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Habitat and community structure 
modulate fish interactions in a 
neotropical clearwater river
 Lucas T. Nunes1,  Renato A. Morais1,2,  Guilherme O. Longo3,  
  José Sabino4 and  Sergio R. Floeter1

Species interactions can modulate the diversity and enhance the stability of 
biological communities in aquatic ecosystems. Despite previous efforts to 
describe fish interactions in tropical rivers, the role of habitat characteristics, 
community structure, and trophic traits over these interactions is still poorly 
understood. To investigate among-habitat variation in substratum feeding 
pressure and agonistic interactions between fishes, we used remote underwater 
videos in three habitats of a clearwater river in the Central Western, Brazil. We 
also performed visual surveys to estimate the abundance and biomass of fishes and 
proposed a trophic classification to understand how these variables can affect fish 
interactions. Community structure was the main factor affecting the variation in 
the interactions among the habitats. Biomass was the main variable determining 
which habitat a fish will feed on, while species abundance determined with how 
many other species it will interact in the agonistic interaction networks for each 
habitat. Specific habitats are not only occupied, but also used in distinct ways 
by the fish community. Overall, our results demonstrate the importance of the 
heterogeneity of habitats in tropical rivers for the interactions performed by 
the fishes and how the intensity of these interactions is affected by community 
structure.

Keywords: Bodoquena plateau, Centrality, Characidae, Feeding pressure, 
Habitat heterogeneity.
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Interações realizadas por peixes podem modular a diversidade e assegurar a 
estabilidade de comunidades em rios tropicais. Apesar dessa importância, poucos 
estudos relacionam as interações ecológicas com as características do habitat, 
estrutura da comunidade e atributos das espécies de peixes. Por meio de filmagens 
remotas subaquáticas nós verificamos como a pressão alimentar dos peixes sobre 
a comunidade bentônica e as interações agonísticas entre peixes são influenciadas 
por essas características do habitat e da comunidade em um rio tropical de água 
clara na região Centro-Oeste do Brasil. Também realizamos censos visuais para 
estimar a abundância e a biomassa dos peixes e propusemos uma classificação 
funcional para entender como essas variáveis podem afetar as interações dos 
peixes. A estrutura da comunidade foi o principal fator que afetou a variação nas 
interações entre os habitats. A biomassa dos peixes determinou em qual hábitat 
um peixe se alimentará, enquanto a abundância das espécies determinou com 
quantas outras espécies elas interagem nas redes de interações agonísticas de cada 
habitat. Habitats específicos não são apenas ocupados, mas também utilizados de 
maneiras distintas pela comunidade de peixes. Nossos resultados demonstram a 
importância da heterogeneidade de habitats para as interações realizadas pelos 
peixes em rios tropicais e como a intensidade dessas interações é afetada pela 
estrutura da comunidade.

Palavras-chave: Centralidade, Characidae, Heterogeneidade de habitats, Pressão 
alimentar, Serra da Bodoquena.

INTRODUCTION

Tropical rivers often encompass high habitat-heterogeneity along their course (Vannote 
et al., 1980). These habitats are characterised by physical and biological features that 
promote distinct structural complexity (Bell et al., 1991), which can explain gradients of 
species diversity for freshwater organisms. As a result, the distribution of many organisms 
within a river can closely reflect habitats characteristics (Bell et al., 1991; Petry et al., 
2003). For instance, small invertebrates and fishes that would otherwise be exposed to 
predation in low complexity habitats can find refuge in highly complex habitats, such 
as those formed by aquatic plants (Gorman, Karr, 1978; Coull, Wells, 1983; Savino, 
Stein, 1989; Sabino, Zuanon, 1998; Smith et al., 2014). Indeed, impaired visual contact 
between individuals in structurally complex habitats might reduce detectability (Bell 
et al., 1991), thus reducing the frequency of visually oriented interactions in general, 
not only during predation. These visually-mediated interactions are thought to be 
particularly common in clear water rivers and lakes (Bergman, Moore, 2003; Ranåker 
et al., 2014).

Habitat characteristics, such as three dimensionality and food resource availability, 
and species traits, such as morphological and behaviour adaptations, can directly affect 
the intensity and outcomes of biological interactions (Crowder, Cooper, 1982; Baber, 
Babbitt, 2004). For instance, prochilodontid fishes use their thick, fleshy and often 
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suctorial lips to scrape the substratum, feeding on detritus and periphyton (Bowen, 
1983; Power, 1983; Taylor et al., 2006). As a result, these fishes would be expected 
to be particularly abundant on habitats that offer such conditions, such as those with 
rocky and sand bottoms instead of macrophyte banks. In addition to habitat and species 
traits, species abundance can also play an important role on species interactions because 
abundant species tend to interact more intensely and with more components than rare 
ones (Vázquez et al., 2007).

Freshwater fishes are conspicuous components of tropical rivers, where they perform 
a variety of interactions (e.g., Sabino, Sazima, 1999; Taylor et al., 2006). The structure 
of their interaction networks is, however, not well understood, particularly because 
of limitations in water transparency that are critical to in situ observation of species 
interactions (Moss, 2010). When these conditions are met, observational studies have 
revealed a myriad of behaviours that are analogous to marine reef systems (e.g., Sazima, 
1986). Many of these newly described behaviours and interactions, have important 
energetic consequences for the ecosystems in which they take place (e.g., Sazima, 1983; 
Sazima, 1986; Sazima, 1988; Sabino, Zuanon, 1998; Lima et al., 2012). More recently, 
technological advances (i.e., remote filming) have helped scientist to better understand 
the structure of freshwater fish assemblages and the interactions in which they engage 
(Ebner, Morgan, 2013; King et al., 2018).

In this study, we used remote underwater videos (RUVs) to quantify trophic and 
agonistic interactions of fish species in a highly diverse clearwater neotropical river. 
Specifically, we evaluated how these interactions are dependent on fish community 
structure (i.e., species-level density and biomass), habitat characteristics and species traits. 
We hypothesized that species traits and abundance, as well as habitat particularities, 
will modulate differences in trophic and agonistic interactions among habitats. We also 
hypothesized higher interaction intensity in visually low complexity habitats. Studies 
in these systems can help us to understand the importance of biological interactions in 
shaping species distributions and their energetic links in tropical freshwater river systems.

MATERIAL AND METHODS

Study area. Sampling was carried out in May 2011 at the Olho d’Água River, a 
tributary of the Miranda River in the upper Paraguay basin, state of Mato Grosso do 
Sul, Brazil (Fig. 1). Located in a Private Reserve of Natural Heritage (fishing is not 
allowed), this river is directly affected by the karstic geomorphology of the Bodoquena 
Plateau and the horizontal water transparency is often greater than 40 metres. Along 
its two kilometres of extension, the Olho d´Água River comprises habitats that vary in 
their physical features and biological components, but that are subject to near constant 
temperatures (23–25°C) and water volume throughout the year (Manço, Pivatto, 2007; 
Teresa et al., 2014). In this river, we sampled three habitats that differed in substratum 
physiognomy (see Fig. 1, https://www.youtube.com/watch?v=RN5ohX7inME): the 
“Riverine lake” (further referred as “Lake”), which is a 600 m² and 3m deep lentic habitat 
located in the upper portion of the river, with a substratum covered by filamentous 
cyanobacteria, gravel and sand; the “Plant habitat”, a lotic and shallow (~1m deep) 
habitat presenting medium water flow where the substratum is covered by patches of 

http://scielo.br/ni
http://sbi.bio.br/ni


scielo.br/ni | sbi.bio.br/ni

Trophic and agonistic interactions of fishes

Neotropical Ichthyology, 18(1): e190127, 2020 4/19

macrophytes, mostly Heteranthera zosterifolia (Mart.) and Myriophyllum aquaticum (Vell.) 
Verdc., filamentous cyanobacteria, and sand; and the “Rock habitat”, which is also lotic 
with slow-to-medium water flow and substratum mainly covered by stones, gravel, 
sand and twigs.

Sampling procedure and analyses. To assess fish abundance and biomass we 
performed 10 underwater visual censuses (UVCs) in each habitat, with no overlap 
among sampled areas. This method consisted of a belt transect in which a free diver 

FIGURE 1 | A. Olho d’Água River located in the upper Paraguay River basin, Central Western Brazil. B. Note that clear water allows 

observation of the underwater vegetation even in aerial photographs. Three sampled habitats are: C. Lake; D. Plant; and E. Rock.
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swam in a constant velocity and identified, counted, and estimated the total length of 
fishes within a 40m² area (20 x 2 m). To assess fish feeding and agonistic interactions, 
we recorded 14 diurnal Remote Underwater Videos (RUVs) in each habitat, between 
0900 and 1600 hours, totalling 42 videos. Videos were recorded with a digital camera 
on a weighted tripod focused on 2 m² areas of the substratum established with a 
measuring tape that was then removed before each recording. The minimum distance 
among recorded areas was three meters. Each 2 m² area was recorded for 15 min 
and the central 10 min of each video was analysed in laboratory. Both visual surveys 
and RUVs methods were adapted from previous studies in reef systems (i.e., Longo 
et al., 2014, 2015; Morais et al., 2017) and demonstrated to be effective to record the 
community structure and feeding rates of fish assemblages, respectively. Furthermore, 
both methods are non-lethal for fishes and RUVs have the advantage of keeping 
the record for the confirmation of species identification and accurately quantifying 
interactions that may be difficult to count in the field (Longo, Floeter, 2012; Ebner, 
Morgan, 2013; Ebner et al., 2015).

In the video analyses, we identified each individual fish that bit the substratum or 
chased another fish inside the RUVs’ focal area. The number of bites in the substratum 
of each fish individual was counted and its total length (cm) estimated based on the 
measuring tape that was initially deployed. A bite was defined as the moment when 
a fish hits the substratum with its jaw open, with or without intake (Longo et al., 
2014). We used the number of bites on the substratum and the total length of each 
individual to calculate their feeding pressure (FP) following the equation: FP = (bites * 
biomass) / (2m² * 10min) (Longo et al., 2014). For each video (i.e., sample) we obtained 
the feeding pressure of each fish species from the sum of the feeding pressure of all 
individuals of each species. The individual biomass (B) was calculated based on the 
equation: B = a * (TL * CF)b, where TL is the total length (centimetres), a and b are 
parameters of length-weight relationships and CF is a correction factor that rescales 
length-weight parameters obtained for standard length to the working measure total 
length (Tab. 1).

Fish species were assigned into trophic groups based on their feeding mode/
behaviour, obtained from in situ observations and RUVS, and diet obtained from the 
literature (Tab. 1). When data for a given species was not available, we used the trait of 
a congeneric species that had similar morphology and likely similar feeding behaviour. 
This classification resulted in eight trophic groups:

Grazing detritivores: Bottom-dwelling fishes that forage mostly on sand and rock 
substrate and have morphological adaptations to scrape the substratum (e.g., labial teeth). 
These fish sort the sediment in their oral cavity, retain organic detritus and eliminate 
inorganic matter such as sand (Bowen, 1983). They can ingest a large amount of detritus 
and sediment, and small portions of plant material and benthic invertebrates.

Grazing periphytivores: Bottom-dwelling fishes that forage over hard substratum 
such as rocks, fallen trees and twigs, and have morphological adaptations to scrape 
periphyton (Power, 1983). A small portion of detritus and plant material can also be 
part of the diet of this group.
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Browsing herbivores: Fishes that browse pieces of macrophytes and macroalgae 
(Sazima, 1986), as well as allochthonous material such as leaves, seeds and fruits.

Digging omnivores: Bottom-dwelling fishes that excavate the sandy substrate 
ingesting plant parts (including roots) and buried invertebrates, commonly attracting 
follower fishes by revolving the sediment (Sazima, 1986).

Nibbling omnivores: Bottom-dwelling fishes that ingest both animal (e.g., 
invertebrates) and vegetable items (e.g., seeds and macrophytes), taking small bites on 
the substratum (Sazima, 1986). They commonly bury a part of their snouts in the 
substratum but causing minimum bottom disturbance (Teresa et al., 2014).

Nibbling invertivores: Bottom-dwelling fishes that behave similarly to nibbling 
omnivores but rarely, if ever, ingest vegetable matter.

Picking omnivoress: Water column fishes that pick items on the surface, water 
column, commonly ingesting leaves, seeds, other plant fragments and small invertebrates 
(Sazima, 1986).

Picking invertivores: Water column fishes that behave similarly to picking 
omnivores but rarely, if ever, ingest vegetable matter.

We considered as agonistic interactions, both intra and interspecific events in 
which a fish chased another one without any obvious feature that could be associated 
to predation. Predation features could be 1) large size disparities, with the chaser fish 
much larger than the chased one, or 2) a deliberate bite was observed, such as when 
mucus or scales are targeted (Curio, 1976; Sazima, 1983; Lima et al., 2012). This last 
interaction, also called mutilating predation, can be easily distinguished because the 
chased fish appears unaware, fleeing only after physical contact (Lima et al., 2012), 
while in an agonistic interaction the chased fish flees as a response to the chaser’s 
movement.

Statistical analyses. To assess whether our categorical classification of habitat was 
able to capture environmental heterogeneity, we used a principal coordinate analyses 
(PCoA) and a permutation analysis of variance (PERMANOVA), with Euclidean 
distance matrix obtained from nine environmental variables (response variables) visually 
estimated from the videos (samples) and subsequently transformed by standardization. 
These were: 1–5) percent cover of cyanobacteria, macrophytes, rock, gravel and sand; 
6–7) height of macrophytes and height of the filamentous cyanobacteria; 8) presence or 
absence of twigs near or inside the RUVs area; and 9) maximum depth of each habitat. 
To check if habitats differed according to fish abundance or biomass (i.e., parameters 
of community structure) we used the UVCs as samples and performed a PCoA and 
a PERMANOVA analysis with Bray-Curtis similarity. The null hypothesis for this 
analysis was that habitats are not different in terms of fish community structure.

To check for differences in the feeding pressure (response variable) of fish species 
and trophic groups among the habitats (factor), we used the RUVs as samples to 
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perform a PCoA and a PERMANOVA analysis with Bray-Curtis similarity. This 
was used to test the null hypothesis that habitats are not different regarding this 
feeding interaction. To relate the degree of centrality of a species in the agonistic 
interaction network to its average abundance (ind. / 40m²) we performed a linear 
regression model for each habitat. Species centrality was obtained through the 
“degree centrality”, which indicates the central node (i.e., species) in the networks 
accounting for the number of connections (i.e., agonistic interactions) with other 
species. The degree centrality of a given species (sample) in each habitat was obtained 
by summing the number of species that were chased and number of chaser species 
in the habitat.

To test the influence of species (sample) average biomass (kg / 2m²), average abundance 
(ind. / 40m²), habitat and trophic group on the average feeding pressure and centrality 
in the agonistic interactions, we performed a generalized linear model with Gaussian 
distribution. A F test through the function drop1 of the package “car” (Fox, Weisberg, 
2011) was used to evaluate significance. Abundance/biomass, feeding pressure and 
centrality were natural log transformed to decrease data dispersion. All the analyses 
and graphics were performed using “ggplot2” (Wickham, 2016), “gridExtra” (Baptiste, 
2017), “plotrix” (Lemon, 2006), “reshape” (Wickham, 2007), “scales” (Wickham, 2017) 
and “vegan” (Oksanen et al., 2018) packages of R software version 3.4.3 (R Core Team, 
2019). All data and R code can be downloaded from the Zenodo Digital Repository: 
http://doi.org/10.5281/zenodo.3587961.

RESULTS

We recorded 27 different fish species in the visual surveys (Tab. 1), of which 21 in the 
Lake, 25 in the Plant and 20 in the Rock habitat. In the RUVs, we recorded 23 fish 
species encompassing 85% of the richness found in the visual surveys. These habitats 
also differed considerably in their benthic composition, with habitat alone explaining 
over 58% of the benthic variability observed among samples (Permanova F = 27; R² = 
0.58; p < 0.01; Fig. 2a).

Fish community structure varied among habitats both in terms of abundance (F = 
26.44; R² = 0.66; p < 0.01; Fig. 2b) and biomass (F = 3.07; R² = 0.18; p < 0.01; Fig. 
2c). Samples from the Lake habitat tended to group in the PCoA, mainly due to 
patterns of abundance and particularly driven by large numbers of Odontostilbe pequira 
(Steindachner, 1882). This species dominated species abundance in the Lake, but not 
in the other two habitats (Fig. 2b). Conversely, the biomass structure was not clearly 
distinct among habitats (Fig. 2c). Fish abundance and biomass were the variables that 
better explained the variation of agonistic and feeding interactions, respectively, among 
habitats (Tab. 2).

In 420 min of video, we counted a total of 12,364 bites on the substratum 
(approximately 87% on the Rock, 10% Lake and 3% on the Plant habitat), performed 
by 18 species (Fig. 3). In the Rock habitat, nine species were recorded feeding on 
the substratum. Prochilodus lineatus (Valenciennes, 1837) alone was responsible for ~ 
58% of the total feeding pressure (Fig. 3). The grazing periphytivores Ancistrus spp. 
and Parodon nasus Kner, 1859 were only recorded feeding in this habitat. In the Lake 
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FIGURE 2 | A. Principal coordinate analysis (PCoA) showing ordination of samples according to substratum composition (i.e., habitat 

categorization); B. PCoA performed with the abundance of fishes, points sized according to the sum of the abundance in the sample 

(logarithm scaled for better visualization); C. PCoA performed with the biomass of fishes, points sized according to the sum of the 

biomass in the sample (logarithm scaled for better visualization). Red lines indicate significative variables (p < 0.05) while black lines non-

significative. Anc spp = Ancistrus spp., Ast lac = Astyanax lacustris, Ast mar = Astyanax marionae, Bry mel = Bryconops melanurus, Cha spp = 

Characidium spp., Hyp equ = Hyphessobrycon eques, Jup aca = Jupiaba acanthogaster, Lep vit = Leporellus vittatus, Lep fri = Leporinus friderici, Meg 

mac = Megaleporinus macrocephalus, Odo peq = Odontostilbe pequira, Par nas = Parodon nasus, Phe teg = Phenacogaster tegatus, Pia mes = Piaractus 

mesopotamicus, Pro lin = Prochilodus lineatus, Sal bra = Salminus brasiliensis.

Feeding pressure df F p value

Habitat 2 3.917 0.027

Functional group 7 2.001 0.076

Biomass 1 30.503 <0.001

Agonistic interactions df F p value

Habitat 2 0.668 0.519

Functional group 5 0.191 0.964

Abundance 1 44.785 <0.001

TABLE 2 | Output of GLM evaluating the influence of habitat, trophic group and abundance/biomass over the feeding pressure performed 

by the fishes on the benthic substratum and agonistic interactions among fishes.

habitat, seven species were recorded feeding on the substratum, with the picking 
omnivore Odontostilbe pequira feeding in all the samples and responsible for ~53% of 
the total feeding pressure. In the Plant habitat, 11 species were detected feeding on the 
substratum, with the highest feeding pressure performed by two species: the digging 
omnivore, Megaleporinus macrocephalus (Garavello, Britski, 1988), responsible for ~51% 
of the total feeding pressure; and the browsing herbivore, Brycon hilarii (Valenciennes, 
1850), responsible for ~44% (Fig. 3). The structure of feeding pressure varied among 
habitats in terms of both species (F = 4.88; R² = 0.21; p < 0.01) and trophic groups (F = 
4.74; R² = 0.20; p < 0.01). There was higher similarity among samples from the same 
habitat than between samples from different habitats, particularly in the Rock habitat 
(Fig. 4).
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FIGURE 3 | Feeding pressure of the 18 fishes that bit the substratum, and their respective trophic groups (colours) at the Olho d´Água 

River. Black diamonds and lines represent the mean ± standard error, respectively. Habitats in which certain species did not fed on the 

substratum (zero values) are not represented in the graph. The Y-axis scale is log
10 

-transformed to better show data dispersion. 
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FIGURE 4 | Principal coordinate analysis (PCoA) and permutational analysis of variance (PERMANOVA) to demonstrate feeding pressure 

variation among habitats accounting for A. species and B. trophic groups, points sized according to the sum of the feeding pressure in the 

sample (logarithm scaled for better visualization). Red lines indicate significative variables (p < 0.05) while black lines non-significative. 

Anc spp = Ancistrus spp., Ast lac = Astyanax lacustris, Ast lin = Astyanax lineatus, Ast mar = Astyanax marionae, Bry hil = Brycon hilarii, Cha spp 

= Characidium spp., Cic dim = Cichlasoma dimerus, Cre lep = Crenicichla lepidota, Hyp equ = Hyphessobrycon eques, Jup aca = Jupiaba acanthogaster, 

Lep fri = Leporinus friderici, Meg mac = Megaleporinus macrocephalus, Lep str = Leporinus striatus, Lep vit = Leporellus vittatus, Odo peq = 

Odontostilbe pequira, Par nas = Parodon nasus, Pro lin = Prochilodus lineatus, Ser cal = Serrapinnus calliurus.

We counted 1,420 agonistic interactions involving 15 species (approximately 57% 
occurred in the Lake, 27% in the Plant and 16% in the Rock habitat). The structure 
of these interactions varied among habitats, with ten species interacting in the Plant 
habitat, nine species in Rock and six in Lake (Fig. 5). Intraspecific interactions were 
more frequent than interspecific interactions, especially for the most abundant species 
(Fig. 5). In the Lake and Plant habitats, O. pequira was responsible for most of the 
agonistic interactions, targeting almost all the species observed (approximately 93% 
of the total of agonistic interactions in the Lake and 77% in the Plant, Fig. 5). This 
species was, thus, central to the species interaction network of these two habitats. In 
the Rock habitat, however, Jupiaba acanthogaster (Eigenmann, 1911) was responsible for 
approximately 51% of the agonistic interactions. This species was chased by Parodon 
nasus with high frequency.

DISCUSSION

To our knowledge, our study is the first to quantify the degree of variability in fish 
interactions among different habitats in a tropical clearwater river. Moreover, it also 
emphasizes the overwhelming role of community structure and habitat variability 
in defining the intensity, species and trophic composition of feeding and agonistic 

http://scielo.br/ni
http://sbi.bio.br/ni


scielo.br/ni | sbi.bio.br/ni

Trophic and agonistic interactions of fishes

Neotropical Ichthyology, 18(1): e190127, 2020 12/19

FIGURE 5 | Agonistic interactions between fishes in three habitats of the Olho d´Água River, upper Paraguay River basin, Brazil. Arrow 

thickness is proportional to agonistic interaction intensity in all three habitats; grey circles are proportional to the mean abundance of 

each species. Ast lac = Astyanax lacustris, Ast lin = Astyanax lineatus, Ast mar = Astyanax marionae, Bry mel = Bryconops melanurus, Cha spp = 

Characidium spp., Cre lep = Crenicichla lepidota, Cre vit = Crenicichla vittata, Hyp equ = Hyphessobrycon eques, Jup aca = Jupiaba acanthogaster, Lep 

vit = Leporellus vittatus, Moe bon = Moenkhausia bonita, Odo peq = Odontostilbe pequira, Par nas = Parodon nasus, Pro lin = Prochilodus lineatus, Ser 

cal = Serrapinnus calliurus.
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interactions. While the Rock habitat concentrated most of the feeding interactions 
with the substratum, particularly due to periphytivorous fishes, most of the agonistic 
interactions occurred in the Lake habitat, led by abundant small characins. The Plant 
habitat, which has a higher structural complexity compared to the two other habitats, 
hosted substantially less feeding and agonistic interactions, although these interactions 
involved more species (especially small characins fishes). Altogether, these findings 
suggest that these habitats deliver different functions for the local fish community.

The highest feeding pressure observed in the Rock habitat is likely associated to 
periphyton that overgrows trunks and rock surfaces in this habitat (Power, 1983). 
Fishes that fed on the Rock habitat, such as Prochilodus lineatus and Ancistrus spp. have 
morphological adaptations that allow them to scrape periphyton and detritus deposited on 
solid surfaces (Bowen, 1983). They sort materials through their gills, retaining algae and 
detritus while eliminating the sediments (Bowen, 1983; Fugi et al., 1996). Detritus and 
periphyton are abundant food resources in tropical freshwater systems, characterized by 
high turnover rates (Bowen, 1983; Power, 1983). The River Continuum concept predicts 
that periphyton growing on rocks would be available as a food resource for upstream river 
communities whereas detritus would be more important for downstream communities 
(Vannote et al., 1980). However, similarly to other tropical lowland river systems, our 
system cannot be clearly distinguished in upstream and downstream communities: rocks 
and trunks occupy patches alongside a sandy matrix along most of the river extension. 
Thus, rocky habitats provide detritivores and periphytivores with abundant food sources 
that are likely critical in terms of energy flow and nutrient cycling for the whole system 
(Bowen, 1983; Power, 1983; Prejs, 1984; Lodge, 1991; Taylor et al., 2006; Winemiller 
et al., 2006). For instance, it has been shown elsewhere that a related species, Prochilodus 
mariae Eigenmann, 1922, is a keystone species modulating organic carbon transport along 
with a lowland river system in Venezuela (Taylor et al., 2006).

Contrary to the Rock habitat, the Plant habitat featured a high cover of macrophytes, 
but not periphyton. In this habitat, aquatic plants are routinely consumed, cropped by the 
scissor-like teeth of Brycon hilarii, which also ingests fruits and insects from the riparian 
vegetation (Sabino, Sazima, 1999). Additionally, the digging omnivore M. macrocephalus 
feeds largely on invertebrates buried among macrophytes’ roots by digging through the 
soft substrate or among branches with their snout (Sazima, 1986; Albrecht, Caramaschi, 
2003). Brycon hilarii and M. macrocephalus, thus, employ behavioural strategies to exploit 
resources that are abundant in this habitat. In the Lake habitat, most of the feeding 
pressure performed by O. pequira occurred in the context of a “feeding frenzy”, which 
consisted in large groups feeding on masses of benthic cyanophytes that become 
detached from the sand substrate. These blue-green algae seem to be detached during 
the daylight as a function of oxygen bubbles forming from photosynthetic activity. 
Since these feeding frenzies did not occur unless the cyanophytes got detached from the 
substratum, we suspect that O. pequira were targeting small invertebrates that inhabit 
the meandering structure of cyanophyte filaments (Dias, 2007). Small-sized characins 
are conspicuous components of Neotropical rivers and are essentially known for their 
versatility in feeding behaviour. They feed over the bottom, water column, surface, and 
target mucus and scales of other fishes (Sazima, 1983; Lima et al., 2012; Brejão et al., 
2013). As such, they dominate trophic links in Neotropical river food webs, also serving 
as a primary food for predators (Bozza, Hahn, 2010).
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Interspecific agonistic interactions were mostly associated with small-sized characin 
fishes and the territorial P. nasus. Particularly, two characins, O. pequira and J. acanthogaster, 
comprised most of the agonistic interactions. These species not only interacted with 
most of the species within each network, but also performed or received the largest 
number of agonistic interactions. The centrality of O. pequira in the networks of the 
Lake and Plant habitats and J. acanthogaster in the Rock habitat was a product of the 
high abundance of this species in these habitats. Density-dependence leads to intense 
competitive interactions in many organisms, including reef fishes (Bonin et al., 2015). 
We believe that competition for shelter could account for the observed pattern, since 
leaves and branches of the macrophytes banks in tropical rivers attain high structural 
complexity and are intensely used by small characins to shelter from predators (Werner 
et al., 1977; Savino, Stein, 1989; Suarez et al., 2013). The main predators to which 
these fish are exposed in daylight are visually oriented birds and predatory fishes such as 
Salminus brasiliensis (Cuvier, 1816).

Most of the interspecific agonistic interactions in the Rock habitat involved P. nasus 
and J. acanthogaster. Parodon nasus chased J. acanthogaster with high frequency, likely 
as a result of defence of feeding territories. Feeding territories in tropical freshwater 
fishes have rarely been detected, particularly in comparison to other systems in which 
this strategy is common, such as reef systems (Sazima, 1988; Barlow, 1993; Silva et al., 
2009). However, there is evidence that this species establishes feeding territories: 1) it 
has small home ranges, spending much time on patrol, chasing and feeding, as was also 
observed by Silva et al. (2009); 2) this fish feeds on the bottom with high frequency and 
intensity in the Rock habitat, where it is abundant, and remains in the same area for long 
periods of time (as revealed by the remote videos); 3) it chased mostly J. acanthogaster, 
an abundant species that also feeds frequently over the same substratum, presumably 
targeting a similar set of resources (periphyton over the rocks).

In this study, we present evidence that fish interactions in a tropical river depend 
largely on patterns of fish abundance/biomass, but also, to some extent on particularities 
of habitat. These factors were decisive in the intensity and structure of feeding 
and agonistic interactions among the sampled habitats and can also contribute 
to understanding patterns of fish species distribution in other tropical rivers. We 
demonstrated the importance of quantitatively understanding fish intra- and interspecific 
interactions while considering the heterogeneity of the environment. This reinforces 
the logical conclusion that keeping habitat heterogeneity in tropical rivers, for example 
by controlling anthropogenic impacts and preserving the riparian forest, is essential to 
maintaining the structure of species interactions and likely also ecosystem functions.
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