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ABSTRACT

Multivariate seasonal climate forecasts are increasingly required for quantitative modeling in support of

natural resources management and agriculture. GCM forecasts typically require postprocessing to reduce

biases and improve reliability; however, current seasonal postprocessing methods often ignore multivariate

dependence. In low-dimensional settings, fully parametric methods may sufficiently model intervariable

covariance. On the other hand, empirical ensemble reordering techniques can inject desired multivariate

dependence in ensembles from template data after univariate postprocessing. To investigate the best ap-

proach for seasonal forecasting, this study develops and tests several strategies for calibrating seasonal GCM

forecasts of rainfall, minimum temperature, and maximum temperature with intervariable dependence:

1) simultaneous calibration of multiple climate variables using the Bayesian joint probability modeling ap-

proach; 2) univariate BJP calibration coupled with an ensemble reordering method (the Schaake shuffle);

and 3) transformation-based quantile mapping, which borrows intervariable dependence from the raw

forecasts. Applied to Australian seasonal forecasts from the ECMWF System4 model, univariate calibration

paired with empirical ensemble reordering performs best in terms of univariate and multivariate forecast

verification metrics, including the energy and variogram scores. However, the performance of empirical

ensemble reordering using the Schaake shuffle is influenced by the selection of historical data in constructing a

dependence template. Direct multivariate calibration is the second-best method, with its far superior per-

formance in in-sample testing vanishing in cross validation, likely because of insufficient data relative to the

number of parameters. The continued development of multivariate forecast calibration methods will support

the uptake of seasonal climate forecasts in complex application domains such as agriculture and hydrology.

1. Introduction

Seasonal forecasts of climate variables are in high

demand around the globe for informing decision-

making in climate-sensitive industries and for water

resources management. These days, global climate

model forecasting systems (GCMs) are widely used

for seasonal forecasting, in part, because they gener-

ate a detailed global view of the climate state and, in

part, because they output a broad spectrum of climate

variables of importance to sectors including water man-

agement, agriculture, and public health. Many different

GCMs have been developed internationally, with dif-

ferences in component models (i.e., ocean, atmosphere,

land surface, and sea ice), data assimilation strategies,

ensemble generation schemes, scales, dynamics, and

physics; leading to systems with vastly different biases

and forecasting skill (e.g., Kim et al. 2012; Pegion et al.

2019). Even at the global scale, GCMs differ to some

degree in their characterization of dominant climate
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patterns such as ENSO (Barnston and Tippett 2013;

Shi et al. 2012). Moreover, at the local scale, GCMs

vary in their representations of key climate variables

(e.g., rainfall and temperature) and associations with

seasonal climate drivers (Kim et al. 2012; Lim et al.

2009; White et al. 2014; Zhao and Hendon 2009).

Consequently, individual GCMs present nuanced out-

looks around broader climate patterns.

For local decision-making and risk-taking on the basis

of GCM forecasts, rawGCM forecasts require statistical

postprocessing to rectify model biases, reduce skill def-

icits and to improve overall reliability (e.g., Feddersen

et al. 1999; Gneiting et al. 2005; Weisheimer and Palmer

2014; Zhao et al. 2017). GCM forecast ensemble spread

typically is too narrow relative to the true forecast

uncertainty and doesn’t vary appropriately from one

forecast to the next (Barnston et al. 2015; Weisheimer

and Palmer 2014). Moreover, where quantitative model-

ing is to be undertaken using GCM outputs, it is vital

that ensemble members have a physically coherent

structure across the relevant variables and, depending

on the application, in space and time as well. Scheuerer

and Hamill (2015) give the perfunctory example of

snowmelt in spring being dependent on both rainfall and

temperature, suggesting the joint distribution of rainfall

and temperature is, therefore, an important consider-

ation. Regression-based calibration and other forms of

statistical postprocessing are often only practical to ap-

ply to individual locations, time periods and variables

(e.g., Doblas-Reyes et al. 2005). More problematically,

GCM-modeled relationships between these dimensions

are easily lost in postprocessing where random sampling

from statistical distributions occurs, requiring reestab-

lishment of covariance structures through nonparametric

ensemble reordering techniques such as ensemble copula

coupling (Schefzik et al. 2013) or the Schaake shuffle

(Clark et al. 2004). For example, Luo and Wood (2008)

and Yuan and Wood (2012) injected the spatiotemporal

covariance from observations into rainfall and tempera-

ture forecasts generated by a Bayesian linear-regression

technique to obtain forecasts suitable for use in hydro-

logical applications.

Elsewhere, the Bayesian joint probability modeling

approach (BJP; Wang and Robertson 2011; Wang et al.

2009) has been applied to calibrate seasonal GCM

forecasts in Australia (Hawthorne et al. 2013; Schepen

and Wang 2013), China (Peng et al. 2014) and the

United States (Strazzo et al. 2019). Rather than being a

typical regression, BJP is designed tomodel the full joint

distribution of any number of predictor and predictand

climate variables after allowing for the independent trans-

formation of the marginal distributions (hereafter, mar-

ginals). Postprocessed ensemble members are obtained

through a sequence of conditional sampling of the pos-

terior distribution, which includes parameter uncer-

tainty, and back-transformation. Various studies have

found that BJP produces reliable probabilistic forecasts

that capture inherent GCM skill; however, these studies

have been limited to a univariate configuration (in the

sense of dealing with a single variable). For example,

BJP-calibrated seasonal forecasts of rainfall have been

subjected to the Schaake shuffle and used to generate

reliable long-range ensemble streamflow forecasts. Very

little attention appears to have been given to the multi-

variate calibration of seasonal climate forecasts, which is

essential for more complex applications such as agricul-

tural crop-modeling, which requires coherent forecasts of

rainfall, temperature and solar radiation.

In contrast to seasonal forecasting, the joint post-

processing of weather variables in short-term (NWP)

forecasting has become a topic of increasing interest in

recent years. Several studies have investigated the bi-

variate calibration of the u and y components of wind

vectors (McLean Sloughter et al. 2013; Pinson 2012;

Schuhen et al. 2012) and the joint calibration of tem-

perature and wind speed forecasts (Baran and Möller
2015, 2017; Schefzik 2016). In particular, Baran and

Möller (2015) introduced a Bayesian model averaging

methodology and, later (Baran and Möller 2017), an

ensemble model output statistics (EMOS) methodology

for temperature/wind speed calibration, both relying

on a truncated bivariate normal construction. Earlier,

Möller et al. (2013) presented a more general method-

ology that first calibrates the marginals independently,

thereafter constructing the intervariable dependence

structure using Gaussian copulas. Baran and Möller
(2017) concluded that all three aforementionedmethods

(EMOS, BMA, and copula-reconstruction) yielded

similar reliability and accuracy improvements over raw

temperature/wind speed forecasts, and, therefore, they

advocated for the bivariate EMOS approach for effi-

ciency reasons.

Schefzik (2016) surmised that there are two broad

approaches to multivariate postprocessing of weather

forecasts. The first is univariate postprocessing followed

by nonparametric ensemble reordering methods to es-

tablish spatial, temporal and intervariable correlation

structures. The second is fully parametric postprocessing,

which is usually tailored for low-dimensional settings.

Consequently, Schefzik (2016) proposed a hybrid post-

processing approach that jointly postprocesses related

variables in low-dimensional settings and thereafter ap-

plies an ensemble reordering method with a multivariate

ranking to obtain final aggregated, postprocessed fore-

casts for higher-dimensional spaces (e.g., across different

locations or lead times). Similarly to earlier studies,
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the focus was on the truncated-bivariate-normal model

for temperature and wind speed.

In this study, we investigate the merits of post-

processing multivariate seasonal climate forecasts using

several parametric and nonparametric methods. We

propose a comparison of 1) directly postprocessing

multiple climate variables simultaneously using one BJP

model; 2) postprocessing each variable with a univari-

ate BJPmodel and subsequently restoring the intervariable

correlations via the Schaake shuffle; and 3) a quantile-

mapping approach as another comparison. It is antici-

pated that testing these three different strategies will

expose the numerous trade-offs that exist between the

efficiency and dimensionality of parametric approaches,

and the amenity of historical data to fit the parametric

model and/or provide realistic covariance structures.

While it has been suggested that parametric approaches

are quite suitable for low-dimensional forecast calibra-

tion problems (Schefzik 2016; Vannitsem et al. 2018), a

priori, we do not suspect which approach will perform

better for seasonal forecast calibration. Direct multi-

variate calibration may be challenged by the number of

parameters relative to a small number of data points

available (typically 20–40 for seasonal postprocessing).

Indeed, Doblas-Reyes et al. (2005) found difficulties

establishing robust regression coefficients when using

multiple regression for combining multiple seasonal

forecasts. That said, studies using BJP for hydrology

have successfully exploited its ability to model multiple

predictands for forecasting streamflow at multiple sites

(Wang and Robertson 2011; Wang et al. 2009) and for

multiple months ahead (Zhao et al. 2016), situations

where the covariances are likely to be well structured.

In this study, we target one-month-lead-time forecasts

of seasonal (3-month average) rainfall, minimum tem-

perature, and maximum temperature for Australia.

These variables are core products in seasonal forecast

services globally. Our remit is restricted to modeling of

intervariable correlations—models are developed for

each month and grid point individually. Forecast skill

and reliability are assessed using ECMWF System4

hindcasts from 1981 to 2016, establishing separate

models for each start month from January to December,

and with a forecast lead time of 1 month. Forecast skill is

quantified as the improvement over a seasonally de-

pendent climatology reference formed from observa-

tions. As another comparison for the performance of

BJP calibration, we develop a novel version of quantile

mapping that is consistent with BJP in terms ofmodeling

the marginals. Quantile mapping adjusts the location

and ensemble spread of the GCM forecasts but simply

transfers information about intervariable relationships

from the raw model output into the observation space;

thus, it does not involve a correction based on the

correlation between forecasts and observations, but it

has the benefit of fewer parameters. Hereafter we

present the modeling and verification methods, fol-

lowed by a continental-scale study, results, discussion,

and conclusions.

2. Methods

a. Multivariate calibration strategies

Before getting into the detailed methods, we intro-

duce the three general approaches that are developed

and tested in this study for multivariate calibration of

Tmin, Tmax, and rainfall:

1) Simultaneous calibration of all climate variables in

one BJP model; termed multivariate BJP (MBJP).

2) Independent BJP calibration for each variable

followed by restoration of intervariable correla-

tions via the Schaake shuffle ensemble reordering

method; termed univariate BJP plus Schaake shuffle

(UBJP 1 SS).

3) Quantile mapping of transformed variables (TQM).

The workflow for each of these three approaches is

shown in Fig. 1.

b. Marginal transformation

The three postprocessing methods are constructed

with the working assumption that the marginal distri-

butions are able to be modeled as normal distributions

after being subjected to variance-stabilizing transfor-

mations. The assumption is patently reasonable for

variables like temperature, except that the normal dis-

tribution has infinite support and, therefore, the tails

may not represent extremes precisely. For rainfall,

which ostensibly has a mixed discrete-continuous dis-

tribution, the way forward is not immediately obvious.

Nevertheless, the ability to model its distribution using a

transformed-normal is highly desirable because it allows

postprocessing of rainfall in the same framework as

temperature. The solution adopted here is to treat

rainfall data as being left-censored. That is, rainfall data

with a value of 0, or some other minimum measurable

amount, are assumed to have a true value of less than or

equal to that amount, with the precise value unknown.

Standard statistical methods are available for the normal

distribution and censored data and, therefore, it is pos-

sible to use variance-stabilizing transformations for all

variables in BJP.

The degree, or the ‘‘strength,’’ of the transformation

required to achieve normality, depends on several factors

including the range, scale, and skewness of the data. We

employ two flexible variance-stabilizing transformations
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in this work. The reason for using two different trans-

formations is because we use the log–sinh transformation

(Wang et al. 2012b) for rainfall, which was developed

specifically for hydrological variables. Temperature vari-

ables use the Yeo–Johnson transformation (Yeo and

Johnson 2000). While temperature is often modeled

using a normal distribution, which suggests no trans-

formation is required, preliminary investigations revealed

statistically significant skewness in temperature distribu-

tions in some regions and seasons inAustralia (not shown)

and, therefore, we allow for transformation if needed. The

flexibility of the variance-stabilizing transformations ef-

fectively allows for little or no transformation if need be.

Temperature variables are transformed by the sin-

gle parameter Yeo–Johnson transformation (Yeo and

Johnson 2000):

c
l
(y)5

8>>>>><
>>>>>:

[(y1 1)l 2 1]/l l 6¼ 0, y$ 0

log(y1 1) l5 0, y$ 0

2[(2y1 1)22l 2 1]/(22 l) l 6¼ 2, y, 0

2log(2y1 1) l5 2, y, 0

. (1)

The Yeo–Johnson transformation is highly flexible and

can be used to transform both positively and negatively

skewed data. It incorporates a range of useful

transformations, including the log, square root and

inverse transformations and embeds the histori-

cally popular Box–Cox transformation (Box and Cox

1964). In this study, transformations are established

by using Bayesian maximum a posteriori (MAP) es-

timation of l for the posterior probability of (l, m, s)

where m and s are the normal distribution mean and

standard deviation parameters. The full details of the

Bayesian estimation procedure, including specifica-

tion of the prior distributions, is given by Schepen

et al. (2016).

As mentioned, rainfall is transformed by a two-

parameter log–sinh transform (Wang et al. 2012b):

c
«,l
(y)5

1

l
log[sinh(«1 ly)] , (2)

where « and l are transformation parameters. The log–

sinh transformation was developed to handle the pattern

of errors in hydrological predictions. The log–sinh

transformation has been widely applied to transform

rainfall and streamflow data in statistical modeling of

hydrological data (e.g., Bennett et al. 2016; Del Giudice

et al. 2013; Robertson et al. 2013). MAP estimation of

« and l is carried out for the posterior probability of

FIG. 1. Schematic of the three different modeling approaches tested for producing calibrated multivariate forecasts

of Tmin, Tmax, and rainfall.
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(«, l, m, s2) using the same type of procedure as for the

Yeo–Johnson transformation.

c. Multivariate BJP calibration (MBJP)

Multivariate BJP calibration is when several different

climate variables are calibrated jointly in the one model,

with covariance explicitly modeled. The BJP modeling

approach uses a multivariate normal distribution to

model the relationship between the transformed pre-

dictor and predictand variables (hereafter referred to as

predictors and predictands). We note that the predictors

and predictands are transformed separately. In this

study, BJP predictors are ensemble-mean GCM fore-

casts and predictands are observations. The collection of

d transformed predictors and predictands form the

vector zT 5 ½ z1 z2 � � � zd �. Once the marginals have

been transformed using a variance-stabilizing trans-

formation, it is assumed that the joint distribution is

multivariate normal:

z;N(m,S), (3)

where m is the mean vector:

mT 5
�
m

1
m
2

� � � m
d

�
, (4)

S is the covariance matrix:

S5D(s) 3 P3D(s) , (5)

D(s) is a diagonal matrix from the standard deviation

vector:

sT 5
�
s
1

s
2

� � � s
d

�
, (6)

and P is the symmetric correlation matrix:

P5

2
666664

1 r
1,2

� � � r
1,d

r
2,1

1 � � � r
2,d

..

. ..
.

1 ..
.

r
d,1

r
d,2

� � � 1

3
777775, (7)

giving a total of 2d 1 d(d 2 1)/2 parameters in ad-

dition to the transformation parameters. Previous

descriptions of BJP in the literature detail an in-

ference method based on a Metropolis sampler

(Wang and Robertson 2011; Wang et al. 2009). Here,

we use a more efficient Gibbs sampler to infer m

and S (Wang et al. 2019). The following uninfor-

mative prior is specified to complete the Bayesian

formulation:

p(m,S)} jSj2(d11)/2 . (8)

Beyond the description included here, BJP includes

treatments to allow inference in the presence of missing

values and censored data. These treatments are described

by Wang and Robertson (2011) and Wang et al. (2019).

To use BJP as a forecasting tool, the multivariate

normal distribution is conditioned on the predictors. For

a single set of parameters m and S, consider the trans-

formed predictors z1 and predictands z2 organized as

z5

"
z
1

z
2

#
(9)

and the mean vector and covariance matrix corre-

spondingly partitioned as follows:

m5

"
m

1

m
2

#
, (10)

S5

"
S

11
S

12

S
21

S
22

#
. (11)

The conditional distribution of the predictands given the

predictors is also a multivariate normal distribution:

z
2
jz

1
;N(m0,S0

), (12)

where

m0 5m
2
1S

21
S

21
11 [z1 2m

1
] , (13)

S
0 5S

22
2S

21
S

21
11 S12

. (14)

Forecast values are sampled from the distribution given

by Eq. (14) and back transformed to the original space.

Gibbs sampling is used to obtain one sample from z2jz1
for M different sets of parameters, thus generating an

ensemble of size M that incorporates parameter uncer-

tainty. In this study, M 5 200.

d. Univariate BJP calibration plus Schaake shuffle
(UBJP1SS)

Univariate BJP calibration is when there is only one

climate variable under consideration (although there

are technically two variables in the model: the BJP

predictor and the BJP predictand). To establish co-

herent multivariate forecasts after applying univariate

BJP to each variable, we apply the Schaake shuffle en-

semble reordering method (Clark et al. 2004). The

Schaake shuffle imposes the rank correlation structure

of randomly selected historical observations into fore-

casts. We describe the essential steps of the procedure

here. For a given forecast time period (e.g., month),

consider an ensemble forecast of size M denoted by
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X5 (x
1
, x

2
, . . . , x

M
), (15)

which can be sorted to obtain

x5 [x
(1)
, x

(2)
, . . . , x

(M)
] x

(1)
# x

(2)
� � �# x

(M)
. (16)

Consider also a vector of observations from the histor-

ical record for the same time period (e.g., the same

season in other years), also of size M:

Y5 (y
1
, y

2
, . . . , y

M
), (17)

which can be sorted to obtain

g5 [y
(1)
, y

(2)
, . . . , y

(M)
] y

(1)
# y

(2)
� � �# y

(M)
. (18)

Furthermore, let rank be a function that determines the

position of a value from g in the original unsorted vector

Y. The shuffled forecast ensemble is constructed as

X
SS
5 (x

ss,1
, . . . , x

ss,M
), (19)

where xss,q 5 x(n) and q 5 rank[Y, y(n)] n 5 1, . . . , M.

WhenY is constructed consistently using the same dates

for all variables, the Schaake shuffle reconstructs the

intervariable correlations.

In this study, because BJP forecasts have 200 ensem-

ble members, two different strategies are applied to

acquireY of sufficient size. The first strategy is to expand

the selection of dates by allowing offsets of 230, 215,

15, and 30 days from the start of the seasonal forecast in

addition to dates aligning with the beginning of the

forecast. A random sample of 200 dates is taken. Ag-

gregates of daily observationsmatching the length of the

seasonal forecasts are derived accordingly for use in the

Schaake shuffle. This strategy is termed the window

Schaake shuffle (WSS). The second strategy is to use

only dates aligning with the forecast start date. The en-

semble is then shuffled in blocks. For example, if there

are 40 years of historical data, 200 members are shuffled

in 5 blocks, assuming the forecast ensemble members

are initially in a random order. This strategy is termed

the block Schaake shuffle (BSS).

e. Transformed quantile mapping (TQM)

Quantile mapping is a popular method for bias-

correcting climate model outputs in impacts studies. It

has no model of covariance. Instead, it relies on the

intervariable correlations in the GCM being approxi-

mately correct, and, therefore, it isn’t a full calibration

method (Maraun 2013; Zhao et al. 2017). However, it is a

method currently supported by the Australian Bureau of

Meteorology and being investigated in agricultural ap-

plications of seasonal forecasts (e.g., Brown et al. 2018;

Western et al. 2018) and, therefore, it is a useful method

for comparison purposes.

Quantile mapping comes in many forms, which boil

down to twomain types: empirical quantilemapping and

parametric quantile mapping. In this study, we develop a

new, parametric quantile-mapping methodology using

the fitted log–sinh or Yeo–Johnson transformed normal

distributions from section 2b to represent the marginal

distributions. Hence, we call it transformed quantile

mapping (TQM). Accordingly, the TQM and BJP

methodologies model the marginals of each variable in

an entirely consistent way, meaning that the results of

BJP and QM postprocessing are more comparable than

if we used another QM implementation. The TQM steps

are described in the appendix.

3. Application and verification

a. Study data

We now evaluate the multivariate postprocessing of

GCMseasonal forecasts of rainfall, minimum temperature

maximum temperature for Australia. These three vari-

ables form the basis for seasonal outlooks inAustralia and

routinely have their predictability assessed (e.g., Hudson

et al. 2011; Marshall et al. 2014a; Marshall et al. 2014b).

Australia is currently switching to a newGCMand doesn’t

yet have long hindcasts available for verification and cal-

ibration studies. In this study, GCM forecasts are obtained

from the ECMWF System4 (Sys4) seasonal forecast sys-

tem, which has been widely evaluated globally.

Sys4 is a coupled system of ocean, atmosphere and

land surface models with sea ice concentration condi-

tionally resampled from climatology. It implements the

NEMO (Nucleus for European Modeling of the Ocean)

v3.0 ocean model at a 18 resolution in the extratropics. It

implements the IFS (Integrated Forecasting System)

cycle 36r4 atmospheric model with an approximate

horizontal resolution of 80 km. The Hydrology Tiled

ECMWF Scheme of Surface Exchanges over Land

(H-TESSEL) land surface model is integrated into IFS.

Hindcasts are available from 1981 to 2010 with each

model run initialized on the 1st of each month and en-

during for 7 months. The hindcast dataset is augmented

by an archive of real-time forecasts from 2011 to 2016. In

hindcast mode, the ensemble generation scheme outputs

15 ensemble members. In forecast mode, the ensemble

size increases to 51. Throughout this studywemake use of

the first 15 ensemblemembers for all years.Hindcasts and

archived real-time forecasts are treated as equivalent. All

members are treated as statistically exchangeable.

Gridded observed data come from the Silo database

(Jeffrey et al. 2001). Silo is constructed from Bureau of
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Meteorology observational records and has been infilled

to create a temporally complete record for all locations.

We use the Silo data as the reference observations,

noting that the data quality is dependent on the degree

of quality control in Silo processing, the amount of

processing, and the density and quality of the original

observations. Silo data are available on a 0.058 grid.

We regrid the Silo observations to match the Sys4 data

at 0.758 resolution.
In this study, we choose to focus on three-month-

average forecasts, with a lead time of 1 month. These

types of forecasts represent a true seasonal outlook

beyond the current information available about the

weather. BJP models are established separately for

12 overlapping seasons from January–February–March

(JFM) to December–January–February (DJF). With

this configuration, there are 35 data points available to

fit each calibration model at each grid cell.

As a preview to the intervariable relationships in sea-

sonal observations, we calculate the absolute Kendall

correlation for all grid cells and months. Between Tmin

and Tmax, the median Kendall correlation is 0.34 and

the 90th percentile is 0.58. Between Tmax and rainfall

(which tend to be negatively correlated), these values

are 0.35 and 0.55. For Tmin and rainfall, the result is 0.18

and 0.4. These preliminary results suggest it is prudent to

handle intervariable dependencies in seasonal forecast

postprocessing of rainfall and temperature.

b. Univariate and multivariate probabilistic forecast
verification

We first apply univariate bias and reliability scores to

check the consistency of forecasts and observations for

the individual variables. We then apply twomultivariate

probabilistic scores to assess the overall skill and per-

formance for all variables. In general, quality seasonal

forecasts will have little or no bias, be reliable in terms

of ensemble spread and supply skill in excess of a cli-

matological reference forecast. All of these aspects of

forecast quality are verified here using a leave-one-

year-out cross-validation approach for all postprocessing

steps.

Forecast bias is recognized as the long-term mean

error between forecasts means and observations. For a

single variable, we calculate the percentage bias:

PBIAS5
�
T

t51

(x
t
2 y

t
)

�
T

t51

(y
t
)

3 100(%), (20)

where xt is the forecast ensemble mean for event t, and

yt is the corresponding observation. Positive PBIAS

indicates systematic overforecasting whereas negative

PBIAS indicates systematic underforecasting.

Reliability is the property of statistical consistency

between probabilistic forecasts and observations. A re-

liable forecasting system will accurately estimate the

likelihood of an event. Reliability is checked by ana-

lyzing the distribution of probability integral trans-

formations or PIT values (Gneiting et al. 2007). The PIT

for a forecast CDF (Ft) and paired observation (yt) is

defined by

p
t
5F

t
(y

t
) . (21)

In the case that yt 5 0, a pseudoPIT value is sampled

from a uniform distribution with a range [0, pt] (Wang

and Robertson 2011) and this value then supplants the

original pt. If a forecasting system is reliable and the

forecasts are continuous, then the PIT values for a set of

forecasts follow a standard uniform distribution. Hence,

we quantitate reliability using a score that measures the

deviation of the PIT values from the theoretical stan-

dard uniform values (Renard et al. 2010):

REL
PIT

5 1:02
2

T
�
T

i51

����p(i)
2

i

T1 1

���� , (22)

where p(i) is the ith ranked PIT value. RELPIT ranges

from 0 (worst reliability) to 1 (perfect reliability).

Visualization of RELPIT and its interpretation in the

context of PIT uniform probability plots are given by

Renard et al. (2010).

The overall skill and performance evaluation of the

multivariate forecasts is done using multivariate scores,

namely the energy score (ES; Gneiting and Raftery

2007) and the variogram score (VS; Scheuerer and

Hamill 2015). For an M ensemble member forecast for

N variables and multivariate observations y:

ES5
1

M
�
M

k51

kx
k
2 yk2 1

2M2�
M

k51
�
M

l5k

kx
k
2 x

l
k , (23)

where xk is the forecast for ensemble member k and jj�jj
denotes a Euclidean norm. In a single dimension, the

energy score reduces to the widely used continuous

ranked probability score (CRPS) for single-variable

verification.

The ES is an effective measure for determining the

aggregate skill of many individual components; how-

ever, it is rather insensitive to the miscalibration of de-

pendencies between components (Scheuerer and Hamill

2015). The VS can be much more sensitive to such mis-

calibration. Using the same notations as for the ES, the

VS based on variograms of order p can be estimated for

an ensemble forecast by
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k,j
jp
!2

, (24)

wherewij are weights to promote/demote certain pairs in

the calculation of the VS. For example, in the spatial

case, it can be used to up-weight proximate pairs and

down-weight distant pairs. Here, we set wij 5 1 to con-

sider all pairings of variables equally; and p 5 0.5 as

commonly used.

The calculate ES and VS will be calculated for vari-

ables with different units, which makes the results more

challenging to interpret than, for example, applications

to one variable across space and/or time. To make the

comparison more meaningful, the variables are made

dimensionless before calculating the scores. Rainfall is

standardized by dividing by the mean of observations.

Temperature variables are standardized by a z-score

transform.

For ES and VS we calculate a skill score where S is the

average score of the postprocessed forecasts over a set of

events and Sref is the average score over the same events

for a climatological reference set of forecasts:

Skill Score5
S
ref

2 S

S
ref

3 100(%). (25)

Reference forecasts are leave-one-year-out observation

data for the same period as the forecasts.

4. Results and discussion

a. Bias, reliability, and skill of individual variables

The percentage bias (PBIAS), reliability score

(RELPIT), and CRPS skill score metrics are summarized

for each variable (Tmin, Tmax, and rainfall), for raw

forecasts (RSYS4), and for three sets of postprocessed

forecasts (UBJP, MBJP, and TQM) (Fig. 2). Univariate

verification results are invariant to ensemble member

order; hence, we do not refer to the Schaake shuffle in

this section. The summaries plot the proportion of cases

where a score value is exceeded and are constructed

after pooling the scores for all grid cells and seasons.

Regarding bias (Fig. 2, left column), RSYS4 forecasts

are (as expected) biased for all three climate variables:

Tmin, Tmax, and rainfall. RSYS4 Tmax forecasts have a

propensity to be negatively biased, although the bias

magnitude is normally less than 10%. RSYS4 Tmin

forecasts can be either positively or negatively biased

with magnitudes greater than 10% in approximately

30% of cases. RSYS4 rainfall forecasts are biased posi-

tively and negatively in approximately equal measure

with magnitudes exceeding 25% not uncommon.

Postprocessing substantially reduces PBIAS for all

three climate variables. For Tmin and Tmax, bias is re-

duced to near zero regardless of the postprocessing

method. For rainfall, some biases remain after post-

processing with UBJP and MBJP, which is mainly a

problem in very dry grid cells where small absolute

biases manifest as a large percentage bias; further dis-

cussion is given in section 4c. For UBJP and MBJP, the

median bias for rainfall is around 2%–3%, although it

can exceed 10%; MBJP performing slightly worse for

bias correcting rainfall than UBJP. TQM effectively

reduces the bias to near zero in nearly all rainfall cases.

Regarding reliability (Fig. 2, middle column), a gray,

dashed, vertical line is plotted at RELPIT 5 0.9 as a

guiding threshold for highly reliable forecasts. Although

the choice is arbitrary, it means that on a PIT uniform

probability plot (e.g.,Renard et al. 2010;Wang et al. 2009)

the points would line up closely along the 1:1 line. RSYS4

forecasts of all three climate variables are frequently un-

reliable, which is in accordance with the observed biases.

Postprocessing substantially improves the reliability

of the forecasts by reducing bias and improving en-

semble spread. The UBJP and MBJP forecasts are al-

most always highly reliable. TQM forecasts are also

frequently highly reliable, although they are overall less

reliable than the BJP forecasts.

Regarding skill (Fig. 2, right column), a gray, dashed

line is plotted at a CRPS skill score value of 0.0 to in-

dicate the skill of the climatology reference forecasts.

Skill is positive for the postprocessed forecasts in the

majority of cases; however, Tmin and Tmax forecasts

are overall more skillful than rainfall forecasts. Out of

the different postprocessing models, UBJP produces the

most skillful forecasts with the median CRPS skill score

being higher than every other model for every climate

variable, even if only by a small margin. UBJP skill scores

are rarely negative and when they are, they are not worse

than about 25% to 210%, which can be attributable to

cross-validation effects. The MBJP model produces

forecasts that are overall less skillful than UBJP and oc-

casionally negative to about220%, suggesting overfitting

may occur; further investigation is given in section 4c.

TQM skill is marginally better than MBJP overall but

worse than UBJP; TQM is sometimes seen to produce

skill scores that are considerably negative, particularly for

Tmin; however, unlike with MBJP, overfitting is unlikely

to be the problem. More likely, it is the inability of TQM

to return negatively skillful forecasts to climatology.

b. Overall performance of multivariate forecasts

Geographical maps of the energy score (ES) skill

scores for the multivariate (Tmin, Tmax, rainfall)

forecasts are shown for each season and for the
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UBJP1WSS, MBJP, and TQM postprocessing post-

processingmethod in Figs. 3–5, respectively. Energy score

maps for UBJP1BSS are very similar to UBJP1WSS

and are not shown.Maps of the variogram score (VS) skill

scores for each season are shown for the UBJP 1 WSS,

UBJP1BSS, MBJP, and TQM postprocessing methods

in Figs. 6–9, respectively. Summaries of these ES and VS

skill scores are shown in the top two panels in Fig. 10.

The ES has not been widely used to make intervari-

able comparisons. As a first check for the instructiveness

of the ES skill score in this setting, we visually compare

the ES and CRPS skill score maps (not shown), and

we confirm that features of CRPS skill maps for indi-

vidual variables are noticeable in the ES skill maps and

that a sensible conjugation occurs. For example, for

UBJP1WSS forecasts, Tmin andTmaxCRPS skill scores

are moderately positive across northern Australia,

whereas rainfall CRPS skill scores are neutral. The

corresponding ES skill scores are weakly to moderately

positive. As a second example, for TQM forecasts,

FIG. 2. Plots comparing the overall performance of the various sets of forecasts (raw and postprocessed) as the proportion of grid cells

where certain bias, reliability, and skill score values are exceeded. Columns are for the different metrics and rows are for the different

climate variables.
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all three variables have neutral skill in the southeast of

the Australian mainland, a result that translates into the

corresponding ES skill score maps.

Overall, ES skill scores are low (,20%), which is un-

derstandable given the well-known low–moderate skill of

seasonal forecasts, especially with one-month lead time.

Moreover, forecasts of Tmin, Tmax, and rainfall are not

always similarly skillful across regions and seasons, and

ES skill scores are modulated accordingly. In terms of the

energy score, UBJP1WSS produces more skillful fore-

casts than MBJP and TQM, albeit there are broadly

similar skill patterns among all three sets of forecasts.

The maps for the VS skill scores give some unique

insights. Overall the VS skill scores are lower than the

ES skill scores and are more frequently negative. We

interpret the VS skill score maps as highlighting areas

where there are remaining weaknesses in the intervari-

able dependence structure in the forecasts. For TQM,

the intervariable relationships are largely inherited from

the raw model output, and, therefore, it is expected that

some regions and seasons will have imperfect inter-

variable correlations due to model error. Indeed, nega-

tive VS skill is observed for TQM forecasts in various

regions across all seasons. We expect that either direct

modeling of intervariable relationships in MBJP or en-

semble reordering UBJP forecasts can deliver more

realistic intervariable correlations. However, the results

indicate that there are some deficiencies with both BJP

FIG. 3. Maps of energy skill scores for UBJP1WSS forecasts for the period 1981–2016. The skill scores are calculated using historical

observation-based climatological reference forecasts and using leave-one-year-out cross validation. Positive skill means lower error in the

UBJP1WSS forecasts compared to the reference. The skill is mapped for each target season for forecasts issued with one-month

lead time.
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approaches that require further exploration (see

section 4c for further discussion).

ES and VS skill score summaries are produced by

plotting the proportion of cases where a range of skill

score thresholds are exceeded. Results for UBJP1WSS,

UBJP1BSS, MBJP, and TQM are shown in the top row

of Fig. 10. The skill score summaries support the im-

pression given by comparing the previous skill scoremaps

(Figs. 3–9). That is, the UBJP-WSS and UBJP1BSS

forecasts exhibit the best overall performance in terms of

the energy score, particularly by having fewer low or

negative skill scores. MBJP and TQM perform similarly

in terms of the energy score, although MBJP has

marginally better performance in terms of filtering out

negative skill. In terms of the variogram score, the

performance of MBJP and UBJP1WSS is similar, with

TQM performing overall worse, and UBJP1BSS pre-

senting the best results. The results for the VS skill

scores suggest that the calibration methods that model

or enforce observed correlation structures perform

better overall; however, there are factors that affect the

performance of the parametric and nonparametric

modeling components.

The VS skill maps for UBJP1WSS show widespread

negative skill in MAM and AMJ, which is largely rec-

tified in the the UBJP1BSS skill maps. The plausible

explanation is that the construction of the Schaake

shuffle dependence template using a wider window of

dates is suboptimal in some regions and seasons com-

pared to repeated use of dates more aligned with the

forecast period. Certainly, the Schaake shuffle is bene-

ficial, as skill scores calculated for UBJP forecasts

FIG. 4. As in Fig. 3, but for TQM forecasts.
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without Schaake shuffling (i.e., with random ensemble

ordering) show a marked decrease in performance

(not shown).

The benefit of the Schaake shuffle can also be evalu-

ated in terms of its ability to improve the TQM forecasts.

To test this idea, we run an additional experiment

whereby TQM forecasts are Schaake shuffled using

forecast dates aligned with the start of the forecast.

Block resampling is not required since the number of

ensemble members is less than the data available, so we

call the combination TQM1SS. The evaluation of

TQM1SS forecasts is in the middle row of Fig. 10.

Similar to previous results, the Schaake shuffle pro-

vides limited benefit in terms of energy score evalua-

tion. However, there is a marked improvement in the

variogram score, suggesting that the Schaake shuffle with

observations can improve upon the TQM intervariable

correlations in many instances. Nevertheless, TQM1SS

is unable to outperform UBJP1BSS overall. This is

because quantile mapping has more serious shortcom-

ings as a forecast calibration method (Zhao et al. 2017)

that cannot be overcome by ensemble reordering.

The worse overall performance of MBJP relative to

UBJP1WSS and UBJP1BSS could be surprising, ex-

cept that the forecast verification is being done within

a cross-validation framework and MBJP is known to

have more parameters (see section 2c); therefore,

overfitting is a real risk. To test whether overfitting is

indeed a problem causing lower performance of MBJP

forecasts, we repeat several of the forecast calibration

and verification experiments without applying cross

validation.

FIG. 5. As in Fig. 3, but for MBJP forecasts.
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The ES and VS skill score summaries for all grid cells

are reproduced for the no cross-validation (no xv) ex-

periments and compared with the originals (bottom row,

Fig. 10). We refer to these results as in-sample results

whereas the original results are out-of-sample. It is clear

that UBJP1BSS and MBJP provide better in-sample

than out-of-sample predictive performance, although

this boost in predictive performance can be attributed

artificial skill. It is also seen that MBJP moves from

being inferior toUBJP1BSS to superior to it. This result

hints that more sophisticated calibration approaches

could be beneficial where sufficient data exists. However,

it appears in the current study that there is insuffi-

cient data to robustly infer the MBJP model parameters

and realize a predictive performance benefit over

UBJP1BSS for calibrating independent (out-of-sample)

forecasts.

Figure 2 shows that positive biases in the range of

5%–10% can sometimes arise in UBJP and MBJP

rainfall forecasts. Tmin and Tmax forecasts are unaf-

fected. Mapping of the seasonal and spatial distribution

of the biases in UBJP forecasts (Fig. S1 in the online

supplemental material) reveals that these biases are by-

and-large contained to very dry grid cells, particularly in

northern Australia during the seasons MJJ–JAS when

monthly rainfall totals are mostly near zero. In such

cases, a small absolute bias can manifest as a large per-

centage bias.Moreover, BJP adds parameter uncertainty,

FIG. 6.Maps of variogram skill scores forUBJP1WSS forecasts for the period 1981–2016. The skill scores are calculated using historical

observation-based climatological reference forecasts and using leave-one-year-out cross validation. Positive skill means lower error in the

UBJP1WSS forecasts compared to the reference. The skill is mapped for each target season for forecasts issued with one-month

lead time.
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which we suspect can lead to some extreme values being

generated in the back-transformation procedure, caus-

ing noticeably higher means in very dry grid cells. Al-

though not shown in these results, we find that BJP

models fitted to observed data generate samples with the

same biases, so it is not strictly a problem related to the

calibration of GCM forecasts, but rather to do with

the challenges of modeling highly skewed distributions.

c. Extension opportunities

In this study we only considered postprocessing of

variables at the local scale. An alternative approach that

remains untested, which may add skill while reducing

overfitting, is to set up single predictor–multiple pre-

dictand models where the predictor represents a relevant

large-scale climate feature (i.e., an ENSO climate index).

Furthermore, multiple forecasts may be combined using

Bayesian model averaging or another combination

method to improve skill in different regions and seasons

(e.g., Schepen et al. 2014; Wang et al. 2012a).

The results show that flexible modeling of Tmin,

Tmax, and rainfall marginal distributions permits multi-

variate postprocessing using joint probability models

and alternative implementations of extant methods like

quantilemapping.Whileweused theflexibleYeo–Johnson

transformation and the hydrologically specific log–sinh

transformation, any appropriate normalizing transforma-

tion could be substituted into the workflows (e.g., a

Box–Cox transformation). We expect that the strategies

employed here could be tested more widely, including to

other variables including pressure, wind speed, solar

radiation and evaporation. A broader understanding of

FIG. 7. As in Fig. 6, but for UBJP1BSS forecasts.
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multivariate forecasting skill can benefit applications

beyond agriculture and natural resources management,

including in energy, mining and insurance.

It was found that the choice of the unconditional

Schaake shuffle using a window of starting dates led to

subpar forecast performance in terms of the variogram

score, which can be related to the imperfect modeling of

intervariable correlations. Scheuerer et al. (2017) de-

tected improved results after applying a variation of the

Schaake shuffle in which the dependence template was

constructed by the preferential selection of dates such

that the chosen sequences were more representative

of the forecast distribution. Such a method could im-

prove the results of UBJP1WSS in certain seasons and

bring the results closer to or improve upon UBJP1BSS.

As an aside, Scheuerer et al. (2017) also remarked on the

enhanced possibility of variogram skill scores being

negative compared to the energy score due to it offering

less reward for correctly predicting magnitude, a feature

that we see in these results. Other studies have high-

lighted the partial ineffectiveness of the Schaake shuffle

(Verkade et al. 2013) or proposed selective variants that

yield improvements. For example, Bellier et al. (2017)

evaluated analog-based methods for selecting Schaake

shuffle dates and found it outperformed the uncondi-

tional Schaake shuffle for short-term rainfall forecasts,

especially in impact on subsequent streamflow forecasts.

Wu et al. (2018) point out how ties in data ranks can

impact the effectiveness of rank reordering schemes,

which will be pertinent in daily or subdaily studies;

however, we expect it would only have a very minor

impact in this seasonal study (e.g., multiple zeros in

FIG. 8. As in Fig. 6, but for TQM forecasts.
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rainfall records may occur in exceptionally dry areas).

Evidence is building around the shortcomings in ensemble

reordering methods and thus further work is needed to

identify themost efficient and effective options to use these

to restore multivariate dependence structures.

Overall, the results in this study point to plenty of chal-

lenges to address in integrating robust low-dimensional

postprocessing approaches in high-dimensional application

domains (e.g., multiple variables, subcatchments, lead

times, and so forth). There may be gains made by al-

ternative avenues, such as by establishing models of

covariance that require fewer parameters, particularly

in combination with other dimension-reduction tech-

niques. For the foreseeable future, both parametric cali-

bration and empirical ensemble reordering methods are

going to play a role in seasonal forecast postprocessing,

while much more research is needed to find balanced

solutions that improve multivariate forecasting skill for

independent predictions.

In this study, we have addressed only seasonal (three-

month) forecasts. However, many operational models

that could receive climate forecast information (e.g.,

hydrological and biophysical models) require data at

daily time steps and at subgrid locations. More research

is needed to spatially and temporally downscale multi-

variate seasonal climate forecasts.

d. Conclusions

GCM forecasts are increasingly in demand to support

the expansion of natural resource management ini-

tiatives, which require coherent multivariate sea-

sonal climate forecasts. Raw GCM forecasts are readily

FIG. 9. As in Fig. 6, but for MBJP forecasts.
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available but they require calibration to remove biases and

reliably quantify forecast uncertainty. While multivariate

postprocessing has been considered previously in the very

specific problem of short-term temperature and wind

speed forecasting, very little attention has been paid to the

multivariate calibration of seasonal GCM outputs. Usu-

ally, any bias correction or calibration in seasonal fore-

casting is done on variables independently. In this study,

we develop and test three strategies for calibrating

multivariate forecasts of Tmin, Tmax, and rainfall, find-

ing each approach has unique strengths and weaknesses.

UBJP1WSS and UBJP1BSS apply a univariate BJP

calibration to each variable and subsequently estab-

lishes the intervariable correlation structure from

observations using the Schaake shuffle. TheUBJP1BSS

approach performs best in terms of univariate skill and

reliability scores and multivariate skill scores. This

provides evidence that the unconditional sampling of

FIG. 10. Summary of multivariate forecast performance across all grid cells and seasons and a comparison of the

results for various postprocessingmethods. The curves plot the proportion of cases where ES andVS skill score values

are exceeded. The multivariate skill scores consider all three climate variables (Tmin, Tmax, and rainfall) in their

calculation. The VS is more sensitive to the calibration of the dependencies between the variables. (top) Comparison

of the core postprocessingmethods; (middle) additional analysis evaluating the benefit of applying the Schaake shuffle

to TQM forecasts; and (bottom) additional analysis testing the effect cross validation has on forecast performance.
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historical trajectories for the Schaake shuffle is sub-

optimal in some instances, especially when the template

data are not representative of the forecast period.

MBJP simultaneously calibrates each variable by mod-

eling the full joint distribution of all relevant predictor and

predictand variables. In in-sample testing MBJP presents

itself as the far superior approach; however, in cross vali-

dation with out-of-sample testing, MBJP generally per-

forms worse than UBJP1BSS, apparently due to the lack

of sufficient data to robustly infer the more numerous

model parameters. That said, MBJP may remain feasible

for problems with more data available.

TQM is a quantile-mapping approach that uses the

same marginal transformations as BJP. We find that

while it offers substantial improvements over raw fore-

casts and has fewer parameters, its fundamental weak-

ness of not modeling correlations between forecasts and

observations or between variables means that it per-

forms overall the worst in terms of univariate and multi-

variate verificationmetrics. Ensemble reordering is unable

to improve TQM forecasts enough to outperform the

BJP-based approaches.

Continued research efforts are likely to optimize the

calibration of seasonal forecasts for complex application

domains requiringmultivariate climate inputs.We suggest

that further research should investigate the robust mod-

eling of covariances, dimension-reduction techniques, and

resolution of emerging challenges in ensemble reordering

techniques (including handling ties and more efficient

construction of conditional dependence templates).
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APPENDIX

Transformed Quantile Mapping (TQM)

TQM is described as follows in two parts:

1) Model the marginal distributions of the forecasts and

observations

(i) Collect all the historical forecast ensemble

members.

(ii) Fit a transformed-normal distribution to the fore-

casts using either the log–sinh or Yeo–Johnson

transformation. Save the estimated normal

distribution parameters mF and sF and the

transformation tF.

(iii) Collect all the observations corresponding to

the forecasts from step (i). There will be fewer

observation data points than forecast data points

because the forecasts are ensembles.

(iv) Fit a transformed-normal distribution to the obser-

vations using either the log–sinh or Yeo–Johnson

transformation. Save the estimated normal

distribution parameters mO and sO and the

transformation tO.

2) Postprocess a new ensemble forecast

(i) Transform the ith ensemble member yF,i to

zF,i 5 tF (yF,i).

(ii) Convert zF,i to a dimensionless z score: zF,i* 5
(zF,i 2mF)/sF .

(iii) Invert zF,i* using mO and sO to get zO,i 5
(zF,i* 3sO)1mO.

(iv) Back transform zO,i to yO,i 5 t21
O (zO,i).

(v) Repeat steps (i)–(iv) for all ensemble members,

k 5 1, . . . , M.

The procedure is a fully parametric implementation of

quantile mapping. It differs substantially from any other

implementation in the literature because it makes use of

the log–sinh and Yeo–Johnson transformations that are

used with BJP. In addition, the new method handles

the mixed discrete-continuous nature of variables like

rainfall using a censored data approach, which is quite

different to the more common split-model approach,

whereby intensity and frequency are modeled using

separate distributions (e.g., Volosciuk et al. 2017).
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