

This is the author-created version of the following work:

Riedel, Jendrian, Nordberg, Eric, and Schwarzkopf, Lin (2020) *Ecological niche and microhabitat use of Australian geckos*. Israel Journal of Ecology and Evolution, 66 (3-4) pp. 209-222.

Access to this file is available from: https://researchonline.jcu.edu.au/67559/

© Koninklijke Brill NV, Leiden 2020

Please refer to the original source for the final version of this work: <u>https://doi.org/10.1163/22244662%2Dbja10002</u>

Israel Journal of Ecology & Evolution Ecological niche and microhabitat use of Australian geckos --Manuscript Draft--

Manuscript Number:	IJEE-1090R1					
Full Title:	Ecological niche and microhabitat use o	of Australian geckos				
Short Title:	Ecology of Australian geckos	begical niche and microhabitat use of Australian geckos pgy of Australian geckos rian Riedel tas Cook University College of Science and Engineering tasville, AUSTRALIA rian Riedel rian Riedel Nordberg chwarzkopf ern biological research often uses global datasets to answer broad-scale tions using various modelling techniques. But detailed information on es-habitat interactions are often only available for a few species. Australian os, a species-rich group of small nocturnal predators, are particularly data- ent. For most species, information is available only as scattered, anecdotal, or riptive entries in the taxonomic literature or in field guides. We surveyed gecko nunities from 10 sites, and 15 locations across central and northern Queensland, alia, to quantify ecological niche and habitat use of these communities. Our typs included deserts, woodlands, and rainforests, examining 34 gecko species. ssigned species to habitat niche categories: arboreal (9 species), saxicoline (4), restrial (13), if at least 75% of our observations fell in one microhabitat; otherwise assified geckos as generalists (8). For arboreal species, we described perch ti and perch diameter and assigned them to ecomorph categories, originally loped for Anolis lizards. There was lower species richness in rainforests than in ats with lower relative humidity; the highest species richness occurred in llands. Most arboreal and generalist species fit the trunk-ground ecomorph, ot those in the genus Strophurus , whose members preferred shrubs, twigs of trees, or, in two cases, spinifex grass hummocks, thus occupying a perch space ar to that of grass-bush anoles. Habitat use for a large group of previously poorly mented species. o; ecological niche; ecomorph; habitat use; ecology; perch space				
Corresponding Author:	Jendrian Riedel James Cook University College of Scier Townsville, AUSTRALIA	nce and Engineering				
Full Title: Ecological niche and microhabitat use of Australian geckos Short Title: Ecology of Australian geckos Corresponding Author: Jendrian Riedel James Cook University College of Science and Engineering Townsville, AUSTRALIA First Author: Jendrian Riedel Order of Authors: Jendrian Riedel Eric Nordberg Lin Schwarzkopf Abstract: Modern biological research often uses global datasets to answer broad-scale questions using various modelling techniques. But detailed information on species-habitat interactions are often only available only as scattered, anecdotal, deficient. For most species, information is available only as scattered, anecdotal, or descriptive entries in the taxonomic literature or in field guides. We surveyed gecko communities from 10 sites, and 15 locations across central and northern Queenslan Australia, to quantify ecological niche and habitat use of these communities. Our surveys included deserts, woodlands, and rainforests, examining 34 gecko species. We assigned species to habitat niche categories: arboreal (9 species), saxicoline (4 or terrestrial (13), if at least 75% of our observations fell in one microhabitat; otherwi we classified geckos as generalists (8). For arboreal species, we described perch height and perch diameter and assigned them to ecomorph categories, originally developed for Anolis lizards. There was lower species richness orcurred in woodlands. Most arboreal and generalist species fit the trunk-ground ecomorph, except those in the genus Strophurus , whose members perferred shrubs, twigs of small trees, or, in two cases, spirifix grass hummocks, thus occupying a perch spar similar to that of grass-bush anoles. Habitat use for a large gr						
Order of Authors:	Jendrian Riedel	edel AUSTRALIA edel edel edel edel rg ckopf ogical research often uses global datasets to answer broad-scale sing various modelling techniques. But detailed information on bitat interactions are often only available for a few species. Australian becies-rich group of small nocturnal predators, are particularly data- or most species, information is available only as scattered, anecdotal, or entries in the taxonomic literature or in field guides. We surveyed gecko is from 10 sites, and 15 locations across central and northern Queensland, quantify ecological niche and habitat use of these communities. Our uded deserts, woodlands, and rainforests, examining 34 gecko species. d species to habitat niche categories: arboreal (9 species), saxicoline (4), (13), if at least 75% of our observations fell in one microhabitat; otherwise d geckos as generalists (8). For arboreal species, we described perch berch diameter and assigned them to ecomorph categories, originally				
	Eric Nordberg					
	Lin Schwarzkopf	Lin Schwarzkopf				
Abstract:	questions using various modelling techn species-habitat interactions are often of geckos, a species-rich group of small no deficient. For most species, information descriptive entries in the taxonomic liter communities from 10 sites, and 15 local Australia, to quantify ecological niche an surveys included deserts, woodlands, a We assigned species to habitat niche ca or terrestrial (13), if at least 75% of our of we classified geckos as generalists (8). height and perch diameter and assigned developed for Anolis lizards. There wa habitats with lower relative humidity; the woodlands. Most arboreal and generalis except those in the genus Strophurus small trees, or, in two cases, spinifex gr similar to that of grass-bush anoles. Hal Saltuarius cornutus , and Gehyra dubia	niques. But detailed information on nly available for a few species. Australian octurnal predators, are particularly data- is available only as scattered, anecdotal, or rature or in field guides. We surveyed gecko tions across central and northern Queensland, nd habitat use of these communities. Our nd rainforests, examining 34 gecko species. ategories: arboreal (9 species), saxicoline (4), observations fell in one microhabitat; otherwise For arboreal species, we described perch d them to ecomorph categories, originally is lower species richness in rainforests than in e highest species richness occurred in st species fit the trunk-ground ecomorph, , whose members preferred shrubs, twigs of ass hummocks, thus occupying a perch space bitat use by Pseudothecadactylus australis , a fit the trunk-crown ecomorph. We provide				
Keywords:	Gecko; ecological niche; ecomorph; h	abitat use; ecology; perch space				
Funding Information:	Meat and Livestock Australia (AU) (B.ERM.0088)	Dr. Lin Schwarzkopf				
	Skyrail Rainforest Foundation (NA)	Mr. Jendrian Riedel				

1 2	1	Ecological niche and microhabitat use of Australian geckos
3 4 5	2	Jendrian Riedel*, Eric Nordberg*, Lin Schwarzkopf
6 7 8	3	College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
9 10 11	4	* Both authors contributed equally to this study
12 13 14	5	
15 16 17	6	Contact:
18 19 20 21	7	Jendrian.riedel@my.jcu.edu.au
21 22 23 24	8	Eric.nordberg@jcu.edu.au
25 26 27	9	
$\begin{array}{c} 28\\ 30\\ 312\\ 33\\ 34\\ 5\\ 37\\ 39\\ 41\\ 43\\ 45\\ 47\\ 89\\ 55\\ 55\\ 55\\ 55\\ 56\\ 61\\ 23\\ 61\\ 63\\ 65\\ \end{array}$	10	

11 Abstract

Modern biological research often uses global datasets to answer broad-scale questions using various modelling techniques. But detailed information on species-habitat interactions are often only available for a few species. Australian geckos, a species-rich group of small nocturnal predators, are particularly data-deficient. For most species, information is available only as scattered, anecdotal, or descriptive entries in the taxonomic literature or in field guides. We surveyed gecko communities from 10 sites, and 15 locations across central and northern Queensland, Australia, to quantify ecological niche and habitat use of these communities. Our surveys included deserts, woodlands, and rainforests, examining 34 gecko species. We assigned species to habitat niche categories: arboreal (9 species), saxicoline (4), or terrestrial (13), if at least 75% of our observations fell in one microhabitat; otherwise we classified geckos as generalists (8). For arboreal species, we described perch height and perch diameter and assigned them to ecomorph categories, originally developed for Anolis lizards. There was lower species richness in rainforests than in habitats with lower relative humidity; the highest species richness occurred in woodlands. Most arboreal and generalist species fit the trunk-ground ecomorph, except those in the genus Strophurus, whose members preferred shrubs, twigs of small trees, or, in two cases, spinifex grass hummocks, thus occupying a perch space similar to that of grass-bush anoles. Habitat use by Pseudothecadactylus australis, Saltuarius cornutus, and Gehyra dubia fit the trunk-crown ecomorph. We provide quantified basic ecological data and habitat use for a large group of previously poorly documented species.

34 Keywords

35 Gecko, ecological niche, ecomorph, habitat use, ecology, perch space

36 Introduction

In recent decades, scientific effort has shifted from more detailed, descriptive observations about species (e.g. Fitch 1970; Wright & Vitt 1993), to answering broad questions with global implications (e.g. Harfoot et al. 2014). Robust studies in many fields of biology, ranging from evolution, biogeography, and conservation biology, to ecomorphology, frequently rely on large datasets of combined information (e.g. Melville et al. 2006; Garcia-Porta & Ord 2013; Davis & Betancur-R 2017; Vidan et al. 2019; Wölfer et al. 2019). But these large datasets may have limited scope or include only coarse-scale information (e.g. presence – absence data), because detailed baseline knowledge, especially regarding natural history and ecology, are unavailable for individual species (Meiri 2019; Vidan et al. 2019). More and more detailed, autecological studies for many species in many parts of the world, including abundant and common species, may enhance future global studies and the conclusions that can be drawn from these.

Lizards are some of the most widespread and abundant vertebrates in the world. In particular, geckos (Gekkota) are the second most speciose lizard group (after snakes), comprising nearly 1900 species or 27.5% of all lizards (if snakes are excluded), with the highest rate of new species descriptions in squamate reptiles (Roll et al. 2017; Meiri 2019; Uetz & Jirí Hošek 2019). Geckos have a worldwide distribution, mostly in tropical and subtropical regions. Australia is one of the global hotspots for gecko diversity, where they constitute a dominant part of the overall lizard biodiversity (Meiri 2019; Vidan et al. 2019). Geckos are small- to medium-sized predators of invertebrates (Nordberg, Murray, et al.
2018) and small vertebrates (Nordberg 2019) and are themselves depredated by birds,
mammals, larger reptiles, frogs, and even large invertebrates (Nordberg, Edwards, et al.
2018). Thus, they form an important part of tropical and subtropical food webs. Geckos
have colonized diverse habitats, occupying terrestrial habitats and vertical rocks and trees,
including overhanging microhabitats (Gamble et al. 2012; Collins et al. 2015; Russell et al.
2019).

Recent studies have described broad-scale evolutionary history, or revealed species complexes by examining biogeography, mapping species distributions, and conducting taxonomic analyses (e.g. Han et al. 2004; Gamble et al. 2008; Gamble et al. 2012; Skipwith et al. 2016; Brennan & Oliver 2017). But to understand the causes of diversification in particular bioregions, we require more detailed understanding of their ecology, for example which habitat niches, or which roles in the food-web are occupied (Meiri 2018). Many gecko groups are severely data deficient, especially in terms of natural history and ecological data, including habitat use. Detailed studies on gecko field ecology are often only available for small areas or single species (e.g. Henle 1990; Augros et al. 2018; Neilly et al. 2018; Nordberg, Murray, et al. 2018; Nordberg & Schwarzkopf 2019a; Nordberg & Schwarzkopf 2019b). For most species, information on basic ecological traits are only available as anecdotal information in field guides or the taxonomic literature, and may be based on limited personal observations by the authors from restricted geographic areas (Kulyomina et al. 2019; Vidan et al. 2019; Zhuang et al. 2019).

Our lack of detailed natural history knowledge is problematic for conservation and
 management purposes, because we may underestimate threats due to data deficiency (Roll

et al. 2017; Meiri 2019). For example, we cannot accurately assess the problems caused by invasive weeds if we do not understand preferred habitat structures and characteristics (Valentine et al. 2008). Nor can we predict the influence of climate warming on lizard communities (Sinervo et al. 2010), if we do not know their thermal preferences and thresholds, or which microhabitats are needed to access temperatures vital for digestion, gamete development, or optimal performance. Further, geckos are often used as a model system for evolutionary (Garcia-Porta & Ord 2013; Nielsen et al. 2016; Hagey, Uyeda, et al. 2017) and ecomorphological studies (Zaaf & Van Damme 2001; Hagey, Harte, et al. 2017; Rothier et al. 2017; Kulyomina et al. 2019; Riedel et al. 2019; Zhuang et al. 2019). Yet, to fully understand the evolution of morphological structures, we need to understand gecko habitat use, and how they exploit various microhabitats, ideally within some kind of ecological classification system, which can be used to describe niches.

One group of lizards for which such a classification system is already established, and which has a substantial body of literature describing ecomorphology and natural history are the Anolis lizards (Roughgarden 1995; Losos 2011). Anolis lizards are a well-studied model for ecomorphological analyses and, like geckos, some have adhesive toepads (Losos 1992; Losos 1994; Irschick et al. 1996; Russell 2002; Losos 2010; Hagey, Uyeda, et al. 2017). Therefore, they provide an obvious starting point to use to classify gecko perch space use, and given the similarity in evolution and adaption to vertical habitats by geckos and Anolis lizards, niche classifications designed for anoles may be useful in this regard (c.f. Hagey, Harte, et al. 2017; Kulyomina et al. 2019).

The goal of our study was to quantify the microhabitat and niche space for a broad
range of Australian gecko species, thereby providing baseline ecological information for use

in future studies of gecko biology. Using the structural habitat categories perch height and perch diameter, we described the niche space of arboreal geckos (including padless Carphodactylidae), and compared their niche space use to those established for Anolis lizard ecomorphs (Losos 1992; Irschick et al. 1997; Langerhans et al. 2006; Poe & Anderson 2019), to provide a basis for classification of gecko ecomorphs. This study contributes valuable ecological data to the literature for many species that lack such information, which can be used and applied in future ecomorphological, evolutionary or conservation studies.

Methods

Field work

Geckos were surveyed at 10 sites during multiple field trips to 15 locations (distinct habitat types within the different sites) spanning a wide array of habitats across northern and central Queensland, Australia, between 2014 and 2018 (Fig. 1). Locations included 1 -10 replicates of similar habitat, close together (< 50 kms apart). Habitats were classified as rainforest (which could be further distinguished into lowland and upland rainforest), savannah woodland, woodland, desert, and heath (Table 1). In the Cape York Peninsula bioregion (in and near Iron Range National Park), we sampled lowland rainforest, woodland and heath (Fig. 1A). Upland rainforests were sampled at three sites across the Australian Wet Tropics (AWT) bioregion (Mt. Elliot, Paluma Range and the Tablelands) and at one site in the Central Queensland Coast bioregion (Eungella National Park). Woodlands were sampled in the Greater Townsville Region (Brigalow Belt (BB)), at Hidden Valley (Einsleigh Uplands [bordering the AWT]) and at the Wambiana Cattle Station (Desert Uplands

[bordering BB]; Fig. 1B). In the area close to Winton (Mitchell Grass Downs) we sampled both woodland and savannah woodlands (Fig. 1C). Locations around Windorah (Channel Country), included savannah woodlands and desert sites (Fig. 1D).

Locations were visited for an average of 5 days (range 1 - 12) to assess gecko species during nightly spotlight surveys. At each surveyed location, we either repeatedly surveyed 3-6 replicates of the same habitat (approximately 1 km² each, often along a road, on average 5 km apart) or walked transects (e.g., on rainforest tracks) of 5 km on average. An exception to this was Wambiana Station, at which 24 1-ha locations were surveyed intensely for a 3-year research project (Nordberg 2018).

We attempted to capture all observed geckos to collect morphometric data (mass, snout-vent-length, sex). Habitat and perch height and diameter were recorded for each gecko, regardless whether it was captured or not. We recorded perch location (e.g., tree trunk, grass, primary branch, on the ground; Fig. 2), perch height, perch diameter, body orientation (horizontal, vertical, inverted), and a general categorical classification for the type of microhabitat used (tree, shrub, sapling, vine, bamboo, rock, man-made structure) for each observation. Perch diameter was only recorded for arboreal habitats as it is irrelevant for wide or flat substrates such as building walls, boulders, or the ground.

Habitat niche classification and Perch location

We classified gecko species into one of four broad habitat niche categories: arboreal, terrestrial, saxicoline, or generalist. Species were classified as arboreal when geckos were captured above the ground on shrubs, bushes, trees, or grass; terrestrial if we captured

them on the ground, sand, or leaf litter; or saxicoline if captured on rocks or boulders. Species that occurred on a variety of different substrata and did not have at least 75% of all captures in a single broad niche group were classified as generalists.

Additionally, we recorded gecko perch locations, which included subsets of arboreal habitats, for example on tree trunks, or primary, secondary, tertiary branches, or terrestrial habitats like logs, or on the ground (Fig. 2).

Comparison to Anolis ecomorphs

We plotted mean perch height (cm) and perch diameter (cm) for 16 gecko species in our communities, which frequent used vegetation, although they may have occasionally used rocks or the ground. Furthermore, we compared gecko perch ecomorphs to those of Anolis lizards by overlaying existing perch data for the Anolis ecomorph system (Losos 1992; Losos 1994; Irschick et al. 1997; Hagey, Harte, et al. 2017) on our gecko data. Based on current knowledge and data, we compare overlap of gecko and Anolis ecomorphs, to describe gecko habitats using terms established for perch-space niches.

Results

Sampling of habitat assemblages

We sampled 2063 geckos across 35 species belonging to the families Gekkonidae, Diplodactylidae, Carphodactylidae and Pygopodidae (Table 2). The widespread Australian native house gecko, Gehyra dubia, of which we sampled 1544 individuals, mostly at

Wambiana Cattle Station, dominated our data. For the remaining species, we sampled between 1 and 61 individuals. Our dataset represents a broad sampling distribution across species, geographic regions, and habitat types, with varying sample size pending on location and species abundance. We present data on all species but caution that the results from species with low sample sizes be interpreted with care. In particular, species with low sample sizes include: Carphodactylus laevis (n=4), Strophurus elderi (n=1), Strophurus taeniatus (n=2), Cyrtodactylus hoskini (n=3), Lialis burtonis (n=3), Delma tincta (n=1), and Pygopus shraderi (n=1). There are few ecological observations available for these species, so while our sample sizes are low, they still provide valuable data.

Species Composition and Community Structure

In terms of species composition and community structure in different habitats and bioregions, the rainforest habitats were generally less species-rich than habitats with lower average humidity, characterised by one or two species per location for rainforest compared to between 3 and 10 in other habitats (Table 1). Because of the high endemism of leaf tailed geckos (Phyllurus and Saltuarius), total species richness of all rainforest habitats (6) is only slightly lower than savannah woodland (9), but higher than heath (5) or desert (4) habitats. Woodland habitats had the highest total species richness (23, Table 2). The upland rainforest sites in the Australian Wet Tropics and adjacent regions typically hosted only a single species of leaf-tailed gecko (Saltuarius or Phyllurus), whereas the tablelands (upland rainforest) included the chameleon gecko (Carphodactylus leavis). The dominant gecko species in lowland rainforest in the Iron Range were the giant tree gecko (Pseudothecadactylus australis), with occasional Gehyra dubia. Woodland and desert

habitats, in comparison, were often characterised by 3 to 6 species, and the area around Winton (10 species) and the woodland and heath habitats in Cape York (adjacent to the rainforest of the Iron Range National park; 9 species) were the most species-rich areas we sampled (Table 1). Woodland habitats often contained (at least) one species of velvet gecko (genus Oedura), a relatively large, and mostly climbing (arboreal, saxicoline, or generalist) species, at least one smaller, mostly climbing species in the genera Gehyra, Amalosia, or Strophurus, and at least one terrestrial species such as a Lucasium, or Diplodactylus. In more open habitats, species of mostly arboreal genera tended to be more generalist. Thus, in this study woodland habitats were characterised by Oedura cincta and Strophurus ciliaris or S. krysalis, which were found more often on the ground than their congeners from more eastern regions, which have higher tree density (Table 2, Fig. 3).

In terms of distribution across habitat types, species using rainforest tended to be restricted to that habitat, whereas species occupying drier habitats, like woodlands, savannah woodlands, heath, or deserts, often occupied more than one of these, but only occasionally used rainforest habitats (Table 2). The only exceptions were the giant tree gecko (*Pseudothecadactylus australis*), which occurred in rainforests, but also in adjacent woodlands and heath, and the native house gecko (Gehyra dubia), which occurred in rainforest at Iron Range. Notably, we found only two native house geckos in rainforest, and both on trees relatively close to a campground, where they could have been transported by human activity or vehicles.

Microhabitat

Throughout all sampled bioregions and habitat types, 9 species were arboreal, 4
saxicoline, 13 terrestrial and 8 generalists (Fig. 3, Table 2). Generalist species, by definition,

used a combination of perch locations including natural substrates, like vegetation and rocks, and anthropogenic substrates, like wooden or concrete walls. Most species classified as terrestrial were nearly exclusively found on the ground, only Nactus eboracensis and Diplodactylus tesselatus were occasionally encountered on logs (20% and 7%, respectively). Similarly, three out of four saxicoline species were found exclusively on rocks, with only Oedura monilis also using vegetation (tree trunks in rocky habitats). Of the arboreal species, six were occasionally found on the ground, and the chameleon gecko (Carphodactylus *laevis*) occupied terrestrial microhabitats 25% of the time.

Perch location and orientation

For most species, especially leaf-tailed geckos (Saltuarius and Phyllurus), and species in the genera Oedura, and Gehyra, tree trunks were the most frequently used perch, followed by primary and secondary branches. In contrast, species in the genus Strophurus use predominantly small-diameter, low, complex, vegetation structures, such as shrubs, grass, or tertiary branches of trees and bushes. Carphodactylus leavis was exclusively found on small saplings (on which they perch head down), when not using the ground. Amalosia rhombifer occupied both tree trunks and shrubs quite frequently (Fig. 3). Perch orientation for most saxicoline species was predominantly vertical, but horizontal areas were also frequently used by all species. Only Cyrtodactylus hoskini and Phyllurus amnicola were found on overhanging surfaces (Fig. 4).

Ecomorphs

Most gecko species fell within one or two of the perch-space niches originally described for Anolis ecomorphs, according to their habitat use (Fig. 5). Strophurus species, which were associated with shrubs, bushes, and small trees, typically clustered within the perch-space of the 'grass – bush' ecomorph, except S. elderi, which occupied a smaller perch diameter and lower perch height, below the mean perch-space occupied by Anolis ecomorphs. Similarly, trunk-using species, such as Oedura tryoni, Oedura castelnaui, clustered in or near the space occupied by 'trunk' and 'trunk – ground' ecomorphs. Saltuarius cornutus, Pseudothecadactylus australis and Gehyra dubia fit within the 'trunk – crown' perch-space, with the former also overlapping with the 'crown – giant' perch-space, which is appropriate as they are often found in the canopy of rainforest trees. Amalosia rhombifer, a generalist species, was situated in between 'ground – bush' and 'trunk – ground' perch-space, appropriate for its diverse habitat use. The perch heights of generalist species O. cincta and G. versicolor were below the mean range established for any anoles. In addition, the generalist *Heteronotia binoei* and the terrestrial *Nactus eboracensis* fell beneath the perch space occupied by Anolis ecomorphs, using large perch diameters at very low perch heights.

Discussion

General habitat niche and habitat use

Based on quantitative data, we classified the habitat niche categories, macro- and microhabitat use of 35 gecko species from four families across a wide range of available habitat types in central and north Queensland, Australia. Additionally, we classified perchspace niches for these gecko species using the perch-space niches established for *Anolis* ecomorphs, and found the *Anolis* ecomorphs broadly useful (Losos 2010; Losos 2011; Hagey,

Harte, et al. 2017), although our geckos seemed to use the ground more. Although the results for some species should be interpreted with care due to low sample sizes, this study provides an overview of species composition in tropical gecko communities, and a detailed account of habitat use for a variety of Australian gecko species. To our knowledge, this study represents the first detailed account of microhabitat use and especially perch-site behaviour for some species (Table 2). Quantified assessments of habitat use are available for some Australian species, e.g. for native house geckos (Gehyra dubia), eastern spiny tailed geckos (Strophurus williamsi) and northern velvet geckos (Oedura castelnaui) (e.g. Nordberg & Schwarzkopf 2019b), and for some desert gecko communities in varying degrees of detail (Pianka 1969; Pianka & Pianka 1976; Pianka et al. 2017). Perch location data was previously only reported by Hagey, Harte, et al. (2017) from between three and nine observations for 13 species, 12 of which overlap with this study (Table 2).

The quantified habitat niche categories of our study are typically similar to the above-mentioned studies, and with commonly ascribed habitat niche categories from the published taxonomic descriptions and other literature (Cogger 2015; Wilson 2015; Nielsen et al. 2016; Hagey, Harte, et al. 2017), including the species for which we only have low sample sizes. The three species belonging to the Pygopodidae (Delma tinca [n=1], Lialis burtonis [n=3] and Pygopus shraderi [n = 1]) are unquestionably terrestrial, normally preferring leaf-litter or ground layer vegetation (Cogger 2015, Macdonald et al. 2013, Wall and Shine 2013). Although we have limited records for the spiny tailed geckos Strophurus taeniatus (n=2) and Strophurus elderi (n=1), both were found in spinifex grass hummocks, consistent with previous descriptions of their habitat use as grass-dwelling (graminicolous) (Cogger 2015; Nielsen et al. 2016; Laver et al. 2017).

In agreement with Hagey, Harte, et al. (2017), we found that Gehyra robusta is a generalist species, using both the ground (n=4) and rocks (n=3). We found, however, that ocellated velvet geckos (Oedura monilis) were rock-dwelling (saxicolous), rather than generalist (Hagey, Harte, et al. 2017) or arboreal (Henle 1991; Mesquita et al. 2016; Nielsen et al. 2016; Meiri 2018), because we found individuals mostly on rocks (9 on rocks and 2 on trees). These habitat niche classifications could vary among populations and ecoregions, so possibly this species uses a wider variety of microhabitats than we detected. Our results for Cyrtodactylus hoskini were consistent with the sparse descriptive information on their natural history (Shea et al. 2011; Cogger 2015). We describe Carphodactylus laevis as arboreal, as we often found C. laevis foraging close to the ground on slender branches and twigs, consistent with Wilson (2015). Other studies describe it more generally as as scansorial, i.e., adapted for climbing (Nielsen et al. 2016). Heteronotia binoei is typically described as terrestrial (Cogger 2015; Wilson 2015), although Mesquita et al. (2016) classified them as arboreal. Henle (1990) reported H. binoei as mostly terrestrial but using bushes and trees up to 0.8 m as retreats, which was corroborated by our study. It must be noted, however, that *H. binoei* is a cryptic species complex(Fujita et al. 2010; Moritz et al. 2016), and different lineages use available microhabitats to different degrees, including rocks (Zozaya et al. 2019; S. Zozaya unpublished data).

299 Comparison with Anole ecomorphs

300 Our results show that the perch-space use of Australian geckos overlaps, at least 301 partially, with *Anolis* ecomorphs. Consistent with (Hagey, Harte, et al. 2017), we describe 302 arboreal *Oedura* as using habitat similar to 'trunk' and 'trunk – ground' anoles. Species of

the genus Strophurus use habitat structure similar to that of 'grass – bush' anoles (consistent with Hagey, Harte, et al. (2017)), such as low-growing shrubs or small-diameter tertiary branches of trees at relatively low heights (Fig. 3, 5). Although most Strophurus species fall within the broad perch-space of the 'grass – bush' anoles, there is a clear separation between the spinifex-associated Strophurus elderi (which was not included in Hagey, Harte, et al. (2017)), and S. williamsi, S. krysalis, and S. ciliaris. Strophurus elderi had perch heights lower even than means for 'ground – bush' anoles, whereas the latter three species used shrubs and twigs of small trees, and fall within the 'ground – bush' niche space (Fig. 3, 5). The differences in habitat use we note among Strophurus spp. were consistent with morphological and taxonomic distinction between the so-called 'graminicolus' and 'scanso-arboreal' groups (Greer 1989; Storr et al. 1990), and assessments of microhabitat use in these species (Nielsen et al. 2016; Laver et al. 2017). Although we did not record perch height and diameter for S. taeniatus, we found them in spinifex, suggesting they might occupy a perch space similar to S. elderi. Thus, although our suggestions are preliminary because we have only a small sample of *S. elderi*, we suggest that there are two distinct 'grass – bush' ecotypes in Australian geckos: a spinifex-hummock grass-associated 'grass' ecotype and a 'bush-twig' ecotype, using higher and thicker perches of shrubs and small trees (Nielsen et al. 2016). Perch height for Amalosia rhombifer fell within the overlapping area between the 'grass' and the 'trunk – ground' perch-space area, consistent with its generalist habitat use (Fig. 3). As the generalist species Gehyra versicolor and Oedura cincta both fell outside of the perch spaces plotted for Anolis, but were close to A. *rhombifer*, we propose a new 'generalist' or 'ground – bush – twig' ecotype for Australian geckos, overlapping with the 'bush – twig' and the 'trunk – ground' perch-space area.

Hagey, Harte, et al. (2017) suggested that *Pseudothecadactylus australis* was in the overlapping area between 'trunk – crown' and 'crown – giant' ecotype. Our more extensive sampling revealed that it does use thick trunks of rainforest trees, but also thin branches of the same trees, vines, bamboo, and occurs outside rainforest in heath and woodland habitats, where it uses lower-growing trees with thin branches as well (Fig. 3, 5). Thus, we agree they are 'trunk – crown' ecotypes, but not in the 'crown – giant' group. Our extensive sampling of *Gehyra dubia* reveals that it uses higher perches on average than previously 18 333 recorded (Hagey, Harte, et al. 2017). This suggests that extensive sampling of habitat use can be useful, even for common species (in Australia). The primarily padless Carphodactylidae were not included in Hagey, Harte, et al. (2017), and detailed ecological data, including perch height and diameter, are reported here for the first time. While Saltuarius cornutus occupies a perch space similar to 'trunk – crown'/'crown – giant' ecotypes, Phyllurus nepthys fits within the 'trunk – ground' ecotype similar to Oedura or Gehyra species outside rainforest habitats. Notably, we found Phyllurus nepthys using its full range of microhabitats (trees, rocks, ground) only in the highest elevation areas of its habitat (Dalrymple Heights, nearly 1000 m), whereas they used boulders or man-made structures (concrete bridges) in or near rainforest streams in the lower elevations of their range (Finch Hatton Gorge, 300 - 400 m; Broken River, 600 - 700 m). Leaf-tailed geckos are dependent on habitats with high humidity, and these ancient rainforest lineages use rocky landscapes (lithorefugia) as habitats (Couper & Hoskin 2008). Carphodactylus leavis, which exclusively used small saplings to perch head-down, low to the ground, potentially falls in our proposed 'grass' ecotype. Both, Heteronotia binoei and Nactus eboracensis occupied perch spaces far outside those plotted for anoles. And although H. binoei is a generalist, while N. eboracensis is terrestrial, both species used the ground in more than 50% of

captures (Fig. 3). Therefore, these two species might be described as part of a 'ground-log' or 'ground-log-trunk' ecotype. We would need additional perch data from more Australian gecko species to validate the consistency of these proposed ecotypes.

Importance of natural history studies

Australia supports some of the world's most diverse gecko communities, yet most species are data deficient, even in terms of basic ecological or natural history data (Meiri 2018). To better manage communities and understand the impacts of environmental changes on communities, we need to understand how species use their environment. Overall, our results are in accord with previous detailed studies, where they are available (Pianka 1969; Pianka & Pianka 1976; Henle 1990; Nordberg, Edwards, et al. 2018; Nordberg, Murray, et al. 2018; Nordberg & Schwarzkopf 2019b), emphasizing that even anecdotal observations can provide useful insights into animal ecology. Our study adds considerable new or updated information about the microhabitat use, perch-space, and ecological niche space of Australian geckos, and provides an ecomorph classification of geckos similar to that established for anoles. We encourage field biologists in all research areas to collect data on the ecology of the species they collect, and to publish them, or make them publicly available in other venues, such as public databases.

Acknowledgements

We thank P. O'Reagain and J. Bushell of the Queensland Department of Agriculture and Fisheries for letting us conduct this research on the Wambiana Grazing Trial, and for the use

1	372	of storage space, vehicles and equipment. We thank the Lyons family for accommodation
2 3	373	and access to Wambiana Cattle Station. We thank Roberta and Paul Michna for access to
4 5 6	374	the Wairambar Research Station, and Keith and Anita Cook and Gabrielle Davidson at the
7 8	375	Iron Range Research Station for accommodation and access to their properties. For
9 0 1	376	assistance during field work, we thank L. Edwards, B. Muller, D. McKnight, R. Budd, K.
2 3 4	377	O'Reilly, C. De Jong, H. Jones, C. Meek, F. Ritter, R. Pillai, E. Nagombi, P. Murray, L Heilbronn,
5 6	378	P. Stutterheim, R. Duffy, V. Udyawer, J. Nordine, S. Hart, J. McIntrye, J. Waugh, L. Carr, L
7 8 9	379	Bertola, S. Zozaya, N. Weigner, L. Stanke, E. Riedel, J Cornelis and D. Case.
0 1 2	380	
3		
4 5 6	381	Authors contribution
7 8 9	382	JR, EJN and LS conceived the project idea and designed the project. JR and EJN collected and
0 1	383	analysed the data and led the writing of the manuscript. JR, EJN and LS contributed critically
2 3 4	384	to drafts and gave final approval for publication.
5 6 7	385	
8 9		
0 1	386	Fundings
23	207	Field work at Mambiana cattle station was funded by Meat and Livesteek Australia to L
4 5	387	Field work at Wambiana cattle station was funded by Meat and Livestock Australia to L.
6 7 8	388	Schwarzkopf (grant number B.ERM.0088). Field work in the Australian Wet tropics, Eungella
9 0	389	National Park and Iron Range National Park was funded by a Skyrail Rainforest Research
1 2 3	390	Fund to J. Riedel.
4 5	391	
6 7		
8 9 0	392	Ethics and permits
1 2		
3 4		
5		

Field work at Wambiana cattle station was conducted under the Queensland Department of Environment and Heritage Protection (DEH) research permit WISP14656614 and approved by the Animal Ethics A2050 approval from James Cook University (JCU). Field work at the remaining sites was conducted under the permit from the DEH (WA0005590) for non-protected areas and the Queensland Department of National Parks, Sports and Racing (WITK18258517) for protected areas, and Animal Ethics A2409 approval (JCU). **Figures** Figure 1. Survey sites across Queensland, Australia. (A) Cape York Peninsula, showing the locations surveyed at the Iron Range site. (B) Townsville region with the sites Hervey Range, Hidden Valley, Paluma Range, Mt. Elliot and Wambiana. (C) Locations surveyed in the area around Winton. (D) Locations surveyed around Windorah. Each point refers to an area surveyed. Areas of similar habitat at each site are called 'locations' (Table 1). Figure 2. Perch locations: log (1), tree trunk (2), primary branch (3), secondary branch (4), tertiary branch (5), grass (6), horizontal on rocks (7), on overhanging rock or crevice (8), vertically on rock (9), bush and shrub (10), ground (11). Figure 3. Gecko community perch locations across Queensland, Australia. Arb. = arboreal species, Gen. = generalist species, Sax. = saxicoline (rock-dwelling) species, Ter. = terrestrial species. Figure 4. Saxicolous species' perch orientation on rocks.

417	Figure 5: Perch space (height and diameter) used by Australian geckos, overlayed on
418	polygons indicating the range in mean perch spaces occupied by anole ecomorphs (adapted
419	from Hagey, Harte et al. 2017). Points for geckos are centroid means \pm SE.
420	
421	References
422	Augros S, Scherz MD, Wang-Claypool CY, Montfort L, Glaw F, Hawlitschek O. 2018. Comparative
423	perch heights and habitat plant usage of day geckos (Phelsuma) in the Comoros Archipelago
424	(Squamata: Gekkonidae). Salamandra. 54:71–74.
425	Brennan IG, Oliver PM. 2017. Mass turnover and recovery dynamics of a diverse Australian
426	continental radiation. Evolution (N Y). 71:1352–1365.
427	Bustard HR. 1965. Observations on Australian geckos. Herpetologica. 21:294–302.
428	Cogger HG. 2015. Reptiles and Amphibians of Australia.
429	Collins CE, Russell AP, Higham TE. 2015. Subdigital adhesive pad morphology varies in relation to
430	structural habitat use in the Namib Day Gecko. Funct Ecol. 29:66–77.
431	Couper PJ, Covacevich JA, Moritz CC. 1993. A review of the leaf-tailed geckos endemic to eastern
432	Australia: a new genus, four new species, and other new data. Mem Queensl Museum. 34:95–124.
433	Couper PJ, Hoskin CJ. 2008. Litho-refugia: The importance of rock landscapes for the long-term
434	persistence of Australian rainforest fauna. Aust Zool. 34:554–560.
435	Davis AM, Betancur-R R. 2017. Widespread ecomorphological convergence in multiple fish families
436	spanning the marine-freshwater interface. Proc R Soc B Biol Sci. 284:20170565.
437	Fitch HS. 1970. Reproductive cycles in lizards and snakes. Univ Kans Mus Nat Hist Misc Publ. 52:1–
438	247.

Fujita MK, McGuire JA, Donnellan SC, Moritz CC. 2010. Diversification and persistence at the arid-monsoonal interface: Australia-wide biogeography of the Bynoe's gecko (heteronotia binoei; gekkonidae). Evolution (N Y). 64:2293–2314.

Gamble T, Bauer AM, Greenbaum E, Jackman TR. 2008. Out of the blue: a novel, trans-Atlantic clade 10 443 of geckos (Gekkota, Squamata). Zool Scr. 37:355–366.

Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM. 2012. Repeated origin and loss of adhesive toepads in geckos. PLoS One. 7:e39429.

Garcia-Porta J, Ord TJ. 2013. Key innovations and island colonization as engines of evolutionary **447** diversification: a comparative test with the Australasian diplodactyloid geckos. J Evol Biol. 26:2662-2680.

Greer AE. 1989. The biology and evolution of Australian lizards. Chipping Norton, New South Wales: Surrey Beatty and Sons.

Hagey TJ, Harte S, Vickers M, Harmon LJ, Schwarzkopf L. 2017. There's more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads. PLoS One. 12:e0184641.

Hagey TJ, Uyeda JC, Crandell KE, Cheney JA, Autumn K, Harmon LJ. 2017. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution (N Y). 71:2344-2358.

Han D, Zhou K, Bauer AM. 2004. Phylogenetic relationships among gekkotan lizards inferred from C-

mos nuclear DNA sequences and a new classification of the Gekkota. Biol J Linn Soc. 83:353–368.

Harfoot MBJ, Newbold T, Tittensor DP, Emmott S, Hutton J, Lyutsarev V, Smith MJ, Scharlemann **459** JPW, Purves DW. 2014. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLOS Biol. 12:e1001841.

Henle K. 1990. Population Ecology and Life History of Three Terrestrial Geckos in Arid Australia.

Copeia. 1990:759-781.

463 Henle K. 1991. Life history patterns in lizards of the arid and semiarid zone of Australia. Oecologia. 88:347-358.

Henkel FW. 2010. Geckos of Australia. Frankfurt am Main, Germany: Edition Chimaira.

Irschick DJ, Austin CC, Petren K, Fisher RN, Losos JB, Ellers O. 1996. A comparative analysis of clinging **467** ability among pad-bearing lizards. Biol J Linn Soc. 59:21–35.

Irschick DJ, Vitt LJ, Zani PA, Losos JB. 1997. A Comparison of Evolutionary Radiations in Mainland and Caribbean Anolis Lizards. Ecology. 78:2191–2203.

Johansen T. 2012. A field guide to the geckos of Northern Territory. Bloomington: AuthorHouse.

Kulyomina Y, Moen DS, Irschick DJ. 2019. The relationship between habitat use and body shape in geckos. J Morphol. 280:722-730.

Langerhans RB, Knouft JH, Losos JB. 2006. Shared and unique features of diversification in greater antillean Anolis ecomorphs. Evolution (N Y). 60:362-369.

Laver RJ, Nielsen S V, Rosauer DF, Oliver PM. 2017. Trans-biome diversity in Australian grass-

specialist lizards (Diplodactylidae: Strophurus). Mol Phylogenet Evol. 115:62–70.

477 Losos JB. 1992. The Evolution of Convergent Structure in Caribbean Anolis Communities. Syst Biol. ⁴⁴ 478 41:403-420.

Losos JB. 1994. Integrative Approaches to Evolutionary Ecology: Anolis Lizards as Model Systems. Annu Rev Ecol Syst. 25:467–493.

Losos JB. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat. **482** 175:623-639.

Losos JB. 2011. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. Berkley Los

Angeles London: Univ of California Press.

3 485 Meiri S. 2018. Traits of lizards of the world: Variation around a successful evolutionary design. Glob Ecol Biogeogr. 27:1168–1172.

Meiri S. 2019. What geckos are – an ecological-biogeographic perspective. Isr J Ecol Evol.

Melville J, Harmon LJ, Losos JB. 2006. Intercontinental community convergence of ecology and morphology in desert lizards. Proc R Soc B Biol Sci. 273:557–563.

17 490 Mesquita DO, Costa GC, Colli GR, Costa TB, Shepard DB, Vitt LJ, Pianka ER. 2016. Life-history patterns of lizards of the world. Am Nat. 187:689–705.

Michael DR, Lindenmayer DB. 2010. The conservation of reptiles in the temperate woodlands of southern New South Wales. Temp Woodl Conserv Manag Melb CSIRO Publ.:217–223.

Michael DR, Kay GM, Crane M, Florance D, MacGregor C, Okada S, McBurney L, Blair D, Lindenmayer DB. 2015. Ecological niche breadth and microhabitat guild structure in temperate Australian reptiles: Implications for natural resource management in endangered grassy woodland ecosystems. Austral Ecol. 40:651–660.

498 Moritz CC, Fujita MK, Rosauer DF, Agudo R, Bourke G, Doughty P, Palmer RA, Pepper M, Potter S, Pratt RC, et al. 2016. Multilocus phylogeography reveals nested endemism in a gecko across the monsoonal tropics of Australia. Mol Ecol. 25:1354-1366.

46 501 Neilly H, Nordberg EJ, VanDerWal J, Schwarzkopf L. 2018. Arboreality increases reptile community resistance to disturbance from livestock grazing. J Appl Ecol. 55:786–799.

Nielsen S V, Oliver PM, Laver RJ, Bauer AM, Noonan BP. 2016. Stripes, jewels and spines: further investigations into the evolution of defensive strategies in a chemically defended gecko radiation 56 505 (Strophurus, Diplodactylidae). Zool Scr. 45:481–493.

Nordberg EJ. 2018. The Impacts of Cattle Grazing on Arboreal Reptiles. Townsville: James Cook

University.

3 508 Nordberg EJ. 2019. Potential impacts of intraguild predation by invasive Asian house geckos. Austral Ecol. 44:1487-1489.

Nordberg EJ, Edwards L, Schwarzkopf L. 2018. Terrestrial invertebrates: An underestimated predator guild for small vertebrate groups. Food Webs. 15:e00080.

Nordberg EJ, Murray P, Alford RA, Schwarzkopf L. 2018. Abundance, diet and prey selection of 14 5**12** arboreal lizards in a grazed tropical woodland. Austral Ecol. 43:328–338.

Nordberg EJ, Schwarzkopf L. 2019a. Heat seekers: A tropical nocturnal lizard uses behavioral

thermoregulation to exploit rare microclimates at night. J Therm Biol. 82:107-114

Nordberg EJ, Schwarzkopf L. 2019b. Reduced competition may allow generalist species to benefit from habitat homogenization. J Appl Ecol. 56:305–318.

Oliver PM, Doughty P. 2016. Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones. Zootaxa. 4088:151-**520** 176.

521 Oliver PM, Travers SL, Richmond JQ, Pikacha P, Fisher RN. 2017. At the end of the line: independent overwater colonizations of the Solomon Islands by a hyperdiverse trans-Wallacean lizard lineage (Cyrtodactylus: Gekkota: Squamata). Zool J Linn Soc. 182:681-694.

46 524 Pepper M, Doughty P, Hutchinson MN, Keogh JS. 2011. Ancient drainages divide cryptic species in Australia's arid zone: Morphological and multi-gene evidence for four new species of Beaked Geckos (Rhynchoedura). Mol Phylogenet Evol. 61:810-822.

Pianka ER. 1969. Habitat Specificity, Speciation, and Species Density in Australian Desert Lizards. **528** Ecology. 50:498-502.

Pianka ER, Pianka HD. 1976. Comparative ecology of twelve species of nocturnal lizards (Gekkonidae)

in the Western Australian desert. Copeia.:125–142.

3 531 Pianka ER, Vitt LJ, Pelegrin N, Fitzgerald DB, Winemiller KO. 2017. Toward a Periodic Table of Niches, or Exploring the Lizard Niche Hypervolume. Am Nat. 190:601-616.

Poe S, Anderson CG. 2019. The existence and evolution of morphotypes in Anolis lizards: coexistence

patterns, not adaptive radiations, distinguish mainland and island faunas. PeerJ. 6:e6040.

Queensland Herbarium. 2019. Regional Ecosystem Description Database (REDD). DES, editor. 14 535

Riedel J, Vucko MJ, Blomberg SP, Robson SKA, Schwarzkopf L. 2019. Ecological associations among

epidermal microstructure and scale characteristics of Australian geckos (Squamata:

Carphodactylidae and Diplodactylidae). J Anat. 234: 853-874.

Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, Böhm M, Castro-Herrera F, Chirio L, Collen B, et al. 2017. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol. 1:1677–1682.

Rothier PS, Brandt R, Kohlsdorf T. 2017. Ecological associations of autopodial osteology in Neotropical geckos. J Morphol. 278:290–299.

Roughgarden J. 1995. Anolis lizards of the Caribbean: ecology, evolution, and plate tectonics. Oxford: Oxford University Press.

Russell AP. 2002. Integrative functional morphology of the gekkotan adhesive system (Reptilia:

Gekkota). Integr Comp Biol. 42:1154–1163.

Russell AP, Stark AY, Higham TE. 2019. The Integrative Biology of Gecko Adhesion: Historical Review,

Current Understanding, and Grand Challenges. Integr Comp Biol. 59:101–116.

Shea GM, Couper PJ, Worthington Wilmer J. 2011. Revision of the genus Cyrtodactylus Gray, 1827

(Squamata: Gekkonidae) in Australia. Zootaxa. 3146:1–63.

552 Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-

Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, et al. 2010. Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches. Science. 328:894–899.

Skipwith PL, Bauer AM, Jackman TR, Sadlier RA. 2016. Old but not ancient: coalescent species tree of New Caledonian geckos reveals recent post-inundation diversification. J Biogeogr. 43:1266–1276.

Storr GM, Smith LA, Johnstone RE. 1990. Lizards of Western Australia. III. Geckos Pygopods West Aust Museum, Perth.

Uetz P, Jirí Hošek P. 2019. The reptile database [Internet]. 2019. Available from: http://www.reptile-database.org

Valentine JW, Jablonski D, Krug AZ, Roy K, Paleobiology S, Spring N. 2008. Incumbency, Diversity, and Latitudinal Gradients. Paleobiology. 34:169–178.

Vanderduys EP. 2017. A new species of gecko (Squamata: Diplodactylidae: Strophurus) from central Queensland, Australia. Zootaxa. 4347:316–330.

Vidan E, Novosolov M, Bauer AM, Herrera FC, Chirio L, de Campos Nogueira C, Doan TM, Lewin A, Meirte D, Nagy ZT, et al. 2019. The global biogeography of lizard functional groups. J Biogeogr. 46: 2147-2158

Wilson SK, Knowles D. 1988. Australia's reptiles: a photographic reference to the terrestrial reptiles of Australia: Collins Australia.

46 570 Wilson SK. 2015. A fieldguide to reptiles of Queensland. 2nd ed. London, Sydney, Auckland: Reed New Holland Publishers Pty Ltd.

Wölfer J, Arnold P, Nyakatura JA. 2019. Effects of scaling and locomotor ecology suggest a complex evolution of scapular morphology in sciuromorph rodents. Biol J Linn Soc. 127:175–196.

Wright JW, Vitt LJ. 1993. Biology of whiptail lizards (genus Cnemidophorus). Oklahoma Museum Nat 59 575 Hist.:416 pp.

1	576	Zaaf A, Van Damme R. 2001. Limb proportions in climbing and ground-dwelling geckos (Lepidosauria,
2 3 4	577	Gekkonidae): a phylogenetically informed analysis. Zoomorphology. 121:45–53.
5 6	578	Zhuang M V, Russell AP, Higham TE. 2019. Evolution of pedal digit orientation and morphology in
7 8 9	579	relation to acquisition and secondary loss of the adhesive system in geckos. J Morphol. 280:1582–
9 0 1 2	580	1599.
2 3 4	581	Zozaya SM, Alford RA, Schwarzkopf L. 2015. Invasive house geckos are more willing to use artificial
5 6 7	582	lights than are native geckos. Austral Ecol. 40:982–987
8 9	583	Zozaya SM, Higgie M, Moritz CC, Hoskin CJ. 2019. Are pheromones key to unlocking cryptic lizard
0 1 2	584	diversity? Am Nat. 194:168–182.
3 4 5	585	
6 7		
8 9		
0 1		
1 2 3 4 5 6		
4 5		
6 7 8		
0 9 0		
1 2		
3 4		
5 6		
7 8		
9 0		
1 2		
3 4		
5 6		
7 8		
9 0		
1 2		
3 4		

Tables

Table 1: Overview over the areas surveyed for this study and the bioregion to which these belong. The habitat categories, which we assigned, are shown as well as the standardized reginal ecosystem codes (Queensland Herbarium 2019) for the areas in question. Species richness displayed the number of species detected in our surveys, with an ID matching that given for each species Table 2. Each habitat type in a geographic area (Site) is summarized as one location for this study.

Geographic Area	Bioregion	Habitat	Regional ecosysthem codes: BVG1M (% covered)	Species richness	Species ID
		Rainforest	3.11.1 / 3.11.3 / 3.11.11 (70/20/10)	2	8, 26
Iron Range	Cape York	Woodland	3.12.10 / 3.12.21 / 3.12.41 /3.12.28 / 3.12.11 (50/20/10/10/10)	8	1/2/8/11/12/16/19/2 6
	Peninsular	Heath	3.3.5a / 3.5.42 / 3.7.6x2 (40/40/20) 3.12.47 / 3.12.41 (80/20)	4	1/8/16/17/34
Tablelands	Wet tropics	Rainforest	7.8.2a	2	2/29
Paluma Range	Wet tropics	Rainforest	7.12.16	1	29
Mt. Elliot	Wet tropics	Rainforest	11.12.4	1	24
	Central	Rainforest	8.12.2 / 8.12.3a / 8.12.19 (40/30/30)	1	25
Eungella	Queensland Coast	Woodland	8.12.4 / 8.12.7a (60/40)	3	8/23/25
Hervey's Range / Townsville Region	Bringalow Belt	Woodland	9.11.2a/9.11.5	6	5/7/12/14/19/27
Hidden Valley	Einasleigh Uplands	Woodland	9.12.19 7.12.65k	4	1/21/22/34
Wambiana Station	Desert Uplands	Woodland		6	8/11/12/14/19/34
Winton	Mitchell Grass Downs	Woodland	4.9.14x44 / 4.4.1xb (70/30) 4.7.1a / 4.7.2 / 4.7.2x1a / 4.7.4a (50/20/20/10)	10	1/6/9/10/11/13/17/2 0/32/33

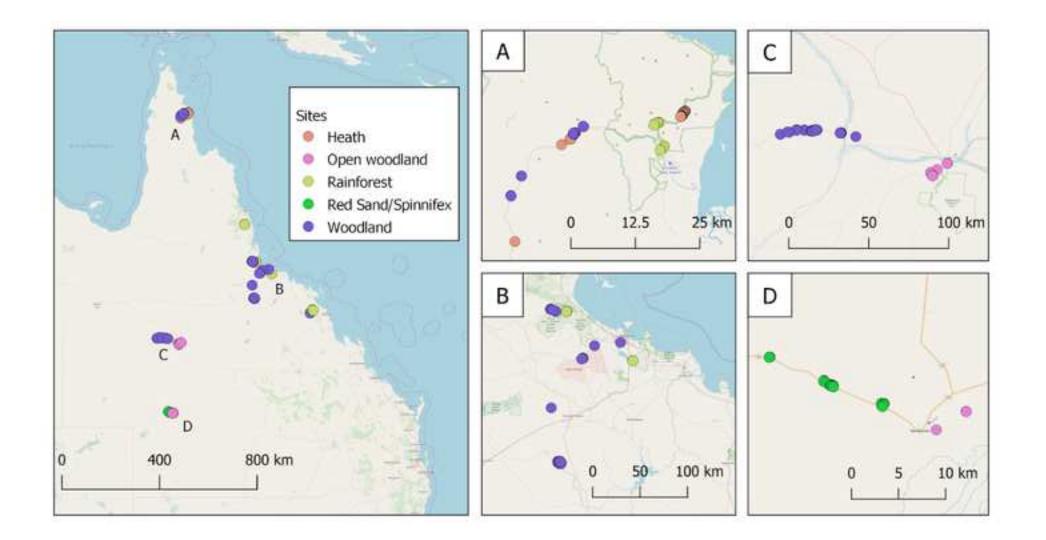
		Savannah Woodland	5.7.1 / 4.5.6x4 / 4.7.2x2 (50/30/20)	6	6/13/14/20/28/32
	Channel	Desert	5.6.5a	4	10/15/18/30
Windorah	Country	Savannah Woodland	5.5.2 / 5.3.16a (90/10)	3	10/30/31

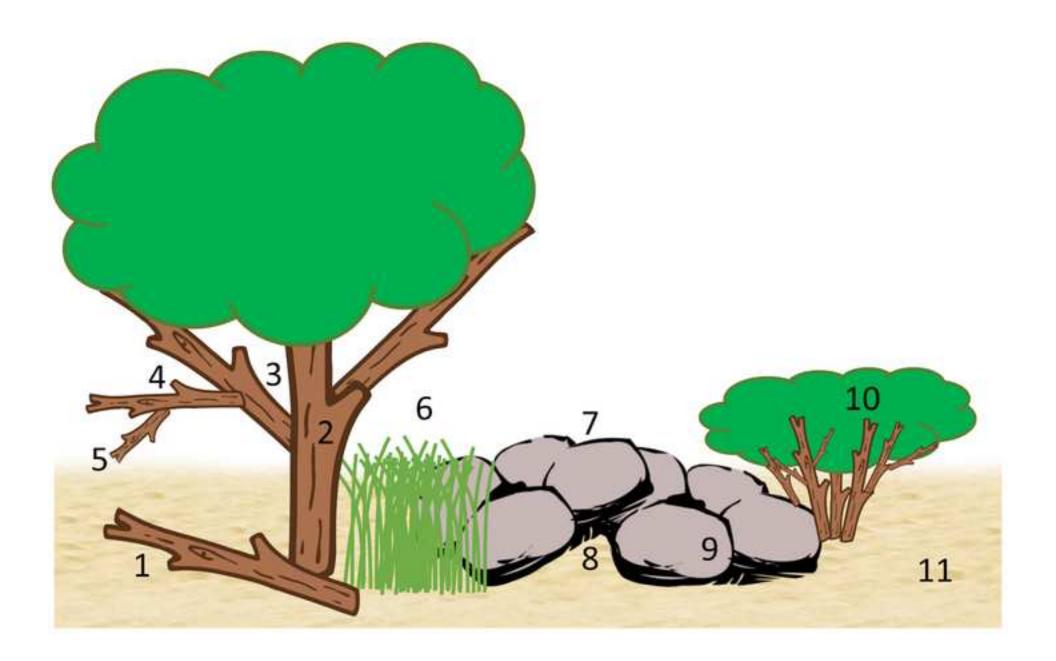
Table 2: Comparison of habitat use and size data available from the literature and the data added in this study for the species surveyed in this study (ID's for species are given in brackets to match Table 1). In cases where conflicting information is available from the literature, different information from different

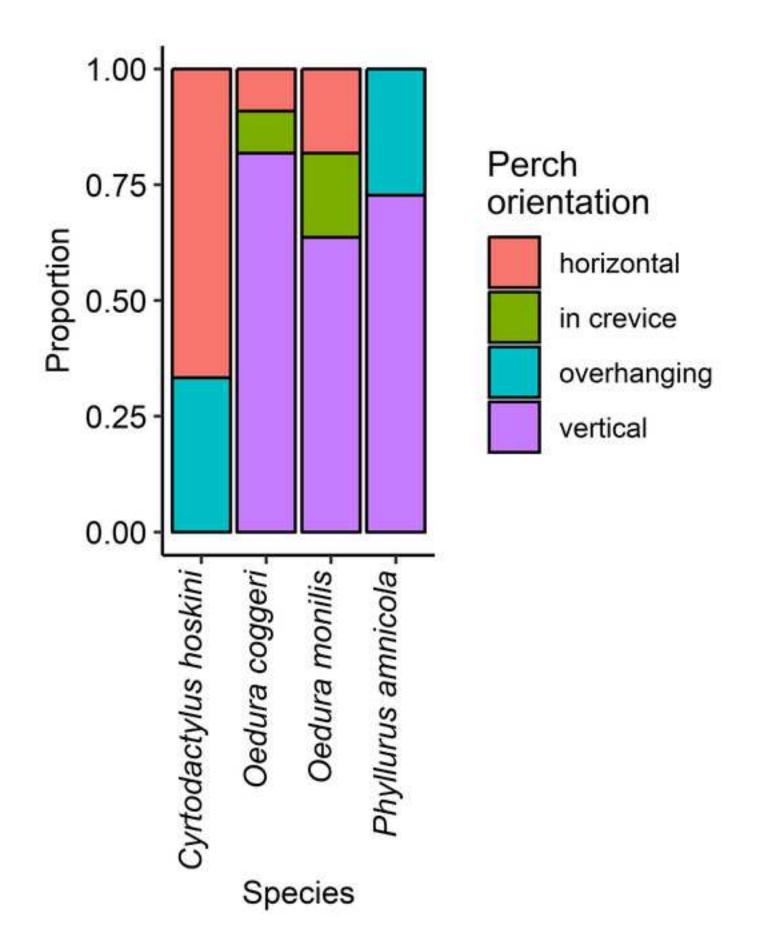
sources are separated by a semicolon, and the sources are separated accordingly. SVL data from the literature are maximum values, unless marked with and *, in which case they are average values. PH and PD refer to average perch height and perch diameter respectively. References: 1) Wilson 2015. 2) Cogger 2015. 3) Michael et al. 2015. 4) Bustard 1965. 5) Nordberg and Schwarzkopf 2019a. 6) Pianka and Pianka 1976. 7) Neilly et al. 2018. 8) Pianka 1969. 9) Zozaya et al. 2015. 10)Wilson and Knowles 1988. 11) Michael and Lindenmayer 2010. 12) Meiri 2018. 13) Nielsen et al. 2016 14) Storr et al. 1990 15) Shea et al. 2011. 16) Johansen 2012. 17) Henle 1991. 18) Mesquita et al. 2016. 19) Oliver et al. 2017. 20) Henkel 2010. 21) Oliver and Doughty 2016. 22) Pepper et al. 2011. 23) Couper et al. 1993. 24) Vanderduys 2017. 25) Hagey, Harte et al. 2017

	Existing Knowled	dge		Upd	lated Information - this stud	ly
Species	-	-	Ref			'n
	Macrohabitat	Widespread forests, woodlands	1,3,13	Macrohabitat	Heath and woodlands	22
	Microhabitat	Under bark	3	Microhabitat	Trees and rocks	22
Amalosia rhombifer	Lifestyle	Arboreal; Generalist	1,13; 12,14	Lifestyle	Generalist	22
(1)	Perch location	PH: 81.4 cm and PD: 11.8 cm	25	Perch location	Branches and rocks	22
	SVL	70; 80	1,13; 12	SVL	48.94 ± 1.59	17
	Mass			Mass	2 ± 0.2	17
	Macrohabitat	Wet tropics - rainforests	1	Macrohabitat	Rainforest	4
	Microhabitat	Leaf litter, slender twigs	1	Microhabitat	Trees, ground	4
Carphodactylus laevis	Lifestyle	Scansorial	13	Lifestyle	Arboreal	4
(2)	Perch location	Slender twigs	1	Perch location	Tree trunks, ground	4
	SVL	130	1	SVL	93.5 ± 6.96	4
	Mass			Mass	14.71 ± 2.9	4
	Macrohabitat	Endemic - western edge of Iron Range	15,1	Macrohabitat	Woodland	3
	Microhabitat	Granite boulders, open forest	15,1	Microhabitat	Rocks	3
Cyrtodactylus hoskini	Lifestyle	Saxicoline	12	Lifestyle	Saxicoline	3
(3)	Perch location			Perch location	Rocks	3
Cyrtodactylus hoskini	SVL	64;112	15,1	SVL	111 ± 2.08	3
	Mass			Mass	24.96 ± 0.9	3

(5)Perch locationPerch locationGround7SVL601SVL39.1 ± 1.417Mass2.18 ± 0.227MassClay soils; arid regions1; 13MacrohabitatSavannah woodland, woodlandMicrohabitatClay soils; arid regions1; 13MacrohabitatOpen ground13MicrohabitatTerrestrial1,13,16,17LifestyleTerrestrial13Perch locationFor So, 581,13; 12SVL47.83 ± 2.1111MassSovonhabitat1,33Macrohabitat1111MassLifestyleTerrestrial1,13; 12SVL47.83 ± 2.1111MassLifestyleTerrestrial1,1312Uoodland7MicrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround7MicrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround7MicrohabitatLeaf litter, under log/rock; surface debris3; 10Microhabitat77MicrohabitatLeaf litter, under log/rock; surface debris3; 10Microhabitat77Perch locationFallen twigs1Perch locationGround, twigs7SVLS0; 59.51; 12SVL46.81 ± 0.6667MassJo6 ± 0.167Mass3.06 ± 0.167							
Delma tincta (4)Lifestyle Perch locationFossorial, terrestrial12Lifestyle Perch locationTerrestrial1(4)Perch locationSvL Mass921SvL MassGround1Nacrohabitat MicrohabitatWidespread, arid woodlands, scrublands1Macrohabitat MicrohabitatWoodland7Nacrohabitat (5)Microhabitat VLTerrestrial1,12Lifestyle TerrestrialTerrestrial7Perch location (5)Forsonial, arid regions1,12Lifestyle TerrestrialTerrestrial7Diplodactylus (6)SVL601SVL39.1 ± 1.417Microhabitat tesseldus (6)Clay soils; arid regions1; 13Macrohabitat MicrohabitatSavannah woodland, woodland tesseldusMicrohabitat (6)Microhabitat VLSo; 581,13; 16,17Lifestyle TerrestrialTerrestrial13Macrohabitat MicrohabitatVoodlands1,31Macrohabitat MicrohabitatVoodlands7Macrohabitat (7)Woodlands1,31Macrohabitat MicrohabitatVoodlands7Macrohabitat (8)Woodlands1,31Macrohabitat MicrohabitatVoodlands7Macrohabitat (7)Perch location SvLS0; 59.51,31Microhabitat Microhabitat7Macrohabitat (8)Woodlands1,5Macrohabitat Microhabitat7Macrohabitat (8)Widespread, woodlands1,5Macrohabitat M		Macrohabitat	Widespread, woodlands	1,3	Macrohabitat	Woodland	1
(4) Perch location SVL 92 1 SVL Ground 1 Mass Mass Mass Mass Open ground 7 Inderohabitat Microhabitat Widespread, arid woodlands, scrublands 1 Macrohabitat Open ground 7 Ioldoctr/lus platyurus (5) Lifestyle Perch location Terrestrial 1,12 Lifestyle Terrestrial 7 Mass SVL 60 1 SVL 39.1 ± 1.41 7 Mass Microhabitat Terrestrial 1,13 Macrohabitat Savannah woodland, woodland Microhabitat Clay soils; arid regions 1; 13 Macrohabitat Open ground 13 Microhabitat Terrestrial 1,13,16,17 Lifestyle Terrestrial 13 Perch location SVL 50; 58 1,13; 16,17 Lifestyle Terrestrial 13 iplodactr/lus vittatus Lifestyle Terrestrial 1,13 Mass 291 ± 0.29 11 (7) Perch location SVL 50; 59.5 1,12		Microhabitat	Under log, rocks	3	Microhabitat	Leaf litter	1
SVL Mas 92 1 SVL Mas Macrohabitat Microhabitat Midespread, arid woodlands, scrublands 1 Macrohabitat Woodland 7 Microhabitat (5) Microhabitat Terrestrial 1,12 Lifestyle Microhabitat Terrestrial 7 Diplodactylus platyurus (5) Eifestyle Terrestrial 1,12 Lifestyle Terrestrial 7 SVL 60 1 SVL 30.1 ± 1.41 7 Macrohabitat Clay soils, arid regions 1; 13 Macrohabitat Open ground 13 Microhabitat Lifestyle Terrestrial 1,13,16,17 Lifestyle Terrestrial 13 Perch location Ferch location Ferch location Ground 7 Microhabitat Woodlands 1,3; 12 SVL 47.83 ± 2.11 11 Mass 2.91 ± 0.29 11 Mass 2.91 ± 0.29 11 Microhabitat Leaf litter, under log/rock; surface debris 3; 10 Microhabitat Ground 7 SVL	(4) Diplodactylus platyurus	Lifestyle	Fossorial, terrestrial	12	Lifestyle	Terrestrial	1
SVL Mass 92 1 SVL Mass Macrohabitat Microhabitat Widespread, arid woodlands, scrublands Macrohabitat Woodland 7 Macrohabitat Microhabitat Widespread, arid woodlands, scrublands 1,12 Macrohabitat Open ground 7 Macrohabitat Terrestrial 1,12 Lifestyle Terrestrial 7 SVL 60 1 SVL 30.1 ± 1.41 7 Macrohabitat Clay soils, arid regions 1; 13 Macrohabitat Open ground 13 Microhabitat Clay soils, arid regions 1; 13 Macrohabitat Open ground 13 Microhabitat Lifestyle Terrestrial 1,13,16,17 Lifestyle Terrestrial 13 Microhabitat Woodlands 1,13,12 SVL 47.88 ± 2.11 11 Mass 2.91 ± 0.29 11 Macrohabitat Woodlands 7 Microhabitat Woodlands 1,33 Macrohabitat Gond 7 Microhabitat Woodlands 1,3 <th< td=""><td>(4)</td><td>Perch location</td><td></td><td></td><td>Perch location</td><td>Ground</td><td>1</td></th<>	(4)	Perch location			Perch location	Ground	1
Additional and a constraint of the second		SVL	92	1	SVL		
MicrohabitatMicrohabitatOpen ground7LifestyleTerrestrial1,12LifestyleTerrestrial7Perch locationSVL601SVL39.1 ± 1.417Mass2.18 ± 0.227Mass2.18 ± 0.227MacrohabitatClay soils; arid regions1; 13MacrohabitatSvannah woodland, woodlandMicrohabitatClay soils; arid regions1; 13MacrohabitatSvannah woodland, woodland, woodland, woodlandMicrohabitatClay soils; arid regions1; 13MacrohabitatSvannah woodland, woodland, woodland, woodland, woodland, woodland, woodland, woodland, woodland, soils, with the soil of the soilsSvannah woodland, woodland, woodland, woodland, woodland, woodland, soils, with the soil, with the soil of the soilsSvannah woodland, woodland, woodland, woodland, woodland, woodland, woodland, woodland, soil, with the soil, with the soil, with the soil, woodland, w		Mass			Mass		
Indecactylus platyurus (5)Lifestyle Perch location SVLTerrestrial1,12Lifestyle Perch location SVLTerrestrial7 Perch locationDiplodactylus tesselatus (6)MarcohabitatClay soils; arid regions1,13MacrohabitatSvL39.1 ± 1.417MarcohabitatClay soils; arid regions1; 13MacrohabitatSavannah woodland, woodlandMicrohabitatClay soils; arid regions1; 13MacrohabitatOpen ground13MicrohabitatTerrestrial1,13,16,17LifestyleTerrestrial13Perch location (6)Ferrestrial1,13; 12SvL47.83 ± 2.1111Mass2.91 ± 0.2911MacrohabitatWoodlands7MicrohabitatWoodlands1,3MacrohabitatGround7MicrohabitatLifestyleTerrestrial1,12LifestyleTerrestrial7MicrohabitatLifestyleTerrestrial1,12LifestyleTerrestrial7MicrohabitatLifestyleTerrestrial1,12LifestyleTerrestrial7MicrohabitatLifestyleTerrestrial1,12LifestyleTerrestrial7Mass1,13MacrohabitatGround777MicrohabitatLifestyleTerrestrial1,12LifestyleTerrestrial7MicrohabitatLifestyleTerrestrial1,12SVL46.81 ± 0.667Mass3.06 ± 0.167Mas		Macrohabitat	Widespread, arid woodlands, scrublands	1	Macrohabitat	Woodland	7
		Microhabitat			Microhabitat	Open ground	7
SVL 60 1 SVL 39.1 ± 1.41 7 Mass 2.18 ± 0.22 7 Mass 2.18 ± 0.22 7 Macrohabitat Clay soils; arid regions 1; 13 Macrohabitat Open ground 13 tesselatus (6) Terrestrial 1,13,16,17 Lifestyle Terrestrial 13 Perch location SVL 50; 58 1,13; 12 SVL 47.83 ± 2.11 11 Mass 2.91 ± 0.29 11 1 33 2.91 ± 0.29 11 Mass 1,13; 12 SVL 47.83 ± 2.11 11 10 10 11 10 10 11 11 10 10 11	Diplodactylus platyurus	Lifestyle	Terrestrial	1,12	Lifestyle	Terrestrial	7
	(5)	Perch location			Perch location	Ground	7
Diplodactylus tesselatus (6)Macrohabitat MicrohabitatClay soils; arid regions1; 13Macrohabitat MicrohabitatSavannah woodland, woodland(6)Microhabitat Perch location SVLTerrestrial1,13,16,17Lifestyle Perch locationTerrestrial13(6)SVL50; 581,13; 12SVL47.83 ± 2.1111Mass.91 ± 0.2911MassMacrohabitatWoodlands1,3MacrohabitatWoodland7MicrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround7(7)Lifestyle Perch locationTerrestrial1, 12Lifestyle Perch locationTerrestrial7(7)Lifestyle Perch locationFallen twigs1Perch location Ground, twigs77(7)MicrohabitatWidespread, woodlands1, 5Macrohabitat MassGround, twigs7SVL (8)50; 59.51; 12SVL46.81 ± 0.667Mass.3.06 ± 0.167Mass3.06 ± 0.167MicrohabitatWidespread, woodlands1, 5MacrohabitatTrees1544(8)MicrohabitatTree trunks; man-made structures SVL5,7; 9MicrohabitatTrees1544(9)MicrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7(9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		SVL	60	1	SVL	39.1 ± 1.41	7
Diplodactylus tesselatus (6)Microhabitat Lifestyle Perch location SVLTerrestrialMicrohabitat 1,13,16,17Microhabitat Lifestyle Perch location13 Terrestrial(6)SVL50; 581,13; 12SVL47.83 ± 2.1111 MassMacrohabitat MacrohabitatWoodlands1,3MacrohabitatWoodland7 TerrestrialMacrohabitat (7)Woodlands1,3MacrohabitatWoodland7 Terrestrial(7)Perch location Perch locationFallen twigs1 Terrestrial97 Terrestrial(7)Perch location Fallen twigs1,12Lifestyle Perch locationFallen twigs7 Terrestrial(7)Perch location Fallen twigs1,12SVL Perch location46.81 ± 0.6667 Mass(8)Microhabitat LifestyleWidespread, woodlands1,5Macrohabitat Widespread, woodlands1544 woodland(8)Microhabitat LifestyleTree trunks; man-made structures Arboreal5,7;9Microhabitat Trees1544 woodland(7)Microhabitat MicrohabitatTree trunks; man-made structures SVL5,7;25Perch location Microhabitat1544 woodland(8)Microhabitat MassTere trunks; man-made structures SVL5,7;25Perch location Microhabitat1544 woodland(9)Microhabitat MicrohabitatEndemic - Northwest Highlands, Mitchell grass Downs1Macrohabitat MicrohabitatWoodland7 Microhabitat <td< td=""><td></td><td>Mass</td><td></td><td></td><td>Mass</td><td>2.18 ± 0.22</td><td>7</td></td<>		Mass			Mass	2.18 ± 0.22	7
Diplodactylus tesselatus (6)LifestyleTerrestrial1,13,16,17LifestyleTerrestrial13(6)SVL50; 581,13; 12SVL47.83 ± 2.1111Mass2.91 ± 0.2911MassVoodlands1,3MacrohabitatWoodland(7)MacrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround(7)Perch locationFallen twigs1Perch locationGround7SVL50; 59.51; 12SVL46.81 ± 0.667Mass3.06 ± 0.167Mass3.06 ± 0.167SVL50; 59.51; 12SVL46.81 ± 0.667Mass3.06 ± 0.167Mass3.06 ± 0.167Mass3.06 ± 0.167Mass3.06 ± 0.167Mass3.335MacrohabitatTrees1544(8)MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544SVL65; 42.9*1;5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636Mass3.35Mass4.04 ± 0.07636Gehyra robustar (9)MicrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatRocky, ground7Gehyra robustar (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocky, ground7		Macrohabitat	Clay soils; arid regions	1; 13	Macrohabitat	Savannah woodland, woo	dland
tesselatus (6)LifestyleTerrestrial1,13,15,17LifestyleTerrestrial139erch locationSVL50; 581,13; 12SVL47.83 ± 2.1111MassSVL50; 581,13; 12SVL47.83 ± 2.1111MassMacrohabitatWoodlands1,3MacrohabitatWoodland7MacrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround7MicrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround, twigs7(7)Perch locationFallen twigs1Perch locationGround, twigs7SVL50; 59.51; 12SVL46.81 ± 0.667Mass3.06 ± 0.167Mass3.06 ± 0.167MacrohabitatWidespread, woodlands1, 5MacrohabitatTrees1544(8)MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544SVL65; 42.9*1;5SVL53.58 ± 0.37636Mass3.33.35Mass4.04 ± 0.07636Gehyra robustaEndemic - Northwest Highlands, Mitchell1MacrohabitatRocks, ground7Gehyra robustaMicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7	Diala da atulua	Microhabitat			Microhabitat	Open ground	13
(6) Perch location Ferch location Ground 13 SVL 50; 58 1,13; 12 SVL 47.83 ± 2.11 11 Mass Mass 2.91 ± 0.29 11 Macrohabitat Woodlands 1,3 Macrohabitat Woodland 7 Microhabitat Leaf litter, under log/rock; surface debris 3; 10 Microhabitat Ground 7 (7) Perch location Fallen twigs 1 Perch location Ground, twigs 7 SVL 50; 59.5 1; 12 SVL 46.81 ± 0.66 7 Mass 3.06 ± 0.16 7 Macrohabitat Videspread, woodlands 1, 5 SVL 46.81 ± 0.66 7 Mass 1, 5 Macrohabitat Tree trunks; man-made structures 5,7;9 Microhabitat Trees 1544 (8) Microhabitat Tree trunks; man-made structures 5,7;9 Microhabitat Trees 1544 (8) Microhabitat Tree trunks; man-made structures 5,7;25 Perch location		Lifestyle	Terrestrial	1,13,16,17	Lifestyle	Terrestrial	13
SVLSULSULSUL47.83 ± 2.1111Mass2.91 ± 0.2911Mass2.91 ± 0.2911MacrohabitatWoodlands1,3MacrohabitatWoodland7MicrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround7Ijplodactylus vittatusLifestyleTerrestrial1, 12LifestyleTerrestrial7(7)Perch locationFallen twigs1Perch locationGround, twigs7SVL50; 59.51; 12SVL46.81 ± 0.667Mass3.06 ± 0.167Mass3.06 ± 0.167MacrohabitatWidespread, woodlands1, 5MacrohabitatHeath, rainforest, woodland1544(8)MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544(8)MicrohabitatTree trunks; man-made structures5,7;25Perch locationTrunk, branches1544VL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636Gehyra robustaEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7(9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		Perch location			Perch location	Ground	13
MacrohabitatWoodlands1,3MacrohabitatWoodland7MicrohabitatLeaf litter, under log/rock; surface debris3; 10MicrohabitatGround7(7)LifestyleTerrestrial1, 12LifestyleTerrestrial7Perch locationFallen twigs1Perch locationGround, twigs7SVL50; 59.51; 12SVL46.81 ± 0.667Mass3.06 ± 0.167MacrohabitatWidespread, woodlands1, 5MacrohabitatHeath, rainforest, woodland1544(8)MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544(8)MicrohabitatTree trunks; man-made structures5,7;25Perch locationTrunk, branches1544(9)MicrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robustar(9)MicrohabitatEndemic - Northwest Highlands, Mitchell1MicrohabitatRocks, ground7		SVL	50; 58	1,13; 12	SVL	47.83 ± 2.11	11
Microhabitat iplodactylus vittatus (7)Microhabitat LifestyleLeaf litter, under log/rock; surface debris Terrestrial3; 10Microhabitat LifestyleGround7(7)Perch location SVLFallen twigs1Perch location S0; 59.5Fallen twigs7SVL50; 59.51; 12SVL46.81 ± 0.667MassMassMass3.06 ± 0.167MacrohabitatWidespread, woodlands1, 5MacrohabitatHeath, rainforest, woodland1544(8)MicrohabitatTree trunks; man-made structures Perch location5,7;9MicrohabitatTrees1544(8)MicrohabitatTree trunks; man-made structures Perch location5,7;25Perch locationTrunk, branches1544(8)MicrohabitatTree trunks; man-made structures Perch location5,7;25Perch locationTrunk, branches1544(9)MicrohabitatEndemic - Northwest Highlands, Mitchell grass Downs1MacrohabitatWoodland7(9)MicrohabitatEndemic - Northwest Highlands, Mitchell grass Downs1MicrohabitatRocks, ground7		Mass			Mass	2.91 ± 0.29	11
iplodactylus vittatusLifestyleTerrestrial1, 12LifestyleTerrestrial7(7)Perch locationFallen twigs1Perch locationGround, twigs7SVL50; 59.51; 12SVL46.81 ± 0.667Mass.06 ± 0.167MacrohabitatWidespread, woodlands1, 5MacrohabitatHeath, rainforest, woodland(8)MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544Perch locationTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland(9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		Macrohabitat	Woodlands	1,3	Macrohabitat	Woodland	7
(7)Perch location SVLFallen twigs 50; 59.51 SVLPerch location SVLGround, twigs Fallen twigs7 Fallen twigsMassSVL50; 59.51; 12SVL46.81 ± 0.667 MassMassMass1, 5MacrohabitatHeath, rainforest, woodland1544 woodlandGehyra dubia (8)MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544 woodlandMicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544 woodland(8)MicrohabitatTree trunks; man-made structures5,7;25Perch locationTrunk, branches1544 structuresVL65; 42.9*1;5SVL53.58 ± 0.37636 Mass636 4.04 ± 0.07636 636MacrohabitatEndemic - Northwest Highlands, Mitchell grass Downs1MacrohabitatWoodland7 7Gehyra robusta (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		Microhabitat	Leaf litter, under log/rock; surface debris	3; 10	Microhabitat	Ground	7
SVL Mass50; 59.51; 12SVL Mass46.81 ± 0.667Mass3.06 ± 0.167MacrohabitatWidespread, woodlands1, 5MacrohabitatHeath, rainforest, woodland1544MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544LifestyleArboreal5,17,25LifestyleArboreal1544Perch locationTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell grass Downs1MicrohabitatWoodland7Gehyra robusta (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7	Diplodactylus vittatus	Lifestyle	Terrestrial	1, 12	Lifestyle	Terrestrial	7
MassMass3.06 ± 0.167MacrohabitatWidespread, woodlands1, 5MacrohabitatHeath, rainforest, woodland1544MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544LifestyleArboreal5,17,25LifestyleArboreal1544Perch locationTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robustaMicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7	(7)	Perch location	Fallen twigs	1	Perch location	Ground, twigs	7
Gehyra dubia (8)MacrohabitatWidespread, woodlands1, 5MacrohabitatHeath, rainforest, woodland1544Gehyra dubia (8)MicrohabitatTree trunks; man-made structures5,7;9MicrohabitatTrees1544LifestyleArboreal5,17,25LifestyleArboreal1544Perch locationTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robusta (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		SVL	50; 59.5	1; 12	SVL	46.81 ± 0.66	7
Gehyra dubia (8)Microhabitat LifestyleTree trunks; man-made structures5,7;9Microhabitat TreesTrees1544Arboreal5,17,25LifestyleArboreal1544Perch location SVLTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robusta (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		Mass			Mass	3.06 ± 0.16	7
Gehyra dubia (8)Microhabitat LifestyleTree trunks; man-made structures5,7;9Microhabitat MicrohabitatTrees1544ArborealArboreal5,17,25LifestyleArboreal1544Perch location SVLTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robusta (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		Macrohabitat	Widespread, woodlands	1, 5	Macrohabitat	Heath, rainforest,	1544
Gehyra dubia (8)LifestyleArboreal1544Perch locationTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robusta (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7						woodland	
(8)LifestyleArboreal1544Perch locationTrunk; PH: 85.5 cm, PD: 18.4 cm5,7; 25Perch locationTrunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robusta(9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7	-	Microhabitat	Tree trunks; man-made structures	5,7;9	Microhabitat	Trees	1544
Perch locationHunk, Pr. 85.5 cm, PD. 18.4 cm5,7,25Perch locationHunk, branches1544SVL65; 42.9*1; 5SVL53.58 ± 0.37636Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robustagrass Downs1MicrohabitatRocks, ground7		Lifestyle	Arboreal	5,17,25	Lifestyle	Arboreal	1544
Mass3.35Mass4.04 ± 0.07636MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robusta (9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7			Trunk; PH: 85.5 cm, PD: 18.4 cm			Trunk, branches	1544
MacrohabitatEndemic - Northwest Highlands, Mitchell1MacrohabitatWoodland7Gehyra robustagrass Downsgrass Downs1MicrohabitatRocks, ground7		SVL	65; 42.9*	1; 5	SVL	53.58 ± 0.37	636
Gehyra robustagrass Downs(9)MicrohabitatRocky ranges and outcrops1MicrohabitatRocks, ground7		Mass		5	Mass	4.04 ± 0.07	636
(9) Microhabitat Rocky ranges and outcrops 1 Microhabitat Rocks, ground 7		Macrohabitat		1	Macrohabitat	Woodland	7
	-		•				
Lifestyle Saxicoline 1,12 Lifestyle Generalist 7	Gehyra dubia (8) Gehyra robusta					-	
	(7) Gehyra dubia (8) Gehyra robusta	Lifestyle	Saxicoline	1,12	Lifestyle	Generalist	7


	Perch location SVL Mass	trunk; PH: 35.3 cm, PD: 10.8 cm 75	5,7; 25 1,12	Perch location SVL Mass	Rocks, ground	7
	Macrohabitat	Widespread, dry woodlands	1	Macrohabitat	Savannah woodland, desert	29
	Microhabitat			Microhabitat	Trees, ground, rocks	29
Gehyra versicolor	Lifestyle	Arboreal and saxicoline	1,12,16,18	Lifestyle	Generalist	29
(10)	Perch location			Perch location	Trunk, branches	29
	SVL	54	1, 12	SVL	45.17 ± 2.33	12
	Mass			Mass	2.47 ± 0.34	12
	Macrohabitat	Widespread, woodlands	3,4	Macrohabitat	Woodland	42
	Microhabitat	Under bark, log, and rocks; spinifex; shrubs, burrows	3,4,6,8	Microhabitat	Trees, ground	42
Heteronotia binoei (11)	Lifestyle	Terrestrial; arboreal and terrestrial	1,6,19,17; 12,18	Lifestyle	Generalist	42
(11)	Perch location			Perch location	Trunk, ground	42
	SVL	54; 55	1,6	SVL		
	Mass			Mass		
	Macrohabitat	Widespread, woodlands	1, 3	Macrohabitat	Woodland	3
	Microhabitat	Under rock; spinifex, ubiquitous	3,4,8	Microhabitat	Open ground	3
Lialis burtonis	Lifestyle	Terrestrial	1,12,13,17,18	Lifestyle	Terrestrial	3
(12)	Perch location			Perch location	Ground	3
	SVL	85	1, 12	SVL	112.09 ± 92.59	2
	Mass			Mass	19.09 ± 0.65	2
	Macrohabitat	Stony open woodlands; arid savannah	1; 13	Macrohabitat	Savannah woodland, Woodlands	12
Lucasium	Microhabitat			Microhabitat	Open ground	12
immaculatum	Lifestyle	Terrestrial	1,12,16	Lifestyle	Terrestrial	12
(13)	Perch location			Perch location	Ground	12
	SVL	85	1, 12	SVL	46.7 ± 0.77	9
	Mass			Mass		
ucasium steindachneri	Macrohabitat	Woodlands, red soil plains	1,11	Macrohabitat	Savannah woodland, woodland	6
(14)	Microhabitat	Spider burrows, dead vegetation, sparse ground cover	11	Microhabitat	Leaf litter, open ground	6


	Lifestyle	Terrestrial	1,12,18,16	Lifestyle	Terrestrial	6
	Perch location			Perch location	Ground	6
Lucasium stenodactylum (15) Nactus eboracensis (16) Nephrurus asper (17) Nephrurus levis	SVL	55; 59	1; 12	SVL	47.67 ± 1.74	6
	Mass			Mass	3.04 ± 0.27	6
	Macrohabitat	Widespread, dry shrublands	1	Macrohabitat	desert	8
stenodactylum (15) Nactus eboracensis (16) Nephrurus asper	Microhabitat			Microhabitat	Sandy soil	8
	Lifestyle	Terrestrial	1,12,18,16	Lifestyle	Terrestrial	8
	Perch location			Perch location	Ground	8
(15)	SVL	57	1, 13	SVL	52.43 ± 1.53	7
	Mass			Mass	3.04 ± 0.19	7
	Macrohabitat	Tropical woodlands and outcrops	1	Macrohabitat	Heath and woodlands	5
	Microhabitat			Microhabitat	Trees and ground	5
Nactus eboracensis	Lifestyle	Terrestrial	1, 12	Lifestyle	Terrestrial	5
stenodactylum (15) Nactus eboracensis (16) Nephrurus asper (17)	Perch location			Perch location	Trunk, ground	5
	SVL	57; 58	1, 12	SVL		
	Mass			Mass		
	Macrohabitat	Dry woodlands, rocky outcrops	1	Macrohabitat	Heath and woodlands	23
	Microhabitat			Microhabitat	Open/rocky ground	23
Nephrurus asper	Lifestyle	Terrestrial; saxicoline and terrestrial	1; 20	Lifestyle	Terrestrial	23
	Perch location			Perch location	Ground	23
	SVL	115; 117	1; 12	SVL	86.6 ± 2.15	21
	Mass		-	Mass	16.18 ± 1.23	21
	Macrohabitat	Sandy regions	1	Macrohabitat	Desert	13
	Microhabitat	Dunes with spinifex; open ground, litter	1,8; 6	Microhabitat	Sandy soil	13
Nephrurus levis	Lifestyle	Terrestrial	1,12,17,18	Lifestyle	Terrestrial	13
•	Perch location			Perch location	Ground	13
stenodactylum (15) Nactus eboracensis (16) Nephrurus asper (17) Nephrurus levis (18)	SVL	102; 105	1; 12	SVL	62.46 ± 5.21	13
	Mass			Mass	10.02 ± 2.28	13
	Macrohabitat	Widespread, woodlands, rocky outcrops, savannah	1 5,7; 13	Macrohabitat	Woodland	61
	Microhabitat	Dead trees, trunks	5,7	Microhabitat	Trees, logs	61
	Lifestyle	Arboreal; arboreal and terrestrial	1,5; 12	Lifestyle	Arboreal	61
(19)	, Perch location	Trunk; PH: 96.3 cm, PD: 16.0 cm	5,7; 25	, Perch location	Dead trees	61
(17) Nephrurus levis (18) Oedura castelnaui	SVL	90; 80.8*; 97	1; 5; 12	SVL	79.91 ± 2.57	31
	Mass	13.3	5	Mass	13.31 ± 0.95	31


	Macrohabitat	Dry open woodlands, rock outcrops	1	Macrohabitat	Savannah woodland and woodland	65
Oedura cincta (20) Oedura coggeri (21) Oedura monilis (22) Oedura tryoni (23) Phyllurus amnicola (24)	Microhabitat			Microhabitat	Trees, rocks, ground	65
	Lifestyle	Arboreal and saxicoline; arboreal	1,12,21; 25	Lifestyle	Generalist	65
(20)	Perch location	PH: 70.4 cm, PD: 18.2 cm	25	Perch location	Trunks, rocks, ground	65
	SVL	110; 108	1,12	SVL	82.36 ± 1.84	12
	Mass			Mass	10.4 ± 0.88	12
	Macrohabitat	Dry open woodlands, savannah	1,13	Macrohabitat	Woodland	11
	Microhabitat	Rocks and boulders	1	Microhabitat	Boulders	11
Oedura coggeri	Lifestyle	Saxicoline; saxicoline and arboreal	1,13; 12	Lifestyle	Saxicoline	11
(21)	Perch location			Perch location	Rocks	11
	SVL	70; 80.4	1; 12	SVL	70.27 ± 2.63	11
	Mass			Mass	7.66 ± 0.79	11
	Macrohabitat	Dry woodlands; sclerophyll	1,13	Macrohabitat	Woodland	11
	Microhabitat			Microhabitat	Trees and rocks	11
	Lifestyle	Arboreal; generalist	1,12,13,17; 25	Lifestyle	Saxicoline	11
(20) Oedura coggeri (21) Oedura monilis (22) Oedura tryoni (23)	Perch location	PH: 13.3 cm, PD: 2.9 cm	25	Perch location	Trunks and boulders	11
	SVL	85; 98.1		SVL	82.64 ± 1.71	11
	Mass			Mass	11.35 ± 0.56	11
	Macrohabitat	Woodlands, granite outcrops; sclerophyll	1, 3; 13	Macrohabitat	Woodland	15
(20) Oedura coggeri (21) Oedura monilis (22) Oedura tryoni (23)	Microhabitat	Under bark, rocks	3	Microhabitat	Tree trunks, concrete drainage tunnels	15
•	Lifestyle	Generalist; arboreal; saxicolone; terrestrial	12; 18; 13; 22	Lifestyle	Arboreal	15
(23)	Perch location	Rocks and tree trunks	1	Perch location	Man-made structures, trunks	15
	SVL	87	1; 12,13	SVL	82.83 ± 5.11	12
	Mass			Mass	13.51 ± 1.92	12
	Macrohabitat	Granit boulders in rainforest	1	Macrohabitat	Rainforest	11
	Microhabitat	Creekline boulders	1	Microhabitat	Boulder fields	11
hyllurus amnicola	Lifestyle	Saxicoline; arboreal and saxicoline	1; 12	Lifestyle	Saxicoline	11
(24)	Perch location			Perch location	Rocks	11
	SVL	113	1; 12	SVL	91.6 ± 3.67	10
	Mass			Mass	13.02 ± 2.23	10

	Macrohabitat	Endemic - rainforest in Clark Range	1	Macrohabitat	Rainforest	22
	Microhabitat			Microhabitat	Trees and rocks	22
Phyllurus nepthys	Lifestyle	Arboreal	12	Lifestyle	Generalist	22
(25)	Perch location			Perch location	Trunks and boulders	22
	SVL	103	1,12	SVL	86.24 ± 4.05	21
	Mass			Mass	12.73 ± 1.25	21
	Macrohabitat	Endemic - northern Cape York, woodlands, mangrove forests	1	Macrohabitat	Heath and rainforest, occasionally Woodland	30
Pseudothecadactylus	Microhabitat			Microhabitat	Trees	30
australis	Lifestyle	Arboreal	1,12,13, 26	Lifestyle	Arboreal	30
(26)	Perch location	PH: 380.0 cm, PH: 15.8 cm	25	Perch location	Bamboo/vines, trunks	30
\ <i>−1</i>	SVL	120	1,12	SVL	102.88 ± 2.07	16
	Mass			Mass	20.41 ± 1.23	16
Pygopus shraderi	Macrohabitat	Widespread - dry woodlands and open habitats	1	Macrohabitat	Woodland	1
	Microhabitat			Microhabitat	Open ground	1
	Lifestyle	Terrestrial	1,12	Lifestyle	Terrestrial	1
(27)	Perch location			Perch location	Ground	1
	SVL	198	1,12	SVL	112	1
	Mass			Mass	7.64	1
Rhynchoedura ormsbyi (28)	Macrohabitat	Widespread - dry arid regions	1	Macrohabitat	Savannah woodland	11
	Microhabitat			Microhabitat	Open ground	11
	Lifestyle	Terrestrial	1,12,22	Lifestyle	Terrestrial	11
	Perch location			Perch location	Ground	11
	SVL	50	1,12	SVL	38.18 ± 1.34	9
	Mass			Mass		
Saltuarius cornutus	Macrohabitat	Wet tropical rainforests	1	Macrohabitat	Rainforest	22
	Microhabitat	Rainforest trees	1	Microhabitat	Trees	22
	Lifestyle	Arboreal and saxicoline	1,12,23	Lifestyle	Arboreal	22
(29)	Perch location			Perch location	Trunks	22
. ,	SVL	144; 160	1,12	SVL	116.75 ± 6.33	12
	Mass			Mass	30.31 ± 3.4	12
• · · · · · · ·	Macrohabitat	Widespread, arid shrublands	1,13	Macrohabitat	desert	5
Strophurus ciliaris (30)	Microhabitat	Spinifex, shrubs, leaf litter	6	Microhabitat	Trees, shrubs, rocks, ground	5

	Lifestyle	Arboreal; arboreal and terrestrial; scansorial and arboreal;	25; 1,12,18,16; 13	Lifestyle	Generalist	5
	Perch location	PH: 21.8 cm, PD: 3.1 cm	26	Perch location	Trunk, shrubs	5
	SVL	77; 90; 86		SVL	69.8 ± 2.82	5
	Mass			Mass	6.31 ± 0.89	5
Strophurus elderi (31)	Macrohabitat	Arid regions, sandy deserts	1,4,13	Macrohabitat	Savannah woodland	1
	Microhabitat	Spinifex; leaf litter	1 4,8; 6	Microhabitat	Spinifex	1
	Lifestyle	Gramnicolous; arboreal and terrestrial	1,13; 12,16	Lifestyle	Arboreal	1
	Perch location	Spinifex	4,6,8	Perch location	Spinifex	1
	SVL	48; 51	1,13	SVL	44	1
	Mass			Mass	2.47	1
Strophurus krisalys (32)	Macrohabitat	Shrublands, mulga woodlands; arid savannas	1; 13	Macrohabitat	Savannah woodland and woodland	17
	Microhabitat			Microhabitat	Trees, ground	17
	Lifestyle	Arboreal; scansorial	1,26; 12,13	Lifestyle	Generalist	17
	Perch location	PH: 62.9 cm, PD: 1.4 cm	25	Perch location	Tree branches	17
	SVL	70; 76	1; 13	SVL	60.8 ± 3.43	14
	Mass			Mass	4.96 ± 0.63	14
Strophurus taeniatus (33)	Macrohabitat	Northwest highlands, savanna	1; 13	Macrohabitat	Woodland	2
	Microhabitat	Spinifex	1	Microhabitat	Spinifex	2
	Lifestyle	Gramnicolous; arboreal and terrestrial	1,13; 12,16	Lifestyle	Arboreal	2
	Perch location			Perch location	Spinifex	2
	SVL	44; 50	1; 13	SVL		
	Mass			Mass		
Strophurus williamsi (34)	Macrohabitat	Dry sclerophyll woodlands	1,5; 13	Macrohabitat	Heath and Woodland	29
	Microhabitat	Shrubs, bushes	5;7	Microhabitat	Trees and shrubs	29
	Lifestyle	Arboreal; arboreal and saxicoline; scansorial	1,5,17,25; 12,13,24	Lifestyle	Arboreal	29
	Perch location	Thin branches, twigs	5	Perch location	Trunks and branches	29
	SVL			SVL	56.89 ± 1.37	17
	Mass			Mass	4.05 ± 0.35	17

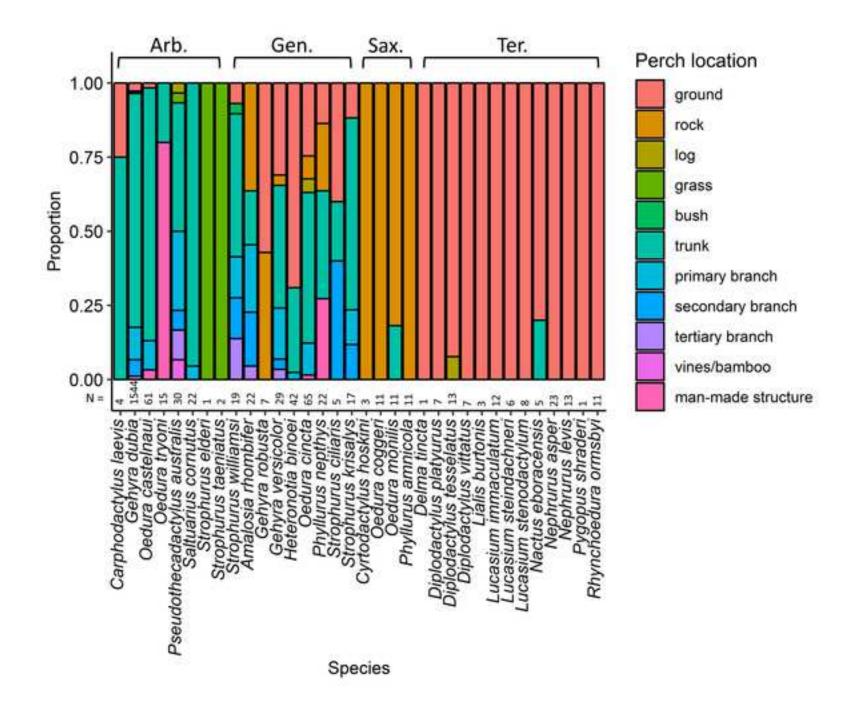
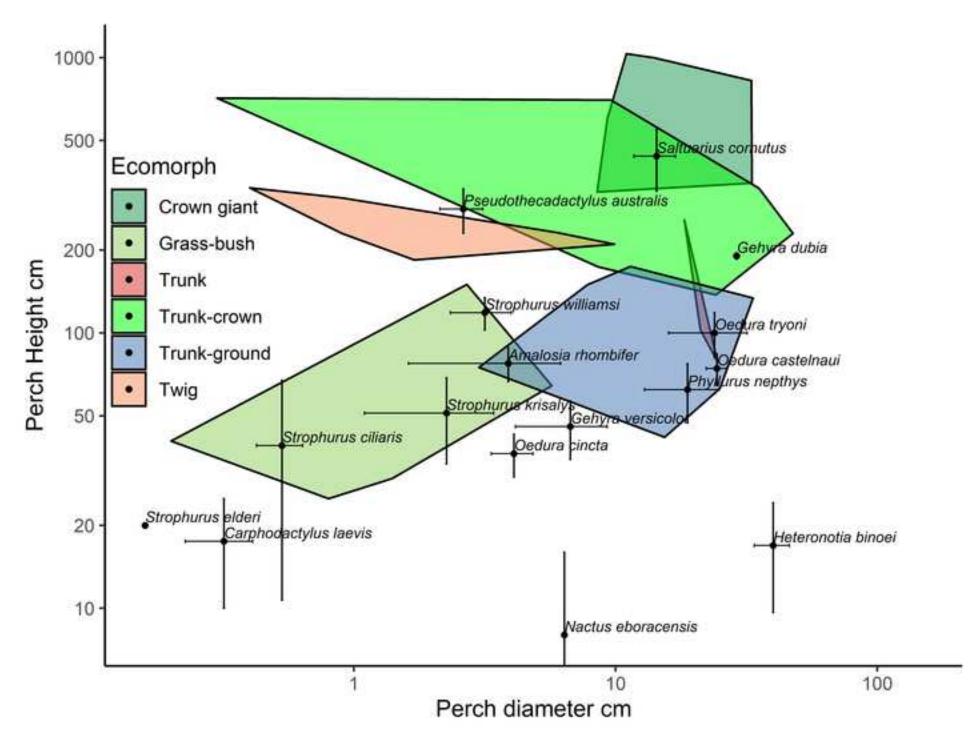



Figure 5: Perch space (height and diameter) used by Australian geckos, overlayed on polygons indicating the range in mean perch spaces occupied by anole ecomorphs

