic Factors
2.2.1. Physical Environmental Factors

The physical environment varies in structural complexity and quality across both
spatial and temporal scales [112]. Throughout its lifetime, an individual will experience
daily and/or seasonal variation in environmental conditions (e.g., rainfall, temperature,
food availability, [113]), and/or when it disperses [114], migrates [115] or travels into
different areas. This variability changes the likelihood of an individual encountering
positive (e.g., food [116]) or negative (e.g., predator [117]) stimuli, consequently influencing
its development (Figure 1). For example, a higher density and abundance of aquatic
snails results in the development of larger pharyngeal jaw muscles and stronger bones in
predatory pumpkinseed sunfish Lepomis gibbosus [111].

Some studies have investigated the interplay between physical environmental con-
ditions and problem-solving ability. Favourable environmental conditions can reduce
stress [118], promote active and exploratory behaviours [119] and enhance cognition [120],
but harsh conditions may promote problem solving. For example, mountain chickadees
Poecile gambeli living in harsher high elevation montane habitats with longer winters solved
novel foraging problems significantly faster than chickadees living at lower elevations,
most likely because finding food in these habitats was more challenging, and survival de-
pends on plastic responses to these challenges [26]. However, this effect on food-motivated
problem-solving ability was not seen in great tits experiencing similar harsh conditions [40],
suggesting that species-dependent developmental factors may be constrained by environ-
mental effects. Urban environments may also promote the development of problem solving
since they are expected to contain a higher frequency of novel problems for animals to
solve. For example, house sparrows [121] and house finches [32] in urban environments
were more adept food-motivated problem solvers than birds from rural areas, particularly
when the problem was difficult to solve [96].

2.2.2. Social Environmental Factors

The social environment also changes throughout an individual’s lifetime, and has the
capacity to influence its development (Figure 1). Any positive (e.g., offspring suckling from
mothers) or negative interactions (e.g., siblings fighting over food) between individuals can
be considered social, and can vary over time scales (e.g., from daily interactions between
individuals in a group, to shorter interactions between parents and offspring or mating
partners [122]).

For mammals, females are constrained to care for their offspring through pregnancy
and suckling [123]. Consequently, the mother’s physiological state and access to resources
can impact offspring embryonic development prenatally through direct transfer of maternal
hormones or nutrients across the placenta [124]. For example, pregnant female Sprague
Dawley rats exposed to unpredictable, variable stress (e.g., restraint, food restriction)
during the final week of gestation produced anxious daughters and sons with impaired
cognitive function (contextual memory [125]). Furthermore, maternal care during postnatal
development [64], particularly the mother’s diet quality, can also influence development.
For example, protein deficiency in African striped mouse Rhabdomys dilectus chakae mothers
during early postnatal development of offspring resulted in these offspring showing
increased anxiety, decreased novel object recognition and increased aggression as adults
compared to mice raised by mothers that did not experience nutrient deficiency [126]. Thus,
detrimental developmental effects such as these may go on to impede offspring problem
solving abilities.

For some species, a key developmental milestone is dispersal. Interactions with
other conspecifics during this phase are often driven by dramatic developmental changes
often associated with reproduction [114]. For example, male vervet monkeys Chlorocebus
pygerythrus leave their natal group at sexual maturity and attempt to attain dominance in
another group [127], which could lead to increased access to food resources that can be
channeled further into growth and development. This process of leaving the natal territory,
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and any social interactions during this time, can feedback to the individual to further affect
its development. For example, in many species (e.g., brown rats), dispersing juveniles
undergo a period of heightened exploration and learning, allowing them to rapidly adjust
to new environmental conditions [128]. However, it is unknown how dispersal and other
associated events impact an individual’s problem-solving abilities.

Problem solving is most often studied in social animals [122], possibly because they
are more conspicuous than solitary species. In some species, such as European starlings
Sturnus vulgaris with a foraging task [129], coyotes Canis latrans with a puzzle box task [130]
and rhesus macaques in an associative learning task [131], dominant individuals are better
learners and problem solvers. Similarly, the presence of an alpha individual impedes
problem solving success in subordinate spotted hyenas presented with a puzzle box [132]
and ravens in a string-pulling task [28] due to direct interference and increased aggression
from the dominant. However, in other species, such as blue tits Cyanistes caeruleus [133],
adult meerkats [27] and chimpanzees [134], subdominants tend to be better solvers of
puzzle boxes, since their lower competitive ability makes them more reliant on alternative
methods for accessing resources [26]. Group size may also influence problem solving,
although results are equivocal. For example, larger groups of house sparrows [121] and
Australian magpies Gymnorhina tibicen [135] in extractive foraging tasks and zebra fish
Danio rerio in an avoidance task [136] were better problem solvers than individuals in small
groups, possibly because larger groups contained more reliable demonstrators. However,
orange-winged amazons Amazona amazonica had similar solving success in a string-pulling
task when tested in groups or in isolation [137]. Social carnivore species, such as banded
mongoose Mungos mungo, were also less successful problem solvers of a puzzle box
compared to solitary species, such as black bears Ursus americanus and wolverines Gulo
gulo, suggesting that relative brain size may be more important for cognitive abilities than
social environment [33].

Problem solving studies in solitary species are generally lacking, making it diffi-
cult to assess how social interactions may impact the development of problem solving
in these species. However, it is evident that individual animals can solve problems in
the absence of conspecifics. For example, black-throated monitor lizards V. albigularis
albigularis [138], eastern grey squirrels Sciurus carolinensis [139], and orangutans Pongo pyg-
maeus [140] can individually solve puzzle boxes using flexible behaviours (i.e., switching
strategies when necessary), persistence and learning. Similarly, North Island robins [46]
and brilliant-thighed poison frogs [8] can solve detour problem tasks when tested in their
home territories. How solitary species solve problems in the presence of conspecifics,
however, is an area for future investigation.

3. Interacting Factors that Influence the Development of Problem Solving
3.1. Gene × Environment Interactions

Genotype × environment interactions can also have a profound effect on the devel-
opment of individuals (Figure 1). For example, the gene monoamine oxidase A (MAOA)
encodes for an enzyme that impacts serotonergic activity in the central nervous system,
leading to increased impulsivity and anxiety [141]. Stressful life events, or changes in social
structure or status can alter the expression of this gene, leading to developmental changes
during adulthood. For example, rhesus macaques raised in the absence of their parents
showed increased aggression due to low MAOA enzymatic activity [142].

Although genotype × physical environment interactions have not been explored
in the context of problem solving, environmental enrichment in captive bi-transgenic
CK-p25 Tg laboratory mice is associated with the activation of plasticity genes, inducing
chromatin modification via histone acetylation and methylation of histones 3 and 4 in the
hippocampus and cortex, leading to increased numbers of dendrites and synapses [143].
This cascade of genetic and neuroendocrine processes functions to help restore learning
and memory [143], both of which are important for problem solving [65,95].
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Parents may also alter the environment (e.g., amount of parental care or food) their
offspring experience [66], which could be a consequence of genetic variation between
mothers [144] or a result of other factors (e.g., variability in resource availability [145]).
When an offspring’s development is impacted by this nongenetic parental environment,
these effects are known as parental effects [146], which are specific types of indirect genetic
effects (IGEs, [144]). For example, female Long-Evans hooded rats that provided high
levels of tactile stimulation (e.g., grooming and nursing [64]) to their young produced
daughters that also displayed higher levels of maternal care to their own offspring [147],
indicating an IGE.

Maternal care also regulates the expression of the hippocampal glucocorticoid receptor
gene by changing the acetylation of histones H3-K9 and the methylation of the NGFI-A
consensus sequence on the exon 17 promoter [148]. Young rats that experienced low levels
of maternal tactile stimulation showed reductions in hippocampal neuron survival [149]
and decreased hippocampal glucocorticoid receptor mRNA expression [148], leading to
chronic corticosterone release as adults [150]. Offspring also showed decreased exploratory
behaviour [151] and impairments in spatial learning and memory [64] and object recog-
nition [149,152] as adults. As for genotype × physical environment interactions, how the
social environment × genotype interaction affects problem solving is a promising avenue
for future research.

3.2. Neuroendocrine × Environment Interactions

Habitat complexity, resource availability and social complexity can influence devel-
opment via effects on neuroendocrine systems, which can also result in changes to the
social environment that may then feedback to further impact development. For example,
nine-spined sticklebacks Pungitius pungitius preferentially shoal together in marine environ-
ments with high predation risk and patchy food resources, but prefer to swim alone when
these constraints are relaxed in freshwater ponds [153]. Marine fish with more social inter-
actions had significantly larger olfactory bulbs and optic tecta, parts of the brain associated
with sensory perception, compared to solitary fish from freshwater ponds that experienced
fewer social interactions [154,155]. Rhesus macaques from larger social groups also had
more grey matter and greater neural activity in the mid-superior temporal sulcus and
rostral prefrontal cortex than macaques from smaller groups [156]. Similarly, structurally
complex, changing environments improve survival of hippocampal cells and neurons
by increasing the level of nerve growth factor in the hippocampus [112], which increases
hippocampal volume [83], leading to increased neural plasticity [157] and a greater capacity
to adjust to new environmental conditions [158]. Environmental enrichment has also been
shown to enhance long-term potentiation in the hippocampus, which facilitates learning
and memory [159], two important processes for problem solving [23,95]. Environmental
enrichment has been associated with increased problem-solving ability in C57/BL6J mice
in an obstruction puzzle task [160] and Labrador retrievers in puzzle box tasks [161]. This
suggests causal links between the environment, the neuroendocrine system, and problem
solving which are likely mediated by underlying genotype × environment interactions.

3.3. Age Effects

Separating out the effects of aging and neuroendocrine or genetic effects on develop-
ment is challenging. Nevertheless, age-specific effects on development, regardless of the
underlying mechanisms, are an important consideration.

The nervous system shows age-dependent decreases in neurogenesis and plasticity,
particularly in the dentate gyrus of the hippocampus [162], and the subventricular zone
of the lateral ventricle [163], and these age-dependent changes can alter cognitive ability
and behaviour (e.g., beagles [164]). Other neuroendocrine processes also naturally change
with age. For example, as brown rats age, the ACTH response increases, glucocorticoid
receptor binding capacity in the hippocampus and hypothalamus decreases, corticotropin
releasing hormone (CRH) mRNA expression decreases in the paraventricular nucleus,
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and mineralocorticoid mRNA expression in the dentate gyrus of the hippocampus is
reduced [165]. These changes result in an associated attenuation of the corticosterone
response to novelty [164], as well as declines in spatial learning and memory [166].

Depending on the age of the individual, changes to both the physical and social
environments also impact development [167]. When raised in small cages with limited
space, juvenile rats showed increased anxiety, and lower activity and exploration, whereas
older rats did not [167]. Similarly, older rats reared in larger groups were more active than
juveniles, mostly likely due to increased frequency of social interactions and establishment
of their rank within the social hierarchy [167].

Several studies have shown that juveniles are better problem solvers than adults,
although the underlying mechanisms are currently not known. For example, juvenile
Chimango caracaras Milvago chimango were more successful at solving a puzzle box task
than adults [168], and juvenile canaries Serinus canaria solved a vertical-string pulling task,
whereas adults did not [169]. Similarly, juvenile Chacma baboons Papio ursinus solved a
hidden food task more often than adults [170], and juvenile kakas N. meridionalis showed
higher innovation efficiency than adults across different tasks and contexts [171]. Juveniles
are often prone to higher levels of exploration [159], and are more playful [172], than adult
animals, allowing juveniles to rapidly gain motor skills [172]. This could possibly improve
problem solving abilities of juveniles despite their lack of experience at solving tasks.
However, results are species-specific, as Indian mynas [173] and spotted hyenas [174] show
no age-specific effects on problem solving in foraging tasks, while adult meerkats [27]
and black-capped chickadees [175] were better innovators than juveniles in extractive
foraging tasks.

3.4. Learning and Experience

As an animal ages, it encounters predators and food resources, and interacts with
conspecifics. These experiences provide a rich potential for learning, which is a critical
component of problem solving. However, separating out the effects of the experience
itself on development from other extrinsic and intrinsic factors, or their interactions, is
challenging. Nevertheless, as in aging, an animal’s development can be impacted by its
experiences, particularly via learning, suggesting that experience must be considered when
attempting to understand how problem solving develops.

To survive, use new resources, or avoid predators, individuals must learn to asso-
ciate the experience with its significance (e.g., threat of a predator [176,177]). Learning
enables animals to acquire information about the state of their environment [178] and
learning through experience allows for adjustments in physiological and behavioural
responses [176]. For example, repeated foot shock in a specific environmental location
caused increases in norepinephrine and epinephrine in Sprague Dawley rats, eliciting
fear and resulting in rats avoiding that location [179]. Similarly, guppies decreased their
time foraging in the presence of a predatory convict cichlid Cichlasoma nigrofasciatum [180].
Animals can learn to solve problems in different ways, such as through trial and error
(e.g., rooks C. frugilegus across multiple foraging extraction tasks [181]) or socially through
local enhancement (e.g., common marmosets Callithrix jacchus in a foraging extraction
task [182]), social facilitation (e.g., capuchin monkeys Cebus apella in a foraging extraction
task [183]) or copying/imitation (e.g., laboratory rats in an extractive foraging task [184]).
Learning from previous experience is also an important component for successful problem
solving. For example, grey squirrels improve their ability to solve a food-baited puzzle box
with repeated exposures to the problem [23]. Similarly, North Island Robins became more
efficient problem solvers of new food-extraction tasks with experience [46].

3.5. Behavioural Flexibility and Personality

Although development is governed by several unifying genetic and physiological
mechanisms, and these processes are impacted by age and environmental effects [185],
the development of one individual differs considerably from that of another individual.
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Some of this variation can be attributed to the behavioural flexibility of each individual [29]
and/or its personality [168], which also undergo developmental changes over the course
of an individual’s lifetime [36].

Behavioural flexibility is the ability to switch behavioural responses (likely due to
cognitive flexibility [95]) to adjust to new situations or states [186], and is likely governed by
both genetic and non-genetic mechanisms [187]. The degree of behavioural and cognitive
flexibility, and corresponding learning ability, is important for problem solving, as seen in
tropical anoles (Anolis evermanni in an obstruction task [188]; A. sagrei in a detour task [189]),
spotted hyenas in a puzzle box task [174], grey squirrels in a food-extraction task [139] and
keas Nestor notabilis in a foraging extraction task [190]. However, the degree of flexibility
varies between species. For example, Indian mynas are more flexible, and are better
innovative foraging problem solvers, than noisy miners Manorina melanocephala across
a range of tasks [173]. Importantly, individual differences in behavioural and cognitive
flexibility, particularly learning ability, are often attributed to physiological effects occurring
during development (e.g., corticosterone exposure in nestling Florida scrub jays Aphelocoma
coerulescens [191]).

An individual’s development and experiences can also affect its personality [192],
defined as consistent individual differences in behaviour shown across contexts and sit-
uations, and over time [193]. Personalities are often measured along different axes (e.g.,
bold/shy [194]; proactive/reactive [195]), and are mediated by hormones [196]. Although
personality itself is influenced by intrinsic (e.g., hunger [197]) and extrinsic (e.g., envi-
ronmental quality [119]) developmental factors, personality can further feedback on an
individual’s development through its effects on exploration [167]. For example, avoidant
individuals may be less willing to investigate their environment than exploratory individu-
als, which reduces their chances of being predated, but also reduces foraging rate, which
affects growth, as seen in grey treefrog tadpoles Hyla versicolor [198].

Personality can also impact problem solving [40]. Exploratory individuals have higher
interaction rates with problems, increasing their likelihood of solving innovative tasks.
For example, brushtail possums Trichosurus vulpecula that were exploratory, active and
vigilant were more likely to solve an escape-box task during the first trial, and were
capable of solving a difficult task, compared to less exploratory, less active and less vigilant
individuals [199]. Similarly, exploratory fawn-footed mosaic-tailed rats Melomys cervinipes
were faster problem solvers, and solved more problems, than avoidant individuals when
tested with food- and escape-motivated tasks [200]. Exploratory Carib grackles were also
faster learners and more likely to innovate in a foraging-extraction task than avoidant
individuals [201]. However, this relationship is not always clearly defined. For example,
both bold and shy chacma baboons improved their solving of a food extraction problem
after watching a demonstrator [170]. Similarly, bold meerkats that approached a puzzle
box first were not always the first to solve it [27], and neophobia did not significantly
influence problem-solving ability in Barbary macaques Macaca sylvanus presented with
puzzle boxes [202]. Although relationships between personality, behavioural flexibility
and problem solving are not clearly defined, such individual variation should be taken into
consideration when investigating developmental effects on problem solving.

4. Forgotten Components Limiting Our Understanding of Problem Solving and
Its Development

Problem solving has been considered to rely almost exclusively on complex cognitive
processes involving insightful thinking (i.e., just knowing what to do, rather than arriving
at it through trial and error learning [181,203]), understanding of functionality [204] or
causal understanding (i.e., being able to understand rules and consequences of actions [27]).
Consequently, complex problem solving is often considered to be a consequence of relative
brain size (e.g., birds and primates [169]). However, there is little evidence that problem
solving involves complicated cognitive processes [28]. For example, introduced black
rats R. rattus in Australia have caused extensive damage to macadamia Macadamia sp.
orchards [205]. As rodents are evolutionarily constrained to gnaw due to the unrooted
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nature of their incisors [206], gnawing is an effective strategy for accessing novel food
resources behind barriers or hard seed coats. To solve the problem of accessing the new
food, black rats required only persistence, motivation and the appropriate mechanical
apparatus rather than complex cognitive abilities. While each animal’s brain consists of
a set of information-processing circuits that have evolved by natural selection to solve
particular problems in their environment and increase their reproductive fitness [207],
without the appropriate mechanical apparatus, the animal cannot solve the problem [208].
The ability to solve particular problems may therefore be species-specific, and morphologi-
cally constrained, specifically involving mechanical problem solving, unless animals can
overcome these mechanical shortcomings (e.g., by developing tool use [28]).

Although problem solving has been studied in a wide variety of taxa, studies of the
development of problem solving specifically have largely been restricted to birds [43],
laboratory rats and mice [73,82,209], dogs [44], and primates that have been housed in
captivity [131]. This is largely due to difficulties associated with observing free-living
individuals [210] and accounting for their previous experience [95]. Consequently, studies
rarely follow problem solving abilities over the development of individuals, instead com-
paring problem-solving ability between different age cohorts [168]. Such studies have shed
light on the effects of intrinsic factors on the development of problem solving, but fail to
consider individual variation in development.

Furthermore, the majority of studies on problem solving concern social species. Both
solitary and social species need to problem solve, but the social environment could possibly
influence how individuals develop their problem solving abilities. For example, social
individuals may use social learning to problem solve, whereas solitary individuals would
require persistence and motivation to achieve trial-and-error learning, or would rely
on innovation because they are most likely unable to rely on social demonstrators for
assistance [122,170], at least after weaning. Current studies therefore provide a limited
view of the relevance of social conditions on problem solving development.

Finally, while the influences of environmental quality on problem-solving ability are
documented, they are not well understood [27,40]. Animals tend to innovate under harsh
conditions in times of necessity [24], yet good environmental conditions benefit problem
solving by promoting neuroendocrine development [120] and reducing stress [118]. The
effects of the physical or social environment tend to be studied either through manipulation
studies during early development, with subsequent tests occurring later on as adults in
static environments [165] or via correlative studies, where individuals from different
habitats are compared [26]. Similarly, studies have investigated the impact of social
rank [132], social isolation [211], group size [121,136], and group composition [2,27] on
problem solving, but the majority of these studies have not explored the underlying
developmental processes. To our knowledge, only one longitudinal study has tracked an
individual’s problem-solving ability in response to changing physical environments. Cole
et al. [40] found that individual performances in free-living great tits were consistent across
time (seasonal variation). How problem-solving ability changes in response to changing
social environments, such as when a subordinate changes dominance rank, has rarely
been studied.

5. An Individual-Centric Focus can be Beneficial

The ability to solve a problem relies on a combination of genetic and non-genetic
factors [44], physiology [97], behavioural flexibility [95], general cognitive ability [27],
personality [129] and mechanical ability [212]. In addition, age and experience further influ-
ence problem-solving ability. Aging results in natural neuroendocrine system changes [213],
which further affect behaviour and cognition [163]. However, every individual develops
along its own unique developmental trajectory within the phylogenetic constraints of the
species, and the relative contribution of these intrinsic and extrinsic factors and their inter-
actions are likely to vary considerably between individuals. Therefore, we cannot assume
that individuals from the same environment [214], or even the same clutch/litter [215], will
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behave or respond to the environment in the same way. We only have to look at genetic
clones (e.g., identical human twins displaying linguistic differences [216]) to realise the
uniqueness of individual developmental trajectories. This considerable variation argues
strongly for focusing on individuals, particularly as they develop, learn and experience new
things over their lifetimes in the context of problem solving. Therefore, when investigating
problem solving abilities in the future, it may be beneficial to consider individual variation
as an important aspect of the data analyses, and not just rejected as statistical ‘white noise’
(see [40,46] for examples). Using this approach may enable future research to identify key
predictors, or clusters of common predictors, of problem-solving ability.

6. Conclusions

Individuals experience developmental changes over the course of their lifetimes,
which impact their problem-solving abilities. The external environment, including the
physical and social environments, can affect the development of problem solving via its
impact on underlying genetic, non-genetic and neuroendocrine mechanisms. Problem
solving has a heritable component in some species, while complex neuroendocrine pro-
cesses are also involved in the development of problem solving. However, untangling the
influence of these different factors on the development of problem solving is challenging,
given their interdependence and complexity. Our understanding of how problem solving
develops would benefit from studies of solitary species, to allow for comparisons of general
causal mechanisms, since solitary species cannot rely on social learning about problems,
at least after weaning. Furthermore, because environments are not static, future studies
should consider the effects of changing environmental conditions over the course of an
individual’s lifetime on the development of problem solving. Importantly, investigating
individual variation in problem-solving ability is necessary for a full understanding of the
development of problem solving, which will allow us to assess the relative contributions of
different developmental factors on this ability in different individuals.
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