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Abstract 12 

RATIONALE: Rapid, reliable isolation of Pyrogenic Carbon (PyC; char, soot, black carbon; 13 

biochar) for determination of stable carbon isotope (δ13C) composition and radiocarbon (14C) 14 

dating is needed across multiple fields of research in geoscience, environmental science and 15 

archaeology. Many current techniques do not provide reliable isolation from contaminating 16 

organics and/or are relatively time consuming to employ. Hydrogen pyrolysis (HyPy) does 17 

provide reliable isolation of PyC but the current methodology is time consuming. 18 

METHODS: We explored the potential for subjecting multiple samples to HyPy analysis by 19 

placing up to nine individual samples in custom designed borosilicate sample vessels in a 20 

single reactor run. We tested for cross contamination between samples in the same run using 21 

materials with highly divergent radiocarbon activities (~0.04 to 116.3 pMC), δ13C values (-22 
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11.9 to -26.5‰) and labile carbon content. We determined 14C/13C by accelerator mass 23 

spectrometry and δ13C values by elemental analyser coupled to continuous flow isotope ratio 24 

mass spectrometer. 25 

RESULTS:  Very small but measurable transfer between samples of highly divergent isotope 26 

composition was detectable. Where samples are of broadly similar composition, this cross 27 

contamination is considered negligible with respect to measurement uncertainty. Where 28 

samples are of divergent composition, it was found that placing a sample vessel loaded with 29 

silica mesh adsorbent between samples eliminated measurable cross-contamination in all 30 

cases for both 14C/13C  and δ13C values.  31 

CONCLUSION: It is possible to subject up to seven samples to HyPy in the same reactor 32 

run for determination of radiocarbon content and δ13C value without diminishing the 33 

precision or accuracy of the results. This approach enables an increase in sample throughput 34 

of 300-600%. HyPy process background values are consistently lower than the nominal 35 

laboratory process background for  quartz tube combustion in the NERC Radiocarbon 36 

Laboratory, indicating that HyPy may also be advantageous as a relatively ‘clean’ 37 

radiocarbon pretreatment method. 38 

1. Introduction  39 

Pyrogenic carbon (PyC, also known as char, black carbon, biochar) is derived from the 40 

incomplete combustion (pyrolysis) of organic matter during natural fires, the purposeful 41 

pyrolysis of biomass to create ‘biochar’, or via fossil fuel combustion [1,2]. PyC is a 42 

ubiquitous component of carbon in soils, sediments, atmospheric particulates, fresh and 43 

marine waters, in both dissolved and/or particulate (microscopic and macroscopic) forms.  44 
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PyC is important as a poorly understood, slow-cycling component of the global carbon 45 

cycle, that is now known to comprise a significant, but as yet unquantified, pool that contains 46 

some of the most recalcitrant organic carbon on Earth [3,4]. In the form of biochar, PyC also 47 

has the potential to sequester significant amounts of carbon over time periods far exceeding 48 

that of biomass, therefore offsetting at least a proportion of current anthropogenic CO2 49 

emissions [5]. PyC is also useful as a form of recalcitrant carbon that can provide a valuable 50 

palaeoenvironmental proxy through its stable isotope composition [6]. It is one of the most 51 

common materials (as ‘charcoal’) used for construction of radiocarbon chronologies in 52 

support of archaeological and Quaternary environmental studies.  53 

Quantification and isolation of PyC has long proven problematic. This is because PyC 54 

represents a continuum of complex molecular components with differing chemical and 55 

spectroscopic properties. Each method targets a particular ‘window’ along this continuum, 56 

meaning the ‘PyC’ isolated by two differing methods can be chemically quite distinct. Thus, 57 

while many techniques have been developed to analyse PyC in a range of environmental 58 

matrices, these techniques produce widely divergent results for the same samples, the same 59 

technique has produced divergent results across different laboratories and some techniques 60 

are not broadly applicable across the range of matrices that can contain PyC [7]. The key 61 

difficulty however, is that many methods rely on an operational definition of PyC in order to 62 

achieve isolation. This often requires that what remains after the process must, by definition, 63 

be PyC, and that quantification relies upon a single parameter, such as weight loss during 64 

processing. Problems arise if non-PyC material is not removed e.g. due to hydrophobic 65 

protection of plant waxes in aqueous solutions [8], or if PyC is formed de novo during 66 

oxidative reactions [9]. Procedures isolating PyC on a secure chemically-defined basis, are 67 

therefore preferable.    68 
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Hydrogen pyrolysis (HyPy) was originally used as a method for the efficient conversion of 69 

macromolecular organic matter to dichloromethane soluble oils with conversions near 100% 70 

possible using high hydrogen pressures (>10 MPa) at high temperature [10]. During these 71 

experiments, it was found that in some cases substantial amounts of highly aromatic 72 

macromolecular carbon remained in the residues, attributed to PyC [11].  73 

The possibility that HyPy could be used to quantify PyC was first discussed by Ascough et 74 

al [12,13], who developed a hydrogen pyrolysis procedure specific to eliminating labile 75 

components and leaving only polyaromatic carbon in the residue. Meredith et al [14] 76 

demonstrated that HyPy yielded results within the range of other techniques for PyC in a 77 

range of matrices using the black carbon ring trial samples of Hammes et al [7]. Meredith et 78 

al [14] also demonstrated that HyPy was able to remove potentially interfering non-pyrogenic 79 

materials with the exception of anthracite, and that the component isolated by HyPy is 80 

chemically highly consistent, being polyaromatic carbon with a ring size greater than 7 81 

(coronene). Smaller pyrogenic polyaromatic molecules can be collected by cryogenic 82 

trapping downstream of the HyPy reactor for separate quantification if required [15-17]. 83 

More recent work has demonstrated the utility of HyPy analysis across a range of 84 

environmental matrices, for simple quantification [18-20] with good reproducibility within 85 

and between laboratories [21], as well for stable isotope analysis [6,22,23] and radiocarbon 86 

dating [12,13,24,25].  87 

While the advantages of HyPy for the isolation and quantification of a well-defined 88 

component of PyC have now been clearly demonstrated, the technique remains relatively 89 

slow. The instrument reactor conventionally accommodates one sample at a time and a single 90 

run takes approximately 43 minutes. While the technique is not more time consuming than 91 

many other competing techniques, the current throughput limits the scale of projects that can 92 

be undertaken. At the same time, research interest in PyC is growing rapidly, particularly for 93 
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carbon-cycle science applications. For example, measuring PyC abundance and turnover 94 

times by 14C, which by their nature require high-volume throughput.  The general need to 95 

improve throughput is now driving modifications to other established techniques such as 96 

BPCA analysis [26].   97 

Here we report on the results of experiments designed to test whether multiple samples can 98 

be run simultaneously in a single HyPy reactor for accelerated throughput and efficiency, 99 

without either cross contaminating the samples or degrading the accuracy or precision of 100 

individual stable isotope and radiocarbon analyses. 101 

2. Materials and Methods 102 

2.1 Samples 103 

The samples for this study were chosen to provide the largest possible contrast in lability 104 

of material (i.e. degree of aromaticity), and in carbon isotope (δ13C and 14C) composition. 105 

Five matrixes were chosen for experiments designed to test the degree to which combining  106 

multiple samples with divergent characteristics in a single reactor run effected the measured 107 

PyC abundance, δ13C and 14C measurements of individual samples in the same reactor (see 108 

Table 1.). Throughout this manuscript, error is reported as 2σ. 109 

Three materials of known radiocarbon content were chosen for experiments designed to 110 

test, 1) the 14C background of the HyPy process itself, and 2) the degree of inter-sample 111 

transfer of carbon when combining multiple samples with different 14C content in a single 112 

HyPy run: 113 

(i) TIRI barley mash (TBM): This standard originates from the Third International 114 

Radiocarbon Intercomparison [27]. It is composed of lignocellulosic biomass, known to be 115 

entirely labile during HyPy. The consensus value for TBM is 116.35 ±0.016 pMC. TBM was 116 

used as a source of excess labile C from a sample in HyPy, which thus had the potential to be 117 



 6 

transferred to other samples in the same HyPy reactor.  The  relatively high 14C content of 118 

TBM makes it possible to detect even small quantities of cross-contamination, when used 119 

with a contrasting RCD (radiocarbon dead) material (below).  120 

(ii) Anthracite: This is a NERC Radiocarbon Facility in-house process standard anthracite 121 

[28]. It is a highly aromatic material, and anthracite coal is known to be  resistant to HyPy 122 

[14]. This material is ‘radiocarbon-dead’, being much greater than 50,000 years in age, and is 123 

in use as a process background material for radiocarbon analyses. For the quartz tube 124 

combustion method of CO2 production (the process applied in this study), the long-term 125 

average background value at the NERC Radiocarbon laboratory is 0.17 ±0.02 pMC. The 126 

anthracite standard was used to identify whether the HyPy 14C background was 127 

commensurate with this value before, during, and after the experiments described below, and 128 

to provide confidence that any observed variation in 14C  during multiple simultaneous HyPy 129 

runs can be ascribed to a specific process (i.e. transfer of carbon between sample vessels 130 

within the reactor for this specific experiment), and not an inherent feature of the method 131 

itself.     132 

(iii) RDC: This is a radiocarbon-dead charcoal produced experimentally from a log of 133 

Miocene age and previously characterized by Bird et al [29]. It is a material resistant to 134 

conversion during HyPy, with a radiocarbon activity equivalent to 0.04 ±0.02 pMC. This 135 

material is also highly aromatic, similar to the anthracite coal standard, but was included as it 136 

represents a more typical form of natural PyC (i.e. the product of biomass that has been 137 

thermally altered during fire). During the experiments below, RDC was used to represent 138 

material into which the introduction of cross-contamination (from TBM) during HyPy could 139 

be monitored.   140 

2.2 Hydrogen pyrolysis 141 
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Hydrogen pyrolysis has been described in detail in a number of publications [10,30,12,14]. 142 

Briefly, 25-100 mg aliquots of each sample were loaded with a Mo catalyst using an 143 

aqueous/methanol (1:1) solution of ammonium dioxydithiomolybdate [(NH4)2MoO2S2]. 144 

Catalyst weight was ~10% sample weight for all samples to give a nominal loading of ~1% 145 

Mo. Catalyst loaded samples were then lyophilized and weighed aliquots of each sample 146 

were loaded into small bespoke borosilicate sample vessels of 7 mm outer diameter, 1 mm 147 

wall thickness and 10 mm (small)  or 15 mm (large) overall length. The base of each sample 148 

vessel was fitted with a porosity #1 silica frit to allow gas throughflow (manufactured by 149 

Robson Scientific, Sawbridgeworth, UK). Small glass microfiber filters ~5mm in diameter 150 

were used to line the bottom of the vessel and plug the top of the vessel to keep the sample in 151 

place. These are hole-punched using a cork borer from standard Whatman 0.45 µm glass 152 

microfiber filters.  153 

In order to facilitate higher throughput (i.e. >1 sample per reaction) the HyPy reactor setup 154 

was modified from that outlined in Ascough et al [12]. In this study, the ¼″ silica trap has 155 

been removed and the standard 254mm 9/16″ reactor has been replaced with a 475mm nipple 156 

(see Fig. 1). The upper 196mm of the nipple now functions as the reactor while the bottom 157 

279mm is filled with silica mesh and used as a trap to collect the products of the reaction (i.e. 158 

the labile carbon fraction). This larger trap does not require cleaning for upwards of 45 159 

reactions. 160 

Multiple samples (4-9) were loaded one above the other into the HyPy reactor as per the 161 

experimental design outlined in Figure 2. After sample loading, the reactor was pressurized 162 

with hydrogen to 15 MPa with a flow rate of 5 L min-1, then heated using a pre-programmed 163 

temperature profile. We used the recommended temperature program previously optimized 164 

for PyC quantification where samples are initially heated at a rate of 300°C min-1 to 250°C, 165 

then at a rate of 8°C min-1 until the final hold temperature of 550°C for 5min [12,14].  166 
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 167 

Figure 1.  Hydropyrolysis reactor schematic showing placement and design of the 168 

borosilicate sample vessels, steel wool placeholder, silica trap and direction of Hydrogen 169 

flow.  170 

 171 

 172 
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2.3 Carbon abundance and stable isotope composition 173 

Carbon abundances and isotope compositions of all samples were determined using a 174 

Costech Elemental Analyzer (Costech Analytical Technologies Inc., Valencia, CA, 175 

USA) fitted with a zero-blank autosampler coupled via a ConFloIV (Thermo Fisher 176 

Scientific, Waltham, MA, USA) to a ThermoFinnigan DeltaVPLUS using Continuous-Flow 177 

Isotope Ratio Mass Spectrometry (EA-IRMS) at the Advanced Analytical Unit at James 178 

Cook University, Cairns. Stable isotope results are reported as per mil (‰) deviations from 179 

the VPDB reference standard scale for δ13C values. Precisions (2σ) on internal standards were 180 

better than ±0.2 ‰. Because the catalyst undergoes (~25%) weight loss during HyPy, the 181 

abundance of residual carbon in the sample after hydrogen pyrolysis is determined as the 182 

mass of carbon after treatment relative to the mass of carbon loaded and the results reported 183 

as the residual carbon present in the sample (CR– residual carbon not removable by HyPy). 184 

Reproducibility is considered to be 2% of the value, based on repeated analyses [31]. 185 

2.4 Radiocarbon measurement 186 

HyPy residues were converted to CO2 by combustion in sealed quartz tubes, and the 187 

evolved gas was cryogenically purified and converted to graphite for analysis using Fe/Zn 188 

reduction [32].  Sample 14C/13C ratios were measured by Accelerator Mass Spectrometry [29] 189 

at the Scottish Universities Environmental Research Centre.  Measured 14C/13C ratios were 190 

normalized to a δ13C value of -25‰ and expressed as % modern carbon (pMC) according to 191 

Stuiver and Polach [33].  192 

2.5 Experimental Design 193 

The experimental design is given in Figure 2, it comprises four sets of experiments using 194 

the materials described in table 1.  195 
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(i) Experiment 1: The purpose of this experiment was to determine the location of the 196 

reactor ‘hot zone’ i.e. the region where the temperature is consistent and hydrogen pyrolysis 197 

is effective and reproducible. This zone defines the maximum number of samples that can be 198 

run simultaneously using the modified reactor setup. Initially, 9 small (10 mm long) sample 199 

vessels containing ~100mg of a reference material (BCM) were run in quadruplicate. This 200 

experiment was repeated with 6 large (15 mm long) sample vessels of a composite soil 201 

control sample (AGR), also run in quadruplicate.  202 

(ii) Experiment 2: In this experiment, (fig 2a), ~30mg of anthracite was first used to 203 

determine the HyPy 14C background for the radiocarbon experiments. Measurements of 204 

anthracite were also performed before and after a HyPy run, to test for any sequential changes 205 

in the HyPy instrument 14C background.  Two RDC samples were used as controls. In 206 

experiment 2a,  ~100mg (replicate 1) or ~50mg (replicate 2) of  TBM was placed vertically 207 

above three RDC samples in the same reactor. The TIRI standard and three RDC samples 208 

were all contained in the same HyPy reactor run to test whether labile carbon is transferred 209 

from the sample above to the samples below, in the direction of hydrogen flow, manifest in a 210 

measurable increase in radiocarbon in the RDC samples. This experiment was repeated in 211 

experiment 2b, with the addition of a sample vessel filled with 70-200μm silica mesh 212 

between the ~50mg of TBM and RDC samples, replicated twice.  213 

Experiment 3: The purpose of this experiment was to quantify the amount of  labile TOC 214 

is transferred ‘downstream’ from one vessel to another over the course of a single reactor run. 215 

To do this, 2-10mg of carbon (in the form of Sugarcane Leaves or BCM) was placed in a 216 

sample vessel above a series of four silica mesh spacers, with or without an empty sample 217 

vessel (acting as a spacer) at position 2. The silica mesh was analysed for C abundance by 218 

Costech elemental analyser immediately following the HyPy. In addition, a background silica 219 
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mesh carbon abundance was determined by successive HyPy runs comprising exclusively 220 

silica mesh spacers.  221 

Experiment 4: The purpose of this experiment was to test the degree to which labile 222 

carbon released from one sample during a HyPy run, is transferred to another ‘downstream’ 223 

sample within the HyPy reactor. In this experiment an inhouse reference of labile C3(C4) 224 

material, C3 rainforest leaves (or C4 sugarcane leaves) was placed in a sample vessel above a 225 

vessel loaded with a C4 (or C3) soil sample containing PyC of known abundance and stable 226 

isotope composition, both with and without a silica mesh spacer at position 2 (fig 2d). This 227 

experiment was repeated in quadruplicate.  228 

 229 
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Figure 2. Experimental design, showing the position and contents of the sample vessels in 230 

each HyPy experiment run, the number of replicates and the order of runs. A) position 231 

experiment to determine the ideal number of samples per run and the location of the ‘hot 232 

zone’ within the reactor; B) radiocarbon experiment A, to determine if running multiple 233 

samples simultaneously leads to 14C contamination of samples below; C) radiocarbon 234 

experiment B, to determine if adding silica mesh spacers between samples reduces 14C 235 

contamination of the sample below; D) silica mesh experiment to quantify the transfer of 236 

labile C down the profile, with or without an empty sample vessel (spacer) E) Replication of 237 

the previous experiments to test whether typical C3 (C4) soil samples are contaminated by 238 

labile C4 (C3) material from the vessel directly above, and if a silica mesh spacer resolves 239 

this.  240 

 241 

Pairwise multiple comparison tests were used in experiment 1 to determine whether PyC% 242 

was influenced by position within the HyPy reactor, and to identify the area within the reactor 243 

in which the variability was least (i.e. the ‘hot zone’) and thus the ideal positioning of the 244 

steel wool plug that holds all the vessels in place in the reactor (Figure 1).  Pairwise multiple 245 

comparison tests were also used in experiment 4 to determine whether the amount of labile 246 

carbon above a sample impacts the δ13C value of PyC in a sample downstream. 247 

3. Results and Discussion 248 

3.1 Experiment 1: ‘hot zone’ delimitation  249 

In conventional HyPy, samples are processed individually in a 43 minute HyPy run 250 

[12,14]. To determine the feasibility of running multiple samples simultaneously, multiples of 251 

9 small sample vessels (10 mm; n = 26 total) or 5 large sample vessels (15 mm; n = 20 total) 252 

stacked on top of each other, were run within the same reactor in quadruplicate runs to 253 
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determine the maximum number of samples that can be run in tandem without compromising 254 

precision. Across all positions PyC ranged from 0.2 - 1.1% (0.1 - 0.2%) and δ13PyC ranged 255 

from -26.3 to -26.6‰ (-15.4 to -14.2‰) for the experiments based on BCM (AGR). The 256 

summary statistics are given in table 2. 257 

Comparison of the results by position in the reactor (fig 3a) shows that results from the 10mm 258 

vessels (BCM) in position 8 and 9 do not belong to the same population as samples 1-7, 259 

indicating that the ‘hot zone’ is within ~7cm of the thermocouple tip in the reactor (μ = 0.3 260 

±0.08%, -26.5 ±0.6‰), below this reproducibility is diminished. A repeat of the same 261 

experiment using 15mm vessels (fig 3c: AGR) confirms the ~7cm hot zone as there is no 262 

statistical difference in PyC% between samples in positions 1-5 i.e. within ~7.5cm of the 263 

thermocouple (μ = 0.2 ±0.01%, -14.7 ±0.3‰). Position affects PyC% to a greater extent than 264 

δ13PyC (fig 3b and 3d) as there is no statistical difference between any position when using 265 

either small or large vessels providing an error (2σ) of 0.6‰ and 0.3‰ is acceptable. This 266 

confirms that multiples of 7 (small 10 mm vessels) or 5 (large 15 mm vessels) samples can be 267 

accurately run together within a single 45 minute HyPy run, with a precision better than 268 

0.08% PyC and 0.6‰ δ13PyC, equating to a 400-600% increase in throughput compared to 269 

the conventional ‘single sample per run’ method.   270 
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 271 

Figure 3. Pairwise multicomparison plot showing test estimates i.e. group mean μ (circles), 272 

and comparison intervals α (lines) for 10mm sample vessels of BCM PyC% (A) and δ13PyC 273 

(B); and 15mm sample vessels of AGR composite soil PyC% (C) and δ13PyC (D).  274 

3.2 Experiment 2a: Radiocarbon pretreatment background 275 

HyPy has already been successfully applied as a rapid pretreatment method for isolating 276 

and purifying PyC for 14C measurements [12,13,24,25]. Experiment 1 confirmed that it is 277 

statistically acceptable to process up to 5 large samples in tandem for PyC quantification by 278 

HyPy. In experiment 2, we assess the potential for pre-treating multiple samples 279 

simultaneously when radiocarbon measurement of these samples is also required. To 280 

determine the appropriate HyPy radiocarbon pretreatment background, a series of anthracite 281 

cleaning, and finishing blanks were run in isolation before and after each experiment. 282 
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Combining all anthracite runs indicates a HyPy background value of 0.13 pMC (μ = 0.10, 2σ 283 

= 0.03, n = 11). This is significantly less than the standard internal NERC Radiocarbon 284 

Laboratory quartz tube process background value of 0.17±0.02 pMC. The anthracite finishing 285 

blanks run immediately after each experiment were indistinguishable from the lab process 286 

background (μ = 0.10, σ = 0.04), meaning there is no detectable additional 14C added by the 287 

HyPy process above that of the quartz tube combustion when compared to standard process 288 

background values.  289 

These results indicate that normal cleaning between HyPy runs (i.e. manual rinsing of the 290 

reactor with dichloromethane, followed by drying of the reactor and complete removal of 291 

dichloromethane during the warm-up phase of HyPy treatment, is sufficient to preserve 292 

appropriate 14C background values.  Indeed, the measured HyPy process background values 293 

were consistently lower than the nominal laboratory process background for the quartz tube 294 

method of combustion, indicating that the HyPy process may be a particularly ‘clean’ 295 

pretreatment for samples in comparison with other methods applied to PyC (as charcoal), 296 

such as the Acid-Base-Acid processing protocol. This result is promising and warrants further 297 

investigation.  298 

3.3 Experiment 2b: Assessment of downstream contamination potential by radiocarbon 299 

To assess the potential for transfer of exogenous 14C between samples downstream in the 300 

reactor, labile TBM (116.35 pMC) was placed above three samples of RDC. This represents a 301 

‘worst case’ scenario, where radiocarbon dead material is contaminated with modern carbon, 302 

and where the source of the modern contamination is completely labile in the reactor. RDC 303 

samples positioned directly below the TBM returned 0.477 and 0.429 ±0.02 pMC 304 

respectively (equivalent to 42938 ±150 and 43801 ±167 14C years, Fig 4) in duplicate runs. 305 

The radiocarbon content of the RDC samples reduces further down the profile in the reactor 306 
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to ≤ 0.189 ±0.01 (≤ 50398 ±252 14C years) which is within error of the quartz tube 307 

background (at position 4 in Fig 2b) and below background levels after that.  308 

The addition of a silica mesh spacer between the TBM and RDC samples (see fig 2c for 309 

placement), reduces the transfer of modern carbon downstream to levels that are not 310 

distinguishable from the process background. These results should be interpreted as ‘worst 311 

case’ given the very high loading of 100% labile (under HyPy conditions) and ‘modern’ (in 312 

14C terms) carbon that was used as the ‘contaminant’ in this case. Positioning a radiocarbon-313 

dead sample below a significant amount of modern contaminant (~20-45mg of modern 314 

carbon), at worst, returns a value of <0.5 pMC however the use of a silica mesh spacer 315 

between samples is sufficient to ensure that no subsequent samples are affected. Therefore, 316 

even when pretreating ‘worst case’ samples for radiocarbon analysis via HyPy (i.e. high 317 

levels of modern labile C that has a significantly different 14C age to other material analysed 318 

in the same run), these results indicate that it is acceptable to process up to 3 samples 319 

simultaneously in a 45 minute HyPy run when interspersed with silica mesh spacers.          320 

    321 
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 322 

Figure 4. Radiocarbon results in pMC (without background correction) for experiment 2 323 

indicating 2σ error. Dashed shading indicates the accepted NERC Radiocarbon laboratory 324 

internal quartz tube process background value of 0.17 ±0.02 pMC, grey shading indicates the 325 

‘HyPy’ process background value of 0.10 ±0.06 pMC for comparison. RDC top, middle and 326 

bottom indicates the location of the radiocarbon dead charcoal below the barley mash vessel 327 

(116.35 pMC), no silica mesh spacer was used for these samples, filled (unfilled) circles 328 

distinguish the experiments using ~100mg (~50mg) of barley mash. 329 

3.4 Experiment 3: Assessment of downstream contamination potential by  labile C 330 

To quantify the amount of labile carbon transferred downstream to vessels lower in the 331 

reactor column, a vessel containing labile carbon was placed in position 1 atop silica mesh 332 

spacers positioned downstream (refer to fig 2d for placement). The silica mesh was analysed 333 

for C abundance immediately following the HyPy run (see Fig 5). The silica mesh 334 
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background (blank) was determined to be 0.005 ±0.004 mg carbon. The high TOC 335 

experiment resulted in a transfer of 0.07 ±0.02 mg carbon (0.67% of total labile carbon) from 336 

the high organic carbon sample in position 1 onto the silica mesh directly below (at position 337 

2). The addition of an empty vessel (empty spacer) at position 2 between the high TOC 338 

sample and the silica mesh below (at position 3), reduced the transfer to 0.02 ±0.02 mg 339 

(0.09% of total labile carbon), which is an 86.6% reduction in the amount of C transfer from 340 

the sample above and within ~10% of the sample in the same position (position 3) in the 341 

previous high TOC experiment.  342 

All silica mesh samples in the low TOC experiment are below the measured background 343 

(effectively 0% carbon). Silica mesh in positions 3, 4 and 5 in the high TOC experiment and 344 

positions 4 and 5 in the spacer experiment are also below background (effectively 0% 345 

carbon). In practice, it is unlikely that a ‘typical’ sample in a large vessel could accommodate 346 

>10mg of carbon. In this worst case scenario, there is a limited effect on the sample 347 

immediately beneath an organic-rich sample and little to no effect on the remaining samples 348 

downstream. This effect is small (i.e. <0.73% carbon is transferred from the sample above to 349 

the sample below) and can easily be addressed with the interposition of an empty spacer (or 350 

silica mesh spacer).       351 
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 352 

Figure 5. Milligrams of carbon transferred onto the silica mesh samples positioned below a 353 

low TOC organic (BCM) or a high TOC organic (Sugarcane Leaves) (open circles) and a 354 

high TOC organic material with an empty spacer at position 2 acting as a spacer (open 355 

squares). Ellipses indicate the 95% confidence interval at each position (coloured shading). 356 

Grey shading indicates the background silica mesh blank value of 0.005 ±0.004 mg (2σ). 357 

3.5 Experiment 4: Assessment of downstream contamination potential by δ13C 358 

Isotopically dissimilar labile carbon-rich material was placed in position 1 to test whether 359 

the δ13C value of a sample below (in position 2) is affected. The C4(C3) soils below the 360 

C3(C4) organics in position 1, returned δ13C values which were significantly different from 361 

the control (p value = 0.01 and 0.03 respectively), lowering (increasing) the δ13PyC of the 362 

material below relative to the C4(C3) control (see fig 6).  This effect is minimal in samples 363 
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with higher PyC% (fig 6b), and slightly more noticeable in samples with less PyC% (fig 6a) 364 

resulting in an offset of 0.3‰ and 0.6‰; and 0.06% and 0.01%. The addition of an 365 

amorphous silica mesh spacer between the two materials negates any measurable transfer of 366 

labile carbon from the organic material above onto the soil sample below (t = -1.33 and 0.86 367 

respectively). In short, HyPy treatment of multiple isotopically divergent materials (>10‰ in 368 

this case) can offset δ13PyC in downstream samples by as much as 0.6‰ however, this can be 369 

negated by the use of a silica mesh spacer.   370 

 371 

Figure 6. δ13PyC and PyC(%) of C4(C3) soil samples in sample vessels positioned below 372 

C3(C4) organics a(b) in position 1. Black circles denote the C4(C3) controls, black squares 373 

indicate that a silica mesh spacer was placed between the organic and soil sample vessels, 374 

open squares indicate that a silica mesh spacer was not used.  Grey shading indicates the 375 

95% confidence interval of the control samples C4 soil (A) and C3 soil (B) respectively, 376 

δ13PyC and PyC (%) error determined as per Wurster et al [31].  377 

4. Conclusions 378 

HyPy has previously been shown to produce accurate and precise determinations of 379 

radiocarbon abundance [12,13] and δ13C value of a well defined component of PyC [31,6]. 380 

This study has found that there is a ~7 cm zone in the HyPy reactor where reactor conditions 381 
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are identical and thus multiples of 7 (small) or 5 (large) samples, in bespoke borosilicate 382 

vessels, can be run in tandem within a single 45 minute HyPy run, with a precision (2σ) better 383 

than 0.08% PyC and 0.6‰ δ13PyC. Experiments using labile carbon-rich samples 384 

immediately above samples of highly divergent isotope composition were able to detect trace 385 

cross-contamination. However, radiocarbon dead PyC positioned immediately below 20-386 

45mg of labile carbon with a high radiocarbon content resulted in <0.5 pMC transfer into the 387 

radiocarbon dead sample immediately below. Similarly, small transfers were found using 388 

samples widely divergent in δ13C value. Cross-contamination only occurred in the sample 389 

immediately below the labile carbon source and did not carry downstream to samples lower 390 

in the reactor. In all cases, the use of a silica mesh spacer eliminated cross-contamination 391 

between samples. Therefore, even when pretreating ‘dirty’ samples for radiocarbon or stable 392 

isotope analysis using HyPy, the results indicate that it is acceptable to process up to 3 393 

samples simultaneously. In addition, lower radiocarbon backgrounds were obtained using the 394 

HyPy process in comparison to standard pretreatment protocols at NCRF, suggesting further 395 

potential for application as a low blank pretreatment for radiocarbon dating should be further 396 

investigated. 397 

The step that currently limits the application of hydrogen pyrolysis for PyC isolation and 398 

analysis is the 43 minute temperature ramp to remove labile carbon (and subsequent 23 399 

minute period required for cooling), with only ~7 samples able to be processed in a single 400 

day. This study suggests that 3 (with spacers) to 7 (without spacers) samples can be processed 401 

in a single run without diminishing accuracy or precision, enabling ~20-50 samples to be 402 

processed in a day. This is comparable to the number of samples that can be run by EA-IRMS 403 

for stable isotopes in a day, removing the current bottleneck in routine application to larger 404 

scale projects where quantification of PyC and determination of isotope composition is 405 

required.  406 
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Table 1. Consensus values for in-house materials used in experiments to assess variation in 580 

measured PyC abundance and δ13C value when combining multiple samples during a single 581 

hydropyrolysis run (error is reported as 2σ).  582 

Soil Samples TOC (%) δ13C PyC (%) δ13PyC 

 BC Mollisol (BCM) 2.04 ±0.02 -25.57 ±0.2 0.25 ±0.1 -26.47 ±0.6 

C3 SAN2 Surface 13.44 ±0.6 -25.73 ±0.5 1.18 ±0.1 -24.66 ±0.2 

C4 AGR 1.51 ±0.1 -16.51 ±0.1 0.15 ±0.01 -14.74 ±0.3 

Labile Organic Samples 

C3  Rainforest Leaves 44.08 ±4.4 -33.47 ±0.1 N/A N/A 

C4 Sugarcane Leaves 42.11 ±4.2 -11.86 ±0.3 N/A N/A 
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 586 

 587 

 588 

 589 

 590 

 591 

 592 
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Table 2. Position experiment summary statistics  594 

 PyC (%) δ13PyC (‰) 

BCM Position μ 2σ μ 2σ 

1 0.3 0.04 -26.2 0.3 

2 0.3 0.12 -26.2 0.4 

3 0.2 0.02 -26.6 0.4 

4 0.2 0.04 -26.7 0.3 

5 0.2 0.04 -26.7 0.2 

6 0.2 0.08 -26.4 0.9 

7 0.3 0.08 -26.7 0.2 

8 0.5 0.18 -26.5 0.3 

9 0.9 0.36 -26.2 1 

AGR 1 0.2 0.01 -14.8 0.4 

2 0.2 0.01 -14.7 0.2 

3 0.1 0.03 -14.6 0.5 

4 0.2 0.04 -14.7 0.4 

5 0.1 0.02 -14.9 0.1 

6 0.2 0.07 -15.3 0.8 
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