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Abstract: The cerebral cortex underlies our complex cognitive capabilities, yet we know little 
about the specific genetic loci influencing human cortical structure. To identify genetic variants 
impacting cortical structure, we conducted a genome-wide association meta-analysis of brain 
MRI data from 51,665 individuals. We analyzed the surface area and average thickness of the 
whole cortex and 34 regions with known functional specializations. We identified 237 significant 5 
loci and found significant enrichment for loci influencing total surface area within regulatory 
elements active during prenatal cortical development, supporting the radial unit hypothesis. Loci 
impacting regional surface area cluster near genes in Wnt signaling pathways, which influence 
progenitor expansion and areal identity. Variation in cortical structure is genetically correlated 
with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and ADHD. 10 

One Sentence Summary: Common genetic variation is associated with inter-individual 
variation in the structure of the human cortex, both globally and within specific regions, and is 
shared with genetic risk factors for some neuropsychiatric disorders. 
Main Text: The human cerebral cortex is the outer grey matter layer of the brain, which is 
implicated in multiple aspects of higher cognitive function. Its distinct folding pattern is 15 
characterized by convex (gyral) and concave (sulcal) regions. Computational brain mapping 
approaches use the consistent folding patterns across individual cortices to label brain regions 
(1). During fetal development excitatory neurons, the predominant neuronal cell-type in the 
cortex, are generated from neural progenitor cells in the developing germinal zone (2). The radial 
unit hypothesis (3) posits that the expansion of cortical surface area (SA) is driven by the 20 
proliferation of these neural progenitor cells, whereas thickness (TH) is determined by the 
number of their neurogenic divisions. Variation in global and regional measures of cortical SA 
and TH have been reliably associated with neuropsychiatric disorders and psychological traits (4) 
(table S1). Twin and family-based brain imaging studies indicate that SA and TH measurements 
are highly heritable and are influenced by largely different genetic factors (5-7). Despite 25 
extensive studies of genes impacting cortical structure in model organisms, our current 
understanding of the genetic variation impacting human cortical size and patterning is limited to 
rare, highly penetrant variants (8, 9). These variants often disrupt cortical development, leading 
to altered postnatal structure. However, little is known about how common genetic variants 
impact human cortical SA and TH.  30 
 
To identify genetic loci associated with variation in the human cortex we conducted genome-
wide association meta-analyses of cortical SA and TH measures in 51,665 individuals from 60 
cohorts from around the world, who were primarily of European descent (~94%; tables S2–S4). 
Cortical measures were extracted from structural brain MRI scans in 34 regions defined by the 35 
commonly used Desikan-Killiany atlas, which establishes coarse partitions of the cortex. The 
regional boundaries are based on gyral anatomy labeled from between the depths of the sulci (10, 
11). We analyzed two global measures, total SA and average TH, and SA and TH for the 34 
regions averaged across both hemispheres, yielding 70 distinct phenotypes (Fig. 1A; table S1). 
 40 
Within each cohort genome-wide association (GWAS) for each of the 70 phenotypes was 
conducted using an additive model. To identify genetic influences specific to each region, the 
primary GWAS of regional measures included the global measure of SA or TH as a covariate. 
To estimate the multiple testing burden associated with analyzing 70 phenotypes we used matrix 
spectral decomposition (12), which yielded 60 independent traits, and a multiple-testing 45 
significance threshold of P ≤ 8.3 x 10-10. 



Submitted Manuscript: Confidential 

14 
 

 
The principal meta-analysis comprised results from 33,992 participants of European ancestry 
(23,909 from 49 cohorts participating in ENIGMA and 10,083 from the UK Biobank). We 
sought replication for loci reaching genome-wide significance (P ≤ 5 x 10-8) in an additional 
ENIGMA cohort (777 participants) and with the CHARGE consortium (13) (13,952 5 
participants). In addition, we meta-analyzed eight cohorts of non-European ancestry (2,944 
participants) to examine the generalization of these effects across ancestries. High genetic 
correlations were observed between the meta-analyzed ENIGMA European cohorts and the UK 
Biobank cohort using LD-score regression (total SA rG = 1.00, Z-score PrG = 2.7 x 10-27, average 
TH rG = 0.91, Z-score PrG = 1.7 x 10-19, indicating consistent genetic architecture between the 49 10 
ENIGMA cohorts and data collected from a single scanner at the primary UK Biobank imaging 
site.  
 
Across the 70 cortical phenotypes we identified 369 loci that were genome-wide significant in 
the principal meta-analysis (P ≤ 5 x 10-8; Fig. 1B; table S5). Of these, 190 have not been 15 
previously associated with either intracranial volume or cortical SA, TH, or volume (13-18). 
Twenty five of these were insertions or deletions (INDELs). Fourteen INDELs had a proxy 
single nucleotide polymorphism (SNP) available in the European replication data; no proxies 
were available for nine INDELs and one SNP. Of the 360 loci for which the SNP or a proxy was 
available, 307 (SA: 241, TH: 66) remained genome-wide significant when the replication data 20 
were included in the meta-analysis, with 237 passing multiple testing correction (P ≤ 8.3 x 10-10; 
SA: 187, TH: 50). Of the 307 loci, 292 were available in the meta-analysis of non-European 
cohorts. The 95% confidence intervals around the non-European meta-analysis effect sizes 
included those from the European meta-analysis for 238 of these loci. Of the 292 loci available 
in the non-European cohorts, 279 had effects in the same direction in both the European and non-25 
European meta-analyses, and 136 became more significant when the whole sample was meta-
analyzed (table S5; fig. S1). Variability in effects across ancestry may be due to differences in 
allele frequency; however, the power for these comparisons is limited and further comparisons 
with larger non-European cohorts will help clarify the generalizability of these effects (table S5). 
We examined gene-based effects (allowing for a 50 kb window around genes), and found 30 
significant associations for 313 genes across the 70 cortical phenotypes (table S6). The meta-
analytic results are summarized as Manhattan, QQ, Forest, and LocusZoom plots (figs. S2–S5). 
 
Genetics of total SA and average TH 
Common variants explained 34% (SE = 3%) of the variation in total SA and 26% (SE = 2%) in 35 
average TH. These estimates account for more than a third of the heritability estimated from the 
QTIM twin sample (91% for total SA and 64% for average TH; table S7), indicating that more 
genetic variants, including rare variants, are yet to be identified. To examine the extent to which 
our results could predict SA and TH, we derived polygenic scores (PRS) from the principal 
meta-analysis results. These scores significantly predicted SA and TH in an independent sample 40 
of 5,095 European participants, explaining between 2–3% of the trait variance (given a PRS 
threshold of P ≤ 0.01 R2SA = 0.029, linear regression coefficient t-test P = 6.54 x 10-50; R2TH = 
0.022, t-test P = 3.34 x 10-33; table S8).  
 
We observed a significant negative genetic correlation between total SA and average TH (rG = -45 
0.32, SE = 0.05, Z-score PrG = 6.5 x 10-12; Fig. 2A), which persisted after excluding the 
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chromosome 17 inversion region known to influence brain size (14) (rG = -0.31, SE = 0.05, Z-
score PrG = 3.3 x 10-12). Genetic correlations could indicate causal relationships between traits, 
pleiotropy, or a genetic mediator influencing both traits. Latent causal variable (LCV) analysis, 
which tests for causality using genome-wide data (19), showed no evidence of causation (LCV 
genetic causality proportion gcp = 0.06, t-test Pgcp=0 = 0.729). The negative correlation suggests 5 
that genetic influences have opposing effects on SA and TH, which may result from pleiotropic 
effects or genetic effects on a mediating trait that, for example, might constrain total cortical 
volume. The absence of causality and the small magnitude of this correlation is consistent with 
the radial unit hypothesis (3), whereby different developmental mechanisms promote SA 
expansion and increases in TH. 10 
 
As expected, total SA showed a positive genetic correlation with intracranial volume (ICV); this 
correlation remained after controlling for height demonstrating that this relationship is not solely 
driven by body size (Fig. 2A; table S8). The global cortical measures did not show significant 
genetic correlations with the volumes of major subcortical structures (Fig. 2A) except for total 15 
SA and the hippocampus, consistent with their shared telencephalic developmental origin.  
 
To identify if common variation associated with cortical structure relate to gene regulation 
within a given tissue type, developmental time period, or cell-type, we performed partitioned 
heritability analyses (20) using sets of gene regulatory annotations from adult and fetal brain 20 
tissues (21, 22). Total SA and average TH showed the strongest enrichment of heritability within 
genomic regions of active gene regulation (promoters and enhancers) in brain tissue and in vitro 
neural models derived from stem cell differentiation (Fig. 2B; fig. S6A). To examine temporally 
specific regulatory elements, we selected those active regulatory elements specifically present in 
either mid-fetal brain or adult cortex. Total SA showed significant enrichment of heritability only 25 
within mid-fetal specific active regulatory elements, whereas average TH showed significant 
enrichment only within adult specific active regulatory elements (Fig. 2C, fig S6B). Stronger 
enrichment was found in regions of the fetal cortex with more accessible chromatin in the neural 
progenitor-enriched germinal zone than in the neuron-enriched cortical plate (fig. S6C), similar 
to a previous analysis for intracranial volume (21). We then performed an additional partitioned 30 
heritability enrichment analysis using regulatory elements associated with cell-type specific gene 
expression derived from a large single-cell RNA-seq study of the human fetal brain (23). This 
analysis revealed significant enrichment of total SA heritability in all progenitor cell-types 
including those in active phases of mitosis as well as three different classes of progenitor cells 
including outer radial glia cells, a cell-type associated with expansion of cortical surface area in 35 
human evolution (2) (Fig 2D, fig S6D). We also identified significant enrichments in upper layer 
excitatory neurons, oligodendrocyte progenitor cells, and microglia. These findings suggest that 
total SA is influenced by common genetic variants that may alter gene regulatory activity in 
neural progenitor cells during fetal development, supporting the radial unit hypothesis (3). In 
contrast, the strongest evidence of enrichment for average TH was found in active regulatory 40 
elements in the adult brain samples, which may reflect processes occurring after mid-fetal 
development, such as myelination, branching, or pruning (24). 
 
We conducted pathway analyses to determine if there was enrichment of association near genes 
in known biological pathways (25). We found 91 significant gene-sets for total SA and four for 45 
average TH (table S9). Gene-sets associated with total SA included chromatin binding, a process 
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guiding neurodevelopmental fate decisions (26) (table S9, fig. S7A). In addition, consistent with 
the partitioned heritability analyses implicating neural progenitor cells in total SA, gene ontology 
terms relevant to cell-cycle also showed significant enrichment in these analyses. 
 
Loci influencing total SA and average TH 5 
Seventeen of the 255 replicated loci were associated with total SA; 12 survived correction for 
multiple testing (Fig. 2E, table S5). Eight loci influencing total SA have been previously 
associated with ICV (14). These include rs79600142 (principal meta-analysis PMA = 2.3 x 10-32; 
replication Prep = 3.5 x 10-43; P-values reported from all meta-analytic results were for Z-scores 
from fixed-effect meta-analyses), in the highly pleiotropic chromosome 17q21.31 inversion 10 
region, which has been associated with Parkinson’s disease (27), educational attainment (28), 
and neuroticism (29). On 10q24.33, rs1628768 (Z-score PMA = 1.7 x 10-13; Prep = 1.0 x 10-17) was 
shown by our bioinformatic annotations (30) to be an expression quantitative trait locus (eQTL) 
influencing expression levels of the INA gene, and of the schizophrenia candidate genes (31) 
AS3MT, NT5C2 and WBP1L (linear regression coefficient t-test false discovery rate (FDR) 15 
corrected P-value for the association of rs1628768 with expression data from surrounding genes 
FDRCommonMind Consortium(CMC) < 1.0 x 10-2; tables S11–S12). This region has been associated with 
schizophrenia, however, rs1628768 is in low linkage disequilibrium (LD) with the 
schizophrenia-associated SNP rs11191419 (r2 = 0.15; (32)). The 6q21 locus influencing total SA 
is intronic to FOXO3 (which also showed a significant gene-based association with total SA, 20 
table S6). The major allele of the lead variant rs2802295 is associated with larger total SA (Z-
score PMA = 2.5 x 10-10; Prep = 2.5 x 10-13) and is in complete LD with rs2490272, a SNP 
previously associated with higher general cognitive function (33). 
 
One locus not previously associated with ICV was rs11171739 (Z-score PMA = 8.4 x 10-10; Prep = 25 
8.1 x 10-11) on 12q13.2. This SNP is in high LD with SNPs associated with educational 
attainment (28), and is an eQTL for RPS26 in fetal (34) and adult cortex (30)(t-test of Pearson’s r 
FDRFETAL = 2.0 x 10-24, empirical t-test of Pearson’s r FDRGenotype-Tissue Expression(GTEx) = 3.3 x 10-40; 
tables S11–S12). On 3p24.1, rs12630663 (Z-score PMA = 1.3 x 10-8; Prep = 1.4 x 10-8) is of 
interest due to its proximity (~200kb) to EOMES (also known as TBR2), which is expressed 30 
specifically in intermediate progenitor cells in the developing fetal cortex (35). rs12630663 is 
located in a chromosomal region with chromatin accessibility specific to the germinal zone in the 
human fetal cortex (21). Putatively causal SNPs in this region (table S13) show significant 
chromatin interactions with the EOMES promoter (36). The region also contains numerous 
regulatory elements that when excised via CRISPR/Cas9 in differentiating neural progenitor 35 
cells significantly reduced EOMES expression (21). A rare homozygous chromosomal 
translocation in the region separating the regulatory elements from EOMES (fig. S8) silences 
EOMES expression and causes microcephaly (37), demonstrating that rare and common non-
coding variation can have similar phenotypic consequences, but to different degrees. 
 40 
The two replicated loci associated with average TH, neither of which have been previously 
identified, survived correction for multiple testing (Fig. 2E; table S5). On 3p22.1, rs533577 (Z-
score PMA = 8.4 x 10-11; Prep = 3.7 x 10-12) is a fetal cortex eQTL (t-test FDRFETAL= 1.8 x 10-4) for 
RPSA, encoding a 40S ribosomal protein with a potential role as a laminin receptor (38). 
Laminins are major constituents of extracellular matrix, and have critical roles in neurogenesis, 45 
neuronal differentiation and migration (39). On 2q11.2, rs11692435 (Z-score PMA = 3.2 x 10-10; 
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Prep = 4.5 x 10-10) encodes a missense variant (p.A143V) predicted to impact ACTR1B protein 
function (40), and is an ACTR1B eQTL in fetal cortex (t-test FDRFETAL = 3.9 x 10-2) (tables S11–
S12). ACTR1B is a subunit of the dynactin complex involved in microtubule remodeling, which 
is important for neuronal migration (41).  
 5 
Genetics of regional SA and TH 
The amount of phenotypic variance explained by common variants was higher for SA (8–31%) 
than TH (5–21%) for each of the specific cortical regions (Fig. 3A–B; table S7). To focus on 
region specific influences we controlled for global measures in the regional GWAS, which 
reduced the covariance between the regional measures (tables S14–S15). Similar to the genetic 10 
correlation between global SA and TH, when significant, genetic correlations between regional 
SA and TH within the same region were moderate and negative (tables S14–S15). This suggests 
that genetic variants contributing to the expansion of SA in a specific region tend to also 
contribute to thinner TH in that region.  
 15 
Genetic correlations between regions were calculated separately for SA and TH. Most genetic 
correlations between regions did not survive multiple testing correction. For SA significant 
positive genetic correlations were generally found between physically adjacent regions and 
negative correlations between more distal regions (Fig. 3A). This pattern mirrored the 
phenotypic correlations between regions and was also observed for TH (Fig. 3A–B). Consistent 20 
with this, hierarchical clustering of the genetic correlations resulted in a general grouping by 
physical proximity (fig. S9). These positive genetic correlations were strongest between SA of 
regions surrounding the major, early forming sulci (e.g., pericalcarine, lingual, cuneus, and 
lateral occipital regions surrounding the calcarine sulcus), which may potentially reflect genetic 
effects acting on the development of the sulci (11). 25 
 
To further investigate biological pathways influencing areal (regional) identity, we aggregated 
association statistics using multivariate GWAS analyses (42) separately for regional SA and TH. 
These analyses identify variants shared across regions and those within specific regions while 
accounting for the phenotypic correlations between regions. Pathway analyses of the multivariate 30 
SA results showed significant enrichment for 903 gene sets (table S10), many of which are 
involved in Wnt signaling, with the canonical Wnt signaling pathway showing the strongest 
enrichment (Z-score, P = 8.8 x 10-11). Wnt proteins regulate neural progenitor fate decisions (43, 
44) and are expressed in spatially specific manners influencing areal identity (45). Pathway 
analyses of the multivariate TH results did not yield any findings that survived multiple testing 35 
correction. 
 
Loci influencing regional SA and TH 
A total of 224 loci were nominally associated with regional SA and 64 with regional TH; of 
these 175 SA and 48 TH loci survived multiple testing correction (table S5). As shown in Fig. 40 
1B, most loci were associated with a single cortical region. Of the loci influencing regional 
measures, few were also associated with global measures. Those that were showed effects in the 
same direction, implying that the significant regional loci were not due to collider bias (46) (fig. 
S10). 
 45 
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The strongest regional association was observed on chromosome 15q14 with the precentral SA 
(rs1080066, Z-score PMA = 1.8 x 10-137; Prep = 4.6 x 10-189; variance explained = 1.03%; Fig. 4A). 
Across 12 traits we observed 48 independent significant associations from 21 LD blocks (r2 
threshold ≤ 0.02; see Fig. 4B, table S5). As we observed strong association with the SA of both 
pre- and post-central gyri (Fig. 4C), we localized the association within the central sulcus in 5 
5,993 unrelated individuals from the UK Biobank. The most significant association between 
rs1080066 and sulcal depth was observed around the pli de passage fronto-pariétal moyen 
(linear regression coefficient t-test P = 7.9 x 10-21), a region associated with hand fine-motor 
function in humans (47), which shows distinct depth patterns across different species of primates 
(48) (Fig. 4D). rs1080066 is a fetal cortex eQTL for a downstream gene EIF2AK4 (t-test 10 
FDRFETAL = 4.8 x 10-2) encoding the GCN2 protein, which is a negative regulator of synaptic 
plasticity, memory and neuritogenesis (49). The functional data also highlight THBS1 via 
chromatin interaction between the rs1080066 region and the promoter in neural progenitor cells 
and an eQTL effect in whole blood (Z-score FDRBIOSgenelevel = 6.1 x 10-6). THBS1 has roles in 
synaptogenesis and the maintenance of synaptic integrity (50). 15 
 
Consistent with enrichment in the pathway analyses, a number of other loci were located in 
regions with functional links to genes involved in Wnt signaling (fig. S7B), including 1p13.2, 
where rs2999158 (lingual SA, Z-score PMA = 1.9 x 10-11, Prep = 3.0 x 10-11; pericalcarine SA, Z-
score PMA = 1.9 x 10-11; Prep = 9.9 x 10-16) is an eQTL for ST7L and WNT2B (t-test FDRCMC < 1.0 20 
x 10-2) in adult cortex (tables S11–S12). On 14q23.1, we observed 22 significant loci (table S5) 
from five LD blocks. Our strongest association here was for the precuneus SA (rs73313052: Z-
score PMA = 1.1 x 10-24; Prep = 2.2 x 10-35). These loci are located near DACT1 and DAAM1, both 
involved in synapse formation and critical members of the Wnt signaling cascade (51, 52). 
rs73313052 and high LD proxies are eQTLs for DAAM1 (t-test FDRCMC < 1.0 x 10-2) in adult 25 
cortex (tables S11–S12). 
 
Several of our regional associations occur near genes with known roles in brain development. 
For example, on chromosome 1p22.2, rs1413536 (associated with the inferior parietal SA: Z-
score PMA = 1.6 x 10-10; Prep = 3.1 x 10-14) is an eQTL in adult cortex for LMO4 (t-test FDRCMC < 30 
1.0 x 10-2), with chromatin interactions between the region housing both this SNP and 
rs59373415 (which is associated with the precuneus SA: Z-score PMA = 1.6 x 10-10, Prep = 5.3 x 
10-12) and the LMO4 promoter in neural progenitor cells (table S11–S12). Lmo4 is one of the few 
genes already known to be involved in areal identity specification in the mammalian brain (53). 
 35 
Genetic relationships with other traits 
To examine shared genetic effects between cortical structure and other traits, we performed 
genetic correlation analyses with GWAS summary statistics from 23 selected traits. We observed 
significant positive genetic correlations between total SA and general cognitive function (54), 
educational attainment (28), and Parkinson’s disease (27), indicating that allelic influences 40 
resulting in larger total SA are in part shared with those influencing greater cognitive capabilities 
as well as an increased risk for Parkinson’s disease. For total SA, significant negative genetic 
correlations were detected with insomnia (55), attention deficit hyperactivity disorder (ADHD; 
56), depressive symptoms (57), major depressive disorder (58), and neuroticism (29) (Fig. 5A; 
table S16), again indicating that allelic influences resulting in smaller total SA are in part shared 45 
with those influencing an increased risk for these disorders and traits. To map the magnitude of 
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these effects across the brain, we calculated the genetic correlations across the cortical regions 
without correction for the global measures (Fig. 5B). Genetic correlations with average TH did 
not survive multiple testing correction, perhaps due to the weaker genetic associations detected 
in the TH analyses. At the regional level, significant genetic correlations were observed between 
educational attainment and cortical thickness in the inferior parietal, precentral and rostral 5 
anterior cingulate regions (rG = -0.22, 0.16 and -0.16; Z-score PrG = 2.0 x 10-6, 6.8 x 10-5 and 
8.0 x 10-5 respectively).  Significant genetic correlations were also observed between precentral 
thickness and general cognitive function (rG = 0.19, Z-score PrG = 8.8 x 10-7) as well as 
between the posterior cingulate thickness and subjective well-being (rG = 0.25, Z-score PrG = 
3.4 x 10-5). To confirm these correlations were not driven by the presence of cases within the 10 
meta-analysis, genetic correlations were recalculated from a meta-analysis of GWAS from 
population-based cohorts and GWAS of controls from the case-control cohorts (N = 28,503). All 
genetic correlations remained significant with the exception of the genetic correlation between 
total SA and depressive symptoms (table S17).  
 15 
We performed bidirectional Mendelian randomization (MR; 59) and LCV (19) analyses to 
investigate potential causal relationships underlying the observed genetic correlations with total 
SA. Both methods provided evidence of a causal effect of total SA on general cognitive function 
(inverse variance weighted MR bMR-IVW = 0.15, SE = 0.01, Z-score P = 4.6 x 10-8; LCV gcp = 
0.40, 95% CIs [0.23–0.57], t-test Pgcp=0 = 1.4 x 10-9) and educational attainment (bMR-IVW = 0.12, 20 
SE = 0.01, Z-score P = 2.1 x 10-21; gcp = 0.49, 95% CIs [0.26–0.72], t-test Pgcp=0 = 8.0 x 10-9) 
(table S18–S19). The MR analyses also indicated association in the reverse direction for both 
general cognitive function and education years (table S18); however, this was not supported by 
the LCV analyses (table S19). There was limited to no support for a causal relationship in either 
direction between total SA and the six other traits that showed significant genetic correlations 25 
(table S18–S19). Taken together these findings suggest that the previously reported phenotypic 
relationships between cortical surface area and general cognitive function (60, 61) may in part 
reflect underlying causal processes.  
 
Discussion 30 
Here we present a large-scale collaborative investigation of the effects of common genetic 
variation on human cortical structure using data from 51,665 individuals from 60 cohorts. 
Current knowledge of genes impacting cortical structure has been derived largely from creating 
mutations in model systems, such as the mouse, and observing impacts on brain structure (8). 
Given the differences between mouse and human cortical structures (62), this study provides an 35 
important genome-wide insight into human variation and genes impacting a characteristically 
human phenotype. Previous studies have identified rare variants that have large effects on 
cortical structure in humans (8), and this study adds to the catalog of the type of variation that 
impacts human cortical structure.  
 40 
We show that the genetic architecture of the cortex is highly polygenic and that variants often 
have a specific effect on individual cortical regions. This suggests that there are distinct genes 
involved in the development of specific cortical areas and raises the possibility of developmental 
and regional specificity in eQTL effects. We also find that rare variants and common variants in 
similar locations in the genome can lead to similar effects on brain structure, though to different 45 
degrees. For example, a balanced chromosomal translocation near EOMES leads to microcephaly 
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in a region abutting a common variant signal associated with small changes in cortical surface 
area (fig. S8). 
 
We provide evidence that genetic variation impacting gene regulation in progenitor cell-types, 
present in fetal development, impacts adult cortical surface area. This is consistent with the radial 5 
unit hypothesis, which states that an increase in proliferative divisions of neural progenitor cells 
leads to an expansion of the pool of progenitors resulting in increases in neuronal production and 
cortical surface area (3, 62). Notably, we see an enrichment of heritability in cortical surface area 
within regulatory elements that influence outer radial glia cells, this cell-type is considerably 
more prevalent in gyrencephalic species such as humans and has been hypothesized to account 10 
for the increased progenitor pool size in humans (2). 
 
We also find that Wnt signaling genes influence areal expansion in humans, as previously 
reported in model organisms such as mice (45). Cortical thickness was associated with loci near 
genes implicated in cell differentiation, migration, adhesion, and myelination. Consequently, 15 
molecular studies in the appropriate tissues, such as neural progenitor cells and their 
differentiated neurons, will be critical to map the involvement of specific genes.  
 
We demonstrate that genetic variation associated with brain structure also impacts general 
cognitive function, Parkinson’s disease, depression, neuroticism, ADHD, and insomnia. This 20 
implies that genetic variants impacting brain structure also impact brain function. While most of 
the structural differences in the cortex observed in these disorders have been reported for 
thickness, our results show significant genetic correlations in surface area. This might suggest 
the phenotypic differences observed in cortical thickness (table S1) partially reflect 
environmental influences, effects of illness or of treatment. We find evidence that brain structure 25 
is an important phenotype along the causal pathway leading from genetic variation to differences 
in general cognitive function and educational attainment. 
 
In summary, this work identifies genome-wide significant loci associated with cortical surface 
area and thickness and provides a deeper understanding of the genetic architecture of the human 30 
cerebral cortex and its patterning. 
 

Materials and Methods Summary: 
Participants 
Participants were genotyped individuals with cortical MRI data, from 60 cohorts. Participants in 35 
all cohorts in this study gave written informed consent and each site obtained approval from 
local research ethics committees or Institutional Review Boards. Ethics approval for the meta-
analysis was granted by the QIMR Berghofer Medical Research Institute Human Research Ethics 
Committee (approval: P2204). 
 40 
Imaging 
Measures of cortical SA and TH were derived from in vivo whole brain T1-weighted MRI scans 
using FreeSurfer MRI processing software (1). SA and TH were quantified for each subject 
across the whole cortex and within 34 distinct gyral-defined regions according to the Desikan-
Killiany atlas averaged across both hemispheres (10). 45 
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Genetic association analyses 
Within each cohort, GWAS were conducted on each of the 70 imaging phenotypes. After quality 
control, these data were meta-analyzed using METAL (63). Initially the GWAS from European 
cohorts were meta-analyzed together, yielding the principal results that were used in all 5 
subsequent analyses. We sought replication of the genome-wide significant loci with data from 
the CHARGE consortium. To examine generalization of effects, the GWAS from the non-
European cohorts were meta-analyzed together, and finally we meta-analyzed the European with 
the non-European results. Polygenic scores were derived from the principal meta-analysis and 
used to predict the amount of variance explained by the association of common genetic variants 10 
with the cortical SA and TH in an independent sample. 
 
SNP heritability and tests for genetic correlations and causation 
Heritability explained by common genetic variants (SNP heritability) was estimated using LD 
score regression (64). Genetic correlations between cortical regions were estimated using cross-15 
trait LD score regression (65). To examine genetic relationships with other traits, we estimated 
genetic correlations using cross-trait LD score regression; to determine if these correlations were 
causal we used Mendelian randomization (59) and latent causal variable analyses (19). 
 
Partitioned heritability 20 
Partitioned heritability analysis was used to estimate the percentage of heritability explained by 
annotated regions of the genome (66). Heritability enrichment was first estimated in active 
regulatory elements across tissues and cell types (21, 22). Secondly, heritability enrichment was 
estimated in mid-fetal specific active regulatory elements and adult cortext specific active 
regulatory elements. Thirdly, heritability enrichment was estimated in regulatory elements of 25 
cell-type specific genes in fetal brain (23). 
 
Functional follow-up 
The principal meta-analytic results were followed up with gene-based association analysis using 
MAGMA (67). A multivariate analysis of the regional association results was conducted using 30 
TATES (42). Pathway analyses were conducted on the global measures and the results from the 
multivariate analyses using DEPICT to identify enrichment of association in known genetic 
functional pathways (25). To identify putatively causal variants we performed fine-mapping with 
CAVIAR (68). Potential functional impact was investigated using FUMA (30), which annotates 
the SNP location, nearby enhancers or promoters, chromatin state, associated eQTLs, and the 35 
potential for functional effects through predicted effects. 
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Fig. 1. Regions of the human cortex and associated genetic loci. (A) The 34 cortical regions 
defined by the Desikan-Killiany atlas. (B) Ideogram of loci influencing cortical SA and TH. 

Fig. 2. Genetics of Global Measures. (A) Genetic correlations between global measures and 
selected traits (red indicates significant correlation, FDR < 0.05). (B) Partioned heritability 35 
enrichment in active regulatory elements across tissues and cell types. (C) Partioned heritability 
enrichment in temporally specific active regulatory elements. (D) Partioned heritability 
enrichment in regulatory elements of cell-type specific genes in fetal brain. (E) Manhattan plot 
of loci associated with total SA (top) and TH (bottom), green diamonds indicate lead SNP in the 
principal meta-analysis, black diamonds indicate change in P-value after replication, dashed 40 
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horizontal line is genome-wide significance, solid horizontal line is multiple-testing correction 
threshold. 

Fig 3. Genetic and Phenotypic Correlations Between Cortical Regions. (A) Surface Area. (B) 
Thickness. The regions are numbered according to the legend of Fig. 1A. The proportion of 
variance accounted for by common genetic variants is shown in the first column (h2SNP). 5 
Phenotypic correlations from the UK Biobank are in the upper triangle. Genetic correlations 
from the principal meta-analysis are in the lower triangle. Only significant correlations are 
shown. 

Fig 4. Genetics of Regional Measures. (A) Regional plot for rs1080066, including additional 
lead SNPs within the LD block and surrounding genes, chromatin interactions in neural 10 
progenitor cells, chromatin state in RoadMap brain tissues*, and BRAINSPAN candidate gene 
expression in brain tissue**. (B) Ideogram of 15q14, detailing the significant independent loci 
and cortical regions. (C) rs1080066 (G allele) association with SA of regions. (D) rs1080066 
association with central sulcus depth and depth of several primate species *TssA:Active 
Transcription Start Site (TSS); TssAFlnk:Flanking Active TSS; TxFlnk:Transcription at gene 5' 15 
and 3'; Tx:Strong transcription; TxWk:Weak transcription; EnhG:Genic enhancers; 
Enh:Enhancers; Het:Heterochromatin; TssBiv:Bivalent/Poised TSS; BivFlnk:Flanking Bivalent 
TSS/Enhancer; EnhBiv:Bivalent Enhancer; ReprPC:Repressed; PolyComb; ReprPCWk:Weak 
Repressed PolyComb; Quies:Quiescent/Low. **DFC:dorsolateral prefrontal cortex; 
VFC:ventrolateral prefrontal cortex; MFC:anterior cingulate cortex; OFC:orbital frontal cortex; 20 
M1C:primary motor cortex; M1C-S1C:primary motor-sensory cortex; PCx:parietal neocortex; 
S1C:primary somatosensory cortex; IPC:posteroventral parietal cortex; A1C:primary auditory 
cortex; TCx:temporal neocortex; STC:posterior superior temporal cortex; ITC:inferolateral 
temporal cortex; Ocx:occipital neocortex; V1C:primary visual cortex. 

Fig 5. Genetic correlations with neuropsychiatric and psychological traits. (A) Genetic 25 
correlations with total SA and average TH positive correlations are shown in red, while negative 
correlations are shown in blue. (B) Regional variation in the strength of genetic correlations 
between regional surface area (without correction for total surface area) and traits showing 
significant genetic correlations with total surface area.  
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Materials and Methods 
Imaging 
Measures of cortical surface area (SA) and thickness (TH) were derived from in vivo whole brain 
T1-weighted magnetic resonance imaging (MRI) scans using FreeSurfer MRI processing 
software (1) (table S3). SA and TH were quantified for each subject within 34 distinct gyral-
defined regions in each brain hemisphere according to the Desikan-Killiany atlas (10) (Fig. 1A). 
SA was measured at the grey-white matter boundary. TH was measured as the average distance 
between the white matter and pial surfaces. The total SA and average TH of each hemisphere 
was computed separately. High test-retest correlations have been previously reported for all 
measures with the exception of the frontal and temporal poles (7). Image processing and quality 
control were implemented at the cohort level following detailed, harmonized protocols. 
 
Site analysts visually inspected the 34 bilateral cortical Desikan-Killiany atlas segmentations for 
each subject. Visual inspection was conducted to assess extraction of the cortical grey matter 
ribbon, to identify regional boundary errors on the cortical surface, and ensure the accuracy of 
anatomical labels. Inspection was slice by slice on an orthogonal view, as well as on the external 
surface view. Regions marked as “failed segmentations” were excluded from analyses. SA and 
TH estimates beyond 2.698 SD from the mean were flagged in order to be more carefully 
inspected by the respective site analysts. A quantitative assessment of quality was not applied; 
subjects or regions were marked either as acceptable or not by a human rater. As this was a 
binary “pass” or “fail” flag for each region, no additional metrics were added to the statistical 
analysis at the site level. For sites that removed subjects for only the region that failed, the 
number of subjects available varied across regions. For sites that removed subjects entirely for 
regional fails, the total number of subjects available was the same as for all regions. We also note 
that some cohorts removed poor quality scans from their database, so for some cohorts the 
number of quality control issues may be limited. We include the percent of regional data 
available at the cohort-level in table S3. The protocols that were used for the imaging quality 
control are available online from the ENIGMA website 
(http://enigma.ini.usc.edu/protocols/imaging-protocols). 
 
Phenotype distributions for all traits in all cohorts were inspected centrally prior to meta-analysis 
(fig. S11). Any cohort where the phenotypic distribution for a given trait showed deviation from 
expectations that could not be resolved through re-analysis or outlier inspection were excluded 
from analyses of that trait. 
 
Genome-wide association analyses 
At each site, genotypes were imputed using either the 1000 Genomes Project (70) or Haplotype 
Reference Consortium (71) references (table S4). To ensure consistency in the correction for 
ancestry and stability of the correction given the relatively small sample sizes, each cohort also 
ran the same multidimensional scaling (MDS) analysis protocol in which the data from the 
HapMap 3 populations were merged with the site level data and MDS components were 
calculated across this combined data set. Within each cohort, genome-wide association (GWAS) 
was conducted using an additive model including covariates to control for the effects of age, 
age2, sex, sex-by-age and age2 interactions, ancestry (the first four MDS components), diagnostic 
status (when the cohort followed a case-control design), and dummy variables for scanner (when 
multiple scanners were used at the same site).  
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The primary GWAS of regional measures included the global measure of SA or TH as an 
additional covariate, to test for genetic influences specific to each region. However, to aid 
interpretation, the regional GWAS were also run without controlling for global measures. Cohort 
level GWAS results underwent quality control (excluding variants with an imputation R2 ≤ 0.5 
and MAF ≤ 0.005). Across all cohorts, for each phenotype, GWAS summary plots (Manhattan 
and QQ plots) were visually inspected by the central analysis group; if a given trait showed 
deviation from expectations that could not be resolved through re-analysis, then that cohort was 
excluded from analyses of that trait. 
 
Meta-analysis 
The initial meta-analysis was conducted on all of the ENIGMA European cohorts with genome-
wide imputed data, and was then meta-analyzed with the UK Biobank European participants to 
give the principal results. For replication, we took forward the significant variants from the 
principal results and meta-analyzed them with an additional ENIGMA cohort and results from 
the CHARGE consortium. We also extracted these variants from a meta-analysis of non-
European cohorts to examine generalization of effects across ancestry. Cohort information is 
provided in table S2. All meta-analyses were conducted using METAL (63). The results of the 
meta-analyses are summarized in table S5. For the initial and principal meta-analyses we used 
standard error weighted meta-analyses. In the replication steps we used sample size weighted 
meta-analyses, in order to include results from the CHARGE consortium for which only sample 
size weighted results were available. An additional ENIGMA cohort was also included in the 
sample size weighted meta-analysis because the GWAS was conducted using a program that 
provided results on an inverse normalized scale. For each meta-analysis, the results were quality 
controlled, removing strand ambiguous SNPs and INDELs where the effect allele frequency 
crossed 0.5, and (for the initial meta-analysis) variants where the total sample size was < 10,000. 
Independent loci were identified by clumping significant loci in PLINK (72), with thresholds of 
1 Mb and r2 < 0.2. For the chromosome 17 inversion region this was increased to 10 Mb. For 
clumping, a random sample of 5,000 unrelated individuals (plink 1.90 genetic relatedness ≤ 
0.025) of European ancestry from the UK Biobank were used as an LD reference. 
 
Following Rietveld et al. (73), we estimated the variance explained R2 by each variant j as:  

𝑅𝑅𝑗𝑗2 ≈
2𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗. 𝛽̂𝛽𝑗𝑗2

𝜎𝜎�𝑦𝑦2
 

where pj and qj are the minor and major allele frequencies, 𝛽̂𝛽𝑗𝑗 is the estimated effect of the 
variant within the meta-analysis and 𝜎𝜎�𝑦𝑦2 is the estimated variance of the trait (for which we used 
the pooled variance of the trait across all ENIGMA cohorts and UK Biobank; see table S1). To 
obtain beta and standard error estimates from the results from the sample size weighted meta-
analyses reported in table S5 we used the following equations from Rietveld et al. (73): 

𝛽̂𝛽𝑗𝑗 ≈ 𝑧𝑧𝑗𝑗 ∙
𝜎𝜎�𝑦𝑦

�𝑁𝑁𝑗𝑗 ∙ 2𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑗𝑗� ≡

𝑧𝑧𝑗𝑗
𝛽̂𝛽𝑗𝑗

  

Where zj is the Z-score and SE (𝛽̂𝛽𝑗𝑗) is the estimated standard effect of the variant within the 
meta-analysis and N is the number of contributing alleles. 
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Multiple testing correction 
We analyzed 70 traits (total SA, average TH, and the SA and TH of 34 cortical regions averaged 
across right and left hemispheres). However, after accounting for the correlation between the 
traits in the UK Biobank (residuals correcting for sex, age, ancestry and global measures) using 
matrix spectral decomposition (12), the effective number of traits was estimated to be 60. 
Therefore, we applied the significance threshold of P ≤ 8.3 x 10-10 to correct for multiple testing 
in the GWAS meta-analysis results. Multiple testing corrections applied to each of the follow-up 
analyses are described below. 
 
Analyses of UK Biobank data 
Analyses of the UK Biobank cohort were conducted on the 2018 (version 3) imputed genotypes, 
imputed to the Haplotype Reference Consortium and merged UK10K and 1000 Genomes (phase 
3) panels. UK Biobank bulk imaging data were made available for 12,962 individuals under 
application #11559 in July 2017, with data from an additional 5,095 individuals made available 
in August 2019. We processed the raw MRI data using the ENIGMA protocols described above. 
Following processing, all images were visually inspected. Analyses of UK Biobank participants 
within 0.02 on the first and second MDS components of the European centroid were included in 
the meta-analyses of the European ancestry cohorts. Analyses of participants beyond this 
threshold were included in the meta-analysis of non-European ancestry cohorts.  
 
Gene-based association analyses 
We conducted genome-wide gene-based association analysis using the principal meta-analytic 
results. We used the 19,427 protein-coding genes from the NCBI 37.3 gene definitions as the 
basis for the gene-based association analysis using MAGMA (67). For each gene we selected all 
SNPs within exonic, intronic and untranslated regions as well as SNPs within 50 kb upstream 
and downstream of the gene. After SNP annotation, there were 18,048 genes that were covered 
by at least one SNP. Gene-based association tests were performed taking LD between SNPs into 
account. We applied a Bonferroni correction to account for multiple testing, adjusting for the 
number of genes tested as well as the effective number of traits tested (60 independent traits), 
setting the genome-wide threshold for significance at 4.5 x 10−8. These results are shown in table 
S6. 
 
Twin heritability 
Twin heritability was estimated in the ENIGMA Queensland Twin Imaging (QTIM) study of 
healthy adolescent and young adult twins and their siblings (N = 923; 157 MZ pairs, 194 DZ 
pairs, 221 unpaired twins) using OpenMx (74) in R. Structural equation models were fitted to 
total SA, average TH, and the SA and TH of 34 cortical regions averaged across right and left 
hemispheres using full information maximum likelihood to decompose the variance into additive 
genetic and environmental factors. The models included a simultaneous means regression to 
adjust for effects of sex, linear and nonlinear age effects, interactions between age and sex, MRI 
acquisition orientation, and for the regional measures we analyzed a version with and one 
without the corresponding global measures. We performed analyses without controlling for 
global measures for completeness. The likelihood ratio test was used to select the best fitting 
most parsimonious model, which was a model explaining the phenotypic differences in variance 
by additive genetic factors and unique environmental factors (including measurement error). 
These results are shown in table S7. 
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Heritability due to common variants 
For each of the 70 traits, we used LD score regression (64, 65) to estimate the proportion of 
variance accounted for by common SNPs or SNP heritability (h2SNP). These results are shown in 
table S7.  
 
Partitioned heritability 
Partitioned heritability analysis was used to estimate the percentage of heritability explained by 
annotated regions of the genome (66). Annotations were derived from either Epigenomics 
Roadmap (22) or a study of chromatin accessibility in mid-fetal brains (21). For analyses using 
Epigenomics Roadmap data, ChromHMM chromatin states (15 state model) were downloaded 
for available tissue types (http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). 
For each tissue, genomic regions comprising all active regulatory elements (TssA, TssAflnk, 
Enh, EnhG) within each tissue type were added as an additional annotation to the baseline model 
provided with the LDSC package (https://github.com/bulik/ldsc). A separate analysis was 
conducted by identifying if the same active regulatory elements that were specific to either fetal 
brain (combining annotations from BRN.FET.F and BRN.FET.M) or adult brain cortex 
(combining annotations from BRN.CING.GYR, BRN.INF.TMP, BRN.ANG.GYR, 
BRN.DL.PRFRNTL.CRTX). Those elements present in fetal brain showing no overlap with 
adult brain cortex were used as “fetal brain specific”. Conversely, those elements present in adult 
brain cortex showing no overlap with fetal brain were used as “adult brain specific”. These 
annotations were added separately to the baseline model. For analyses using chromatin 
accessibility in mid-fetal brains, the genomic coordinates of peaks more accessible in the 
germinal zone than the cortical plate (GZ > CP) and peaks more accessible in the cortical plate 
than the germinal zone (CP > GZ) were added jointly to the baseline annotations. A separate 
analysis was conducted subsetting to chromatin accessibility peaks defined in fetal brain that 
showed evidence of regulating cell-type specifically expressed genes in mid-fetal development. 
Cell-type definitions and genes with cell-type specific expression (log2 fold change > 0.2 
between cell-types, BH corrected P < 0.05, Expressed in 10% of cells in cluster) were acquired 
from previously published work (23). Peaks near the TSS of cell-type specific genes (promoter 
peaks) and those with significant chromatin accessibility correlation with promoter peaks were 
used as cell-type specific annotations. These annotations of all 16 cell-types were added to the 
baseline model. Partitioned heritability and the enrichment of heritability explained in these 
annotations was run using LD score regression (66). The significance of enrichment was 
corrected across all annotations displayed in each of the analyses using FDR correction (FDR ≤ 
0.05) and the significance and enrichment scores were plotted (Fig. 2B–D, fig S6A–D). 
 
Genetic and phenotypic correlations and clustering of genetic correlations  
LD score regression (64) was also used to estimate genetic correlations between cortical regions 
and with global measures. These results are shown in table S14−15. Phenotypic correlations 
were calculated from the UK Biobank cohort (residuals correcting for sex, age, ancestry, and 
global brain measures). We used a threshold of P ≤ 8.3 x 10-4 (0.05/60) to correct for multiple 
testing in the genetic and phenotypic correlations shown in Fig. 3.  
 
To identify patterns of genetic correlations of SA and TH (both with and without correction for 
global measures), we used Mclust (75) for hierarchical cluster analysis, which uses expectation-

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://github.com/bulik/ldsc
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maximization to fit parameterized Gaussian mixture models to the data. The best-fitting model 
for number and shape of clusters was selected as the one with the largest Bayesian Information 
Criterion. These results are shown in fig. S9.  
 
Genetic correlations were calculated to determine if shared genetic influences contributed to both 
cortical structure and neuropsychiatric disorders or psychological traits. Summary statistics were 
downloaded from the following published genome-wide association studies: general cognitive 
function (54), insomnia (55), antisocial behavior (76), educational attainment (28), subjective 
well-being (57), depressive symptoms (57), neuroticism (29), attention deficit hyperactivity 
disorder (ADHD; 56), autism (77), bipolar disorder (78), anorexia nervosa (79), major depressive 
disorder (58), obsessive compulsive disorder (80), post-traumatic stress disorder (PTSD; 81), 
schizophrenia (82), anxiety disorders (83), aggression (84), Alzheimer's disease (85), loneliness 
(86), cigarettes smoked per day (87), epilepsy (88), Parkinson's disease (27), and frontotemporal 
dementia (69). LD score regression was used to calculate genetic correlations (64). Significance 
was corrected for multiple comparisons using FDR across all genetic correlations with average 
TH and total SA, and significant associations were highlighted in Fig. 5A. To explore regional 
variability in those significant genetic correlations, genetic correlations were conducted between 
the trait and the cortical regions (without correcting for global measures) are depicted in Fig. 5B. 
 
Polygenic risk score analyses 
To examine the extent to which our analyses could predict SA and TH in an independent dataset, 
we derived polygenic risk scores (PRS) from the primary meta-analysis results. Using data from 
an additional 5,095 unrelated individuals of European ancestry from the UK Biobank who were 
unrelated to participants who contributed to the meta-analysis (plink 1.90 genetic relatedness ≤ 
0.025). The index variants used to weight the PRS were identified by clumping the meta-analytic 
results in plink 1.90 using an r2 threshold of 0.1 with a 1000 kb window using the genotypic data 
of the prediction cohort as a reference. Following checks for strand alignment, PRS were 
calculated using the probabilistic imputed genotype dosages to account for imputation 
uncertainty. PRS were calculated for P-value thresholds of P ≤ 5 x 10-8, 1 x 10-5, 0.001, 0.01, 
0.05, 0.1, 0.5, 1. The proportion of variance accounted for by a given PRS was estimated by 
comparing the R2 of a linear regression analysis that included the PRS and the covariates that 
were included in the GWAS analyses to a corresponding analysis that only included the 
covariates (conducted in R lm). The results of these analyses are presented in table S7. 
 
Mendelian randomization and latent causal variant analyses 
We performed 2-sample Mendelian randomization (2SMR) and latent causal variant (LCV) 
analyses to investigate whether significant correlations detected by the analyses above could be 
driven by causal genetic relationships between an exposure (e.g., total surface area) and an 
outcome (e.g. the correlated traits). The 2SMR analyses were performed using MR-Base (59), 
which performs a series of MR and sensitivity analyses to evaluate evidence for causality and 
detect the presence of horizontal pleiotropy (where a SNP directly influences an outcome, 
violating the MR assumption that SNPs only influence the outcome through their effect on the 
exposure), and MR-PRESSO (89), which detects and then corrects for horizontal pleiotropy by 
removing SNPs with outlying effects on the outcome trait. For each exposure trait, we included 
only SNPs GWAS P-values < 5.0 x 10-8 which were clumped for LD (r2 < 0.01) to ensure only 
significantly exposure-associated, independent variants were included as the instrumental 
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variables. SNP effects were standardized prior to analysis. We conservatively set the threshold 
for significance at P = 3.13 x 10-3 (0.05/16 trait comparisons). Where there was significant 
evidence of SNP heterogeneity in effect sizes for outcome traits the analyses were re-run in MR-
Base with the outlier SNPs removed as further sensitivity analyses to determine the extent to 
which the relationship between traits was influenced by the outlier SNPs. The results of the MR 
analyses are presented in table S18. We present the betas and their standard errors for the two 
associated quantitative traits in the main text following sensitivity analyses suggesting all 
included instruments (SNPs) were unbiased (59). Additionally, we show odds ratios and 95% 
confidence intervals reflecting risk per standard deviation increase in the relevant exposure 
calculated from the inverse variance weighted MR model result in table S18.  
 
A key assumption of MR is that the genetic variants included in the analysis are specific 
instruments for the exposure under investigation: false positive results can occur in the presence 
of genetic correlation if the correlation is driven by pleiotropy (19, 90). Additionally, the 
exposure trait (and also the outcome trait where a causal relationship exists) is likely to be 
affected by residual genetic variation that doesn’t surpass the genome-wide significance 
threshold. To overcome these potential limitations we also performed latent causal variable 
analyses using LCV-Master (19). The LCV method mediates genetic correlation through the use 
of a latent variable that has a causal effect on each trait. The degree of causality of a trait (trait 1) 
on another (trait 2) is quantified using a genetic causality proportion (gcp) that ranges from -1 to 
1, with gcp > abs(0.6) implying full or nearly full genetic causality (19). All LCV analyses were 
performed using genome-wide GWAS summary results (Z-scores) using the default settings. As 
LCV-Master includes tests for causality in both directions the threshold for significance for these 
analyses was set at P = 6.25 x 10-3 (0.05/8 trait comparisons). The LCV results are presented in 
table S19. 
 
Multivariate GWAS analysis 
We used TATES (42) to conduct two multivariate analyses: one for the 34 regional SA 
measures, and a separate analysis for the 34 regional TH measures. These analyses were run on 
the meta-analytic results from the second phase of meta-analysis. Briefly, TATES combines the 
P-values from univariate GWAS while correcting for the phenotypic correlations between traits 
and does not require access to raw genotypic data (42). The power of TATES has been shown to 
be similar or greater than that of multivariate tests using raw data across a range of scenarios for 
analyses of 20 or more traits (91). For these analyses, we used phenotypic correlations calculated 
from the UK Biobank cohort (residuals correcting for sex, age, ancestry, and global cortical 
measures). 
 
Gene-set enrichment analyses 
Gene-set enrichment analyses were performed on total SA and average TH as well as the 
multivariate GWAS results for SA and TH using DEPICT (25). Within DEPICT, groups of SNPs 
were assessed for enrichment in 14,462 gene-sets. These analyses were run using variants with P 
≤ 1.0 x 10-5. Gene-set enrichment analyses were considered significant if they survived FDR 
correction (q ≤ 0.05) (25). These results are shown in table S10. 
 
Functional annotation 
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Potential functional impact was investigated for lead variants and their proxies (defined here as 
r2 > 0.6 to the lead SNP) at each of the 369 loci nominally associated with global and regional 
SA and TH using a number of publicly available data sources. The majority of the SNP 
annotations were as provided by FUMA (30) which annotates:  

● SNP location (e.g., genic/intergenic)  
● the potential for functional effects through predicted effects as determined by CADD (92) 

and Regulome (93)  
● expression quantitative trait (eQTL) effects. We considered eQTLs within cortical 

structures from GTEx v7 (94), the UK Brain Expression Consortium (95), the 
CommonMind Consortium (96), and PsychENCODE (97).  

● the presence of enhancers and promoters in SNP regions (RoadMap tissues E053, E073, 
E081, E082, E125)  

● chromatin state and interactions in numerous brain tissues (GEO GSE87112). We 
included data for dorsolateral prefrontal cortex and neural progenitor cells, 
PsychENCODE, and adult and fetal cortex (98). 

These data were used by FUMA to map coding and non-coding (e.g. lncRNA) genes to each lead 
SNP and high LD proxies based on an eQTL effect with FDR-corrected P-values ≤ 0.05 in 
cortical tissue and/or chromatin interactions between the region harboring the lead SNP and a 
gene promoter in a second chromosomal region (including interactions with an FDR correction ≤ 
1 x 10-6) (30). Default FUMA settings were used. In the main text we indicate the FDR values 
for significant eQTL effects (i.e. FDR Q ≤ 0.05: both the nominal P-values and the FDR-
corrected values are provided in table S12). FDR values for adult eQTL data from GTEx 
reported in text as FDRGTEx were derived from beta distribution-adjusted empirical P-values of 
nominal P-values from t-tests of Pearson product-moment correlation coefficients that were FDR 
corrected using the Storey Tibshirani method (30, 94). FDR values for adult eQTL data from the 
CommonMind Consortium (CMC) reported in text as FDRCMC were derived from linear 
regression coefficient t-tests that were FDR corrected and accessed by FUMA in Q-value bins 
(e.g. Q < 1.0 x 10-2). These bin values are reported as whole numbers by FUMA (e.g. the Q < 1.0 
x 10-2 bin is reported as Q = 9.0 x 10-3). We report the CMC bin value in the main text, although 
table S12 (FUMA “gene” output) reports the corresponding FUMA-assigned values. For 
rs1080066, we also investigated if it was reported as an eQTL in adult blood (99), the FDR value 
reported in text as FDRBIOSgenelevel was derived from meta-analytic Z-scores and FDR corrected 
against permuted data. Fetal eQTL data were taken from O’Brien et al (34). FDR values for fetal 
eQTLs reported in text as FDRFETAL were derived from nominal P-values from t-tests of Pearson 
product-moment correlation coefficients reported in the original paper that were FDR corrected 
for our significant loci using the Benjamini-Hochberg method. HaploReg (100) was used to 
annotate transcription factor binding across multiple tissues, and whether SNPs modified 
transcription factor binding motifs. The potential for a detrimental effect on protein function due 
to lead or proxy SNPs located within gene exons was investigated using SIFT and PolyPhen as 
reported by SNPNexus (40). 
 
In Fig. 4A we annotate the genomic context of rs1080066 and high LD proxies associated with 
additional traits, chromatin state in relevant tissues, and gene expression in pre- and post-natal 
brains. Chromatin state represents the degree to which 200 bp genomic regions are accessible for 
transcription. Around each of our associated loci chromatin state was annotated by FUMA (30) 
utilizing the core 15-state model (table S11). In Fig. 4A, genomic regions in three tissues/cells 
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most relevant to our study (RoadMap E073 dorsolateral prefrontal cortex [Adult cortex], E081 
female fetal brain [Fetal brain], and E125 NH-A Astrocytes Primary Cells [Astrocytes]) are 
indicated as one of the 15 possible chromatin states as predicted by Roadmap Epignomics using 
ChromHMM, based on data for 5 chromatin marks (H3K4me3, H3K4me1, H3K36me3, 
H3K27me3, H3K9me3) in 127 epigenomes (22). Chromatin states are as follows: TssA:Active 
Transcription Start Site (TSS); TssAFlnk:Flanking Active TSS; TxFlnk:Transcription at gene 5' 
and 3'; Tx:Strong transcription; TxWk:Weak transcription; EnhG:Genic enhancers; 
Enh:Enhancers; ZNF/Rpts:ZNF genes & repeats; Het:Heterochromatin; TssBiv:Bivalent/Poised 
TSS; BivFlnk:Flanking Bivalent TSS/Enhancer; EnhBiv:Bivalent Enhancer; ReprPC:Repressed; 
PolyComb; ReprPCWk:Weak Repressed PolyComb; Quies:Quiescent/Low. Pre- and post-natal 
gene expression data across multiple brain regions was obtained from the BrainSpan Atlas of the 
Developing Human Brain (http://www.brainspan.org/). These data include gene expression 
information for cortical tissues indicated on a scale from low (dark blue) to high (dark red) 
expression on a log2 RPKM scale (RPKM = Reads Per Kilobase [of transcript per] Million 
[mapped reads], which normalizes expression levels to account for sequencing depth and gene 
length). The BRAINSPAN cortical tissues, organised in ontological order, are as follows: 
DFC:dorsolateral prefrontal cortex; VFC:ventrolateral prefrontal cortex; MFC:anterior (rostral) 
cingulate (medial prefrontal) cortex; OFC:orbital frontal cortex; M1C:primary motor cortex (area 
M1, area 4); M1C-S1C:primary motor-sensory cortex (samples); PCx:parietal neocortex; 
S1C:primary somatosensory cortex (area S1, areas 3,1,2); IPC:posteroventral (inferior) parietal 
cortex; A1C:primary auditory cortex (core); TCx:temporal neocortex; STC:posterior (caudal) 
superior temporal cortex (area 22c); ITC:inferolateral temporal cortex (area TEv, area 20); 
Ocx:occipital neocortex; V1C:primary visual cortex (striate cortex, area V1/17). 
 
For each locus, we evaluated functional annotations for the lead SNP and for additional SNPs 
considered to be credible causal variants (CCVs) if they were either i) in reasonable LD (r2 ≥ 0.6 
in individuals of European ancestry) with the lead SNP and/or ii) had P-values within 2 orders of 
magnitude of the lead SNP. As lincRNAs show considerable cell/tissue specificity, in the main 
text we detail SNP location based on neighboring coding genes, but detail lincRNAs when our 
lead SNPs show eQTL effects and/or chromatin interactions to these non-coding transcripts. 
Genes at each associated locus were determined to be potential candidates by considering 
whether the lead SNP (or a proxy) was an eQTL for a particular gene in adult or fetal cortical 
tissue (listed above) and/or when chromatin interactions were observed to occur between the 
region harboring the lead/proxy SNPs and a gene promoter in relevant brain tissues (dorsolateral 
prefrontal cortex and/or neural progenitor cells).  
 
Analysis of the central sulcus 
To follow-up the precentral surface area association with rs1080066, 10,557 UK Biobank MRI 
scans were further analyzed using BrainVISA-4.5 Morphologist pipeline for the extraction and 
parameterization of the central sulcus. Quality controlled FreeSurfer outputs (orig.mgz, 
ribbon.mgz and talairach.auto) were directly imported into the pipeline to use the same grey and 
white matter segmentations. Sulci were automatically labeled according to a predefined 
anatomical nomenclature of 61 sulcal labels per hemisphere (101, 102). Extracted meshes for the 
left and right central sulcus were visually quality checked; subjects with mislabeled central 
sulcus were discarded from further analysis; 6,045 individuals had good quality extractions for 
both the left and right hemispheres. An additional 52 individuals were removed for genotyping 

http://www.brainspan.org/
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quality or ancestry reasons. The central sulcus depth profile was measured by extending the 
method introduced in Cykowski et al. (47) and Hopkins et al. (103). The ridges at the fundus of 
the sulcus and at the convex hull, along with the two extremities, were automatically extracted. 
Using these landmarks, two coordinate fields (x and y) were extrapolated over the entire mesh 
surface (104). Sulcal depth was defined as the distance between paired points at the sulcal fundus 
and brain envelope that shared the same y coordinate (105). For each individual, the 
parametrized surface was divided into 100 equally spaced points along the length of the sulcus, 
and the depth at each point was recorded for comparison. We averaged the corresponding depth 
measurements across the left and right sulcus and calculated the effect of the rs1080066 G allele 
on the bilaterally averaged depth at each point. These results are shown in Fig. 4D. 
 
Fine mapping 
In order to identify putatively causal variants at each associated locus for future functional 
validation experiments, we performed fine-mapping with CAVIAR (68). For each associated 
locus (defined in table S5), all SNPs with r2 > 0.6 (using 1000G EUR reference panel) to the 
index SNP for that locus and P < 0.001 to the brain trait of interest were input into the CAVIAR 
program (v2.2). CAVIAR was then run for each locus specifying two causal variants per locus 
and using LD patterns from 1000G EUR reference panel to identify the set of SNPs that have a 
95% probability of containing the causal variants. These are output in table S13. For those loci 
where the index SNP was not found in 1000G data, only the index SNP was identified as 
putatively causal. 
 

Supplementary Text 
The Desikan-Killiany atlas 
The Desikan-Killiany atlas (10) used here to define the 34 regions of interest is one of many 
possible atlases. This atlas was chosen as it is a common output of FreeSurfer, and it is one of the 
coarser atlases, yielding larger, more consistent regions, defined by the common folding patterns 
visible on standard MRI. More recent efforts partitioning the cortex into 180 regions have used 
high-resolution multimodal assessments (MMPC; 106). Other atlases based on functional 
partitions have also been used, particularly for analyzing function MRI data (107, 108). The 
breakdown of the cortical surface into 34 large parcels yields clear boundaries between the 
regions, and allows for anatomically driven quality assessments (see Imaging in the 
Supplementary Materials and Methods).  
 
The choice of atlas will not have an effect on the global measures; however, the choice of atlas 
would influence our regional findings, and possibly limit findings, as we may not be able to 
detect genetic influences on functionally coherent cortical regions, or refined cortical regions 
partitioned by multimodal MRI measures, for example myelin content, which may have more 
pathway-specific genetic influences. Assessing the genetic influences on the cortex at a finer 
scale is an important future effort. However, for multi-cohort efforts such as that performed here, 
the reliability and accuracy of the parcellations should be assessed across multiple age ranges 
and MRI acquisition parameters, such as field strength. Automated, and reliable, quality 
assurance and label accuracy assessments would be an important aspect of this next step. 
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Our choice of atlas is also likely to influence our findings of regional genetic correlations. It is 
possible that the correlations between adjacent structures, seen in our analysis, may reflect 
suboptimal partitioning of the cortex by the atlas; for example, we see a positive genetic 
correlation between the inferior parietal and the superior parietal gyri, whereas in the MMPC 
atlas, a portion of each of these two regions is included under a new label, the intraparietal label. 
Portions of these genetically correlated regions may be re-assigned based on other advanced 
imaging data, such as multimodal myelin mapping, which may better define cortical cellular 
architecture. 
 
Sulcal development 
Positive genetic correlations between the SA of neighboring regions may also be driven by the 
development of the sulcus, separating the regions. The pre- and post- central regions (also known 
as the primary motor and sensorimotor cortices, respectively) are consistently labeled across 
many cortical atlases as the regions directly anterior and posterior to the central sulcus, which 
appears early in development (109). The SA of all four regions surrounding the calcarine sulcus 
(the pericalcarine, lingual, cuneus, and lateral occipital region) show positive genetic 
correlations. The same is also true for the SA of the insula and superior temporal gyri 
surrounding the lateral sulcus (or Sylvian fissure). These major, early-forming sulci show 
positive genetic correlations between the regions that directly surround them for SA, but not TH. 
These observations may imply that part of the genetic influences we observe to be underlying 
regional SA, may actually be driving the formation of the separating folds, or sulci, during fetal 
development.  
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Laurel Beckett (UC Davis (Core PI)), Danielle Harvey (UC Davis), Michael Donohue (UC San 
Diego). MRI Core Leaders and Key Personnel: Clifford R. Jack, Jr. (Mayo Clinic, Rochester 
(Core PI)), Matthew Bernstein (Mayo Clinic, Rochester), Nick Fox (University of London), Paul 
Thompson (UCLA School of Medicine), Norbert Schuff (UCSF MRI), Charles DeCarli (UC 
Davis), Bret Borowski (RT Mayo Clinic), Jeff Gunter (Mayo Clinic), Matt Senjem (Mayo 
Clinic), Prashanthi Vemuri (Mayo Clinic), David Jones (Mayo Clinic), Kejal Kantarci (Mayo 
Clinic), Chad Ward (Mayo Clinic). PET Core Leaders and Key Personnel: William Jagust (UC 
Berkeley (Core PI)), Robert A. Koeppe (University of Michigan), Norm Foster (University of 
Utah), Eric M. Reiman (Banner Alzheimer’s Institute), Kewei Chen (Banner Alzheimer’s 
Institute), Chet Mathis (University of Pittsburgh), Susan Landau (UC Berkeley). Neuropathology 
Core Leaders: John C. Morris (Washington University St. Louis), Nigel J. Cairns (Washington 
University St. Louis), Erin Franklin (Washington University St. Louis), Lisa Taylor-Reinwald 
(Washington University St. Louis – Past Investigator). Biomarkers Core Leaders and Key 
Personnel: Leslie M. Shaw (UPenn School of Medicine), John Q. Trojanowki (UPenn School of 
Medicine), Virginia Lee (UPenn School of Medicine), Magdalena Korecka (UPenn School of 
Medicine), Michal Figurski (UPenn School of Medicine). Informatics Core Leaders and Key 
Personnel: Arthur W. Toga (USC (Core PI)), Karen Crawford (USC), Scott Neu (USC). 
Genetics Core Leaders and Key Personnel: Andrew J. Saykin (Indiana University), Tatiana M. 
Foroud (Indiana University), Steven Potkin (UC Irvine), Li Shen (Indiana University), Kelley 
Faber (Indiana University), Sungeun Kim (Indiana University), Kwangsik Nho (Indiana 
University). Initial Concept Planning & Development: Michael W. Weiner (UC San Francisco), 
Leon Thal (UC San Diego), Zaven Khachaturian (Prevent Alzheimer’s Disease 2020). Early 
Project Proposal Development: Leon Thal (UC San Diego), Neil Buckholtz (National Institute 
on Aging), Michael W. Weiner (UC San Francisco), Peter J. Snyder (Brown University), 
William Potter (National Institute of Mental Health), Steven Paul (Cornell University), Marilyn 
Albert (Johns Hopkins University), Richard Frank (Richard Frank Consulting), Zaven 
Khachaturian (Prevent Alzheimer’s Disease 2020). NIA: John Hsiao (National Institute on 
Aging). ADNI Investigators by Site: Oregon Health & Science University: Joseph Quinn, Lisa C. 
Silbert, Betty Lind, Jeffrey A. Kaye – Past Investigator, Raina Carter – Past Investigator, Sara 
Dolen – Past Investigator. University of Southern California: Lon S. Schneider, Sonia 
Pawluczyk, Mauricio Becerra, Liberty Teodoro, Bryan M. Spann – Past Investigator. University 
of California – San Diego: James Brewer, Helen Vanderswag, Adam Fleisher – Past 
Investigator. University of Michigan: Jaimie Ziolkowski, Judith L. Heidebrink, Joanne L. Lord – 
Past Investigator. Mayo Clinic, Rochester: Ronald Petersen, Sara S. Mason, Colleen S. Albers, 
David Knopman, Kris Johnson – Past Investigator. Baylor College of Medicine: Javier 
Villanueva-Meyer, Valory Pavlik, Nathaniel Pacini, Ashley Lamb, Joseph S. Kass, Rachelle S. 
Doody – Past Investigator, Victoria Shibley – Past Investigator, Munir Chowdhury – Past 
Investigator, Susan Rountree – Past Investigator, Mimi Dang – Past Investigator. Columbia 
University Medical Center: Yaakov Stern, Lawrence S. Honig, Karen L. Bell, Randy Yeh. 
Washington University, St. Louis: Beau Ances, John C. Morris, David Winkfield, Maria Carroll, 
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Angela Oliver, Mary L. Creech – Past Investigator, Mark A. Mintun – Past Investigator, Stacy 
Schneider – Past Investigator. University of Alabama - Birmingham: Daniel Marson, David 
Geldmacher, Marissa Natelson Love, Randall Griffith – Past Investigator, David Clark – Past 
Investigator, John Brockington – Past Investigator. Mount Sinai School of Medicine: Hillel 
Grossman, Effie Mitsis – Past Investigator. Rush University Medical Center: Raj C. Shah, 
Melissa Lamar, Patricia Samuels. Wien Center: Ranjan Duara, Maria T. Greig-Custo, Rosemarie 
Rodriguez. Johns Hopkins University: Marilyn Albert, Chiadi Onyike, Daniel D’Agostino II, 
Stephanie Kielb – Past Investigator. New York University: Martin Sadowski, Mohammed O. 
Sheikh, Jamika Singleton-Garvin, Anaztasia Ulysse, Mrunalini Gaikwad. Duke University 
Medical Center: P. Murali Doraiswamy, Jeffrey R. Petrella, Olga James, Salvador Borges-Neto, 
Terence Z. Wong – Past Investigator, Edward Coleman – Past Investigator. University of 
Pennsylvania: Jason H. Karlawish, David A. Wolk, Sanjeev Vaishnavi, Christopher M. Clark – 
Past Investigator, Steven E. Arnold – Past Investigator. University of Kentucky: Charles D. 
Smith, Greg Jicha, Peter Hardy, Riham El Khouli, Elizabeth Oates, Gary Conrad. University of 
Pittsburgh: Oscar L. Lopez, MaryAnn Oakley, Donna M. Simpson. University of Rochester 
Medical Center: Anton P. Porsteinsson, Kim Martin, Nancy Kowalksi, Melanie Keltz, Bonnie S. 
Goldstein – Past Investigator, Kelly M. Makino – Past Investigator, M. Saleem Ismail – Past 
Investigator, Connie Brand – Past Investigator. University of California Irvine IMIND: Gaby 
Thai, Aimee Pierce, Beatriz Yanez, Elizabeth Sosa, Megan Witbracht. University of Texas 
Southwestern Medical School: Kyle Womack, Dana Mathews, Mary Quiceno. Emory 
University: Allan I. Levey, James J. Lah, Janet S. Cellar. University of Kansas, Medical Center: 
Jeffrey M. Burns, Russell H. Swerdlow, William M. Brooks. University of California, Los 
Angeles: Ellen Woo, Daniel H.S. Silverman, Edmond Teng, Sarah Kremen, Liana Apostolova – 
Past Investigator, Kathleen Tingus – Past Investigator, Po H. Lu – Past Investigator, George 
Bartzokis – Past Investigator. Mayo Clinic, Jacksonville: Neill R Graff-Radford (London), 
Francine Parfitt, Kim Poki-Walker. Indiana University: Martin R. Farlow, Ann Marie Hake, 
Brandy R. Matthews – Past Investigator, Jared R. Brosch, Scott Herring. Yale University School 
of Medicine: Christopher H. van Dyck, Richard E. Carson, Pradeep Varma. McGill Univ., 
Montreal-Jewish General Hospital: Howard Chertkow, Howard Bergman, Chris Hosein. 
Sunnybrook Health Sciences, Ontario: Sandra Black, Bojana Stefanovic, Chris (Chinthaka) 
Heyn. U.B.C. Clinic for AD & Related Disorders: Ging-Yuek Robin Hsiung, Benita Mudge, 
Vesna Sossi, Howard Feldman – Past Investigator, Michele Assaly – Past Investigator. Cognitive 
Neurology - St. Joseph's, Ontario: Elizabeth Finger, Stephen Pasternak, William Pavlosky, Irina 
Rachinsky – Past Investigator, Dick Drost – Past Investigator, Andrew Kertesz – Past 
Investigator. Cleveland Clinic Lou Ruvo Center for Brain Health: Charles Bernick, Donna Muni. 
Northwestern University: Marek-Marsel Mesulam, Emily Rogalski, Kristine Lipowski, Sandra 
Weintraub, Borna Bonakdarpour, Diana Kerwin – Past Investigator, Chuang-Kuo Wu,– Past 
Investigator, Nancy Johnson – Past Investigator. Premiere Research Inst (Palm Beach 
Neurology): Carl Sadowsky, Teresa Villena. Georgetown University Medical Center: Raymond 
Scott Turner, Kathleen Johnson, Brigid Reynolds. Brigham and Women's Hospital: Reisa A. 
Sperling, Keith A. Johnson, Gad A. Marshall. Stanford University: Jerome Yesavage, Joy L. 
Taylor, Steven Chao, Barton Lane – Past Investigator, Allyson Rosen – Past Investigator, Jared 
Tinklenberg – Past Investigator. Banner Sun Health Research Institute: Edward Zamrini, 
Christine M. Belden, Sherye A. Sirrel. Boston University: Neil Kowall, Ronald Killiany, Andrew 
E. Budson, Alexander Norbash – Past Investigator, Patricia Lynn Johnson – Past Investigator. 
Howard University: Thomas O. Obisesan, Ntekim E. Oyonumo, Joanne Allard, Olu Ogunlana. 
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Case Western Reserve University: Alan Lerner, Paula Ogrocki, Curtis Tatsuoka, Parianne Fatica. 
University of California, Davis – Sacramento: Evan Fletcher, Pauline Maillard, John Olichney, 
Charles DeCarli, Owen Carmichael – Past Investigator. Neurological Care of CNY: Smita Kittur 
– Past Investigator. Parkwood Institute: Michael Borrie, T-Y Lee, Dr Rob Bartha. University of 
Wisconsin: Sterling Johnson, Sanjay Asthana, Cynthia M. Carlsson. Banner Alzheimer's 
Institute: Pierre Tariot, Anna Burke, Joel Hetelle, Kathryn DeMarco, Nadira Trncic – Past 
Investigator, Adam Fleisher – Past Investigator, Stephanie Reeder – Past Investigator. Dent 
Neurologic Institute: Vernice Bates, Horacio Capote, Michelle Rainka. Ohio State University: 
Douglas W. Scharre, Maria Kataki, Rawan Tarawneh. Albany Medical College: Earl A. 
Zimmerman, Dzintra Celmins, David Hart. Hartford Hospital, Olin Neuropsychiatry Research 
Center: Godfrey D. Pearlson, Karen Blank, Karen Anderson. Dartmouth-Hitchcock Medical 
Center: Laura A. Flashman, Marc Seltzer, Mary L. Hynes, Robert B. Santulli – Past Investigator. 
Wake Forest University Health Sciences: Kaycee M. Sink, Mia Yang, Akiva Mintz. Rhode 
Island Hospital: Brian R. Ott, Geoffrey Tremont, Lori A. Daiello. Butler Hospital: Courtney 
Bodge, Stephen Salloway, Paul Malloy, Stephen Correia, Athena Lee. UC San Francisco: 
Howard J. Rosen, Bruce L. Miller, David Perry. Medical University South Carolina: Jacobo 
Mintzer, Kenneth Spicer, David Bachman. St. Joseph’s Health Care: Elizabeth Finger, Stephen 
Pasternak, Irina Rachinsky, John Rogers, Andrew Kertesz – Past Investigator, Dick Drost – Past 
Investigator. Nathan Kline Institute: Nunzio Pomara, Raymundo Hernando, Antero Sarrael. 
University of Iowa College of Medicine: Delwyn D. Miller, Karen Ekstam Smith, Hristina 
Koleva, Ki Won Nam, Hyungsub Shim, Susan K. Schultz – Past Investigator. Cornell 
University: Norman Relkin, Gloria Chiang, Michael Lin, Lisa Ravdin. University of South 
Florida: USF Health Byrd Alzheimer’s Institute: Amanda Smith, Christi Leach, Balebail Ashok 
Raj – Past Investigator, Kristin Fargher – Past Investigator.  
 
CHARGE Consortium 
Edith Hofer (Clinical Division of Neurogeriatrics, Department of Neurology, Medical University 
of Graz, Graz, Austria), Gennady V. Roshchupkin (Department of Radiology and Nuclear 
Medicine, Erasmus MC, Rotterdam, The Netherlands), Hieab H. H. Adams (Department of 
Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands), Maria J. Knol 
(Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Honghuang Lin 
(Section of Computational Biomedicine, Department of Medicine, Boston University School of 
Medicine, Boston, MA, USA), Shuo Li (Department of Biostatistics, Boston University School 
of Public Health, Boston, MA, USA), Habil Zare (Glenn Biggs Institute for Alzheimer’s and 
Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA), Shahzad Ahmad 
(Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Nicola  J. Armstrong 
(Mathematics and Statistics, Murdoch University, Perth, Australia), Claudia L. Satizabal 
(Department of Epidemiology and Biostatistics, Glenn Biggs Institute for Alzheimer’s and 
Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA), Manon Bernard 
(Hospital for Sick Children, Toronto, Canada), Joshua C. Bis (Cardiovascular Health Research 
Unit, Department of Medicine, University of Washington, Seattle, WA, USA), Nathan A. 
Gillespie (Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth 
University, VA, USA), Michelle Luciano (Centre for Cognitive Epidemiology and Cognitive 
Ageing, University of Edinburgh, Edinburgh, UK), Aniket Mishra (University of Bordeaux, 
Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France), Markus 
Scholz (Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 
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Leipzig, Germany), Alexander Teumer (Institute for Community Medicine, University Medicine 
Greifswald, Greifswald, Germany), Rui Xia (Institute of Molecular Medicine and Human 
Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA), 
Xueqiu Jian (Institute of Molecular Medicine and Human Genetics Center, University of Texas 
Health Science Center at Houston, Houston, TX, USA), Thomas H. Mosley (Department of 
Medicine, University of Mississippi Medical Center, Jackson, MS, USA), Yasaman Saba 
(Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical 
University of Graz, Graz, Austria), Lukas Pirpamer (Clinical Division of Neurogeriatrics, 
Department of Neurology, Medical University of Graz, Graz, Austria), Stephan Seiler (Imaging 
of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-
Davis, Davis, CA, USA), James T. Becker (Departments of Psychiatry, Neurology, and 
Psychology, University of Pittsburgh, Pittsburgh, PA, USA), Owen Carmichael (Pennington 
Biomedical Research Center, Baton Rouge, LA, USA), Jerome I. Rotter (Institute for 
Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute 
and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, USA), Bruce M. Psaty 
(Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health 
Services, University of Washington, Seattle, WA, USA), Oscar L. Lopez (Departments of 
Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA), Najaf 
Amin (Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Mohsen 
Ghanbari (Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 
Rotterdam, The Netherlands), Sven J. van der Lee (Department of Epidemiology, Erasmus MC, 
Rotterdam, The Netherlands), Qiong Yang (Department of Biostatistics, Boston University 
School of Public Health, Boston, MA, USA), Jayandra J. Himali (Department of Biostatistics, 
Boston University School of Public Health, Boston, MA, USA), Pauline Maillard (Imaging of 
Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-
Davis, Davis, CA, USA), Alexa S. Beiser (Department of Neurology, Boston University School 
of Medicine, Boston, MA, USA), Charles DeCarli (Imaging of Dementia and Aging (IDeA) 
Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA), Sherif 
Karama (McGill University, Montreal Neurological Institute, Montreal, Canada), Lindsay Lewis 
(McGill University, Montreal Neurological Institute, Montreal, Canada), Mat Harris (Centre for 
Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK), Mark 
E. Bastin (Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, 
Edinburgh, UK), Ian J. Deary (Centre for Cognitive Epidemiology and Cognitive Ageing, 
University of Edinburgh, Edinburgh, UK), A. Veronica Witte (Department of Neurology, Max 
Planck Institute of Cognitive and Brain Sciences, Leipzig, Germany), Frauke Beyer (Department 
of Neurology, Max Planck Institute of Cognitive and Brain Sciences, Leipzig, Germany), 
Markus Loeffler (Institute for Medical Informatics, Statistics and Epidemiology, University of 
Leipzig, Leipzig, Germany), Karen A. Mather (Centre for Healthy Brain Ageing,School of 
Psychiatry, University of New South Wales, Sydney, Australia), Peter R. Schofield 
(Neuroscience Research Australia, Sydney, Australia), Anbupalam Thalamuthu (Centre for 
Healthy Brain Ageing,School of Psychiatry, University of New South Wales, Sydney, Australia), 
John B. Kwok (Brain and Mind Centre - The University of Sydney, Camperdown, NSW, 
Australia), Margaret J. Wright (Queensland Brain Institute, The University of Queensland, St 
Lucia, QLD, Australia), David Ames (National Ageing Research Institute, Royal Melbourne 
Hospital, Victoria, Australia), Julian Trollor (Centre for Healthy Brain Ageing,School of 
Psychiatry, University of New South Wales, Sydney, Australia), Jiyang Jiang (Centre for 
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Healthy Brain Ageing,School of Psychiatry, University of New South Wales, Sydney, Australia), 
Henry Brodaty (Dementia Centre for Research Collaboration, University of New South Wales, 
Sydney, NSW, Australia), Wei Wen (Centre for Healthy Brain Ageing,School of Psychiatry, 
University of New South Wales, Sydney, Australia), Meike W. Vernooij (Department of 
Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands), Albert Hofman 
(Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA), 
André G. Uitterlinden (Department of Epidemiology, Erasmus MC, Rotterdam, The 
Netherlands), Wiro J. Niessen (Imaging Physics, Faculty of Applied Sciences, Delft University 
of Technology, The Netherlands), Katharina Wittfeld (German Center for Neurodegenerative 
Diseases (DZNE), Site Rostock/ Greifswald, Germany), Robin Bülow (Institute for Diagnostic 
Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany), Uwe 
Völker (Interfaculty Institute for Genetics and Functional Genomics, University Medicine 
Greifswald, Greifswald, Germany), Zdenka Pausova (Hospital for Sick Children, Toronto, 
Canada), G. Bruce Pike (Departments of Radiology and Clinial Neurosciences, University of 
Calgary, Calgary, Canada), Sophie Maingault (University of Bordeaux, Institut des Maladies 
NeurodégénrativesUMR5293, CEA, CNRS, Ubordeaux, Bordeaux, France), Fabrice Crivello 
(University of Bordeaux, Institut des Maladies NeurodégénrativesUMR5293, CEA, CNRS, 
Ubordeaux, Bordeaux, France), Christophe Tzourio (University of Bordeaux, Bordeaux 
Population Health Research Center, INSERM UMR 1219, Bordeaux, France), Philippe Amouyel 
(Centre Hospitalier Universitaire de Bordeaux, France; Inserm U1167, Lille, France), Bernard 
Mazoyer (University of Bordeaux, Institut des Maladies NeurodégénrativesUMR5293, CEA, 
CNRS, Ubordeaux, Bordeaux, France), Michael C. Neale (Virginia Institute for Psychiatric and 
Behavior Genetics, Virginia Commonwealth University, VA, USA), Carol E.  Franz 
(Department of Psychiatry, University of California San Diego, CA, USA), Michael J. Lyons 
(Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA), 
Matthew S. Panizzon (Department of Psychiatry, University of California San Diego, CA, USA), 
Ole A. Andreassen (NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical 
Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University 
Hospital, Oslo, Norway), Anders M. Dale (Departments of Radiology and Neurosciences, 
University of California, San Diego, La Jolla, CA, USA), Mark Logue (National Center for 
PTSD at Boston VA Healthcare System, Boston, MA, USA), Perminder S. Sachdev (Centre for 
Healthy Brain Ageing,School of Psychiatry, University of New South Wales, Sydney, Australia), 
William S. Kremen (Department of Psychiatry, University of California San Diego, CA, USA), 
Joanna M. Wardlaw (Centre for Cognitive Epidemiology and Cognitive Ageing, University of 
Edinburgh, Edinburgh, UK), Arno Villringer (Department of Neurology, Max Planck Institute of 
Cognitive and Brain Sciences, Leipzig, Germany), Cornelia M. van Duijn (Department of 
Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Hans Jörgen Grabe (Department of 
Psychiatry and Psychotherapy, University Medicine Greifswald, Germany), William T. 
Longstreth Jr (Departments of Neurology and Epidemiology, University of Washington, Seattle, 
WA, USA), Myriam Fornage (Institute of Molecular Medicine and Human Genetics Center, 
University of Texas Health Science Center at Houston, Houston, TX, USA), Tomas Paus 
(Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, 
Ontario, Canada), Stephanie Debette (University of Bordeaux, Bordeaux Population Health 
Research Center, INSERM UMR 1219, Bordeaux, France), M. Arfan Ikram (Department of 
Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands), Helena Schmidt 
(Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical 
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University of Graz, Graz, Austria), Reinhold Schmidt (Clinical Division of Neurogeriatrics, 
Department of Neurology, Medical University of Graz, Graz, Austria), Sudha Seshadri 
(Department of Epidemiology and Biostatistics, Glenn Biggs Institute for Alzheimer’s and 
Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA). 
 
EPIGEN Consortium 
David B. Goldstein (The Centre for Genomics and Population Genetics, Duke University 
Institute for Genome Sciences and Policy, Durham, North Carolina, USA), Erin L. Heinzen (The 
Centre for Genomics and Population Genetics, Duke University Institute for Genome Sciences 
and Policy, Durham, North Carolina, USA), Kevin Shianna (The Centre for Genomics and 
Population Genetics, Duke University Institute for Genome Sciences and Policy, Durham, North 
Carolina, USA), Rodney Radtke (Department of Medicine, Duke University Medical Center, 
Durham, North Carolina, USA) and Ruth Ottmann (Departments of Epidemiology, Neurology, 
and the G.H. Sergievsky Center, Columbia University, New York, NY).  
 
IMAGEN Consortium 
Dr. Eric Artiges (INSERM), Semiha Aydin (Physikalisch-Technische Bundesanstalt), Prof. Dr. 
Dr. Tobias Banaschewski (Central Institute of Mental Health), Alexis Barbot (Commissariat à 
l'Energie Atomique), Prof. Dr. Gareth Barker (King's College London), Andreas Becker (Georg-
August-Universität Göttingen), Pauline Bezivin-Frere (INSERM), Dr. Francesca Biondo (King's 
College London), Dr. Arun Bokde (Trinity College Dublin), Uli Bromberg (University of 
Hamburg), Dr. Ruediger Bruehl, Prof. Dr. Christian Büchel (University of Hamburg), Dr. 
Congying Chu (King's College London), Dr. Patricia Conrod (King's College London), Laura 
Daedelow (Charité Universitätsmedizin Berlin), Dr. Jeffrey Dalley (Cambridge University), Dr. 
Sylvane Desrivieres (King's College London), Eoin Dooley (Trinity College Dublin), Irina 
Filippi (INSERM), Dr Ariane Fillmer (Physikalisch-Technische Bundesanstalt ), Prof. Dr. Herta 
Flor (Central Institute of Mental Health), Juliane Fröhner (Technische Universität Dresden ), 
Vincent Frouin (Commissariat à l'Energie Atomique), Dr. Hugh Garavan (University of 
Vermont), Prof. Penny Gowland (University of Nottingham), Yvonne Grimmer (Central Institute 
of Mental Health), Prof. Dr. Andreas Heinz (Charité Universitätsmedizin Berlin), Dr. Sarah 
Hohmann (Central Institute of Mental Health), Albrecht Ihlenfeld (Physikalisch-Technische 
Bundesanstalt ), Alex Ing (King's College London), Corinna Isensee (University Medical Center 
Göttingen ), Dr. Bernd Ittermann (Physikalisch-Technische Bundesanstalt ), Dr. Tianye Jia 
(King's College London), Dr. Hervé Lemaitre (INSERM), Emma Lethbridge (University of 
Nottingham), Prof. Dr. Jean-Luc Martinot (INSERM), Sabina Millenet (Central Institute of 
Mental Health), Sarah Miller (Charité Universitätsmedizin Berlin), Ruben Miranda (INSERM), 
PD Dr. Frauke Nees (Central Institute of Mental Health), Dr. Marie-Laure Paillere (INSERM), 
Dimitri Papadopoulos (INSERM), Prof. Dr. Tomáš Paus (Bloorview Research Institute, Holland 
Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychatry, 
University of Toronto), Dr. Zdenka Pausova (University of Toronto), Dr. Dr. Jani Pentilla 
(INSERM), Dr. Jean-Baptiste Poline (Commissariat à l'Energie Atomique), Prof. Dr. Luise 
Poustka (University Medical Center Göttingen ), Dr. Erin Burke Quinlan (King's College 
London), Dr. Michael Rapp (Charité Universitätsmedizin Berlin), Prof. Dr. Trevor Robbins 
(Cambridge University), Dr. Gabriel Robert (King's College London), John Rogers (Delosis), 
Dr. Barbara Ruggeri (King's College London), Prof. Dr. Gunter Schumann (King's College 
London), Prof. Dr. Michael Smolka (Technische Universität Dresden), Argyris Stringaris 
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(National Institute of Mental Health), Betteke van Noort (Charité Universitätsmedizin Berlin), 
Dr. Henrik Walter (Charité Universitätsmedizin Berlin), Dr. Robert Whelan (Trinity College 
Dublin), Prof. Dr. Steve Williams (King's College London).  
 
Parkinson’s Progression Markers Initiative (PPMI) 
Data used in preparing this article were obtained from the PPMI database (http://www.ppmi-
info.org/). As such, many investigators within the PPMI contributed to the design and 
implementation of PPMI and/or provided data but did not participate in analysis or writing of 
this report. A complete listing of PPMI investigators may be found at: http://www.ppmi-
info.org/authorslist/. Kenneth Marek (Institute for Neurodegenerative Disorders, New Haven), 
Danna Jennings (Institute for Neurodegenerative Disorders, New Haven), Shirley Lasch 
(Institute for Neurodegenerative Disorders, New Haven), Caroline Tanner (University of 
California, San Francisco), Tanya Simuni (Northwestern University, Chicago), Christopher 
Coffey (University of Iowa, Iowa City), Karl Kieburtz (Clinical Trials Coordination Center, 
University of Rochester), Renee Wilson (Clinical Trials Coordination Center, University of 
Rochester), Werner Poewe (Innsbruck Medical University, Innsbruck), Brit Mollenhauer 
(Paracelsus-Elena Klinik, Kassel), Douglas Galasko (University of California, San Diego), 
Tatiana Foroud (Indiana University, Indianapolis), Todd Sherer (The Michael J. Fox Foundation 
for Parkinson's Research, New York), Sohini Chowdhury (The Michael J. Fox Foundation for 
Parkinson's Research, New York), Mark Frasier (The Michael J. Fox Foundation for Parkinson's 
Research, New York), Catherine Kopil (The Michael J. Fox Foundation for Parkinson's 
Research, New York), Vanessa Arnedo (The Michael J. Fox Foundation for Parkinson's 
Research, New York), Alice Rudolph (Clinical Trials Coordination Center, University of 
Rochester), Cynthia Casaceli (Clinical Trials Coordination Center, University of Rochester), 
John Seibyl (Institute for Neurodegenerative Disorders, New Haven), Susan Mendick (Institute 
for Neurodegenerative Disorders, New Haven), Norbert Schuff (University of California, San 
Francisco),  Chelsea Caspell (University of Iowa, Iowa City), Liz Uribe (University of Iowa, 
Iowa City), Eric Foster  (University of Iowa, Iowa City), Katherine Gloer (University of Iowa, 
Iowa City), Jon Yankey (University of Iowa, Iowa City),  Arthur Toga (Laboratory of 
Neuroimaging (LONI), University of Southern California), Karen Crawford (Laboratory of 
Neuroimaging (LONI), University of Southern California),  Paola Casalin (BioRep, Milan), 
Giulia Malferrari (BioRep, Milan),  Andrew Singleton (National Institute on Aging, NIH, 
Bethesda),  Keith A.  Hawkins (Yale University, New Haven), David Russell (Institute for 
Neurodegenerative Disorders, New Haven), Stewart Factor (Emory University of Medicine, 
Atlanta), Penelope Hogarth (Oregon Health and Science University, Portland), David Standaert 
(University of Alabama at Birmingham, Birmingham), Robert Hauser (University of South 
Florida, Tampa), Joseph Jankovic (Baylor College of Medicine, Houston), Matthew Stern 
(University of Pennsylvania, Philadelphia), Lama Chahine (University of Pennsylvania, 
Philadelphia), James Leverenz (University of Washington, Seattle), Samuel Frank (Boston 
University, Boston), Irene Richard (University of Rochester, Rochester),  Klaus Seppi 
(Innsbruck Medical University, Innsbruck), Holly Shill (Banner Research Institute, Sun City), 
Hubert Fernandez (Cleveland Clinic, Cleveland), Daniela Berg (University of Tuebingen, 
Tuebingen), Isabel Wurster (University of Tuebingen, Tuebingen), Zoltan Mari (Johns Hopkins 
University, Baltimore), David Brooks (Imperial College of London, London), Nicola Pavese 
(Imperial College of London, London), Paolo Barone (University of Salerno, Salerno), Stuart 
Isaacson (Parkinson’s Disease and Movement Disorders Center, Boca Raton), Alberto Espay 
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(University of Cincinnati, Cincinnati), Dominic Rowe (Macquarie University, Sydney), Melanie 
Brandabur (The Parkinson's Institute, Sunnyvale), James Tetrud (The Parkinson's Institute, 
Sunnyvale), Grace Liang (The Parkinson's Institute, Sunnyvale), Alex Iranzo (Hospital Clinic of 
Barcelona, Barcelona), Eduardo Tolosa (Hospital Clinic of Barcelona, Barcelona), Shu-Ching 
Hu (University of Washington, Seattle), Gretchen Todd (University of Washington, Seattle), 
Laura Leary (Institute for Neurodegenerative Disorders, New Haven), Cheryl Riordan (Institute 
for Neurodegenerative Disorders, New Haven),  Linda Rees (The Parkinson's Institute, 
Sunnyvale), Alicia Portillo (Oregon Health and Science University, Portland), Art Lenahan 
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Additional Cohort Information 
1000BRAINS 
Is a population-based cohort based on the Heinz-Nixdorf Recall Study (HNR) and is supported in 
part by the German National Cohort. We thank the Heinz Nixdorf Foundation (Germany) for 
their generous support in terms of the Heinz Nixdorf Study.  
 
ADNI1 and ADNI2GO 
Data used in the preparation of this article were obtained from the Alzheimer's Disease 
Neuroimaging Initiative database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 5-
year public–private partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD) and to assess and optimize biomarkers 
for clinical trials in AD. The initial sample included older adults who were cognitive normal 
(CN) as well as meeting criteria for MCI and clinical AD. In 2011, ADNI-2 began to recruit an 
additional CN group as well as individuals with significant memory concerns (SMC), early MCI 
and late MCI, and AD. These subjects, and others carried forward from ADNI-1, were scanned 
with an updated neuroimaging protocol. Participants were recruited from over 60 sites across the 
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U.S. and Canada. For up-to-date information, please see www.adni-info.org. ADNI data are 
disseminated by the Laboratory for Neuro Imaging at the University of Southern California.  
 
ALSPAC 
Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st 
December 1992 were invited to take part in the study. The initial number of pregnancies enrolled 
is 14,541 (for these at least one questionnaire has been returned or a “Children in Focus” clinic 
had been attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 fetuses, 
resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. When the 
oldest children were approximately 7 years of age, an attempt was made to bolster the initial 
sample with eligible cases who had failed to join the study originally. As a result, when 
considering variables collected from the age of seven onwards (and potentially abstracted from 
obstetric notes) there are data available for more than the 14,541 pregnancies mentioned above. 
The number of new pregnancies not in the initial sample (known as Phase I enrolment) that are 
currently represented on the built files and reflecting enrolment status at the age of 18 is 706 
(452 and 254 recruited during Phases II and III respectively), resulting in an additional 713 
children being enrolled. The phases of enrolment are described in more detail in the cohort 
profile paper (see footnote 4 below). The total sample size for analyses using any data collected 
after the age of seven is therefore 15,247 pregnancies, resulting in 15,458 fetuses. Of this total 
sample of 15,458 fetuses, 14,775 were live births and 14,701 were alive at 1 year of age. A 10% 
sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, attended clinics at 
the University of Bristol at various time intervals between 4 to 61 months of age. The CiF group 
were chosen at random from the last 6 months of ALSPAC births (1432 families attended at least 
one clinic). Excluded were those mothers who had moved out of the area or were lost to follow-
up, and those partaking in another study of infant development in Avon. The data used in the 
present study were collected from 391 males and further description of this subset and the 
variables used in this study are provided in Tables S2–S4. Ethical approval for the study was 
obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 
Committees. This publication is the work of the authors and they will serve as guarantors for the 
contents of this paper. The study website contains details of all the data that is available through 
a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-
dictionary/). Further information can be found in the following papers: Boyd A, Golding J, 
Macleod J, Lawlor DA, Fraser A, Henderson J, Molloy L, Ness A, Ring S, Davey Smith G. 
Cohort Profile: The ‘Children of the 90s’; the index offspring of The Avon Longitudinal Study 
of Parents and Children (ALSPAC). International Journal of Epidemiology 2013; 42: 111-127; 
Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, Henderson J, 
Macleod J, Molloy L, Ness A, Ring S, Nelson SM, Lawlor DA. Cohort Profile: The Avon 
Longitudinal Study of Parents and Children: ALSPAC mothers cohort. International Journal of 
Epidemiology 2013; 42:97-110.  
 
BIG 
The Brain Imaging Genetics (BIG) database was established in Nijmegen, the Netherlands in 
2007. This resource is now part of Cognomics, a joint initiative by researchers of the Donders 
Centre for Cognitive Neuroimaging, the Human Genetics and Cognitive Neuroscience 
departments of the Radboud University Medical Center, and the Max Planck Institute for 
Psycholinguistics (funded by the Max Planck Society). The present study includes two 

https://mail.qimr.edu.au/owa/redir.aspx?C=DNS7ABM1-ymRH2iXeJs4-DRD5jbrBPUt5FbDlIv7Rx5LIV4coffVCA..&URL=http%3a%2f%2fwww.adni-info.org
http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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subsamples of BIG, from successive waves of genotyping on Affymetrix (BIG-Affy) and 
PsychChip (BIG-PsychChip) arrays. Analyses for this project were carried out on the Dutch 
national e-infrastructure with the support of SURF Cooperative.  
 
GIG 
The GIG (Genomic Imaging Göttingen) sample was established at the Center for Translational 
Research in Systems Neuroscience and Psychiatry (Head: Prof. Dr. O. Gruber) at Göttingen 
University.  
 
GSP: Brain Genomics Superstruct Project (GSP): Data were provided [in part] by the Brain GSP 
of Harvard University and the Massachusetts General Hospital, with support from the Center for 
BrainScience Neuroinformatics Research Group, the Athinoula A. Martinos Center for 
Biomedical Imaging and the Center for Human Genetic Research. Twenty individual 
investigators at Harvard and Massachusetts General Hospital generously contributed data to 
GSP. 
 
HUNT 
The HUNT Study is a collaboration between HUNT Research Centre (Faculty of Medicine and 
Movement Sciences, NTNU – Norwegian University of Science and Technology), Nord-
Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of 
Public Health. 
 
IMpACT 
The International Multi-centre persistent ADHD CollaboraTion (IMpACT), is a consortium of 
clinical and basic researchers from several European countries (The Netherlands, Germany, 
Spain, Norway, The United Kingdom, Sweden), from the United States of America, and from 
Brazil. 
 
LBC1936 
The work was undertaken as part of the Cross Council and University of Edinburgh Centre for 
Cognitive Ageing and Cognitive Epidemiology (CCACE; http://www.ccace.ed.ac.uk). The 
image acquisition and analysis was performed at the Brain Research Imaging Centre, University 
of Edinburgh (http://www.bric.ed.ac.uk). 
 
MPIP 
The MPIP Munich Morphometry Sample comprises images acquired as part of the Munich 
Antidepressant Response Signature (MARS) Study and the Recurrent Unipolar Depression 
(RUD) Case-Control study performed at the MPIP, and control subjects acquired at the Ludwig-
Maximilians-University, Munich, Department of Psychiatry. PPMI: Data used in the preparation 
of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) 
database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-
info.org. 
 
UK Biobank 
This research has been conducted using the UK Biobank Resource under Application Number 
‘11559’. 

http://www.bric.ed.ac.uk/
http://www.ppmi-info.org/
http://www.ppmi-info.org/
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Fig. S1. 
Flow chart summarizing the phases of meta-analysis. GWS: genome-wide significant.  
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Fig. S2. (see external file ManhattanPlots.pdf) 
Manhattan plots of each trait from the principal meta-analysis.   
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Fig. S3. (see external fileQQPlots.pdf) 
QQ plots of each region from the principal meta-analysis. 
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Fig. S4. (see external file Forest Plots.pdf). 
Forest plots of the 369 genome-wide significant loci  
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Fig. S5. (see external file LocusZoom.pdf). 
LocusZoom plots of the 369 genome-wide significant loci  
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Fig. S6. 
Partitioned heritability enrichment analyses (A) active regulatory elements across tissues and cell 
types, (B) temporally specific active regulatory elements, (C) regulatory elements of cell-type 
specific genes in fetal brain, and (D) differentially accessible regions between progenitor-
enriched germinal zone (GZ) and neuron-enriched cortical plate (CP).   
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Fig. S7. 
Significance of the enrichment of gene ontology annotations for (A) total surface area, and (B) 
multivariate regional surface area from TATES output.   
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Fig. S8. 
Regional association plot for the 3p24.1 locus (rs12630663). Localizing EOMES, validated 
enhancer regulating EOMES expression, chromatin interaction, and microcephaly associated 
translocation breakpoint.   
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Fig. S9. 
Clustering of genetic correlations among (A) surface area and (B) thickness regions after 
correcting for global measures. Clustering of genetic correlations among (C) surface area and (D) 
thickness regions without correcting for global measures. The best-fitting model for surface area 
and thickness with global correction was 4 diagonal components with varying volume and shape. 
The best-fitting model for surface area and thickness without global correction was 5 spherical 
components with varying volume.   
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Fig. S10. 
P-value of genome-wide significant regional SNPs with global control compared to their P-value 
in the global measure for (A) surface area and (B) thickness. Effect size of genome-wide 
significant regional SNPs with global control compared to their effect size in global measures for 
(C) surface area and (D) thickness. Effect size of genome-wide significant regional SNPs with 
global control compared to regional SNPs without global control in (E) surface area and (F) 
thickness.   
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Fig. S11. (see external file PhenotypicPlots.pdf) 
Phenotypic distribution plots from each cohort and trait included in the meta-analyses.   
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Tables S1 to S20 (separate file Grasby_etal_Supplementary_Tables.xlsx). 
Table S1. 
Phenotype descriptions 
 
Table S2.  
Cohort descriptions 
 
Table S3.  
Description of the imaging data for each cohort and percentage of individuals retained in each 
cohort after quality control who were taken forward to the GWAS analyses for each cohort and 
each trait 
 
Table S4.  
Description of the genotype data for each cohort 
 
Table S5.  
Meta-analytic GWAS results for the 369 loci taken forward for replication 
 
Table S6.  
Results from MAGMA gene based tests 
 
Table S7.  
Univariate heritability (twin and SNP) for global and regional surface area and thickness 
 
Table S8.  
Polygenic risk score results for global and regional surface area and thickness 
 
Table S9.  
Genetic correlations (LD score rG) calculated between global cortical measures and selected 
morphological traits 
 
Table S10.  
Results from DEPICT pathway based tests 
 
Table S11.  
Summary of bioinformatic functional follow-ups 
 
Table S12.  
eQTL and chromatin interaction information for lead SNPs and proxies 
 
Table S13.  
Results from CAVIAR fine-mapping  
 
Table S14.  
Genetic correlations (LD score rG) calculated from the GWAS of regional measures corrected for 
global measures 
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Table S15.  
Genetic correlations (LD score rG) calculated from the GWAS of regional measures not 
corrected for global measures 
 
Table S16.  
Genetic correlations (LD score rG) calculated between the imaging phenotypes and selected 
neuropsychiatric disorders and psychological traits 
 
Table S17.  
Genetic correlations (LD score rG) calculated between the imaging phenotypes and selected 
neuropsychiatric disorders and psychological traits on healthy-only participants 
 
Table S18.  
Mendelian randomization analysis results for total SA and 8 correlated neuropsychological traits 
 
Table S19.  
Latent causal variable analysis results for total SA against 8 genetically correlated traits 
 
Table S20.  
Data access statements 
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