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ABSTRACT

Shell middens, sometimes in the form of mounds of great size, are a ubiquitous indicator of coastal
settlement and exploitation of marine resources across the world. However, shell middens are relatively
rare before the mid-Holocene because most palaeoshorelines before that time are now submerged by
sea-level rise since the Last Glacial Maximum (LGM). Previously reported examples of underwater shell
middens are almost unknown and of uncertain status, and it has generally been assumed that such
deposits would not survive the destructive impact of sea-level rise or would be indistinguishable from
natural shell deposits. Recently, two examples of underwater shell deposits have been independently
discovered and verified as anthropogenic midden deposits — a Mesolithic shell midden on the island of
Hjarne in the Straits of Denmark, and a Middle to Late Archaic shell midden in the Econfina Channel of
the Gulf of Mexico, Florida, USA. We report the comparative geoarchaeological analysis of these deposits,
using a sedimentological approach to unravel their formation history and post-depositional trans-
formation. Despite the differences in coastal geomorphology and geology, cultural context, molluscan
taxonomy and preservation conditions between these sites, the results demonstrate similar sedimen-
tological profiles that are distinctive of anthropogenic deposits, demonstrate their origin as subaerial
deposits at the shore edge before inundation by sea-level rise, and show that these properties can be
identified in sediment samples recovered from coring. These findings support arguments that such sites
likely exist in greater numbers than previously assumed, that they can be identified from minimally
invasive techniques without the need for extensive underwater excavation, and that they should be
sought to fill critical gaps in the temporal and geographical record concerning Late Quaternary human

use of coastal zones and marine resources.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Submerged coastal landscapes are critical for addressing key
questions identified as grand challenges for archaeology in the 21st
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nary climatic and sea-level change, colonisation of new territories
and new continents, early developments in seafaring, the
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intensified use of coastal and marine resources and their contri-
bution to the development of complex foraging subsistence sys-
tems, agricultural dispersals, and monument building (e.g.,
Fladmark 1979; Masters and Flemming, 1983; Johnson and Stright
1992; Benjamin et al., 2011; Evans et al., 2014; Flemming et al.,
2017; Bailey et al., 2020a).

The potential significance of the archaeology associated with the
drowned landscapes of the continental shelves is increasingly
acknowledged in recognition of the fact that sea levels were lower
than the present for 95% of human history and therefore that most
palaeoshorelines are now under water. Research momentum is
building, with many hundreds of underwater finds now reported in
Europe and North America. However, the discipline of submerged
landscape archaeology remains in a pioneer phase of development,
posing technological, methodological and theoretical challenges
unlike those experienced by terrestrial archaeologists. The costs
and risks of failure for underwater site prospection, and scepticism
about the usefulness of the results, remain a major deterrent to
investigation. This is largely due to uncertainty about how much
archaeological material is likely to have survived the destructive
impact of marine transgression, how to set about locating such
material, and what difference, ultimately, underwater discoveries
will make to improved understandings of the past.

Locating more submerged sites will help to move the discipline
forward, but how can this best be realised? Archaeological sites
under water are less likely to be discovered by accident or reported
to local archaeologists than sites on land, though engagement with
commercial fishing, offshore industries and the dive community
can be productive. ‘Top-down’ approaches involving predictive
modelling, remote sensing techniques and palaeolandscape
reconstruction have yielded some significant successes (Benjamin
2010; Benjamin et al., 2020; Cook Hale and Garrison 2019; Veth
et al., 2020; Peeters and Amkreutz 2020). But these are not
without their own potential limitations: extrapolation from known
archaeological sites on land where conditions of preservation and
visibility may be very different from those under water; applica-
tions limited to specific underwater environmental and cultural
contexts where sites have already been found; omission of whole
classes of sites; or simply failure to lead to any underwater dis-
coveries at all (Grgn 2018)

The discovery of underwater archaeological sites also depends
on identifying those locations where the archaeological remains
are preserved and are accessible to discovery. The present state of
knowledge about why archaeological sites survive in some loca-
tions but not others, and more generally the current understanding
of the conditions which determine the formation of archaeological
deposits and their subsequent transformation during and after
inundation by sea-level rise, have made significant advances
recently but understanding is still quite limited (Flemming et al.,
2017; Bailey et al., 2020a). It is clear that these conditions are
sensitive to highly localised variations in human discard behaviour
and geomorphological processes; generalisations can lead to
misunderstandings.

In addition, all discoveries depend, ultimately, on diver inspec-
tion of submerged targets, or coring and grab-sampling from sur-
face boats, survey methods that are necessarily much slower and
cover much less ground for a given unit of time and effort than
survey on land.

Here, we emphasise a ‘bottom-up’ approach that focuses on
known underwater deposits and on the analysis of the depositional
and taphonomic conditions under which these sites have been
formed and subsequently transformed by post-depositional pro-
cesses before and after inundation by marine transgression. Spe-
cifically, we focus on recently discovered submerged shell middens
from two different marine basins and cultural periods: the
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Mesolithic Ertebglle culture of Denmark in the waters connecting
the Baltic Sea and the North Sea, and the Middle to Late Archaic
culture along the eastern coast of the Gulf of Mexico, Florida (Figs. 1
and 2). In both cases, analytical results from underwater excava-
tions have already demonstrated that the shell deposits are
anthropogenic middens and not natural accumulations of shells
(Astrup et al., 2020; Cook et al., 2018).

Shell middens, or shell-matrix deposits, are defined as accu-
mulations of shell refuse discarded by human populations as by-
products of food consumption, in which shell remains are the
visually dominant physical constituent (Claassen 1998). Artefacts
and other food remains are usually present as well as sedimentary
particles. In this paper we follow Stein (1992) in taking a sedi-
mentological approach to the analysis of these deposits that in-
cludes the sediment fraction as well as the macroscopic remains.
Middens composed of freshwater mollusc shells also occur on
major riverine systems in Australia and the southeastern United
States, and middens dominated by edible terrestrial molluscs also
exist (e.g., Balme 1995; Randall 2015; Taylor and Bell 2017), but the
great majority of shell middens comprise marine molluscs in
coastal environments, and that is our focus in this study. We have
chosen to concentrate our study on coastal shell middens, and on
these two underwater examples from two different regions and
cultural contexts for the following reasons:

1. They are the only two currently known underwater shell mid-
dens in the world that have received systematic investigation
and evidence of their anthropogenic status.

2. Shell middens are found in large numbers (tens of thousands to
hundreds of thousands) in coastal environments worldwide.
The largest comprise mounds with impressive dimensions,
extending over hundreds of square metres and tens of metres
high, though many are much smaller (e.g., Emmitt et al., 2020).
They are a visible and unequivocal indicator for the use of
aquatic and especially marine resources and are a very common
if not universal material correlate of coastal settlement.

3. Shell middens are associated with a wide variety of cultural
practices ranging from subsistence to burial ritual, the use of the
accumulated shell material for the deliberate construction of
features such as causeways, canals, plazas and mounds (terra-
forming), and with significant shifts in human population
structure, increasing political complexity, and elaborations in
niche construction (e.g., Thompson and Andrus 2011; Rosendahl
et al., 2014; Thomas 2014; Randall and Sassaman 2017).

4, They provide a well-recognized focus for cross-cultural and
inter-continental comparative analysis (Bailey and Parkington
1988; Milner et al., 2007; Bailey et al., 2013; Roksandic et al.,
2014; Allely et al., 2020).

5. Finally, they are especially significant in the context of under-
water exploration. Evidence for the exploitation of marine re-
sources extends far back into the Pleistocene (Erlandson 2001;
Marean 2010; Jerardino 2016; Will et al., 2019), but the quan-
tities of mollusc shells or bones of marine vertebrates are very
small and shell middens are rare or small in size until the mid-
Holocene, when they appear in vastly increased numbers across
the world. It remains unclear whether this reflects a world-wide
intensification in the use of marine resources associated with
new demographic expansion and new socio-cultural de-
velopments or is simply the result of differential visibility of
palaeoshorelines and loss of underwater sites from the archae-
ological record. Since most palaeoshorelines before the mid-
Holocene are now under water, it is of critical importance to
investigate this matter further.
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Fig. 1. Overview map showing Hjarng Sund, including locations of excavation units, cores, trenches and other major features.
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Fig. 2. Overview map showing the location of the Econfina Channel site as well as major features within the site itself.

It has often been assumed that such an underwater investiga- 2014). However, it is now clear from our recent discoveries that
tion would be fruitless because submerged shell middens are some shell middens have survived marine transgression, and it
assumed to have been destroyed by sea-level rise or reduced to seems likely that many others await discovery if we can establish
deflated scatters indistinguishable from natural deposits of shells the conditions conducive to their preservation and how to locate

and sediments on the seabed (Andersen 2013; Bailey 2014; Nutley and identify them. There is no a priori reason to suppose that shell
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middens are more vulnerable to destruction or displacement by
wave action and water currents than other types of archaeological
sites or carbonate shell deposits (e.g. Kidwell and Holland 2002).
Moreover, the large volume and relative durability of the shells and
their sedimentary matrix, even when subject to disturbance or
even partial destruction, mean that they should potentially retain a
wealth of macroscopic, microscopic, mineralogical and geochem-
ical data about the original conditions in which the deposits were
accumulated, the cultural practices and subsistence activities
associated with their formation, and the post-depositional pro-
cesses of subaerial and submarine degradation or disturbance to
which they have been exposed. Given this background, our aims in
this article are to:

1. Analyse, within a comparative framework, the two underwater
shell deposits that have recently been discovered and estab-
lished as middens — the Hjarng Sund site from Denmark in
southern Scandinavia (Astrup et al., 2020) and the Econfina
Channel site from Florida (Cook Hale and Garrison 2019);

2. Apply the same suite of geoarchaeological methods to unravel
their depositional histories and subsequent post-depositional
transformations after abandonment and inundation by sea-
level rise;

3. Establish how the anthropogenic nature of these deposits might
create a distinctive sedimentological profile or profiles, and
provide improved methods for the detection and analysis of
similar sites in other underwater contexts, especially where
depth underwater or difficulties of access prevent full-scale
excavation;

4, Explore the implications of the results for the interpretation of
geographical and temporal gaps in the coastal archaeological
record.

2. Regional context of case studies
2.1. Southern Scandinavia (Hjarne Sund)

The history of postglacial sea-level change in southern Scandi-
navia is unusually complex owing to the proximity of the Scandi-
navian ice sheet, the interaction between eustatic sea-level rise and
isostatic land movements associated with deglaciation, and peri-
odic damming of the Baltic by temporary barriers of ice and uplifted
land to create a freshwater lake (Astrup 2018; Bailey and Jons 2020;
Bailey et al., 2020b; Jons et al., 2020; Nilsson et al., 2020). A fully
marine connection between the North Sea and the Baltic through
the Danish Straits approximating the present-day configuration
was established after about 8500 cal BP (the Littorina Trans-
gression). Most shorelines in the early part of this period in
Denmark are still submerged at depths of ca. —8 m MSL (8 m below
Mean Sea level) or more, depending on local isostatic effects. Oc-
casional traces of underwater archaeological material from this
earliest period suggest that people exploiting marine resources
colonised this new coastal landscape as soon as it became available
(Bailey et al., 2020b). However, most underwater sites in the region
are later in date, from locations in shallower water, —5 m MSL or
less, so that little is known about the nature of the earliest marine
adaptations (Astrup et al., 2020; Bailey et al., 2020b).

In Denmark, most of the underwater finds that can be dated
belong to the Ertebglle culture, ca. 7400—6000 cal BP, named after
the type site first investigated in the 19th century, which consisted
of a large shell mound. This period is also characterised by coastal
sites — many are shell mounds, but also many are lacking in shells
(Andersen 2000) — coastally adapted societies, specialised marine
technologies, and increased evidence of sedentism. The first
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ceramics appear during the Ertebglle period from about 6700 cal BP
onwards, prior to the introduction of the Neolithic FNB culture with
agriculture around 5900 cal BP. The coastal sites of the Ertebglle
period in the north of Denmark are mostly above the modern
shoreline, at up to +12 m MSL, because of isostatic uplift, and the
archaeological record includes hundreds of on-land shell middens.
Numerous coastal sites of this period also occur in southern
Denmark but are mostly under water because of the combined
effects of final eustatic sea-level rise and isostatic submergence
(Fischer 1995, 2004, 2007; Skaarup and Grgn 2004; Andersen 2013;
Astrup 2018; Fischer and Pedersen 2018; Bailey et al., 2020b). Un-
derwater shell middens are almost unknown, either because they
have been destroyed by marine erosion, are difficult to distinguish
from natural shell beds, have not yet been detected, or because far
fewer edible marine molluscs were available along these southern
shorelines.

The recently excavated underwater shell midden of Hjarng Sund
is a rare exception. It is located on the west coast of a small island
(Hjarng) in Horsens Fjord, Denmark (Fig. 1) and the midden area
was found 50 m from the modern coastline in a water depth of —0.4
to —1.4 m MSL (Astrup et al., 2020). The shell deposit has been
dated to just over 7000 cal BP/5000 cal BC (Table 1) placing it at the
beginning of the Mesolithic Ertebglle culture.

Excavation and coring in the wider area indicate two discrete
areas of shell accumulation about 50 m apart, each about
30 m x 20 m in extent with a maximum thickness of 0.8 m, and an
extensive intervening deposit of sand and gyttja (a mud that forms
at the lowest levels of peat deposits in anoxic conditions) (Fig. 1;
Skriver et al., 2018; Astrup et al., 2020, Fig. 2). The deposit was
formerly overgrown by eel grass, but pollution and climate change
in recent decades have progressively removed this protective cover,
exposing the underlying deposits to erosion. Excavations in the
northern area show that the surface of the shell deposits has been
partially truncated and disturbed with re-deposited shell material
nearby, and is overlain unconformably by sand and gyttja, sug-
gesting that it is the remnant of what was originally a thicker de-
posit (Astrup et al., 2020, Fig. 4). Beneath the shell-midden are
deposits of sand and glacial till.

The gyttja deposits (layer K1), though similar in radiocarbon age
and cultural content to the shell deposits, are the youngest in the
sequence, partially overlapping with and stratified above the shell
deposits in the northern area. With their excellent conditions for
preservation of organic materials, the gyttja deposits have yielded a
wide range of artefacts eroding out at the surface, including arte-
facts made of stone, bone and antler, wooden artefacts such as
decorated paddles, bows, leister prongs and axe-shafts, and a large
number of vertical wooden stakes representing remains of a sta-
tionary fish weir built out from the shore, a typical feature of un-
derwater sites in the region. The shell deposits were identified as
anthropogenic deposits originally formed on land from the pres-
ence of burnt shell, the restricted number of molluscan taxa,
principally cockle (Cerastoderma edule) and oyster (Ostrea edulis),
the size of their shells, the presence of unpatinated flint artefacts,
vertebrate bone including fish and mammal, charcoal, evidence of
burning on the shells and distinct stratigraphic layers (Astrup et al.,
2020).

2.2. Gulf of Mexico (Econfina Channel)

The broad, comparatively low gradient and shallow continental
shelf of the south-eastern United States presents another ideal
environment for addressing questions of submerged shell midden
preservation (Fig. 2). The most recent relative sea level (RSL) history
has been reconstructed by Joy (2019), following earlier work by
Balsillie and Donoghue (2011). At the Last Glacial Maximum (LGM),
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Table 1
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All radiocarbon dates for Hjarng and Econfina Channel (Astrup et al., 2020; Cook et al., 2018; Faught and Donoghue, 1997; Skriver et al., 2018) are calibrated using IntCal20
(Reimer and Reimer 2001; Reimer et al., 2020). Dates on shell have been corrected for the local marine reservoir effect: at Hjarng —44 + 66; at Econfina Channel —28 + 133. See
text for further detail. Dates are in stratigraphic order (top to base), and depths are given as metres below the surface (mbs) of the deposit in question. Calibrated ages are

rounded to the nearest 10 years.

Lab. No Sample Type Provenance Radiocarbon Age Calibrated Age BP Calibrated Age BP
+lo 20 range Median
Hjarne Sund
AAR-24753 Charcoal, hazel K1, ~0.60 mbs 6130 + 48 7160—6890 7020
AAR-16958 Charcoal, unident. K10, ~0.90 mbs 6396 + 27 7420—-7260 7320
AAR-16959 Bone, roe deer K10, ~0.90 mbs 6426 + 28 7420-7280 7360
AAR-24751 Shell, cockle K21-0.80 mbs 6538 + 39 7120-6640 6870
AAR-24756 Shell, cockle K21-0.80 mbs 6515 + 34 7090—-6610 6840
AAR-26593 Charcoal, hazel K22, ~0.85 mbs 6390 + 49 7420-7170 7320
AAR-26592 Shell, cockle K23, ~1.00 mbs 6515 + 27 7080—6620 6840
AAR-26591 Shell, oyster K19, ~1.00 mbs 6637 + 35 7200—-6750 6980
AAR-24754 Shell, oyster K19, ~1.00 mbs 6588 + 38 7160—6690 6920
AAR-24755 Shell, oyster K19, ~1.00 mbs 6492 + 48 7070—6570 6810
AAR-24750 Shell, oyster K19, ~1.00 mbs 6617 + 36 7180—-6720 6960
AAR-24752 Charcoal, hazel K20, ~1.25 mbs 6162 + 34 7160—6960 7060
AAR-26594 Charcoal, hazel K7, ~1.30 mbs 6285 + 40 7310-7030 7210
Econfina Channel
UGAMS-27918 Shell, oyster 0 mbs 3010 + 25 3010—-2290 2640
UGAMS-34162 Shell, oyster 0.35 mbs 4320 + 25 4690—3900 4290
UGAMS-27919 Shell, oyster 0.40 mbs 4490 + 25 4860—4120 4515
UGAMS-47027 Shell, oyster 0.80 mbs 4580 + 25 5000—4230 4630

sea levels were approximately —120 to —125 m MSL. The end of the
LGM did not initially result in rapid marine transgression and sea
level remained at ca. —110 m MSL at 15,000 cal BP. Meltwater Pulse
IA during the Belling-Allergd interstadial caused rapid trans-
gression, however, and by 14,000 cal BP coastlines were positioned
ca. —75 m MSL. Rapid transgression recommenced between 12 and
11,000 cal BP, when shorelines retreated from —60 m to —45 m MSL.
After the onset of the Holocene, these rates slowed again, and the
coastline was around —5 m MSL by 6000 cal BP. The rapid trans-
gression events during the terminal Pleistocene likely coincided
with the first entry of human populations into this region (Halligan
et al., 2016) but what form coastal occupations may have taken
during this period and into the Early Holocene remains unclear
because the palaeoshorelines of that period are under water.

It is clear that the coastal zone in what is now the south-eastern
United States was occupied by at least 4500 cal BP during the onset
of Late Holocene conditions, and perhaps even as early as 6000 cal
BP during the Middle Holocene; but evidence for earlier settlement
is now submerged (Russo 1994; Thompson and Worth 2011; Turck
2012; Williams 2000). This region had relatively high population
densities when compared to other regions of North America as
early as the terminal Pleistocene, probably because it was a climate
refugium in comparison to other regions across the continent
(Anderson and Faught 1998; Russell et al., 2009; Garrison et al.,
2012). The archaeological potential of the continental shelves in
the Southeast has likewise been verified by multiple successful
studies on both the Atlantic and Gulf of Mexico coastlines
(Anuskiewicz 1988; Anuskiewicz and Dunbar 1993; Cook et al.,
2018; Garrison et al.,, 2016; Harris et al., 2013; Murphy 1990;
Pearson et al., 2014). The Big Bend of Florida, where the peninsula
meets the panhandle, contains the highest number of known
submerged sites in North America (Faught 2004a, 2004b) and lies
within the larger region showing coastal occupations by as early as
6000 cal BP (Russo 1994). These characteristics suggest that the Big
Bend is likely to contain multiple sites comprised of shell middens,
retaining evidence for coastal occupation before the modern
coastline stabilised during the Late Holocene.

The Econfina Channel site is one of the few identified shell
midden deposits offshore and under water. It is located approxi-
mately 3 km south-west of the mouth of the Econfina River (Fig. 2).

The site was first detected by Faught and colleagues during
exploratory surveys in the late 1980s and limited excavation was
performed (Faught and Donoghue 1997). It was revisited by Cook
Hale and colleagues beginning in 2014 and work continues there
today (Cook et al., 2018). Econfina Channel is now submerged at —2
to —4 m MSL, and contains multiple features: shell midden con-
centrations, a quarry, and a freshwater spring (Fig. 2). The midden
lies on the south edge of the palaeochannel of the Econfina River
and varies in thickness from approximately 0.5 to 1.0 m. Midden
materials in proximity to the palaeochannel are thinner and appear
more disturbed than those lying within eel grass beds away from
the channel. The midden deposits extend in length for ca. 30 m
along the axis of the channel, and up to 20 m across from channel
margin into eel grass beds. Ongoing mapping activities have
detected additional shell midden deposits across the palaeochannel
to the north that are up to 27 m in length, again along the axis of the
palaeochannel. The exact size and extent of the site remains to be
confirmed.

The site was occupied as early as 7000 cal BP, with deposition
continuing until submergence. Projectile points of Putnam/Newnan
types were recorded during initial excavations in the 1990s (Faught
and Donoghue 1997); these were in use from approximately
7000 cal BP to 5000 cal BP. Radiocarbon dates obtained from both
the main midden at the site and the midden across the palae-
ochannel range from approximately 5500 cal BP to 3000 cal BP at
the latest (Cook et al., 2018; Faught and Donoghue 1997). The
presence of lithic debitage among the midden deposits supports
the argument that at least part of the site was subaerial during
occupation. Submergence appears to have occurred after 4500 cal
BP, but late Holocene RSL curves in this region remain opaque (see
Joy 2019). The low gradient of the seabed combined with evidence
for isostatic subsidence associated with mantle forebulge relaxa-
tion effects detected by Watts and colleagues suggest that sub-
mergence may be a result of subsidence of the lithosphere rather
than eustatic sea-level change (Watts 2001; Smith and Pun 2006,
Fig. 13.14).

The site contains evidence for multiple activities related to
subsistence and technological practices. Debitage created at all
stages of lithic reduction can be found across various areas of the
site; primary reduction remains were found in the quarry area and
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freshwater spring, while finishing flakes and breakage debitage
were recovered from the midden area. Molluscs, specifically Cras-
sostrea virginica (oyster) were clearly processed here as well, as
demonstrated by the significant quantities of this species in these
sites. This location also provided ready access to freshwater, as
evidenced by the freshwater spring. These findings support argu-
ments that archaeological inquiries in this region should expect to
find Late and Middle Archaic patterns of coastal resource use
extending under water into the offshore zone and to earlier periods
(McFadden 2016; Sassaman et al., 2017). However, it is important to
note that the current body of evidence lacks archaeological sites
and data on resource exploitation patterns earlier than 5000 cal BP,
when the coastline began to stabilise at roughly the modern
position.

3. Methods

Our methods are adapted from Gagliano et al. (1982) and refined
through application at multiple submerged sites. These methods
are drawn from geological principles that treat sediments from
archaeological sites as bioclastic anthropogenic deposits (Gagliano
et al.,, 1982; Murphy 1990; Pearson et al., 2014). This study is also
informed by concepts drawn from sequence stratigraphy and
palaeobiology. Sequence stratigraphy connects sedimentary depo-
sit sequences to cycles of marine transgression and regression
across different chronological orders of magnitude using sedi-
mentary signatures for erosion, deposition, and depositional envi-
ronment (Catuneanu 2017). Because we are directly concerned with
erosional potentials along coastlines that experienced relative sea-
level changes, such concepts are highly relevant; archaeological
deposits such as these are by definition included within marine
transgression erosion and ravinement surfaces that overlie
formerly subaerial erosional unconformities recognized as sedi-
mentary sequence boundaries (Catuneanu 2017).

Our methodology is also informed by taphonomic studies in
palaeobiology because they examine the preservation potentials for
fossil deposits found in sedimentary sequences (Kidwell 1993;
Kidwell and Holland 2002). These studies have shown that bio-
mineralizing organisms such as the mollusc taxa found in shell
middens have high potential for inclusion in the fossil record, even
if only partially intact. Taken together, these concepts allow us to
understand submerged shell middens as a specific type of bioclastic
deposit with anthropogenic origins subjected to well understood
sedimentary processes associated with cycles of marine regression
and transgression.

For this study, we used a combination of optical petrography
using both transmitted and reflected light, electron microprobe
analysis (EMPA), scanning electron microscopy (SEM), and particle
size analysis (PSA) modified from Folk and Ward (1957). These
techniques provide qualitative data on mineralogical character-
izations, microfossil assemblages, and various types of non-
geological inclusions, and quantitative date on particle size distri-
butions. For PSA we included non-clastic materials such as shell
fragments, bone, and charcoal, because they provide additional
information about human activities. However, we acknowledge
that inclusion of non-clastic materials skews the results of particle
size analysis such that we cannot rely on quantitative analysis alone
to infer depositional environments. Therefore, we have reinforced
interpretation with qualitative assessments based on mineralogical
composition and microfossil inclusions. We have also compared the
results of mechanical particle size analysis with digital analysis of
grain size applied to micrographs generated by SEM/EMPA per-
formed at millimetre-scale resolution using the software package
Image]/Fiji and backscattered electron micrographic images taken
using SEM.
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3.1. Sample recovery

Analyses were performed on sedimentological samples taken at
Hjarng in 2017 and Econfina Channel in 2015—2017 and in 2019. At
Hjarng, the samples from the shell midden were obtained by the
removal of two box cores in stratigraphic sequence, each
30 cm x 30 cm x ca. 10—15 cm deep, from the side wall of the 2017
excavated trench (Fig. 1; Ward et al., 2019, Fig. 2). Two push cores
5 cm in diameter were also used to collect samples from the sed-
iments beneath the shell-midden deposit.

The stratigraphy and labelling of the samples from the Hjarng
box cores following Ward et al., (2019), Astrup et al., (2020) are as
follows:

Upper Box Core (A)

BC101: 0.01—0.09 mbs (metres below surface), Layer K21, layer
dominated by cockle shells including a hearth.

BC102: 0.09—0.10 mbs, Layer K21, cockle-shell layer.

BC103: 0.10—0.19 mbs, Layer K19, layer dominated by oyster
shells.

Lower Box Core (B)

BC201: 0.21—-0.29 mbs, base of Layer K19, and top part of Layer
K24, described as ‘coarse sand’ (Astrup et al., 2020, Fig. 4) or ‘well
sorted grey ... medium silty sand’ (Ward et al., 2019, Fig. 2)

BC202: 0.29—0.34 mbs, continuation of Layer K24.

The Econfina samples from 2015 to 2017 were taken using bulk
sampling methods (see Cook et al., 2018) across the site and include
materials from the surface sediments within the midden, the lithic
quarry zone, the palaeochannel, and the eel grass beds beyond the
midden zone itself. The sample from 2019 was taken using a hand-
driven 3-inch aluminium core that specifically targeted the lower
level of the midden after it was exposed by hand excavation to
remove the top 40 cm of surface materials. The area of the midden
chosen for coring was within the southern and eastern section of
the site where eel grass beds have preserved finer sediments and
where past sampling indicated that the midden is thickest, and
likely best preserved. The northern and western edges of the
midden grade into the Econfina palaeochannel and are more poorly
preserved, with depth to bedrock often less than —0.4 m. Bulk
sampling in 2015—2017 has shown that the only area of the midden
suitable for coring is within these eel grass beds (Cook et al., 2018;
Garrison and Cook Hale 2019). The lower-lying material was
expressly targeted because prior studies from 2015—2017 had
already examined the upper levels to characterise the degree of
disturbance caused by marine transgression (Cook et al., 2018;
Garrison and Cook Hale 2019). The lower levels, however, were
considered to have a higher probability of being undisturbed, of-
fering better insight into the original depositional context and site
formation processes.

3.2. Sample preparation

Samples from the Hjarne box cores were previously examined
by Ward et al. (2019). Materials from the box cores arrived for
analysis at the University of Georgia (UGA) Geoarchaeology labo-
ratory in the form of thin-section slides, previously prepared thick-
section epoxy mounts, loose materials, together with sediments
from within the two cores from beneath the midden. The thin
sections included slides from the full midden sequence represented
by both box cores (BC101—103, BC 201 and BC 202), the epoxy
mounts represented only the sediments in the lower box core (BC
201 and 202). Both the thin sections and the epoxy mounts
required further preparation since they were unpolished and thus
not suitable for examination by electron microprobe analysis
(EMPA) or scanning electron microscope (SEM) and this polishing
was subsequently undertaken at the UGA EMPA lab. Thin section



J.C. Hale, ]. Benjamin, K. Woo et al.

slides were polished to a mirror finish, down to 1-um sized grit. All
samples used for SEM and EMPA analysis were then carbon-coated
before analysis.

Bulk sediment samples from across the Econfina Channel site
were dried in the UGA Geoarchaeology laboratory after recovery.
The core from Econfina Channel was also split at the UGA Geo-
archaeology lab immediately after recovery, photographed and
assigned Munsell colours (Fig. 3). It was then oven-dried at 60 °C at
UGA Crop and Soil Sciences before being impregnated with epoxy
and cut into individual sections. These were also polished to 1-pm
sized grit and carbon coated.

3.3. Optical petrography

Images of the box core slides were taken using transmitted light
using a petrographic microscope equipped with Nikon image cap-
ture capabilities at the UGA Department of Geology. Images of the
epoxy mounts from both Hjarng and Econfina were taken using
reflected light instead due to the thickness of the specimens. These
datasets were useful for qualitative characterisation of micro-
stratigraphy, microfossils, and the presence or absence of inclusions
such as charcoal, burnt shell, and micro-debitage.

3.4. Electron microprobe analysis (EMPA)

The Hjarng box core slides were analysed with the UGA
Department of Geology JEOL 8600 electron microprobe using a
15 KV accelerating voltage and 15 nA beam current. Mineral grains
were qualitatively identified using a Bruker 5010 Silicon Drift De-
tector (SDD) energy dispersive X-ray (EDS) detector controlled by a
Bruker Quantax energy dispersive analysis (EDS) system. Analyses
were calculated using the Phi-Rho-Z matrix correction model
(Armstrong, 1988). Backscattered electron images (BEI) and sec-
ondary electron images and X-ray maps were acquired using im-
aging software of the Quantax analysis system.

X-ray maps were generated for individual study areas within
each slide using a dwell time of 5 min for each area mapped. At
least 5 areas were examined in the box core slides from Hjarng at
75 x magnification. This covered a roughly 3.5 mm by 3 mm area at
each location on the sample. Areas of specific mineralogical interest
were identified at higher magnification as needed.

Epoxy mounts from Econfina Channel were not suitable for
EMPA given the small size of the vacuum chamber and configura-
tion of the sample mounts, but they were suitable for SEM analysis.
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3.5. Scanning electron microscopy (SEM)

Epoxy mounts from both Hjarne and Econfina Channel were
examined in Hitachi FlexSEM 1000II at the Georgia Electron Mi-
croscopy Laboratory at the University of Georgia. We used variable
pressure and performed backscatter imaging, though we included
some limited EDS reconnaissance for qualitative characterisation of
mineralogy in the samples from Econfina Channel. Samples were
carbon-coated and mounted to the stage with copper tape to
minimise charging effects. Operating voltage was 20 keV and
magnification was either 50x or 80x. Micrographs were taken
along spacings designed to limit inclusion of shell materials
(although they could not be completely eliminated due to their
prevalence in both sample sets), focusing on clastic materials
instead.

For the Hjarng material, the total estimated area of epoxy
mounts was approximately 6000 mm?, the total area imaged (all
samples combined) was 1000 mm?, and a total of 216 micrographs
were taken. For Econfina Channel, the total estimated area of epoxy
mounts was approximately 6250 mm?, the total area imaged from
all samples combined was 915 mm?, and a total of 182 micrographs
were taken.

3.6. Particle size analysis (PSA)

Because of the variable nature of the material available for
analysis, it was only possible to conduct mechanical PSA on the bulk
samples from the Econfina Channel midden and from other fea-
tures in the vicinity of the site, and from the cores taken from
sediments beneath the midden at Hjarna. However, we were able
to obtain digital PSA results from the epoxy mounts of the lower
box core from the Hjarng midden and from the epoxy mounts from
the core into the lower part of the midden at Econfina Channel.
Thus, we have both digital and mechanical data for the Econfina
midden, digital data for the Hjarne midden, and mechanical data
for non-midden features/sediments from both Hjarng and Econ-
fina. For statistical methods, we first calculated distributions and
first order statistical measures for all samples, classifying them into
discrete groups by site, feature, and method. We then used both a
parametric two-sample t-test and a nonparametric Wilcoxon/
Kruskal-Wallis rank sums test to compare results for all particle
sizes. We also ran Gradistat statistics (Blott and Pye 2001) to obtain
basic statistical measures and distributions showing modality,
skewness and kurtosis for PSA data, and linear discriminant func-
tion analysis (DFA) to examine differences between groups.

Fig. 3. Core from Econfina channel.
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Fig. 4. Micrographs from each box core slide from Hjarng, in transmitted, plane polarized light, showing glauconite grains, circled in red, pyrite grains in gold. A): BC101, showing
the highly heterogenous nature of the midden; B): BC102, showing shell undergoing delamination; C): BC103, showing bone and charred plant material; D): BC201, showing a rock
fragment, likely a piece of micro-debitage; E): BC202, showing the increase in glauconite. The BC numbers are in stratigraphic sequence. BC101-103 are from the upper box core
(box core A) and refer to the shell-matrix deposits at the top of the sequence (Layers K21 and K19). BC201—202 are from the lower box core and refer to the base of the sequence

(base of Layer K19 and Layer K24).

3.6.1. Mechanical particle size analysis

The bulk samples from Econfina Channel were assigned to site
features based on visual inspection during recovery by divers. Push
cores taken from beneath the shell-midden deposit at Hjarng had
specific provenance recorded. Once materials from both sites were
sufficiently dried, they were separated into grain sizes using a
mechanical shaker and sieve sizes for 63, 125, 250, 500, 1000, 2000,
and 4000 pm. Each sample was weighed, then shaken for 30 min,
which was sufficient time to separate grain sizes. After grain size
separation was complete, material from each sieve was weighed
and recorded.

3.6.2. Digital particle size analysis

Digital analysis offers an opportunity to analyse particle size
distributions where mechanical methods are not applicable, as was
the case with the Hjarno samples from the lower box core, where
only resin-impregnated epoxy mounts were available for analysis.
We were also interested in comparing digital and mechanical
methods to test for consistency between the two methods. First, we
processed the images in the software package Image] 1.52K

(Schneider et al., 2012) using a macro written for this analysis by
JWCH.? We then batch processed all the BEI images using the
“Analyse Particles” tool, compiled the results in a.csv table that
summarised mean particle size by filename, and plotted these in
Excel. Final statistical analysis was done using the software package
JMP 15.

3.7. Radiocarbon dating

We obtained one additional radiocarbon date from shell mate-
rial sampled from the bottom of the core from Econfina Channel to
improve chronological controls; by comparison, Hjarng is better
constrained. Other dates reported by Cook Hale and colleagues
were taken from a shallow profile near the midden surface; one
sample was taken at the surface of the midden/seabed, another was

2 Macro is as follows: run(“8-bit"); setOption(“BlackBackground”, true); run(“-
Make Binary"); run(“Invert LUT"); run(“Set Scale ... ", “distance = 1 known = 0.575
pixel = 1 unit = micron");
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recovered from approximately 0.35 m below the surface of the
midden/seabed, and a third was recovered approximately 0.40 m
below the surface. The surface sample and the sample taken from
0.40 m below the seabed were previously reported in Cook et al.
(2018). The new sample was dated at the University of Georgia
Center for Applied Isotope Studies (UGA CAIS) using accelerator
mass spectrometry (AMS).

The shell was subsampled at the hinge and the outer surface was
dissolved using dilute HCL. The sample was then rinsed and was
dried in an oven at 105 °C. The pre-treated subsample was then
reacted with 100% phosphoric acid to produce CO,. This CO, sample
was cryogenically purified and catalytically converted to graphite. It
was then measured using the 0.5 MeV accelerator mass spec-
trometer. The radiocarbon date was finally calibrated using the
Marine20 calibration curve (Reimer et al., 2020) in OxCal version
4.4 (Bronk , 2009) using a AR estimate of —28 + 133 14C years
calculated using weighted averages for marine reservoir correc-
tions for the Apalachicola Bay area (Hadden and Cherkinsky 2015,
2017). Dates for materials from Hjarng were also recalibrated using
Intcal20 (Reimer et al., 2020). Samples of shell were calibrated
using a AR of —44 + 66 calculated for marine reservoir corrections
from Horsens Fjord region (Heier-Nielsen et al., 1995).

The oldest recalibrated date from Hjarng is 7360 cal BP and the
youngest date is 6810 cal BP. Dates at Econfina range from 4550 cal
BP to 4210, with a date of 2570 cal BP at the surface of the midden
(Table 1).

4. Results
4.1. Optical petrography

4.1.1. Hjarng box core slides

Examination of the box core slides in transmitted light revealed
that the Hjarne midden materials were highly heterogenous, with
ample charcoal, shell, sands of various sizes, and clay all well rep-
resented. Sands consisted of a mix of feldspars and quartz. Trace
minerals included amphiboles. Two authigenic minerals were also
observed: pyrite was detected within all of the slides, and some
glauconite was also seen, increasing towards the bottom of the
profile. Quartz and feldspar grains were sub-angular to angular, and
sorting varied from poorly sorted to well sorted depending on
depth within the box core. Charcoal in some cases retained internal
structures of burned plant materials but not to the degree that
taxonomic identification could be made. Some bone fragments
were observed (Fig. 4). Ward et al. (2019, Fig. 9e) report one fora-
minifera in the uppermost unit of the box core (BC 101) near the
midden surface, but we saw no other examples in our slides, and it
remains unclear whether this single find is an integral feature
resulting from overwash of the deposit as it was forming, or a later
intrusion resulting from submergence by marine transgression.

4.1.2. Econfina Channel epoxy mounts

Examination of the Econfina Channel core epoxy mounts
showed more homogeneity than the Hjarng materials. Mineralogy
was dominated by sub-rounded to well-rounded sand grains
composed of quartz; sorting was varied. No feldspars were
observed anywhere in the profile. Clay clasts were observed in the
bottom of the profile. Charcoal was evident throughout the profile,
but in smaller fragments, while shell materials appeared blackened
and burned. Foraminifera were observed throughout the profile
(Fig. 5).
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4.2. EMPA of Hjarne box core slides

Qualitative mineralogical analysis demonstrates that clear dif-
ferences exist within the layers of the midden (Fig. 6). Some of
these are likely associated with depositional context, but others
reflect human activities. Authigenic minerals such as pyrite were
observed that demonstrate diagenetic changes experienced by the
midden materials since they were deposited.

BC101, a hearth feature in the cockle layer near the top of the
upper box core (Layer K21), showed angular to rounded grains,
with angularity that decreased down profile. Grains were overall
poorly sorted. Sand sized feldspars and quartz grains were both
common. Feldspars were common enough (>25%) to characterise
these sands as arkosic. Feldspars included potassium feldspar and
alkali feldspars. No true end member feldspars were seen, as would
be expected for these minerals. The process by which feldspars
crystallise from a magma is controlled by the chemistry of the
original melt; calcium rich plagioclase forms at higher tempera-
tures than sodium rich plagioclase, for example, and as the chem-
istry evolves and temperatures drop, feldspars show zones
enriched in these elements that reflect this thermodynamic and
geochemical history (Bowen 1956). A few heavy minerals were
observed, including an ilmenite grain and an amphibole. X-ray
mapping also showed varying degrees of pyritization within BC101,
with an increase moving down the profile.

BC102, the upper layer of the shell midden dominated by cockle
shells (Layer K21), showed angular to sub-angular grains, with no
apparent change in angularity within the profile. Sand sized feld-
spars and quartz grains were both common, and sorting was poorer
than in BC101. Feldspars were slightly less common in BC102 (~20%,
approximately), making these sands less arkosic than BC101. Feld-
spars again included potassium alkali feldspars, and again no true
end member feldspars were seen. Amphibole was again observed
in BC102. X-ray mapping showed increasing degrees of pyritization
within BC102 compared with BC101; this increase was observed
moving down profile, suggesting that redox conditions in this
portion of the midden were more anoxic (Fig. 6).

BC103, the oyster-dominated midden unit (Layer K19), was
similar to BC101 and BC102, again showing poorly sorted angular to
sub-angular grains. Sand sized feldspars and quartz grains were
both common. BC103 also showed a greater abundance of clay and
rock fragments, though the mineralogy is again consistent with the
local glacial till deposits. Feldspars, as before, included potassium
alkali feldspar, and again no true end member feldspars were seen.
Amphibole was also again observed in BC103. X-ray mapping
showed increasing degrees of pyritization compared with BC102;
this increase was observed moving down profile, suggesting that
redox conditions in this portion of the midden were increasingly
anoxic compared to BC101 and BC102.

BC201, the deposit at the base of the shell midden (the boundary
between Layers K19 and K24), showed minimal to no identifiable
shell fragments. Feldspars and quartz grains were dominant, once
again, with no apparent change in ratio of feldspar types, which
again showed no true end members. Pyritization increased again in
BC201. Additionally, BC201 was poorly sorted, with the most
heterogenous sorting evident mid-profile. The presence of pyrite
but the lack of shell suggests that this sample may represent the
bottom of the midden deposit because the formation of authigenic
pyrite is enhanced by anoxic environments where sulphur is
available, such as that found in marine sulphates.

BC202, the lowest unit in the sequence (Layer K24), showed
minimal to no identifiable shell fragments. Mineralogical
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Fig. 5. Micrographs taken in reflected light of the area at the bottom of the core sample from Econfina Channel. 1: charcoal fragment; 2: burnt shell; 3: foraminifera test.

composition was much the same as the four samples above, but
clay was greatly increased, along with what appear to be rip-up
clasts, which are large clasts eroded during high energy events
such as floods. Grains were very poorly sorted and more rounded
than above. Pyritization was greatest in this sample. Large clasts
were separated by layers of much finer materials, including clay
and very fine quartz-dominated sands.

4.3. SEM of epoxy mounts

4.3.1. Hjarne

These were primarily studied for imagery suitable for PSA
analysis in Image] (see section 4.4), since mineralogy had already
been confirmed qualitatively by EMPA analysis on the box core
slides. Pyrite was again visible in framboidal form. Inclusions such
as bone were confirmed, while no foraminifera were observed.

10

These findings were all consistent with petrographic investigations
and EMPA results.

4.3.2. Econfina

Econfina samples were assessed for mineralogy on a qualitative
basis using electron dispersive spectroscopy (EDS). Clastics were all
quartz, and no feldspars were observed. Average grain sizes tren-
ded towards fine and very fine sands. Clay clasts were evident in the
bottom of the profile and showed strong evidence for pyritization;
iron and sulphur were both detected in amounts greater than 1%.
Sediments and general geochemistry are consistent with a brackish
tidal marsh environment rich in organic materials subject to influx
of marine sulphates during tidal cycles. No organic materials such
as woody stems or leaves were observed, but this is not surprising
in a sample from subtropical tidal marsh where humid conditions
and warm temperatures support decomposition. The modern
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Fig. 6. EMPA x-ray maps of thin sections from the Hjarng box cores. Backscatter electron images (BEI) within each layer are numbered in sequence from the top of the layer to the
base (left to right in the illustration), and the images for each layer are shown in stratigraphic order, with BC101 at the top of the illustration and BC202 at the bottom. For
explanation of BC numbers, see Fig. 4 caption and text. Further details are as follows: BC101: 1) Shell; 2) llmenite; 3) Amphibole; BC102 shows increased pyrite occurrence, finer
grained matrix with rock fragments, apatite (bone) and shell; BC103 shows similar features to BC102; BC201 shows a reduction in pyrite and shell materials; BC202 shows an
increase in clay and other fine particles along with intermittent coarse grained materials.

1
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environment along the banks of tidal creeks in Apalachee Bay
consists of sediments of much the same nature.

The material from Econfina Channel also contained ample shell
materials in varying states of preservation. Many shells showed
deterioration along their edges in SEM and microscopy, with
discernible blackening along the outer edges as well. This black-
ening may be associated with burning, since EDS reconnaissance
did not detect pyritization along the edges of shell fragments. This
blackening could also result from discolouration from the sur-
rounding sediments. We also observed abundant foraminifera
throughout the profile, including in close proximity to the clay
clasts observed at the very bottom of the profile. Most of these
appeared to be Globigerinoides sp.; they consisted of tests with
trochospiral morphology (chambers are arranged in a spiral coil).

Finally, it is noteworthy that opaline chert, a form of crypto-
crystalline quartz material is present in pore spaces in the lower
levels of the profile (Fig. 7). Small bright dots are pyrite in fram-
boidal form, which appears to have formed within pore spaces. The
opaline chert is visible in the form of concentric layers and circles
forming in pore spaces. One foraminifera test can be observed in
the lower right-hand portion of the composite micrograph and it
shows no evidence for dissolution. However, other ovoid shapes
within the centre and to the left side of the image are not consistent
with foraminifera and show much greater evidence for dissolution.

4.4. Particle size analysis

Particle size analysis offers insight into depositional context
because particle size movement is controlled by the strength of a
force acting on these sediments. Generally speaking, larger parti-
cles require stronger forces to mobilise them, though mobilisation
of clay and silt is also affected by their electro-static characteristics.
Deposition is likewise a result of the strength of forces acting on
sediments; larger sized particles generally come to rest in higher
energy conditions, but smaller particles do not settle until forces
subside (Folk and Ward 1957; Hjulstrom 1935).

We emphasise that mechanical particle size analysis in this
study was carried out without removing the non-clastic materials.
Particle size analysis results are not therefore conclusive by them-
selves and must be assessed alongside mineralogical characteristics
and microfossil inclusions to infer depositional context. In the case
of Hjarng, samples suitable for mechanical PSA were only available
from the cores taken from deposits beneath the midden, not from
the midden itself. For the latter we have relied on digital PSA of the
epoxy mounts from the lower part of the sequence (box core B).
However, we emphasise that digital PSA did not include particle
sizes finer than 63 um (silts and clays) for two reasons. First, the
method used in Image] could not reliably differentiate between
remaining speckles in the micrographs and actual particles. Second,
clay clasts were read as solid particles by the software during
processing. Therefore, only sand size analysis is presented for these
samples.

4.4.1. Vertical midden profiles: digital PSA results

4.4.1.1. Hjarne. Materials from the Hjarne epoxy mounts in box
core B were dominated by very fine and fine sands (<250 pm), with
slightly fewer very fine sands (63-pum size fraction) than Econfina
and a slight decrease in very fine sands moving down profile. Me-
dium to very fine gravels made up less than 25% of the samples
tested, though to varying degrees (Fig. 8, S1, see also S5, S6, S10).
The coarsest materials (2000—4000-um size fractions, very fine
gravels) were found midway down the profile, below which was an
increase in very fine sands again. The very fine gravels are most
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likely representative of increased shell in this section of the box
core. The lower third of the profile (from —0.295 to —0.34 mbs)
shows a clear pattern of intermittent spikes of coarser versus finer
materials, consistent with the findings from BC201 and BC202
during EMPA analysis. Minimal to no shell was evident during vi-
sual examination, suggesting that these coarser materials are in fact
clastic and not carbonate materials. The Gradistat statistics provide
additional confirmation of these characteristics, typically showing
mean values for particle sizes in the fine sand to medium sand
categories but with a skew towards the coarser end of the range.
Kurtosis is varied and the distributions are typically polymodal,
both features reflecting the poorly sorted nature of the sediments.
The almost complete lack of foraminifera in the Hjarng deposits
argues against storm overwash. We cannot rule out intermittent
high energy events associated with aeolian forces but given the
sedimentology of the region we consider it most likely that these
larger particles towards the bottom of the profile represent poorly
sorted glacial or glacio-fluvial till sediments that represent the
original land surface upon which the midden was deposited,
instead of midden materials themselves (Astrup et al., 2020).

4.4.1.2. Econfina. The Econfina samples contained slightly more
coarse materials than those from Hjarne. Towards the top of the
profile, spikes of very fine gravels appear, interspersed with me-
dium and fine to very fine sands (Fig. 8). These larger particles
appear to represent shell, given the dominance of these materials in
this part of the profile and past results from bulk sediment sam-
pling showing that very fine gravels correlated with shell within
the midden (Cook et al, 2018). This pattern shifts at
around —-0.425 m to less extreme variation but reappears
around —0.555 m to —0.565 m and may represent impacts on shell
materials such as de-calcification, trampling impacts, or other
taphonomic changes. From —0.565 m to the bottom of the core,
visual inspection showed that clay clasts were present within the
sediments. PSA results actually show a decrease in finer sediments
suggesting that the increase in the very fine gravel fraction may
include these clasts.

This observation suggests two possibilities: either forces acted
on this midden deposit that were sufficient to erode clays in the
form of clasts, or, alternatively, these clasts formed during floccu-
lation of clay particles in a brackish estuarine context. Either sce-
nario is possible given the location of this midden. The microfossil
assemblage of foraminifera indicates that the Econfina palae-
ochannel was, at the time the midden was deposited, a tidally
influenced estuarine feature. This may indicate that a higher energy
environment was present at Econfina Channel in comparison to
Hjarng, but additional study of clastic materials will be necessary to
fully support this conclusion.

Gradistat statistics are consistent with these observations,
showing that samples were generally trimodal to polymodal and
poorly sorted. Texturally, they were generally slightly gravelly to
gravelly sands and kurtosis was again varied, likely reflecting the
poorly sorted nature of the deposit. Mean particle size was gener-
ally medium sand and skewness ranged from very fine through
symmetrical to coarse. A few locations that overlapped with the eel
grass beds to the south were bimodal and moderately sorted, with
texture ranging from sandy gravel to gravelly sand and distribu-
tions showing variable skewness (S2, see also S5, S6, S10).

4.4.2. Non-midden samples: Mechanical PSA results

4.4.2.1. Hjarne. Gradistat results from samples subjected to me-
chanical PSA from below the Hjarne midden were also trimodal to
polymodal like those from the midden profile but showed both
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Fig. 7. Composite micrograph taken by SEM of opaline chert formation within pore spaces in the lower levels of the core from Econfina Channel. Opaline chert is defined by its

concentric patterning within the spaces that it infills.

poor and moderate sorting. Texturally they were slightly gravelly
sand though one sample was gravelly sand. Mean particle size was
medium sand. Skewness ranged from fine to symmetrical to very
coarse, and kurtosis was predominantly leptokurtic (S3, see also S5,
S6, S10).

4.4.2.2. Econfina. Gradistat results from samples subjected to me-
chanical PSA across the Econfina Channel site varied by location.
Samples from the surface of the eel grass beds at Econfina were
polymodal, trimodal or bimodal, and ranged from poorly sorted to
moderately well sorted. Texturally, these sediments were gravelly
sand to slightly gravelly sand, skewed towards very coarse mate-
rials, and were mesokurtic to leptokurtic. Mean particle sizes were
fine, medium, and coarse sands, with finer particle sizes further
south of the midden. Sediments from the quarry zone taken at the
surface were polymodal with a few trimodal samples and ranged
from poorly sorted to very poorly sorted. Texturally, they resembled
the midden and were composed of sandy gravel or gravelly sand.
They skewed from fine to symmetrical to coarse or very coarse
materials. Kurtosis ranged from mesokurtic to very platykurtic,
while mean particle sizes ranged from medium to coarse or very
coarse sands. One sample was recovered in 2015 from the paleo-
channel itself. It was polymodal and poorly sorted gravelly sand. It
skewed towards coarse materials and its kurtosis was mesokurtic.
Mean particle size was medium sand (S4, see also S5, S6, S10).

4.4.2.3. Comparison of Econfina and Hjarne mechanical PSA.
Samples subjected to mechanical PSA from Econfina showed
greater variability than those from Hjarng, including some overlap
between midden and non-midden quarry zone and eel-grass zone
samples at Econfina. Sorting was also more variable at Econfina and
included samples that were moderately well sorted. The only
samples from Hjarng that were similar were the moderately sorted
samples from beneath the midden.

These differences likely result from differences in parent geol-
ogy and sedimentary conditions between these two marine basins.
Analyses included samples from across multiple site features at
Econfina, while the non-midden samples at Hjarng were confined
to eight samples recovered from two push cores that expressly
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targeted sediments from below the midden itself. Interestingly,
these findings suggest that non-midden deposits such as the
samples from below the midden at Hjarng and the eel-grass zone at
Econfina may be generally better sorted than the midden samples
from both sites.

4.4.3. Digital versus Mechanical PSA results

Parametric statistical comparison of mean particle size by
method (One way, student’s t-test) indicates that there are differ-
ences between the mean values for each particle size derived from
each method. Non-parametric statistical comparison of mean par-
ticle size by method (Wilcoxon/Kruskal-Wallis, ranked sums) also
shows that there are differences between the mean values for each
particle size, with the exception of the 500-um size fraction (S7, see
also S5, S6, S10). These differences between the two methods could
be because the materials tested using mechanical separation were
surface materials from Econfina and from below the midden at
Hjarng, whereas the materials tested using digital methods were
taken from vertical profiles within each midden that clearly
demonstrate change with depth. It could also be the case that
digital PSA methods over- or under-counted various size fractions
due to digital “noise” in the micrographs.

5. Discussion
5.1. Site depositional contexts

5.1.1. Hjarne

Prior studies suggest the midden was deposited on a subaerial
beach terrace composed of glacial or glacio-fluvial till deposits
(Skriver et al., 2018; Astrup et al., 2020). Our findings support this
interpretation and amplify the results of the earlier micromor-
phological study (Ward et al., 2019; Ward and Maksimenko 2019)
through more detailed correlation of the mineralogy with the
parent geology and comparative analysis of midden and non-
midden sediments at Hjarne and Econfina channel. EMPA anal-
ysis indicates that these sediments are generally arkosic in miner-
alogy and include minor heavy minerals such as ilmenite and
amphibole. This suggests that their source was likely granitic.
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PSA results, Hjarng box core
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Fig. 8. Digital PSA results from Hjarng and Econfina Channel materials showing
microstratigraphic variation in the proportions of coarse to finer grained material
through the two sequences. Samples were measured at approximately 1-mm intervals
and are shown in stratigraphic order, reading from left to right, with depths given in
metres below midden surface (mbs). The Hjarng data refers to the lower part of the
midden sequence in box core B. The slightly higher proportion of coarse materials can
be seen in the profile from Econfina. The profile from Hjarne shows where coarser
fractions intermittently dominate the sediments in the lower levels of the profile and
these most likely correlate with the contact between the midden and the land surface,
which was composed of poorly sorted glacial or glacio-fluvial till. Details of provenance
and depth relationships are given in the text and in Supplementary files S1, S2 and S10,
which also give full details of particle size statistics.

Transport to this area of Jutland probably occurred during the LGM
when the expansion of the Scandinavian ice sheet eroded bedrock
of this type in Norway; once the ice sheet collapsed these sedi-
ments were deposited as glacial till. Thus, sediments within and
below this midden are local and reflect the regional geology and
geomorphological history.

Other characteristics of the midden also support interpretation
of deposition in a terrestrial context. The poorly sorted materials
are consistent with both glacial till and anthropogenic origins but
are inconsistent with particle size distribution patterns found in
non-anthropogenic geomorphological contexts such as shoreface
deposits or tidally influenced channels. For example, shoreface
deposits tend to show consistent grain size sorting; upper shore-
face deposits are usually comprised of coarser grains while finer
grain sizes usually only settle in lower energy contexts further
offshore. Likewise, tidal deposits usually, though not always, show
features such as mud drapes and/or herringbone patterns associ-
ated with ebb and flow (Nichols 2009). These features can be
ephemeral, however. A better indicator of terrestrial deposition is
the almost total lack of foraminifera or any other inclusions sug-
gestive of marine or brackish water contexts. The glauconite and
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pyrite are both authigenic minerals that form in anoxic conditions
during and after submergence and cannot be used to infer original
depositional context. Finally, zooarchaeological results are consis-
tent with terrestrial midden deposits; while the oyster and cockle
are marine taxa, the condition of the shell is consistent with pro-
cessing for food, and land snails were also found within the midden
materials (Astrup et al., 2020).

The two slides from the lower box core examined by EMPA, and
the PSA analysis from the epoxy mounts from the lower box core,
appear to represent the bottom of the midden and contact with the
former land surface upon which it was deposited. This is based on
the lack of shell and charcoal and increase in sand stringers with rip
up clasts that are interspersed with fine grained materials. The lack
of foraminifera argues against a tidally influenced marine context,
but the coarse versus finer materials observed within the sedi-
ments below the midden are consistent with poorly sorted glacial
till deposits possibly subjected to intermittent glacial outwash
events. Again, this is not consistent with shoreface or fully fluvial
deposits. The re-calcification observed throughout the box core
slides during EMPA also indicates that the midden materials came
into contact with freshwater, not saltwater. This freshwater could
simply have percolated through the midden as rainwater or
groundwater and does not necessarily imply a fluvial source. In
sum, all the evidence points to deposition of the Hjarng shell de-
posit as a midden on land exposed to freshwater inputs, prior to
submergence.

5.1.2. Econfina Channel

Like the Hjarng sediments, the materials examined in the
Econfina Channel core originated locally. Again, we infer deposi-
tional context based on mineralogy and inclusions such as micro-
fossils as well as some aspects of the particle size analysis, with all
of the above caveats concerning the manner in which non-clastic
materials could skew these results. The sediments are more
mature with no feldspars and are comparatively well rounded,
unlike the glacial till at Hjarng. This is to be expected; these are
sands eroded from the Appalachian Mountains and transported
hundreds of kilometres before deposition on the continental shelf.
Any metastable minerals the original sediments may have con-
tained, such as feldspars, decomposed into clays long before these
sands reached the Gulf of Mexico.

Unlike Hjarng, inclusions within this midden material suggest
that it was deposited in an intertidal context. There are abundant
foraminifera throughout the entire profile; the top of this core was
0.4 m below the seabed surface, and the taxa represented are not
epifaunal. Most of these appeared to be Globigerinoides sp. These
taxa are abundant in the Gulf of Mexico and their presence could be
explained in several ways. This deposit could have been exposed to
marine waters such as tidal cycles during deposition. Alternatively,
these foraminifera could have entered terrestrial deposits via storm
surges, which are not uncommon in this region. They could also
have been accidentally harvested along with the shellfish targeted
for human consumption (Lane et al., 2011; Nagel et al., 2016;
Rosendahl et al., 2007). However, this location was not wholly
saltwater when the midden was deposited. There is evidence of de-
calcification in the shell materials, and the dissolution of what
appear to be diatoms along with redeposition of opaline chert
within pore spaces of the clays at the bottom of the core, which
appears to represent the contact between the base of the midden
and the former ground surface. Both of these phenomena are most
likely to occur in a freshwater context, rather than saltwater. This
suggests that the midden at Econfina Channel was deposited on the
edge of an intertidal zone along the bank of a tidal creek where the
water table intersected the surface.
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Fig. 9. Discriminant function analysis (DFA) results by site, feature, and PSA method. Left panel shows all results regardless of PSA method, showing significant overlap of the
midden deposits at Econfina Channel and Hjarng, and quite good separation from the off-site sediments. In the right panel, results are further subdivided according to PSA method
(mechanical or SEM). The SEM results confirm a significant overlap between the midden deposits at Econfina Channel and Hjarng. However, the mechanical PSA results show more
overlap between the Econfina Channel midden and other deposits in the vicinity, though offsite sediments from Hjarng continue to differentiate well from all other groups. This
likely reflects the fact that SEM PSA was done on sub-surface materials from both middens, while mechanical PSA at Econfina Channel was carried out on surficial deposits. Higher
proportions of very fine sands can be seen in the group means for SEM PSA from both middens, and lower proportions of larger particles (2000 and 4000 micron size fractions [2-4
mm and greater]), in contrast to materials analyzed with mechanical PSA from surficial samples (Table 2, S10). Note that the fine fractions are preserved downcore within the
Econfina Channel midden but stripped out from the other Econfina Channel samples. This is to be expected from surficial sediments exposed to tidal, wave, and storm energies and
is consistent with other findings. For a discussion of this method of DFA within JMP, see https://www.jmp.com/support/help/en/15.2/index.shtml#page/jmp/disciminant-analysis.

shtml.

5.2. Midden sediment characteristics

One of the most important outcomes of this analysis is to show
that the midden deposits from Econfina Channel and Hjarne,
despite their differences in cultural, ecological and geological
context, share similar characteristics that reflect their anthropo-
genic origin. Both contain sediments that are generally poorly
sorted and intermingled with materials indicating human activ-
ities. Additional multivariate analysis, specifically discriminant
function analysis (DFA), sheds some further light on this question.

DFA (linear, assuming common covariances) shows that midden
sediments sampled at Econfina Channel and Hjarng overlap sub-
stantially in terms of grain size characteristics when compared to
one another and other features/areas within both sites. Given that
we carried out particle size analysis on sediments that include non-
clastic materials in this study, however, it is especially important to
ask how midden sediments compare to non-midden sediments.
Earlier studies at the Econfina Channel that examined bulk sedi-
ments across the site found that multiple different intrasite areas
could be distinguished from one another; over 80% of samples from
different features across the site were classified correctly by DFA
(Cook et al., 2018, table 7). To extend this assessment, we ran DFA
on all samples at Econfina Channel and Hjarng, including both
midden and off-midden samples. The entropy 12 score is very low,
and 168, or just over 35%, of the samples tested from the two sites
were misclassified; these were primarily from midden materials at
Econfina and Hjarng, which show a large degree of overlap. The
non-midden sediments from Hjarng stand out particularly well and
there is only limited overlap between the midden samples as a
group and the Econfina off-midden samples (Table 2; Fig. 9; S8 and
S9).

Inclusion of non-clastic materials in our methods also raises
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other important questions. Clearly, humans modify their environ-
ments, as multiple studies in niche construction demonstrate (see
Laland and O’Brien 2010). Our results here raise questions about
how such modifications might affect the course of interdigitating
sedimentary processes. For example, it is unknown if the presence
of a shell midden might act to trap different size classes of sedi-
ments relative to offsite locations that are not shell middens. Our
results suggest that separate analysis of clastic and non-clastic
materials would be a highly productive avenue for future
research into such issues.

5.3. Mechanical versus digital particle size analysis

Discriminant function analysis results suggest that midden
samples tested at Econfina Channel are more like midden samples
from Hjarng despite their differences in mineralogy and inclusions
of anthropogenic origin, than they are to non-midden samples at
Econfina or Hjarne. However, comparison of the digital results with
mechanical results indicates differences between the two methods,
and these may reflect the fact that they were applied to different
types of sediments, and perhaps to imperfections or inaccuracies in
the digital micrographs. Mechanical PSA was applied to surficial
deposits, which are liable to stripping out of finer sediment frac-
tions by wave energy, whereas the midden deposits analysed by
digital PSA have higher proportions of finer sediment (see S10). We
were, therefore, unable to conduct a rigorous comparative test of
the digital PSA method; additional future testing with larger sam-
ple sizes from both sites, particularly from Hjarne, will be needed to
clarify this issue.

Nevertheless, and given the above caveat, it is still significant
that the midden samples from Econfina Channel were more like
one another, and more like the midden samples from Hjarng, than
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Table 2

Discriminant function analysis results for all sediments. Entropy R? indicates the goodness of fit for the modelled group classifications; scores closer to 1.0 indicate better fit.
Values of -2LogLikelihood likewise indicate goodness of fit; larger values indicate better fit. The sum total for each column in the comparison matrix gives the number of
samples predicted for the column category, while the sum total for each row gives the actual group membership, given in each row category. Samples from the Econfina and
Hjarneg middens are highlighted to demonstrate the high degree of similarity between predicted and actual classifications. The upper table confirms a strong similarity be-
tween the results from the Hjarne and Econfina midden sediments for all samples and a separation from non-midden sediments. The SEM results in the lower table confirm the
strong relationship between the two middens but a weaker relationship when mechanical PSA is included. For further discussion see the caption for Fig. 9 and the text.

DFA analysis by Site and Feature

Score Summaries

Source Count Number Percent Misclassified Entropy R2 -2LogLikelihood
Misclassified
Training set 474 169 35.65 0.11 903.58

Actual classification Predicted classification

Econfina, paleochannel Econfina, quarry Econfina, eel grass Econfina, Hjarng, midden Hjarng, below midden
beds non-midden midden
Econfina, paleochannel 1 0 0 0 0 0
Econfina, eel grass beds 0 0 14 0 0 0
non-midden
Econfina, midden 0 11 9 94 94 0
Hjarno, midden 0 0 0 46 170 0
Hjarno, below midden 0 0 0 0 0 7
Econfina, quarry 3 21 2 1 0 0
DFA analysis by Site, Feature, and PSA Method
Score Summaries
Source Count Number Percent Entropy R2 -2LogLikelihood
Misclassified Misclassified
Training set 474 174 36.71 0.32 798.37

Actual classification

Predicted classification

Econfina, Paleochannel, Econfina, Eel Grass, Econfina, Midden, Econfina, Econfina, Quarry,  Hjarno, Below Midden, Hjarno,
Mechanical PSA Mechanical PSA Mechanical PSA Midden, SEM Mechanical PSA Mechanical PSA Midden,
SEM
Econfina, Paleochannel, 1 0 0 0 0 0 0
Mechanical PSA
Econfina, Eel Grass, 0 12 2 0 0 0 0
Mechanical PSA
Econfina, Midden, 0 6 14 0 6 0 0
Mechanical PSA
Econfina, Midden, SEM 0 0 0 101 0 0 81
Econfina, Quarry, 3 0 7 0 17 0 0
Mechanical PSA
Hjarno, Below Midden, 0 0 0 1 0 7 0
Mechanical PSA
Hjarno, Midden, SEM 0 0 0 68 0 0 148

samples taken from other, non-midden site features in the wider
Econfina area and from below the midden at Hjarng. Given the
evidence for different depositional contexts at Econfina Channel
and Hjarne, we interpret our discriminant function analyses to
indicate that middens share specifically quantifiable sedimento-
logical commonalities.

The data are consistent with earlier studies by Gagliano and
colleagues (Gagliano et al., 1982: 90—95) and show that the cu-
mulative grain size distributions for both datasets are not consis-
tent with any natural landform sampled during their 1982 study.
Instead, the Econfina and Hjarne midden materials are generally
more consistent with the Site Type II identified by Gagliano et al.
These were primarily shell midden sites sampled along the
northern Gulf of Mexico coastline. Non-anthropogenic landforms in
general are described by Gagliano et al. as relatively well-sorted in
comparison to anthropogenic ones, though this term is used in a
comparative instead of a strictly quantitative sense. Despite this, it
is useful to note that distribution analyses for all materials from
Hjarng and Econfina Channel show a variety of non-normal dis-
tributions inconsistent with well sorted sediments (see S5, S6, S10).
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5.4. Implications for the survival and discovery of submerged shell
midden sites

The two case studies discussed here represent different cultures
on different continents and they are far from identical. They are
located in two different marine basins, have different parent geol-
ogies, different histories of coastal geomorphological change and
different marine ecologies and molluscan fauna. Nevertheless,
although the results of a comparative approach point to certain
differences, they also highlight similarities with important impli-
cations for the survival, discovery and analysis of submerged shell
midden sites.

The differences refer primarily to the different environmental
contexts of the two middens. The midden at Hjarne was likely
deposited on a terrestrial surface that lacked detectable marine
influence, whereas Econfina Channel was likely deposited on the
edge of an intertidal zone. The Econfina Channel site experienced
more damage to the midden materials from boring marine organ-
isms and, possibly, higher energy fluid dynamics. However, it is
critical to note that both deposits survived submergence with
sufficient materials intact to differentiate them from non-
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anthropogenic shell deposits. This suggests that favourable condi-
tions for shell midden survival exist in other marine basins, from
temperate regions to the sub-tropics, and likely beyond, even in
regions such as the Gulf of Mexico that experience tropical cyclone
impacts.

Both middens contain evidence for diagenetic processes com-
mon to deposits that were initially at least partially subaerial, and
which later became engulfed by anoxic sediments before open
marine conditions were established (Lowery and Wagner 2012).
Both contain abundant evidence for pyritization, which occurs
when marine sulphates are reduced by bacteria that metabolise
oxygen and organic materials within the sediments. The lower
levels of the Hjarng midden also contained some glauconite, which
is typical for anoxic sediments, but it is less abundant than the
pyrite. This glauconite formed after full submergence of the Hjarng
site while the materials were still overlain by gyttja. Its absence at
Econfina may be a result of the nature of the sediments. Glauconite
as a mineral contains varying proportions of potassium, sodium,
iron, aluminium, and magnesium. At Econfina, quartz and carbon-
ate dominate the mineralogy and the only iron sources come from
clays, whereas at Hjarng, feldspars are common, providing a source
for sodium, potassium, aluminium, and magnesium. Thus, the dif-
ference in authigenic mineral assemblage is linked to the initial
mineralogical assemblage present during deposition. Despite the
mineralogical differences, both middens were buried in anoxic
conditions that both preserved organic materials and also pro-
moted formation of these authigenic minerals.

Regarding similarities, the sediments from the two middens
cannot be differentiated from one another based on multivariate
analysis of PSA results, especially the results derived from digital
SEM measurements. This is especially significant given that the two
shell middens were deposited in different geomorphological con-
texts and that the Econfina midden is not as well preserved as the
Hjarne midden. These results further support the sedimentological
model for shell midden sediments as uniquely anthropogenic bio-
clastic deposits that can be quantitatively and qualitatively char-
acterised. It is important to note that our interpretations of
anthropogenic influence also rest on additional lines of evidence,
including artefact and ecofact inclusions. Nevertheless, our results
strongly suggest that shell middens can be identified from sedi-
mentological analysis of small samples despite differences in
climate regime, environmental context and culture, using a meth-
odology that includes particle size and inclusion analyses. These
observations have supported our decision to include non-clastic
materials in the grain size analysis, although this is not a typical
approach in sedimentology. They strongly support future studies of
submerged landscapes where logistical challenges and budgetary
constraints may well restrict investigators to coring methods or
limited sediment grab samples only, instead of full excavation.

Some past studies have concluded that open-air sites such as
these are not productive targets for offshore survey because they do
not preserve well during and after submergence (see Faught and
Donoghue 1997). Other studies have proposed that human pop-
ulations did not use coastal resources or create visible accumula-
tions of shell deposits during marine transgression events because
the shoreline was moving too fast to allow the stabilisation of
shorelines and sufficient accumulation of archaeological materials
in any one location (Fischer 1995, p 382; Bailey 2011, p 322). Our
results argue against both assertions, at least for the areas we have
studied, demonstrating that shell deposits can survive inundation,
and that molluscan resources continued to be available and were
exploited with sufficient intensity to create shell-midden deposits
even during periods when marine transgression was in progress.
Coastal locations and marine molluscan resources continued to be
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available and attractive to human populations despite the dynam-
ically changing nature of the coastal zone.

5.5. Interpretation of geographical and temporal gaps in shell
midden distributions

Our results also suggest that geographical and temporal gaps in
the occurrence of shell middens may have as much to do with the
differential visibility and discovery of such deposits as to regional
variations or time trends in the availability of marine molluscs or
subsistence practices. In both the Gulf of Mexico and Denmark, our
underwater shell middens occur on stretches of coastline — the Big
Bend in Florida and the southern coastlines of the Danish Straits —
where on-land coastal shell middens are absent, although sub-
stantial on-land shell middens of a similar date are present in
neighbouring regions. In both cases the coastlines lacking on-land
shell middens have been differentially impacted by relative sea-
level rise in the early to mid-Holocene compared to the neigh-
bouring regions (Astrup 2018; Russo 2006). Shell middens are ab-
sent anywhere in either region before about 7000 cal BP because
earlier shorelines nearly everywhere are now under water.

Such gaps in the record could result from the differential
availability of marine molluscs on different palaeoshorelines, or
differences in the interest taken in marine resources by different
human populations and cultures at different times and places.
Many such theories have been proposed to account for the absence
of shell middens in the archaeological record, especially their rarity
or absence in late Pleistocene and early-to-mid-Holocene periods,
and especially for their apparently late appearance in large
numbers from c. 7000 years ago onwards. These theories assume
that human populations neglected marine resources because of
their supposedly increased labour demands or technological re-
quirements in comparison with hunting and gathering on land,
until forced to change by mid-Holocene population growth,
reduction of land and terrestrial resources by sea-level rise or other
climatic changes, or because of the inferred or assumed absence of
marine molluscs (Binford 1968; Osborn 1977; Beaton 1985;
Waddington et al., 2007; Lewis et al., 2020).

The assumptions supporting the above theories have been
repeatedly challenged as being based on faulty data or faulty logic
and on a failure to recognise let alone to address the possibility that
earlier coastal site are missing because of submergence by sea-level
rise (Erlandson 2001; Bailey and Milner 2002; Erlandson and
Fitzpatrick 2006; Hausmann et al., 2021). Our results provide
empirical support for these challenges, indicating that gaps in the
coastal archaeological record may be more apparent than real, that
shell midden deposits can survive submergence, and most impor-
tantly that they can be investigated with minimally invasive tech-
niques such as coring and identified as middens from
sedimentological and micromorphological analysis of core con-
tents. This is of particular relevance to the investigation of under-
water shell middens on earlier shorelines at greater depth, where
the deposits may be beyond reach of diver investigation and further
obscured by overlying layers of marine sediment. Since we know
that buried shell layers can be identified from geophysical remote
sensing (Astrup et al, 2020), the prospect of being able to
discriminate between anthropogenic and natural shell deposits
from the analysis of samples recovered by coring offers an
extremely promising avenue for future underwater investigation.
Our results indicate that shell middens represent ideal targets for
underwater prospection, suggest that many more may await dis-
covery on submerged palaeoshorelines, and argue in favour of
continued and intensified exploration of the continental shelves in
the search for more such sites.
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6. Conclusions

In this study we have employed a methodology drawing on
nearly 40 years of geoarchaeological experience in characterisation
of archaeological sediments to examine two different underwater
shell-midden sites with respect to depositional context and post-
depositional, taphonomic, and diagenetic changes. Our findings
demonstrate that shell-midden deposits can survive inundation by
sea-level rise with sufficient stratigraphic integrity to provide
detailed and varied information about cultural and subsistence
practices and geochronology.

Our results also show that shell midden sites represent ideal
targets for offshore archaeological site prospection. They appear to
possess a specific sedimentological profile that can be identified
from analysis of core samples or with minimal excavation, despite
differing degrees of preservation and differences in cultural,
geological and palaeoclimatic context. They also contain valuable
archaeological data that is essential to better understand long-term
changes in patterns of coastal settlement and economy associated
with late Pleistocene and early Holocene coastlines that are now
mostly submerged.

Finally, our results emphasise the growing need to take greater
care of the underwater cultural heritage and its management. Sites
created by foraging populations may seem to be more ephemeral
and less obvious than the underwater cultural heritage of later
periods such as historic vessels and maritime infrastructure, but
they are no less informative. Our results indicate that they may be
far more common than previously assumed. This is particularly
important as shallow-water and coastal sites are now at increased
risk around the world and in different marine basins from both
anthropogenic and natural threats (Anderson et al., 2017). Our re-
sults can assist modern cultural heritage managers in identifying
which modern coastal locations are most vulnerable to damage
from modern climate change and marine transgression, and those
which are more likely to survive. This in turn should help to opti-
mise modern cultural heritage management practices at a time
when accelerating climate change makes such a goal most urgent.

In memoriam
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tragically passed away during the production of this article. We
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will miss him dearly.
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