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Glossary 

AAA   Abdominal Aortic Aneurysm 

ACA  Anterior Cerebral Artery 

ACom  Anterior Communicating Artery 

ACROSS  Australasian Co-Operative Research On Subarachnoid Haemorrhage Study 

A-II  Angiotensin-II 

aSAH  aneurysmal Subarachnoid Haemorrhage 

BA  Basilar Artery 

BAPN  beta-amino propionitrile 

BBB  Blood Brain Barrier 

BP  Blood pressure 

C-  Complement Factor 

CA  Cerebral Aneurysm 

CoW  Circle of Willis 

CSF  Cerebrospinal fluid 

CT  Computer Assisted Tomography 

dBP  diastolic Blood Pressure 

DOCA  Deoxycorticosterone acetate 

ECM  Extracellular Matrix 

EEL  External Elastic Lamina 

eNOS  endothelial-derived Nitric Oxide Synthase 

EPC  Endothelial Progenerator Cells 

FGF  Fibroblast Growth Factor 

FGFR  Fibroblast Growth Factor Receptor 

HO  Haem-Oxygenase 

HTN  Hypertension 

ICH  Intracranial Haematoma/Intracerebral Haemorrhage 
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IEL  Internal Elastic Lamina 

IL  Interleukin 

INF  Interferon 

JCU  James Cook University 

LO  Lipoxygenase 

LT  Leukotriene 

mBP  mean Blood Pressure 

MCA  Middle Cerebral Artery 

MCP  Monocyte Chemo-Attractant Protein 

MH  Myointimal hyperplasia 

MMP  Matrix Metalloproteinase 

NF  Neutrophil Factor 

NO  Nitric Oxide 

PAF  Platelet Activating Factor 

PAR  Population Attributable risk 

PBS  Phosphate Buffered Saline 

PCA  Posterior Cerebral Artery 

PCom  Posterior Communicating Artery 

ROS  Reactive Oxygen Species 

SAH  Subarachnoid Haemorrhage 

sBP  systolic Blood Pressure 

TF  Tissue Factor 

Th-  T- helper type cell 

TIMP  Tissue Inhibitors of Metalloproteinases 

TNF  Tumour Necrosis Factor 

TNFR  Tumour Necrosis Factor Receptor 

VBU   Vascular Biology Unit 
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VSMC  Vascular Smooth Muscle Cells 

vWF  von Willebrand Factor 

WHO  Word Health Organisation 
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Introduction and Historical Perspective 
 

There is considerable interest in further understanding the pathophysiology of human cerebral 

aneurysm formation. Many human studies involving histopathological analysis of surgically dissected 

aneurysms[1, 2], gene linkage analysis[3-10] and epidemiological studies[11-18] have been 

performed with varying degrees of success, revealing some specific elements which may be of 

importance in aneurysm pathogenesis. These studies, however, have a number of important 

limitations[19]. Histopathological studies rely upon samples obtained during neurosurgical 

intervention, which in of itself may increase the risk of aneurysm rupture[2, 20]. The tendency of 

aneurysms to cluster in families can complicate genetic studies[21-23]. Further, histological data 

from human studies is obtained at a single point in time; this does not allow for examination of 

sequential changes in the arterial wall during aneurysm pathogenesis.  

Intracranial aneurysms have been a subject of investigation since the mid-19th century. During this 

period, attaining a diagnosis of intracranial aneurysm in a living patient was difficult, with most cases 

being identified at necropsy. Indeed in 1859, Gull[24] expressed pessimism that such a feat would 

ever be achieved, concluding, after a review of both his personal experience with 7 patients and a 

review of previously reported cases: “Although we may from the circumstances sometimes suspect 

the presence of an aneurysm within the cranium, we have at best no symptoms on which to ground a 

more probable diagnosis”. This dictum remained widely accepted for almost half a century; 

Beadles[25], on analysing 555 aneurysm cases, reached the same conclusion, declaring: “Only two or 

three have ever been diagnosed during life, and even in those cases it can scarcely be said to have 

been an absolutely certain diagnosis”. A more proactive stance in the diagnosis of aneurysms was 

taken by Fearnsides[26], who in a review of the subject, and broadly agreeing with the earlier 

statements by Gull, suggested that the infrequency of clinical diagnoses in living patients was 

probably due to the diagnosis of aneurysm rupture not being considered by clinicians. This new 
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focus on diagnosis during life appeared to re-kindle interest in intracranial aneurysms and their 

pathogenesis and treatment [27]. 

The pioneering work of Turnbull[28] in 1914 promulgated the theory that aneurysms  were 

congenital in origin. In investigating 30 aneurysms, he noted that arterial wall atheroma was absent 

or mild in 21, with little to no evidence of arterial wall hyperplasia in 17. This contrasted sharply with 

previous observations of intracranial arteries after haemorrhagic stroke, leading the author to 

conclude that “…direct rupture is usually associated with evidence of much more excessive blood 

pressure and greater arterial degeneration… If, therefore, these cerebral aneurysms were entirely the 

result of excessive blood pressure and arterial degeneration, they would precede and be more 

common than direct rupture …direct rupture is much more common. There appears, therefore, to be 

an additional factor in the formation of these cerebral aneurysms… this factor is, probably, an 

inherent weakness due to a congenital abnormality in the structure of the arteries at their points of 

junction”[28, 29].  

Although widely accepted, this hypothesis failed to explain the relatively late onset of aneurysm 

rupture and the rarity of SAH in children.  

Although proposed as a contributory rather than the principal aetiology in aneurysm pathogenesis 

by Turnbull[28], interest in the role of hypertension and haemodynamic stress on cerebral vessels 

increased after Forbus’ experiments in 1930[30]. By use of glass tubing and manometer 

measurements, these studies determined that haemodynamic pressure exerted on an arterial wall 

was maximal at arterial branch points, which correlated with the origin site of many aneurysms. The 

author attributed this propensity to small, congenital defects in the media layer or “loci minoris 

resistentiae”, which appeared to justify Gull and Turnbull’s earlier assertions. Forbus concluded that 

the strength of the vessel wall is a function of the muscular coat, with breaches of this layer 

responsible for aneurysm formation. Critically, however, Forbus also found many media defects 

without apparent aneurysm formation; a point further explored by both Schmidt[31] and Strauss[32] 
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who despite accepting of the proposal that congenital lesions predisposed to aneurysm formation, 

nevertheless stressed the importance of atheroma formation in aneurysm pathogenesis. 

The aetiological relationship between both medial defects and presence of atheroma was 

questioned in 1940 by Glynn[29], who showed that even in the presence of medial defects, unfixed, 

unsupported elastic elements in the vessel wall could withstand very high pressures without 

rupture. This hypothesis was tested by insufflation of a sample vessel with air from a foot-pump; 

pressures of up to 400-600mHg were achieved “without any visible sign of localised bulging”. 

Although the author conceded that this experiment was not an accurate physiological 

representation of the in-vivo situation (the tissue being dead and without muscle tone), it 

nevertheless proved the concept that the unsupported elastic elements of the vessel wall could 

withstand very high pressures without loss of structural integrity or vessel rupture. These results 

were consistent in both vessels with naturally occurring and artificial medial defects, again pointing 

toward the elastic lamina as the critical element in maintenance of vessel wall integrity, leading the 

author to conclude that lesions of the elastic lamina are “of paramount importance in the genesis of 

these aneurysms”. 

Glynn disputed Forbus’ contention that the observed medial defects were congenital, citing 

increased frequency of observed defects in adult when compared to paediatric samples in his 

observed slides, and asserting that due to the frequency with which medial defects occur in the 

cerebral vessels of normal subjects, they were unlikely to be a significant factor in aneurysm 

pathogenesis. Interestingly, he described these changes as “physiological response(s) to the increase 

in blood pressure which normally occurs between infancy and the attainment of maturity” [29]”. He 

noted the presence of intimal hyperplasia independent of either atheroma formation or medial 

defects, which he proposed to be a result of “a local condition of strain”, which occurred to a greater 

extent in older subjects with an increased frequency at arterial bifurcation points. Two explanations 

were suggested to account for this observation, namely: 
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1. At bifurcation points, a greater pressure was exerted on the arterial wall at the point of 

bifurcation due to it being in direct opposition with the forces exerted by the moving column 

of blood, and that 

2. Eddy currents arising from turbulent blood flow at bifurcation points resulted in a 

pathological process, the end result of which was intimal hyperplasia. 

Carmichael[33], in 1950, proposed that aneurysm formation was dependent on the combination of 

both a medial defect and a superimposed lesion in the internal elastic lamina. Findings of his 

histological study of 13 small aneurysms suggested that their development was due to the combined 

effects of “developmental deficiency” and “arterial degeneration”. The author observed that 

aneurysm development occurred exclusively at the site of “substantial breaches in the muscular and 

elastic coats, and these coats are breached in different ways”. The muscular gaps were attributed to 

foci of medial aplasia which became enlarged by superimposed degenerative changes, or 

alternatively areas of primary hypoplasia where an underdeveloped media had been destroyed by 

primary degeneration and fibrosis. Gaps in the internal elastic lamina, however, were attributed to 

degenerative change alone, which the author ascribed chiefly to atheroma formation. Although it 

appeared that the relative degree of each of these two factors varied in the aneurysms studied, 

Carmichael concluded that “both developmental and degenerative factors are concerned in the 

genesis of all of these aneurysms and no distinction can be made between the so-called congenital 

(i.e. developmental) and arteriosclerotic types”[33]. 

Du Boulay[34] further explored the association between atheroma formation and aneurysm 

pathogenesis in a radiological, surgical and pathological analysis of the size and shape of 252 

aneurysms in 197 patients. This work found arterial irregularities or atherosclerosis in 35% of the 

aneurysms studied. Whilst concluding that an association between atheroma and aneurysm 

formation may exist, he did not accept that atheroma was in of itself the principal factor in 

aneurysm pathogenesis, rather that it was a “most important factor”, and that although early 
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atherosclerotic change was closely associated with early aneurysm pathogenesis, development of a 

macroscopic saccular aneurysm was dependent on a balance between healing processes and the 

progression of atheromatous change . Du Boulay also reported several important aspects regarding 

the natural history of intracranial aneurysms, noting simple, unilocular aneurysms to be more 

common in young patients, with an increased incidence of larger, multilocular lesions in older 

patients. In patients with multiple aneurysms, 18 of 32 exhibited both simple saccular aneurysms 

and irregular, multilobed ones, suggesting that progressive changes affected individual aneurysms in 

the same patient at different rates, and new aneurysms may form at different stages. He noted the 

significance of loculation of aneurysms, especially the development of de novo loculation, correctly 

determining that a change in morphology was often an event which preceded aneurysm rupture. 
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Epidemiology and Risk Factors for Aneurysmal Subarachnoid Haemorrhage 
 

Aneurysmal subarachnoid haemorrhage, that is, subarachnoid haemorrhage resulting from rupture 

of a saccular intracranial aneurysm, is a highly lethal medical condition, with a mortality approaching 

50% in some studies and significant morbidity amongst survivors [36-39]. Although aneurysms  are 

present in approximately 2-5% of the population, the incidence of aneurysmal subarachnoid 

haemorrhage in Australia is only 8 in 100,000 people per year [17]. In the vast majority of cases, 

aneurysms remain occult prior to rupture. A feature of aneurysmal subarachnoid haemorrhage is the 

relatively young age at which it strikes, with  peak incidence occurring between 40 and 60 years of 

age[40]. Although attributable to only 7% of all strokes, aneurysmal subarachnoid haemorrhage is 

responsible for 27% of all stroke related years of life lost before age 65[38] 

 Why human aneurysms form remains unclear. Most studies examining pathophysiology of 

aneurysm formation have focused on physiological parameters such as hypertension, intra-arterial 

wall shear stress[41-43], and immunological factors such as endothelial dysfunction, inflammation 

and remodelling of the vascular wall [44-51]. The majority of historical studies investigating human 

aneurysm pathogenesis have relied on specimens obtained during autopsy or surgery. These 

histopathological samples are now less commonly available due to the increasing use of 

endovascular treatment[52-54]. Many potential risk factors for aneurysm formation and rupture 

such as hypertension, cigarette smoking, alcohol consumption and female gender have been 

identified[21, 55-59]. Exposure to any or all of these factors  does not necessarily result in the 

formation of an aneurysm[35, 37, 60-62], and aneurysms  may also arise spontaneously in the 

absence of any obvious risk factors[60, 63, 64]. 

Although significant difference of opinion exists amongst clinicians, aneurysm size predicts risk of 

rupture [37]. Contradictory data, however, show that up to 60% of ruptured aneurysms would have 

been classified as “low-risk” prior to rupture if aneurysm size alone is used to stratify risk of 

rupture[15, 65]  [66]. Management of unruptured aneurysms is controversial; aneurysms deemed at 
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low risk of rupture are typically kept under radiological surveillance, with surgical clipping or 

endovascular occlusion offered to patients deemed to be at “higher” risk of SAH[37]. Regardless of 

treatment modality, for many patients the peri- and intra-procedural morbidity may equal or exceed 

the risk of conservative management[67]. 

The International Study on Unruptured Intracranial Aneurysms (ISUIA)[18] and subsequent follow-up 

study (ISUIA-II)[37], sought to stratify risk of aneurysm rupture on the basis of size and location 

alone. Although criticisms relating to inherent methodological biases[68], and utility of these data in 

a clinical setting[69, 70] have been raised, the size and location risk-stratification paradigm has 

gained favour in contemporary neurosurgical practice. However, it is also accepted that up to 60% of 

ruptured aneurysms would have been classified as “low-risk” and potentially remained untreated 

with potentially catastrophic consequences were clinical risk stratification protocols to rely only on 

the ISUIA study[15, 65]  [66]. Thus, the broad extrapolation of this data to general neurosurgical 

practice may well be inappropriate[71, 72] 

Mechanical obliteration of aneurysms and limiting the effects of aneurysmal subarachnoid 

haemorrhage after its occurrence are the mainstay of modern management of ruptured aneurysms. 

Despite decades of research and innovation, aneurysm pathogenesis and the processes leading to 

rupture are currently poorly understood, and the consequences of aneurysmal subarachnoid 

haemorrhage remain a significant burden both on the community and the individual. Further 

defining, clarifying, and understanding aneurysm pathogenesis may have important clinical and 

therapeutic implications 
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Pathophysiology of Human Aneurysm Formation 

Anatomy of cerebral vessels 

 
The brain is an integral part of the body which demands and uses 20% of the blood ejected from the 

heart over each cardiac cycle[73]. The principal function of the cerebrovascular network is to provide 

a stable blood flow to the brain over a range of activities whilst simultaneously avoiding potentially 

detrimental effects of abnormal physiological stressors such as increased haemodynamic stress. 

Optimum design of biological structures is an established theoretical biological principle which states 

that the “optimum” biological structure is the one which involves the least metabolic cost, or “work” 

(i.e. that which requires the minimum energy expenditure to build and maintain its infrastructure 

along with performing physiological tasks[74]). The biological efficiency of the vascular system is 

determined for the most part by the arrangement of vessels of variable luminal diameter arranged in 

a branching hierarchy from large to small calibre, designed in such a manner as to maintain the 

continuity of blood flow at the lowest energy cost and blood volume required, whilst simultaneously 

avoiding increased haemodynamic stresses[75]. 

In mammals, cerebral blood supply is via three major intracranial arteries; two internal carotid 

arteries and the basilar artery. The internal carotid arteries supply primarily the cerebrum, with the 

basilar supplying the brainstem, cerebellum and the remainder of the cerebrum. In humans, the 

Circle of Willis is formed from the three main intracranial arteries and the anterior cerebral, anterior 

communicating, posterior communicating and posterior cerebral vessels. The vertebrobasilar 

junction represents an area of unique haemodynamic profile in human vascular anatomy. The basilar 

artery (BA) is formed by the confluence of the paired vertebral arteries, representing a convergence 

of arteries rather than the usual divergent bifurcation; blood flow is in the “opposite” direction to 

that experienced elsewhere in the body. 



 18 

Macroscopic Anatomical variations 
The Circle of Willis is a polygon or closed arterial circuit, through which (by means of component 

vessels) blood may circulate from and return to the point of entrance[76].  

Suggested reasons for the development of this unique pattern range from preservation of cerebral 

blood flow via collateral channels in the event of occlusion of one of the main feeding arteries [77] 

to protection of the brain from ischaemia whatever the position of the head may be relative to the 

cervical spine[78, 79].   Although there is no unanimity regarding what constitutes a “normal” or 

typical anatomical pattern[76], generally speaking the paired anterior cerebral arteries must be 

present, and no vessel may be less than 1mm in external diameter [80-82].  

 The Circle of Willis exhibits high anatomical variability in humans, with only approximately 40% of 

the population thought to exhibit a “textbook” configuration; indeed some  studies have described 

variant arterial patterns to be more common than the anatomical pattern [76, 81]. Common 

anomalies include absence, hypoplasia, or multiplicity of component vessels. Persistence of the 

embryonic configuration of arteries, i.e. hypoplasia of the proximal segment of the aneurysm due to 

failure of the medial branch of the posterior branch of the aneurysm to properly join the basilar 

artery during early embryogenesis is probably the most frequently encountered anomaly and is 

usually seen unilaterally [76, 82, 83]. Growth of new vessels secondary to haemodynamic and 

genetic factors can result in other deviations from the expected pattern [76]. Alternatively, vascular 

anomalies may manifest more discreetly as subtle structural anatomical variations, or differences in 

the bifurcation angles between parent and daughter arteries. In most cases, however, physiological 

continuity of the arterial collateral circulation is maintained[75, 84-87].  

 

Effect of Anatomical Variations on Cerebral Blood Flow 
It has long been postulated that anatomical variability in the Circle of Willis be a predisposing factor 

to aneurysm formation[80, 83, 88, 89]; aneurysms arising from the Circle of Willis show a propensity 
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for arterial bifurcation points, and develop more often at bifurcations where one artery is 

hypoplastic relative to the other than at those where the calibre of the parent vessels is more equal. 

For example, A1 hypoplasia begets a tendency to anterior communicating artery aneurysm 

formation[90]. Likewise, aneurysms are seen with increased frequency at acute rather than more 

obtuse bifurcations, where laminar blood flow deviates more markedly from that of the parent 

artery [91]. 

The work of Padget et al[83] was one of the first studies to suggest a statistically significant 

correlation between anatomical variability and aneurysm formation, however was criticised due to 

poor statistical methodology. Kayembel[89] described a definite correlation between anatomical 

variation and aneurysm formation, and emphasised the importance of ascribing macroscopic 

aneurysm formation not on the presence of an anatomical variant per se, but rather that the 

pathophysiological processes resulting in aneurysm formation arose from alterations in cerebral 

blood flow caused by these variations. Modern, quantitative, in vivo imaging studies have confirmed 

this hypothesis, with significant variations in flow rates in both the carotid and basilar arteries 

demonstrated on MRI in the presence of variations in the Circle of Willis [92, 93]. In their study of 

117 healthy volunteers using two-dimensional cine-phase contrast enhanced MRI, Tanaka et al[93] 

measured volume flow rates of the bilateral internal carotid arteries and the basilar artery. 

Anatomical variations were classified as:  

1. A “textbook” Circle of Willis, where the pre-communicating segment of the anterior cerebral 

artery (A1) and posterior cerebral artery (P1) were normal in size,  

2. Right/left A1 hypoplasia,  

3. Right/left P1 hypoplasia, and  

4. “Other” which consisted of other unclassified variations. 
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Total volume flow rate and volume flow rates for, and the relative contributions of each artery of 

groups 1, 2 and 3 were measured. The relative contribution of each of the proximal arteries was 

found to correlate significantly with variations of blood flow in the Circle of Willis. The ratio of 

contribution of the bilateral internal carotid and basilar artery were estimated at 40:40:20 for the 

“textbook” type. Assuming that both anterior cerebral arteries were supplied by a single internal 

carotid in the A1 hypoplasia variant, and the posterior cerebral artery ipsilateral to the hypoplastic 

P1 is supplied only by the ipsilateral posterior communicating artery, ratios of contribution of the 

bilateral internal carotid arteries and basilar artery were estimated at 30:50:20 for the A1 hypoplasia 

variant and 50:40:10 for the P1 hypoplasia variant. These results confirmed the earlier findings of 

Hendrikse[94] et al, who measured volume flow in the internal carotid arteries and basilar artery in 

208 patients with symptomatic atherosclerosis or risk factors for atherosclerosis using three-

dimensional time-of-flight MR angiography. In this study, significantly increased volume flow was 

demonstrated in the contralateral internal carotid artery in patients with A1 hypoplasia compared to 

“textbook” circulation. In the presence of P1 hypoplasia, significantly increased volume flow was 

demonstrated in the ipsilateral internal carotid , with decreased basilar artery flow. This effect 

appeared most significant for anterior circulation anatomical variants (i.e. A1 hypoplasia or absence) 

indicating that asymmetries in volume flow between the internal carotid arteries may not 

necessarily be due to vascular disease but may instead be due to variations in the anatomy of the 

Circle of Willis. 
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Ultrastructural organisation of intracranial arteries 
Human intracranial arteries are muscular vessels comprising of three main layers: 

1. An outer tunica adventitia which consists mostly of type-1 collagen, 

2. A tunica media comprised primarily of vascular smooth muscle cells (VSMCs) with an 

extracellular matrix consisting of type I and III collagen fibres, and  

3. An inner layer, the tunica intima, comprising of a single layer of endothelial cells adjacent to 

the lumen, separated by a distinct internal elastic lamina (IEL) of elastin[84, 95, 96]. 

Structural integrity of these vessels is maintained by the media layer via the highly organised, 

circumferential orientation of the VSMCs and IEL [96, 97]. Malleability of the vessel wall is imparted 

by the VSMCs. Thus, the VSMCs, in concert with the IEL and collagen fibres, allow the vessel wall to 

withstand significant the haemodynamic stressors imparted upon it over the course of the cardiac 

cycle without sustaining any significant injury. The tensile strength of the artery wall is derived from 

the thin layers of type-I and –III collagen fibres, [98], with types I, III, IV and V embedded in 

endothelial and VSMC basement membranes[99]. 

Despite these characteristics, intracranial arteries are structurally weaker than their systemic 

counterparts. Intracranial arteries are generally thinner walled, do not exhibit an external elastic 

lamina (EEL), nor vasa vasora, and have a thin tunica media. They are also relatively “exposed”; they 

do not benefit from an organ capsule or wrapping hilar ligaments (i.e. structures such as the hepatic 

ligament), with the surrounding CSF usually exerting a pressure of approximately 12cm H2O.  

Remodelling of the extracellular matrix has been associated with many vascular diseases, including 

abdominal aortic aneurysm formation and atherosclerosis[100, 101]. Degenerative changes in the 

arterial wall manifest as a decrease in the number of mural cells and excess deposition of myointimal 

fibrous tissue[102, 103], with constant remodelling of wall structures. This results in intimal 

hyperplasia, loss of clear demarcation between the various layers, and disorganised muscle 

layer[103, 104]. The composition of the affected vessel wall compared to normal arteries is also 
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changed. Diseased arteries exhibit type 1 collagen and fibronectin dispersed throughout the tissues; 

in normal arteries the distribution of type 1 collagen is confined to the adventitia, and fibronectin to 

the media. Thinning of the media layer due to VSMC loss is seen in aneurysm propagation and 

progression [46, 105].  

The unique anatomy of intracranial arteries may make them more predisposed to haemodynamic 

stress, and thus, aneurysm formation. As discussed, a unique microscopic feature of intracranial 

arteries is small foci of discontinuity of the tunica media, variously named the medial gap, medial 

defect, or medial raphe[29, 30, 96]. Medial gaps are almost invariably present at bifurcation points, 

however why this is so remains unexplained, however their morphology and width appears to be 

dependent on the angle subtended at the bifurcation, with wider gaps seen at narrower branch 

angles[84]. Their frequency also appears to increase with age [29, 106]. The organisation of collagen 

and smooth muscle cells along a straight length of artery is mainly circumferential, with a lesser 

presence of longitudinal fibres in the outer adventitia[97, 98, 107] At arterial bifurcations, however, 

the collagen fibres in medial gaps exhibit a highly aligned organisation with fibres and fibrils running 

parallel to each other; at the apex of the bifurcation these track perpendicular to the long axis of the 

parent artery [97]. Finlay et al[97] likened this structure to a “tendon under load”; which imparted 

increased strength at the bifurcation apex. This increased strength, however, was noted by the 

authors to increase the vulnerability of the vessel walls immediately adjacent to haemodynamic 

stress, with distension of the vessel wall more likely at the discontinuity at the edge of the band. 

  



 23 

 

Role of Genetic Factors 
 

Genetic factors are thought to substantially contribute to intracranial aneurysm formation[4, 108]. 

Multiple identical twin[12, 109], family[4, 63, 110-112] and population-based epidemiology studies 

have suggested genetic predisposition plays a significant role in aneurysm formation, however no 

study has yet identified a definite association to any particular gene[4]. It would appear that a 

combination of genetic and environmental factors working in concert lead to aneurysm 

pathogenesis; no one factor is sufficient to cause an aneurysm in isolation. Thus, the identification of 

a single gene exerting a dominant effect in aneurysm pathogenesis seems unlikely, however this 

remains the focus of considerable interest. 

Unruptured aneurysms are identified in approximately 10-15% of first-degree relatives of patients 

presenting with SAH [113, 114]. These aneurysms are more usually multiple [115], and appear to 

confer an increased risk of rupture at a smaller size and at a younger age; 70% of familial aneurysms 

rupture by the age of 50 versus 43% of non-familial aneurysms [111, 116] [117]. Interestingly, 

aneurysms in siblings tend to rupture in the same decade, with female family members exhibiting a 

higher incidence of rupture[114, 118]. This may reflect an interaction between genetic 

predisposition and a contributory effect of oestrogens. 

Although the familial nature of aneurysms is well recognised, this determination has largely arisen 

based on studies of first-degree relatives of selected cases. More detailed, population-based 

investigation is limited by the lack of large, comprehensive population-based genealogical databases. 

In their population-based analysis of the familial nature of aneurysms (intracranial, abdominal aortic 

and other types), Cannon-Albright[119] et al identified a high incidence of  intracranial, abdominal 

aortic and other aneurysm types in certain families, suggesting a genetic component in aneurysm 

pathogenesis. Data obtained from 279,002 death certificates and weighting for mean degree of 
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relatedness ascribed a relative risk for aneurysm formation in first-degree family members of 3.67, 

2.07 and 13.0 for intracranial, abdominal aortic and other aneurysms respectively. Each aneurysm 

type showed significant evidence of increased familiality. Although the authors conceded insufficient 

evidence to prove the hypothesis of a genetic susceptibility towards aneurysm formation, their data 

was suggestive of such a trait. Although some pedigree clusters of abdominal aortic aneurysm 

revealed concomitant intracranial and other aneurysms amongst their descendants, presence of an 

intracranial aneurysm did not appear to confer an increased risk of abdominal aortic or other 

aneurysms. 

Over the past decade, a number of studies have described an anticipation effect in familial 

aneurysms, i.e. that in family pedigrees where aneurysms are seen in consecutive generations, the 

mean age of aneurysm rupture in patients is significantly higher than that of their affected 

children[120, 121], with mean differences in age of onset of aneurysmal subarachnoid haemorrhage 

reported at 19.8 years (range -3 to 38)[120] and 21.2 years[121]. Ruigrok et al, referencing other 

hereditary, autosomal dominant conditions, hypothesised that this phenomenon may be due to the 

transmission of an unstable trinucleotide repeat sequence, increasing in size through subsequent 

generations. Huntington’s disease, myotonic dystrophy, and spinocerebellar ataxia type 1, 2, 3 and 7 

also exhibit an anticipatory effect[120, 122, 123]. As anticipation is a likely feature of familial 

aneurysm transmission, an unaffected parent may subsequently develop an aneurysm after 

diagnosis in their offspring[120]. 
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Connective tissue disorders 

 

Approximately 5% of intracranial aneurysms are thought to be associated with a recognised 

heritable connective tissue disorder[109, 114, 124]. Connective tissue and extracellular matrix 

disorders have also been associated to varying degrees with pre-aneurysmal change, with Autosomal 

Dominant Polycystic Kidney disease (ADPKD, polycystin)[125], Ehlers-Danlos Syndrome (EDS IV,  

COL3A1 collagen)[126], pseudoxanthoma elasticum (PXE)[127], supravalvular aortic stenosis (SVAS, 

elastin)[128] and Fibromuscular Dysplasia being long recognised [15, 114, 129].  

The most well-known association of a heritable condition with intracranial aneurysms is Autosomal 

Dominant Polycystic Kidney Disease (ADPKD), intracranial aneurysms being identified in up to 10% of 

patients with the condition. Although SAH is a major cause of morbidity and mortality in these 

patients, ADPKD patients make up a tiny minority (estimated to be approximately 0.3%) of all SAH 

patients[57, 130]. 

In a similar manner, although studies have suggested an association between Ehlers-Danlos IV and 

aneurysm formation[131, 132], the association is weaker again than that between ADPKD and 

aneurysm formation, with these patients comprising an even smaller number of total patients 

presenting with  SAH. Furthermore, aneurysms in patients with ED IV tend to be of the fusiform type 

in contrast to the saccular type more usually seen in patients with idiopathic aneurysms[133]. Other 

heritable disorders associated with an increased incidence of aneurysm pathogenesis include 

Osteogenesis Imperfecta, Pseudoxanthoma elasticum, Supravalvular Artic Stenosis, 

Neurofibromatosis type-1 and Marfan’s syndrome. 

The overall incidence of heritable connective tissue disorders is probably underestimated due to 

variability in phenotypic expression and although many are inherited in an autosomal dominant 

fashion, family history is frequently negative as the disease arises as a new mutation [109]. The 
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causal relationship, however, between many of these disorders and aneurysm pathogeneis remains 

to be conclusively proven and uncertainty exists as to the significance of the contribution of any of 

these conditions to risk of aneurysmal subarachnoid haemorrhage. Prevalence of aneurysms is 

higher in some of these disorders (especially APKD and ED IV) than in the general population, but 

this increase is only modest, with systemic studies of larger groups of affected patients 

demonstrating that aneurysms are an infrequent clinical manifestation in the disorder[131, 134] 

Polymorphisms in genes encoding for elastin (ELN), A-1 antitrypsin (AAT), Collagen-III (COL3A1), 

endothelial nitric oxide synthase (eNOS), endoglin (ENG), Polycystin (PKD-1), (FBN1) and 

transforming growth factor –beta receptors have all been implicated in aneurysm pathogenesis[15].  

Large, genome-wide studies have identified potential loci for aneurysms on 2p13[7] on 7q11, 14q22, 

5q22-31[135], and on 19q13.3[8]. An allelic association for aneurysm formation has been shown for 

genes encoding for elastin (ELN, 7q11.2) and Collagen type 3A2 (COL1A2, 2q31)[14, 135]. Such 

associations, however, may give rise to the identification of false positives, and there are indications 

for locus and allelic heterogeneity between different ethnic groups[136] 

 

Collagen, Elastin and Connective Tissue. 
 

Abnormalities in collagen and elastin formation and turnover are thought to play a key role in 

aneurysm formation.  

Elastin is synthesised in fibroblasts, endothelial cells, smooth muscle cells and chondroblasts. It is 

secreted as a soluble, 72kDA monomer (tropoelastin) which alternates hydrophobic (responsible for 

elastic properties) and lysine rich (required for lysl oxidase-mediated covalent cross-linkage between 

monomers) sequences. The net effect of these alternating sequences is formation of a highly 

insoluble network of elastic fibres in the extracellular space[137, 138]. Elastic fibres are formed from 

an insoluble core of elastin surrounded by a lattice of myofibrils. Elastin is secreted as a precursor 
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protein (tropoelastin) which is cross-linked into a pre-existing microfibrillar matrix [128, 139]. The 

major microfibrillary components are Fibrillin 1 and 2 (FBN-1, -2) [140].  

Types I and III collagen are the major extracellular matrix components of vessels, representing 

approximately 80-90% of the total arterial collagen content, and are responsible for most of the 

tensile strength of the vessel wall[136]. It appears only Type-III collagen is associated with vascular 

disease[140]. Type-III collagen is composed of three identical a- subunits which are secreted as 

procollagen precursors[141]. After secretion, these procollagens are processed to form mature, 

insoluble collagens, which aggregate to form banded fibrils[128]. Type-III, or reticular fibrils are 

mostly found in tissues exposed to periodic stresses and assist in the organisation of Type-I collagen 

networks. These fibrils are the primary source of tensile strength of the vessel wall[128].  
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Collagen Disorders 

Ehlers-Danlos Syndrome Type IV  
 

Ehlers-Danlos syndrome is a heterogenous group of connective tissue disorders characterised by 

hypermobility of joints, fragile or hyperelastic skin, easy bruising and abnormal scarring[109]. 

Patients exhibit characteristic facies of expressive eyes, thin nasal bridge, thin lips, lobeless ears and 

a “prematurely aged” appearance[109, 115]. Of the ten currently classified subtypes, Type IV (ED IV) 

is the least common but most lethal, with a prevalence of approximately 1 in 50,000 to 500,000 

persons[109, 128, 142].  

Type III collagen is the major constituent of distensible tissues, including arteries and veins. The gene 

responsible for ED IV encodes for the pro-a1 chains of type III pro-collagen (COL3A1) and is located 

on chromosome 2. Multiple mutations of this gene have been identified, and are acquired in either 

an autosomal dominant manner (~50%) or as a de-novo mutation (~50%)[143]. There does not 

appear to be a correlation between the nature or location of the mutation and the expression or 

severity of the phenotype, however some studies suggest null mutations may result in more severe 

disease [131]. Although multiple studies have revealed evidence of abnormal type III collagen 

production in the absence of ED IV, COL3A1 mutations are uncommon amongst patients with 

spontaneous intracranial aneurysms[109, 144, 145] 

 

Osteogenesis Imperfecta 
 

Osteogenesis Imperfecta (OI) is a heterogenous group of connective tissue disorders characterised 

by bone fragility and decreased bone mass [146, 147]. It is predominantly caused by dominant 

mutations affecting synthesis of type I collagen, however recessive and X-linked inheritance have 

also been described[146, 147].The prevalence of OI in all its forms has been estimated at between 6-
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7 per 100,000 people [148]. Typical extra-skeletal manifestations of the condition include hyperlaxity 

of ligaments and skin, dentinogenesis imperfecta, blue sclerae and hearing loss. The original Sillence 

Classification of OI described four subtypes by primary clinical characteristics and pattern of 

inheritance, namely (i) mostly dominant inheritance with blue sclera, (ii) lethal perinatal subtype, (iii) 

progressively deforming subtype and (iv) mostly dominant inheritance with normal sclera. These 

subtypes were classified on the basis of clinical findings to reflect the spectrum of severity of the 

condition from mild (OI type I) to lethal (OI type II) and severely deforming (OI type III) to minimally 

deforming (type III). The observation that each of the four subgroups displayed slightly different 

modes of inheritance (predominantly autosomal dominant) indicated genetic heterogeneity in 

OI[146]. An internal deletion in COL1A1 was first described in OI type II[149]; subsequent gene 

studies revealed mutations in COL1A1 (encoding for a-1 collagen chains) and COL1A2 (encoding for 

a-2 collagen chains) in all OI types. A total of 17 genetic causes of OI have since been described, 

however COL1A1/2 mutations resulting in qualitative deficiencies of Type I collagen still account for 

approximately 90% of OI in patients of European origin where a defect has been detected[132, 150]. 

The number of subtypes has since been expanded up to OI XIV with the discovery of these multiple 

genetic defects, however these phenotypes may not be mutually exclusive and retain comparable 

clinical and radiological characteristics of the original clinical description of subtypes I-IV. Thus, the 

preferred nosology remains phenotypic, adding PI type V (presumed autosomal dominant). 

Neurological complications of OI such as basilar invagination and fragility of blood vessels are well 

recognised[148, 151] and may be more prevalent in OI type IV[146]. Neurovascular manifestations 

of OI such as spontaneous carotid-cavernous fistula[152], vertebral artery dissection[132] and 

aneurysm formation[153-155] have been reported. As type III rather than type I collagen provides 

most of the tensile strength in vessel walls; this may account for the relative paucity of vascular 

complications in OI relative to other disorders of collagen biosynthesis such as ED IV. 
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Autosomal Dominant Polycystic Kidney Disease 
 

Autosomal Polycystic Kidney Disease (ADPKD) is a systemic hereditary disorder accounting for 8-10% 

of cases of end-stage renal disease. It is characterised by cyst formation in ductal organs, principally 

the kidneys and liver, and is associated with various cardiovascular, musculocutaneous and 

gastrointestinal abnormalities [156, 157]. It occurs in 1 in 400-1000 persons. The gene responsible 

has been located on the short arm of chromosome 16 (16p13.3)[158]. PKD1 encodes for polycystin-

1, a, 11-pass membrane protein mediating cell-cell and cell matrix interactions and is responsible for 

85% of ADPKD cases. PKD2, mutations of which gene are responsible for the majority of the 

remainder, codes for polycystin-2; a 6-pass membrane protein homologous to voltage-gated Ca++ 

channels. PKD1 is believed to interact with PKD2 in signal transduction from extracellular ligands 

[159-161]. Germline mutations in both genes comprise missense, splice site and both small deletions 

and insertions[162] Both polycystin-1 and -2 are strongly expressed in the vascular smooth muscle 

and endothelium of patients with ADPKD, suggesting that the development of vascular pathology is 

directly linked to the PKD mutation and polycystin dysfunction in the arterial wall rather than 

secondary to the arterial hypertension arising from chronic renal dysfunction[163-166].  

The prevalence of intracranial aneurysms in the ADPKD population has been estimated at 

approximately 8%, approximately five times higher than that of the general population [166]. 

Aneurysms are identified in up to 25% of patients at autopsy[132, 158]. Persistent foetal carotid-

basilar anastomoses are a relatively frequent angiographic variant in ADPKD; it has previously been 

suggested that this aberrant anatomy may be a predisposing factor in aneurysm formation[167, 

168]. In contrast to the general population, aneurysms in these patients arise most commonly from 

the middle cerebral artery appear to show a slight propensity for males, and rupture at an earlier 

age[132]. 
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The incidence of SAH in ADPKD has been estimated at approximately 1 in 2000 person years[158, 

169], which although five times the rate in the general population, is roughly proportionate to the 

increased prevalence of aneurysms in this group, thus the overall risk of SAH is probably similar to 

that of the general population [169]. The earlier mean age of SAH and the potentially devastating 

sequelae of this, however, has prompted some authors to advocate screening for asymptomatic 

aneurysms in either all patients with ADPKD[162] or in certain subgroups (e.g. younger patients, 

family history of aneurysm or SAH, uncontrolled hypertension etc.)[158]. This targeted screening, 

along with general risk factor reduction (cessation of smoking, control of hypertension, etc.) may 

represent a sensible stop gap approach pending further studies [166]. Interestingly, in one study by 

Chapman[167]et al, patients with ADPKD experienced a significantly increased incidence of transient 

neurological deficits after undergoing Digital Subtraction Angiography, which appeared to 

subsequently resolve without neurological deficit. This may have implications for the undertaking of 

catheter angiography in ADPKD in future clinical or research settings. 

 

Elastin Disorders 
 

Supravalvular Aortic Stenosis 
 

Supravalvular Aortic Stenosis (SVAS) is an autosomal dominant systemic elastin arteriopathy which 

usually manifests as thickening of the media and intima of the great arteries. Its prevalence is 

approximately 1 in 13,000-20,000 live births [128, 137].  

SVAS is classically associated with Williams-Beuren Syndrome (WBS); a complex developmental 

syndrome manifesting with neurobehavioural, craniofacial, cardiovascular and metabolic 

abnormalities[137]. SVAS may arise in conjunction with WBS or as a non-syndromic variant.  The 

gene causing the syndromic variant has been isolated to a microdeletion at 7q11.23, which 

encompasses 27 genes, including the elastin gene (ELN) [170]. The non-syndromic version is 
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recognised as separate entity as the patients do not present with the other features of WBS 

syndrome, however is also caused by a mutation of ELN[171, 172]. When WBS SVAS patients and 

spontaneous SVAS patients are compared, it appears that hemizygosity for elastin causes SVAS, but 

not the other characteristic features of WBS[128, 173]. Point mutations, deletions and translocations 

involving the ELN gene have been described in the non-syndromic version, and the genetic defect 

has been implicated in hypertension and intracranial aneurysms[174]. 

Pseudoxanthoma Elasticum 
Pseudoxanthoma elasticum (PXE) is a rare inherited disorder of the elastic fibres of the skin, ocular 

and cardiovascular systems. Its’ prevalence has been estimated at approximately 1 in 100,000 per 

population [175]. Both autosomal dominant and recessive inheritance has been described[175-179].  

The disease gene has been localised to the short arm of chromosome 16[175]. 

Both extracranial and intracranial vessels are affected. Cerebrovascular complications typically 

present as cerebral infarction (presumably via carotid stenosis or occlusive disease of the carotid or 

vertebral arteries) which are often multiple, typically present in the fifth or sixth decade (sometimes 

as early as the third decade)[180]. Infarction of the cervical spinal cord has also been described[132]. 

Several cases of aneurysmal subarachnoid haemorrhage associated with PXE have been reported 

[127, 181, 182]. Aneurysms associated with PXE are  frequently located in the cavernous sinus, and 

may present with acute oculomotor palsy[127, 183, 184]. Several cases of spontaneous intracranial 

haemorrhage without reference to an underlying aetiology have also been reported[185, 186].  

 

 

Marfan’s Syndrome 
 

Marfan’s syndrome is an autosomal dominant connective tissue disorder arising from mutations in 

the gene encoding for fibrillin-1 (FBN-1), giving rise to specific skeletal, ocular, cardiovascular, 
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pulmonary, connective tissue and CNS findings. The gene encoding for Fibrillin has been localised to 

chromosome 15. Although multiple mutations have been identified in patients with Marfan’s 

syndrome [187, 188], a specific mutation causing Marfan’s syndrome in the fibrillin gene is yet to be 

identified. The syndrome affects approximately 1 in 10,000-20,000, and is usually easily recognised 

by the characteristic phenotype of tall stature, dolichostenomelia, arachnodactyly and sternal 

deformities, however the variable expression of the phenotype may make diagnosis difficult 

[189].The most common cause of death from the syndrome in children is severe aortic or mitral 

valve regurgitation, whereas in adults it is acute aortic dissection [132]. The most common vascular 

complication is probably aortic dissection extending to the innominate and internal carotid arteries, 

causing sudden death, cerebral ischemia, or, in the case of lesions involving the spinal arteries, 

paralysis [190]. Spontaneous dissection of the common carotid arteries and extracranial internal 

carotid and vertebral arteries has also been reported[132, 191].  

Intracranial aneurysms in patients with Marfan’s syndrome may be saccular, fusiform or dissecting 

[109, 115, 192]. These aneurysms tend to be large, exert mass effect on surrounding structures[132] 

and appear to show a propensity for the cavernous segment of the proximal internal carotid 

artery[132, 193]. Vessels may be excessively fragile and tortuous. 

 Despite multiple reports proposing an association between Marfan’s and a propensity to 

intracranial aneurysm formation, this link now appears doubtful[194]. This may in part be due to the 

natural history of the disease. Acute aortic dissection causing death peaks in Marfan’s patients in the 

fourth decade[195], preceding the peak age of incidence of subarachnoid haemorrhage in the sixth 

decade[18, 37, 196, 197], thus fewer patients with Marfan’s syndrome may have the opportunity to 

develop a mature aneurysm. Stehbens [198] et al described atrophic changes in the middle cerebral 

artery and with aneurysm formation in a patient with Marfan’s syndrome, suggesting the 

pathogenesis of intracranial aneurysm formation in patients with Marfan’s is no different to the 

mechanism seen in those without the syndrome. 
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Neurofibromatosis Type-1 
 

Neurofibromatosis Type-1 (NF-1) is a progressive systemic disease caused by mutations in the gene 

encoding for neurofibromin on chromosome 17q11.2. The neurofibrin protein is similar to other 

tumour suppressor gene products, with a centrally located domain homologous to GTPase-activating 

protein (GAP). Neurofibromin is thought to have a regulatory role in the development of connective 

tissue, including vascular connective tissue, via an effect on microtubular function[109, 199], 

however as the gap domain encompasses only 10% of the protein, neurofibromin may have multiple 

other as-yet-to-be-determined functions[200].  

The most common vascular pathology in patients with NF-1 is hypertension secondary to renal 

artery stenosis [201]. Many small series studies and case reports [202, 203] associate NF-1 with 

intracranial aneurysm formation, most large series of NF-1 patients do not [194, 204]. Where they 

occur, they may be saccular, fusiform or dissecting, and often coexist with intracranial arterial 

occlusive disease, which may complicate endovascular management [109, 205]. Surgical intervention 

for these aneurysms is often complicated by excessive vascular fragility and distortion of the normal 

anatomical landmarks caused by sphenoid wing dysplasia [109]. The clinically important question as 

to whether a definite association between NF-1 and intracranial aneurysm formation can be made 

remains unclear, however there are an increasing number of reported cases [206-208], leading some 

authors[207] to advise screening for aneurysms in these patients. Other large studies, however, have 

failed to demonstrate an increased incidence of intracerebral aneurysms[209]. 
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Angiogenic factors 
 

Renin Angiotensin System 
 

The renin-angiotensin system (RAS) has been long recognised as playing an important role in 

pathological vascular remodelling seen in several cardiovascular diseases. Angiotensin-converting 

enzyme (ACE) is an ectoenzyme expressed in two forms in humans; a somatic form and a smaller 

isoenzyme exclusive to the testis. Somatic ACE circulates in the plasma and is particularly abundant 

on the endothelial surface[210]. The system plays a critical role in the regulation of systemic blood 

pressure. Briefly, ACE catalyses the conversion of inactive angiotensin-I (A-I) to physiologically active 

angiotensin-II (A-II). A-II a potent vasoconstrictor and the major effector of the system which exerts 

its effect via an AT-1 receptor. ACE may also influence blood pressure indirectly by inhibition of 

other vasoactive compounds such as the hypotension-inducing peptide bradykinin [211]. 

Several studies support the role for ACE in intracellular signalling in endothelial cells[210]. In addition 

to its effects on blood pressure, A-II has positive inotropic and chronotropic effects on the 

myocardium, and is a regulator of vascular growth[212, 213]. Considerable interest has been 

focused on the association between deletion and insertion polymorphisms in the ACE gene and 

vascular disease [210, 211]. At the genomic level, the insertion ([I] allele) or deletion ([D] allele) in 

intron 16 of the ACE gene correlate with decreased and increased plasma levels of ACE respectively. 

The D allele has been associated with a number of vascular pathologies including hypertension[211], 

left ventricular hypertrophy[214] and myocardial infarction[215] [216], however these associations 

remain the subject of debate and have not been consistently replicated[217]. Up-regulation of the 

RAS plays a major role in the pathogenesis of abdominal aortic aneurysm formation via facilitation of 

SMC migration, proliferation and hypertrophy, resulting in a thickened arterial wall. However, in 

cerebral aneurysm formation a thinning of the arterial wall is seen due to a decreased number of 

SMCs[218, 219]. The medial thinning seen in cerebral aneurysmal change has been associated with 
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significantly decreased local expression of ACE, AT-1 receptor and A-II, however exactly how reduced 

levels of ACE might contribute to aneurysm formation remains unclear. One possible explanation is 

that a decreased level of ACE might result in a blunted response of the vessel wall to haemodynamic 

stress, in turn resulting in decreased medial remodelling [220].  The [I] allele and genotype of ACE 

has been reported to be significantly associated with cerebral aneurysm formation and risk of 

SAH[212, 221]. These findings have been contradicted by others[6, 216]. A comprehensive meta-

analysis undertaken by McColgan et al did not find a statistically significant association[222]between 

ACE polymorphism and increased risk of cerebral aneurysm formation. 

 

 

Nitric Oxide Synthase 
 

The role of Nitric Oxide Synthase (NOS) in cerebral aneurysm pathogenesis is explored further under 

“Role of Endothelium”. The gene encoding for endothelial Nitric Oxide Synthase (eNOS) is located on 

chromosome 7q35-36 which expresses a number of variants in humans [223]. Functional 

polymorphisms of the gene may predispose to vascular pathology such as atherosclerosis, 

hypertension, myocardial infarction, coronary vasospasm and abdominal aortic aneurysm formation 

[224].  

Similarly, eNOS gene polymorphisms have been associated with cerebral aneurysm formation and 

rupture. Khurana[225, 226] et al, in a series of works analysing genetic data from patients with 

radiologically proven aneurysmal subarachnoid haemorrhage, identified multiple genetic loci of 

interest for aneurysm pathogenesis and rupture. One such study reported a statistically significant 

difference in the distribution of genotypes for eNOS 27 VNTR (Variable Number Tandem Repeats) 

polymorphism in patients with SAH compared with controls, with heterozygosity for this 

polymorphism almost three times as prevalent amongst the SAH group [225]. In this study, a minor 
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allele (4a) containing four repeats of the 27 VNTR gene was found to be over represented in patients 

with aneurysmal subarachnoid haemorrhage, and appeared to confer an increased odds ratio of 

3.95 (p0.007) for aneurysm rupture after controlling for other known risk factors (age, sex, smoking 

history). This replicated a previous finding by the same authors that polymorphic variants in eNOS 

alleles conferred an increased risk of aneurysm rupture, the magnitude of which increased in the 

presence of two or more variant alleles [224]. The same authors have also suggested[226] that a 

single nucleotide polymorphism (T-786C) may be a factor influencing the size at which an aneurysm 

ruptures. In this study, heterozygosity for the C-allele was significantly more prevalent in patients 

with aneurysms greater than 10mm in size at time of rupture. All homozygotes, whether wild-type 

(i.e. T/T) or abnormal (i.e. C/C) had ruptured aneurysms less than 10mm diameter. The authors 

postulate homozygosity versus heterozygosity for the gene, rather than the allele itself may be a 

differentiating factor between small and large diameter ruptured cerebral aneurysms, i.e. 

differential expression of local eNOS amongst heterozygotes compared with homozygotes may 

affect the capacity of the vessel wall to withstand other factors leading to aneurysm formation and 

ultimately rupture [226].  Other similarly structured studies focusing on these polymorphisms, 

however, have failed to replicate these results [227-229].  

 

Platelet Adhesive Glycoproteins 
 

Platelets play a key role in haemostasis at sites of vascular injury. Endothelial damage exposes type-I 

collagen fibrils, which absorb von Willebrand factor. Platelets adhere to this exposed subendothelial 

tissue via binding of membrane glycoproteins (GP Iba to immobilised von Willebrand factor), 

tethering the platelets to the reactive surface. This interaction also requires synergistic binding of 

integrins a2b1 and aIIbb3 (GP IIb-IIIa complex) to their substrates. On the subendothelial surface 

endogenous von Willebrand factor and adsorbed plasma von Willebrand factor initiate platelet 
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recruitment, however a2b1 and aiibb3 are key factors for thrombus development[230, 231]. Stable 

platelet attachment is the first, essential step in this process.  

Gene mutations causing modification of platelet function may predispose to haemorrhagic or 

thrombotic disorders.[232, 233]. Some studies suggest a protective role of prothrombotic clotting 

factor polymorphisms in primary intracranial haemorrhage [234]. Identification of functional 

polymorphisms of platelet function has attracted considerable interest [235, 236], with a particular 

focus on those polymorphisms affecting the structure or levels of expression of adhesive 

receptors[237-240]. GPIba is the functionally dominant subunit of the platelet GPIb-IX-V receptor 

complex, with the n-terminal domain of the GPIba chain containing the binding sites for a-thrombin 

and von Willebrand factor[241]. A number of polymorphisms causing significant structural change 

on the GPIba subunit affecting binding of von Willebrand factor have been identified [236]. GPIIIa 

HPA-1 and GPIb HPA-2 are responsible for structural change [237], and GPIa C807T and HPA-5 

polymorphisms are associated with levels of expression of GPIb. Iniesta et al[236] prospectively 

evaluated the role of these common functional polymorphisms in the development and severity of 

SAH, finding no significant associations between GPIba -HPA-2, -VNTR, and GPIa -C807, -HPA-5 

polymorphisms in the incidence or severity of SAH.  A significant correlation was, however, identified 

between patients with the GPIIIa HPA-1b genotype (both a/b and b/b) and aneurysm size and 

incidence of rupture, with patients carrying this allele significantly under-represented in the SAH 

cohort compared with controls. These patients also presented with aneurysms of significantly larger 

size than those with HPA-1 a/a genotype. The protective effect appeared most pronounced in 

patients exhibiting aneurysms <9mm in diameter, however was less apparent in patients with 

aneurysms >9mm. Clinical and radiographic severity of SAH was also significantly lower in this 

cohort. 

No difference in mortality was identified, however a trend towards increased 30-day survival was 

seen, suggesting the thrombophilic phenotype arising from this polymorphism conferred a 
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decreased incidence of aneurysm rupture in patients with small aneurysms, and a reduction in 

severity of haemorrhage in the event of aneurysm rupture. These patients did, however, have an 

increased incidence of ischaemic events than those with the HPA-1 a/a genotype, supporting a 

previous hypothesis that polymorphisms in genes involved in the clotting cascade may exert a mild, 

but opposite effect in the pathogenesis of haemorrhagic and thrombotic disorders[234, 242]. A small 

number of control patients in this study were found to carry both the GPIIIa –HPA-1 and GPIba –

HPA-2 polymorphism; this appeared to confer a strong protective influence against aneurysm 

rupture, again strengthening previous suggestions that a combination of polymorphisms in may 

amplify their overall protective effects, which may explain their relatively high frequency in the 

general population [234, 236] 

 

Lipoprotein Metabolism 
 

Role of Apolipoprotein A 

The association between apolipoprotein metabolism and cerebral aneurysm pathogenesis remains 

the subject of debate. Elevated serum levels of apoA-1 are an independent risk factor for 

atherosclerosis[243]. Elevated levels of  apoA-1 have been associated with aneurysm pathogenesis 

in some studies[244-246], however no such association was found in others[247]. Given the 

correlation between high levels of apoA-1, atherosclerosis, and the presence of asymptomatic 

intracranial aneurysms, Caird et al[248] investigated the role of apoA-1 in early aneurysmal change 

and subsequent pathogenesis. Using immunohistochemical analysis with anti-apoA-1 monoclonal 

antibodies on the walls of 25 human aneurysms and 23 feeding vessels, apoA-1 immunopositivity 

was demonstrated in aneurysm walls both in the presence and absence of atherosclerosis, and in 

86% of feeding vessels. This suggests a possible role for apoA-1 in early aneurysmal change. Of note, 

deposition of apoA-1 in the aneurysm wall was observed to occur in a multilayered fashion, 

suggesting intermittent deposition of apoA-1 over multiple growth and repair cycles. Similar 
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patterns of mural deposition were observed in cerebral arteriovenous malformations and 

atherosclerotic plaques in Circle of Willis vessels however no deposits were seen in cerebral 

cavernous malformations. This observation strongly suggests that apoA-1 deposition occurs via a 

pressure mediated effect. Whilst no direct correlation has yet been proven between apoA-1 

polymorphisms and early aneurysmal change, the possibility remains that elevated levels of apoA-1 

may be involved in the induction of early aneurysmal change in the vessel wall [246, 248]. 

Zhao et al[249] observed an association between a pentanucleotide repeat polymorphism of the 

apoA-1 gene and early aneurysmal pathogenesis using PCR and non-denatured polyacrylamide gens 

electrophoresis in a small study of 58 patients with angiographically diagnosed aneurysms. The data 

revealed two sites of sequence variance in the 5’ control region of the apoA-1 gene which differed 

significantly between the aneurysm and control cohorts. 

 

Role of Apolipoprotein E 

Apolipoprotein E (apoE) is a plasma glycoprotein involved in lipid metabolism, specifically the highly 

atherogenic apo B containing lipoproteins, and mediates the cellular uptake of lipid complexes 

through interaction with specific apoE and low-density lipoprotein receptors [250, 251]. ApoE is 

highly polymorphic, and is the primary mediator of cholesterol and lipid transport in the brain [252]. 

ApoE is produced by astrocytes in response to neuronal injury[253, 254] and exhibits complex 

neuroprotective functions [255]. The gene is located on the long arm of chromosome 19. It has three 

common alleles: e2, e3, and e4 each of which encode for three major isoforms of the protein: apo –

E2, -E3 and –E4, thus six different genotypes may be expressed. ApoE is an effective free radical 

scavenger and ApoE polymorphisms have been shown to modify the acute response to brain 

trauma, which may exert a detrimental effect in patients with brain injury and subarachnoid 

haemorrhage [252, 255, 256]. Other polymorphisms have been associated with ischaemic 

cerebrovascular disease[257], lobar intracerebral haemorrhage associated with cerebral amyloid 
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angiopathy [258-260], and neurodegenerative disorders such as Alzheimer’s disease[261].  Although 

some studies have identified an association between ApoE e4 and subarachnoid haemorrhage in 

certain populations [257], similar findings have not been replicated in others[251].  

 

Growth Factors and Cytokines 
 

Remodelling of the vessel wall both in the course of normal cell turnover is mediated by growth 

factors such as vascular endothelial growth factor (VEGF), transforming growth factor b (TGF⍺b), 

basic fibroblast growth factor and its receptors (bFGF) and (bFGFRs)[262]. Altered expression of 

these factors may predispose to aneurysm formation (previous studies have suggested differences in 

allelic frequency at the FGF1 locus on 5q31 may be associated with findings in the vessel wall 

consistent with those seen in early aneurysmal change). Although a haplotype association was 

observed with the combination of 10 SNPs of bFGFR1, significant haplotype associations were not 

observed with combinations of two, three or four SNPs[9]. Increased expression of various growth 

factors such as TGF⍺a [263], VEGF[264], local RAS and platelet derived growth factor (PDGF)[265] 

have been observed in models of aneurysm pathogenesis, however identification of a genetic 

polymorphism leading to increased expression of any one of these factors remains elusive. 
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Role of Haemodynamic Stress 
The concept of haemodynamic stress causing pathological vascular remodelling and early 

aneurysmal change has been extensively investigated. Environmental risk factors such as 

hypertension and cigarette smoking exert a generalised pathological effect on the vasculature, One 

would expect that this would lead to the formation of pathological lesions a random distribution[43]. 

However the opposite is the case; in the case of aneurysms these occur with a high degree of 

predictability in specific locations[100, 266]. Most aneurysms are located along the Circle of Willis,  

showing a propensity for arterial bifurcations at the branch points of parent and daughter arteries, 

or, less commonly, along the convexity of curved arteries[43, 266-268] 

 

Haemodynamic forces 
 

Cyclic stretch refers to the elongation of cells due to periodic vascular distension, pulsatile pressure 

(force applied across the luminal surface as a pressure wave) and Wall Shear Stress (WSS); the 

tangential or “frictional” force applied to the vessel wall by normal blood flow[269-272, 273.]. In the 

microcirculation, WSS is regulated to a set point that is a function of local transmural pressure[274]. 

The cerebral arteries exhibit an optimum blood flow/vessel radius relationship in so far as their 

luminal diameter is determined locally in order to maintain a constant WSS, both under physiological 

and pathological conditions[275].  

WSS acts as a biological stimulator governing a wide variety of biological processes in the 

vasculature, including maintenance of optimum blood flow/vessel luminal diameter relations by 

regulation of vasoactive substances derived from the endothelium (mainly NO and prostacyclins) 

[42, 274, 276-278]. Under normal conditions, sustained physiological levels of WSS lead to the 

endothelial cells adapting a structural organisation and alignment, which firmly adheres them to the 

underlying substratum thus minimising friction between the endothelium and blood mass flow[43, 
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279]. In addition, the endothelial cells exhibit changes in gene expression, with up-regulation of 

factors conferring an atheroprotective phenotype and down-regulation of transcription of 

potentially harmful genes[280-283] 

 

Haemodynamic micro-environment at bifurcations 
 

Computational Fluid Dynamics (CFD) refers to a computer simulation method which can be used to 

map in-vivo the flow field associated with intracerebral aneurysms to construct a time dependent, 

spatially resolved three-dimensional velocity flow field. This method allows accurate calculation and 

visualisation of the fluid dynamics and blood particle paths, giving a better understanding of the 

relationships between local haemodynamics associated with aneurysms. Modern CFD studies have 

enabled three dimensional characterisation of flow fields in human and large animal studies, 

allowing spatial and temporal correlation between measured haemodynamics and specific tissue 

responses[284, 285]. Findings of these studies have largely confirmed the earlier assertions of 

mathematical modelling studies in human and animal models, specifically: 

1. Intracranial aneurysms occur more often at cerebral bifurcations which experience higher 

WSS and stronger flow acceleration[286] 

2. A combination of high WSS and WSS gradient predisposes to aneurysm formation in the 

apical vessel wall[284], and that high WSS is an important initiating factor in early 

aneurysmal change[276]. 

It would appear, therefore, that the true measure of departure from optionality of work is not the 

difference between the measured and predicted optimal arterial branch angles, but rather the 

difference in energy expenditure of the system. Although the overall increase in energy cost involved 

as a result of deviations from optionality in branching angles may be relatively low (approximating 2-
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5%), this minor increase in WSS appears to be sufficient to initiate early aneurysmal changes in 

vessel walls[85, 287]. 

The temporal shear stress (TSS) gradient refers to the increase or decrease of shear stress over a 

small period of time at the same location. This occurs throughout the circulatory system due to the 

pulsatile nature of blood flow; the magnitude becomes significantly increased at the interface 

between the main flow in a vessel and the recirculation zone. 

The spatial shear-stress (SSS) gradient is the difference in shear stress between two close points of a 

cell at the same point in time. SSS gradients are primarily seen at recirculation zones and 

bifurcations [277]. In vitro models have shown both TSS and SSS to be dependent on the initial onset 

of flow and the geometry of the flow chamber [288]. In addition, in-vitro models have indicated that 

TSS gradients stimulate endothelial cell proliferation, but SSS gradients affect endothelial 

proliferation no differently than steady uniform shear stress[289]. 

In vivo, the pulsatile nature of arterial blood flow results in a variation in the magnitude of absolute 

shear stress on the endothelium over the cardiac cycle. Where the blood flow is unidirectional with 

no recirculation, these time-averaged fluctuations are positive (i.e. blood flow is in a forward 

direction), and temporally and spatially uniform, resulting in mean positive shear stress[277, 289]. 

Arterial bifurcations result in departures from unidirectional flow; in in-vitro models, this results in 

relatively predictable separation, re-attachment and recirculation patterns. These are recognisable 

in in-vivo models, and have long been linked with the localisation of atherosclerotic lesions [277].  

In order to understand the specific haemodynamic insults leading to maladaptive vascular wall 

remodelling, Meng[284] et al surgically created new branch points in the common carotid artery in a 

canine model. After an observational period of either two weeks or two months, the artificial 

bifurcation was evaluated using in-vivo angiography, the results of which were then spatially 
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correlated with the histological features of the artery to show the tissue response. The study 

identified three angiographically distinct flow patterns: 

1. Region 1 (Region of Impingement): characterised by a stagnation point, with low to normal 

WSS relative to the baseline level. These are typically seen in straight vessels 

2. Region II (Region of Accelerating Flow): characterised by high positive WSS and WSS 

gradient. 

3. Region III (Recovery region): characterised by negative to zero WSS gradient and high WSS. 

The impingement region occurs where blood flow from the parent vessel impinges on the 

bifurcation apex, resulting in the creation of a stagnation point which raises local pressure by 

approximately 1mmHg, increasing WSS at the boundaries of the region. This rapid increase in WSS 

produces a large spatial gradient. 

The acceleration region is characterised by high wall stress due to the increase in flow velocity from 

the impingement region until maximum WSS is reached, marking the distal boundary of the region. 

The magnitude of the WSS gradient becomes elevated, which persists into the recovery region.  

The recovery region is reached when the WSS returns to baseline levels and the WSS gradient 

returns to zero. 

The stagnation point (i.e. where the WSS is zero) arises at a point on the vascular wall of flow re-

attachment (usually along the outer wall of the bifurcation), resulting in an area of low mean WSS 

which is more pronounced in systole [290]. During the downstroke of the systolic phase a reversal of 

flow occurs, which alters the size and spatial migration of the secondary flow patterns [277, 290]. 

The net effect is a migration of the stagnation point along the outer wall, resulting in a focal area of 

low temporal and spatial WSS. 
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Using three-dimensional rotational angiography and computational fluid dynamic modelling, Meng 

mapped these three loci to photomicrographs, enabling the biologic properties of the endothelium 

and vessel wall cells to be evaluated with reference to the local haemodynamic microenvironment. 

Although initially histologically indistinct, two distinct patterns of wall remodelling were identified: 

1. Hyperplasia forming an intimal pad at the bifurcation apex 

This was predominantly a feature of the impingement region. Two morphologies were 

identified; early intimal hyperplasia, and development of a more mature intimal pad. The 

early intimal hyperplastic state was characterised by an increased number of cells on the 

luminal side of the internal elastic lamina, beneath which was deposited a thick layer of 

largely acellular collagen. The mature intimal pad state demonstrated fewer intimal cells in 

the hyperplastic region, but a thicker layer of subendothelial collagen with additional layers 

of elastin, resembling the intimal pad at the apex of a natural bifurcation. 

2. Destructive remodelling in the acceleration zone. 

The acceleration zone was noted to contain a “shallow groove” in the vessel wall secondary 

to an overall decrease in the thickness of the media and intima. Microscopic analysis 

revealed loss of the internal elastic lamina and overlying endothelium, and a prominent 

collagen matrix containing fewer medial smooth muscle cells.  

Given both began as biologically and histologically identical segments, the observed remodelling 

suggested a distinct response to the specific haemodynamic microenvironment. Constructive 

hyperplastic remodelling events were localised to the flow-impingement area, suggesting that this 

may be a physiological repair response similar to wound repair and scar formation. This hypothesis 

was further strengthened by the author’s observation of fibronectin (an important matrix 

component during tissue repair) was increased in the intimal pad region.  
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Conversely, the destructive events localised to the acceleration region (i.e. destruction of the 

internal elastic lamina and loss of the endothelium and smooth muscle cells) resembled those 

previously observed in both animal and human histological studies of aneurysm pathogenesis[1, 45, 

291-294]. These histological findings were spatially correlated with areas of high WSS and WSS 

gradient, however the other expected histopathological changes of early aneurysm formation were 

absent. Rather than the expected endothelial cell proliferation in the acceleration region, authors 

noted instead loss of endothelium. This may have occurred due to the high WSS gradient in the 

acceleration region, which when combined with the high WSS resulted in endothelial cell 

dysfunction and denudation. The authors noted early aneurysmal change localised to the 

acceleration zone, suggesting that high WSS contributes to aneurysm pathogenesis. 

Meng’s model unsuccessfully attempted to induce hypertension in the dogs using both a high-salt 

diet and renal ligation prior to the carotid artery procedure. Previous animal models of intracranial 

aneurysm formation have shown that neither systemic hypertension nor degeneration of the elastic 

lamina alone is sufficient to cause formation of an aneurysm[295, 296]. It would appear, therefore, 

that Meng had inadvertently demonstrated that the combination of high WSS with a high WSS 

gradient is sufficient to induce early aneurysmal change; a potentially crucial insight into the role of 

haemodynamic stress in macroscopic aneurysm formation. 

It is likely that both high and low WSS, working in tandem, have a synergistic effect on early an 

aneurysmal change; i.e. that pre-aneurysm change in the arterial is caused by high WSS, but further 

propagation and aneurysm growth are a function of endothelial dysfunction and wall degeneration 

caused by low WSS. Confirmation of this hypothesis using in-vivo measurements of WSS is obviously 

impractical, however modern CFD studies using various mesh algorithms have been shown to 

recreate accurately the cerebral haemodynamic pathophysiology surrounding aneurysms[276, 297-

301]. Shojima[276] et al determined that the magnitude of WSS in well-developed aneurysms is 

insufficient to mechanically tear the aneurysm wall. Rather, excessively low WSS results in further 
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wall degeneration by inducing apoptosis in endothelial cells[302], wall remodelling and further 

aneurysm growth[301]. Modern CFDs have revealed considerable variability in aneurysm 

haemodynamic profiles [276, 297, 303]. Although determining haemodynamic pathophysiology 

leading to aneurysm growth remains a challenge, there is mounting evidence that morphology, and 

intra-aneurysm flow dynamics may be more predictive of rupture risk[58, 60, 197, 285, 300, 304-

306]}. 
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Role of Endothelium 
 

The endothelium is a continuous layer of cells connected to each other and the substratum by 

various adhesive molecules. Previously viewed as an inert membrane lining the circulatory system 

with the primary function of maintaining vessel wall permeability[307], the vascular endothelium is 

now known to serve as an important paracrine and autocrine organ in the regulation of vascular wall 

function [293, 294]. The earliest description of the endothelium as a secretory cell system was made 

by Heidenhahn in 1891, however it was not until the advent of electron microscopy and the studies 

of Palade and Gowan [308] in the 1950s that interaction between the endothelium of post capillary 

venules and lymphocytes was described. 

The endothelium is a heterogeneous organ critical in the performance of vital secretory, synthetic, 

metabolic and immunological functions[309]. The endothelial cell surface area in adults is 

approximately 1-7m2, consisting of approximately 1-6x1013 cells and lines vessels in virtually every 

organ system[310]. The endothelium regulates the flow of nutrient substances, blood cells, and 

other molecules via membrane bound receptors for proteins (e.g. pro- and anti- coagulant factors, 

growth factors), lipids (e.g. low-density lipoproteins), metabolites (e.g. nitric oxide) and hormones 

(e.g. endothelins), along with specific junctional proteins and receptors governing cell-cell and cell-

matrix interactions[307].  

The endothelium also provides a structural barrier between the circulating blood and surrounding 

tissue, and secretes vascular mediators of critical importance in the maintenance of physiological 

haemodynamics. Quiescent endothelial cells maintain an antithrombotic luminal surface which 

facilitates laminar blood flow. Pro-thrombotic, antifibrinolytic microenvironments may be induced 

by endothelial cells where disturbances to laminar flow are created, such as sites of high WSS or 

inflammation. Blood flow and pressure are also regulated in part by endothelial release of 

vasoconstrictors (endothelin, platelet–activating factor) and vasodilators (nitric oxide (NO), 
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prostacyclins). These are not stored as intracellular granules; their major effects are regulated via 

localisation of specific cell-surface receptors, through rapid metabolism, or through rapid gene 

transcription. Some mediators such as prostacyclins, endothelin, and platelet activating factor are 

expressed primarily in response to external stimuli. The endothelium may also act in a paracrine 

manner to external stimuli, resulting in vasoconstriction or vasodilation in specific vascular 

beds[307]. 

Putative endothelial stem cells migrate, proliferate and differentiate during vasculogenic and 

angiogenic processes. Mature endothelial cells are highly heterogeneous for different vascular sites 

and form distinct, system-specific morphotypes[310]. By way of example, in humans, vessels of the 

liver and spleen are lined with discontinuous endothelial cells to allow trafficking of substances 

between intercellular gaps. Intestinal villi, endocrine glands and the kidneys are lined with 

fenestrated endothelial cells to facilitate the selective permeability required for absorption, 

secretion and filtration respectively[307, 311]. This heterogeneity extends to different vessel calibres 

within the same organ or system[312]. 

Endothelial cells are also heterogeneous with respect to their surface phenotype and protein 

expression; e.g. the expression of von Willebrand factor is not uniform across all endothelial cells, 

and the expression of tissue-plasminogen activator is limited in-vivo to approximately 3% of the 

endothelium[307, 311, 313, 314]. This structural heterogeneity highlights the adaptative capacity of 

the endothelium and allows the endothelial cell to best adapt to the local environment to perform 

its structural and metabolic functions. In the brain, the endothelium is continuous and connected by 

tight junctions, which maintain the blood-brain barrier (BBB).  
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Nitric Oxide 
 

Nitric oxide (NO) is a heterodiatomic free radical product generated from the oxidation of L-arginine 

to L-citrulline by nitric oxide synthase (NOS). NOS is expressed in microorganisms, plants and 

mammals and participates in a diverse range of physiological and pathological functions including 

neurotransmission, regulation of vascular tone, cellular communication, inflammation and immune 

responses[315]. In the circulatory system it is constitutively expressed by endothelial cells and its 

production is modulated by a number of exogenous chemical and physical stimuli and receptor-

dependent agonists. There are three different isoforms of NO synthase; endothelial-derived NOS 

(eNOS), neuronal-derived NOS (nNOS) and inducible NOS (iNOS). The formerly accepted distribution 

of these isoforms in the vascular wall had been that endothelium expressed eNOS, that perivascular 

nerves in some (but not all) vessels secrete nNOS, and VSMCs do not express NOS at all[316]. More 

recent studies have challenged this hypothesis with the discovery that all three isoforms are 

expressed by VSMCs, with muscular arteries demonstrating a greater magnitude of expression than 

elastic arteries[317-320]  

eNOS derived NO is produced by endothelial cells in response to physiological WSS, and is a crucial 

factor in autoregulation of the vessel diameter in response to exercise[321]. eNOS mRNA levels 

increase in direct proportion to the magnitude and duration of the WSS exerted on the endothelium 

which elicits a biphasic response [322]. The early (i.e. <15min) phase is dependent on the rate of 

change of shear and is mediated by calcium, calmodulin, and pertussis-toxin insensitive G-Proteins. 

The later phase is dependent on the magnitude of shear stress and is independent of calcium and 

calmodulin [323]. eNOS may also be expressed in response to bradykinin, acetylcholine, and 

aggregating platelets[285]. Endothelial-derived NO has several important effects: 

1. It maintains basal tone by causing relaxation in vascular smooth muscle cells via its action on 

guanyl cyclase[324]. 
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2. It inhibits platelet aggregation, adhesion, and promotes disaggregation via a cyclic guanosine 

monophosphate (cGMP) dependent mechanism, and acts synergistically with PGI2 to inhibit 

other steps in the platelet coagulation cascade[325, 326]. 

3. It also inhibits leukocyte adherence to the to the endothelium[327], smooth muscle cell 

migration[328] and proliferation[329] 

All of these effects serve to limit neointimal proliferation, suggesting a role for NO in vascular 

reparative mechanisms[307]. 

nNOS derived NO has been implicated in a wide variety of physiological roles in the cerebral 

circulation including maintenance of cerebral perfusion, CO2 reactivity, neurogenic and excitatory 

amino-acid induced vasodilation and flow-metabolism coupling [426]. nNOS expression is 

upregulated by various tissues such as endothelial cells, vascular smooth muscle cells, macrophages 

and nerves[316, 330]. In addition, nitrergic (non-adrenergenic, non-cholinergic) perivascular nerves 

of the cerebral vasculature contain nNOS. As a neurotransmitter, nNOS allows for relaxation of 

vascular smooth muscle cells, counterbalancing sympathetic vasoconstriction[316].  

Thus, both eNOS and nNOS have a coordinate role in relieving haemodynamic stress. Although 

originally identified as a constitutively expressed enzyme, nNOS exerts important vasoprotective 

effects, suppressing both neointimal formation and constrictive vascular remodelling in response to 

vascular injury in animal models[331]. Studies have suggested that up-regulation of nNOS can 

compensate for decreased function of eNOS in eNOS -/- mice[332]. nNOS may therefore 

compensate for the downregulation of eNOS in cerebral arteries[331, 333]. In aneurysm walls, eNOS 

function is also down-regulated, probably due to endothelial damage. nNOS upregulation by VSMCs 

may functionally compensate for this[333]; this compensatory effect appears especially relevant in 

the modulation of leukocyte-endothelial cell interactions [332].  
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Functional expression of nNOS has been suggested in human, porcine and rodent arteries [334-336]. 

But due to its upregulation in response to eNOS dysfunction or vascular injury, nNOS cannot be 

considered a wholly “constitutive” enzyme. Its role in early aneurysmal change in the vessel wall is 

probably protective as eNOS expression is downregulated due to damage to and hypofunction of 

endothelial cells in the vessel wall, and nNOS expression is upregulated by VSMCs as a compensatory 

measure. As damage to the vessel wall persists and the media of the wall becomes more 

degenerate, nNOS expression may be further reduced, resulting in progression of this early change 

and potentially macroscopic aneurysm formation. 

This proposed compensatory effect has only been observed in small-to-medium sized arteries, and 

not in the aorta[333]. Sex hormones, particularly oestrogen, have been shown to exert a 

vasoprotective and anti-inflammatory effect[337], and both up-regulate and down-regulate nNOS 

production[338, 339]. Oestrogen receptors have been identified on endothelial cells and VSMCs; the 

interaction of oestrogen with these receptors stimulates the function and proliferation of 

endothelial cells, reducing vascular tone and oxidative stress[340, 341]. 

Further evidence suggestive of the compensatory effect of nNOS for eNOS may lie in the observation 

of the significantly decreased incidence of cerebral aneurysm formation in female eNOS-deficient 

mice;  in these models it would appear that oestrogen exerts a significant protective effect against 

early aneurysm pathogenesis and development of macroscopic aneurysms[342]. Human 

epidemiological studies suggest that reduced oestrogen levels in post-menopausal women may 

predispose to a higher incidence of aneurysms due to a diminution of the collagen content of 

cerebral arteries[342-344]  

The small amount of NO produced by eNOS and nNOS under physiological conditions is thought to 

be important in cellular signalling events such as blood pressure regulation and 

neurotransmission[315]. Inducible NO synthase (iNOS), on the other hand, is transcriptionally 

regulated, and is not normally produced by most cells[345, 346], but can be induced in virtually 
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every cell if appropriately stimulated[315]. iNOS functions as both a regulator and effector during 

inflammation and infection; one effect includes direct cytotoxicity towards microorganisms, tumour 

cells and host cells, in many circumstances as a result of interaction of NO with superoxide to form 

peroxynitrite, a potent oxidant[315]. An association between tissue damage and NO produced by 

iNOS has been made in animal models[347]. Shear stress is a major stimulant of iNOS expression in 

the vascular wall, and its increased expression in aneurysmal microenvironments exposed to 

variations in WSS has been demonstrated in animal models[347]. When chronically elevated, WSS 

causes an over-expression of iNOS, generating 100-1000 fold more NO than eNOS or nNOS, which 

results in endothelial and VSMC damage and degenerative change[347, 348].  

iNOS activation is also dependent on cellular exposure to inflammatory stimuli such as bacterial 

endotoxins, TNF or interlukin-1. iNOS expression is therefore thought to play a central role in chronic 

inflammation and connective tissue degeneration via endothelial cell proliferation and decrease in 

cell-cell adhesion within the vessel wall [349]. It is a key upstream regulator of the inflammatory 

response[350]. In animal models of aneurysm pathogenesis, expression of iNOS appears to be 

particularly increased at the juxta-apical groove and the intimal pad near the bifurcation apex, which 

coincides with the area of maximum tissue damage [347] 

Increased expression of iNOS and elevated plasma nitrite/nitrate levels have been demonstrated in 

animal models of AAA formation, where iNOS inhibition leads to the development of smaller 

AAAs[351]. These studies also suggest ablation of the iNOS gene may delay the progression of AAA 

formation[348, 350]. Although other studies have demonstrated increased iNOS expression during 

AAA development, it is not thought to be a crucial factor in induction of experimental intracerebral 

or aortic aneurysms[348, 349]. iNOS may, however, play a role in macrophage induced VSMC 

apoptosis. The capacity of NO to induce apoptosis has been well documented in numerous cell types 

including macrophages and neurons[352, 353], and is thought to occur via accumulation of the 

tumour suppressor protein p53, inducing cell cycle arrest[354]. In-vitro, this apoptotic effect appears 
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to arise from natural cell-protective mechanism becoming overwhelmed by high levels of exogenous 

NO, although whether this is also the case in-vivo remains unclear[315]. Alternatively, this effect 

may result from the interaction of NO with a superoxide anion to produce peroxynitrite, inducing 

apoptotic DNA fragmentation and subsequent p53 dependent apoptosis[315, 354, 355]. 

The peroxynitrite hypothesis is complicated in that NO also exhibits an antiapoptotic effect via 

induction of cytoprotective stress proteins, cGMP-dependent inhibition of apoptotic signal 

transduction, or suppression of caspase activity[315]. Therefore, the role of NO-induced apoptosis in 

cerebral aneurysm pathogenesis is probably dependent on the relative magnitude of expression of 

NO in the vessel wall. At physiological levels, NO suppresses the apoptotic pathway at multiple 

points[315]. Reduction and suppression of the caspase protease caspase-3 by NO has been 

demonstrated using purified human caspases[356], and has been shown to be at least partially 

responsible for the suppression of NO-induced apoptosis in endothelial cells[357]. Once NO levels 

increase to supraphysiological levels, however, cellular protective mechanisms become 

overwhelmed and shift the balance towards apoptotic death[315]. 
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Role of Inflammation 

Introduction 
 

The inflammatory process is crucial in maintaining homeostasis of the circulatory system[358]. It is 

initiated and maintained by a complex system of interactions between multiple factors and 

receptors, leading to changes in the integrity of the vessel wall. In the same manner, inflammation 

plays a central role in the pathophysiology of a number of vascular diseases including atherosclerotic 

plaque formation, arteritis, and development of abdominal aortic and intracerebral aneurysms[73, 

358-360].  

Chyatte et al[45] demonstrated a link between inflammation and aneurysm growth and rupture by 

describing extensive inflammatory and immunological reactions in unruptured aneurysms. These 

findings were replicated by further studies demonstrating the presence of inflammatory cells 

(macrophages, T-lymphocytes, B-lymphocytes) in the walls of human aneurysms[45, 103], and 

increased levels of proteolytic enzymes and MMPs in the serum of some patients harbouring 

unruptured aneurysms[361]. Complement factor (C-), an important part of the innate and adaptive 

immune response, was found in almost all subjects with aneurysms[73]. C3, the most abundant 

complement protein in serum, and C9, the terminal protein of the complement cascade, are used as 

markers of activation of the complement cascade; both were found in human aneurysms[45]. The 

findings of Kataoka et al[103], demonstrating inflammatory infiltrates in half (n=10/20) of 

unruptured, and all (n=40/40) ruptured aneurysms suggests strongly that inflammation plays a key 

role in early aneurysmal change, progression to macroscopic aneurysm formation, and, ultimately 

rupture. Whether or not different subsets of inflammatory leukocytes influence the natural history 

of aneurysms requires further study. 
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Endothelial Dysfunction 
 

The endothelium of cerebral arteries maintains blood flow by inhibiting coagulation and adhesion of 

leukocytes and serves as a selectively semi-permeable barrier between the central nervous system 

and blood cells. It plays a pivotal role in the inflammatory response to pathogens, regulating both 

innate and adaptive immune responses[362, 363]. Under physiological conditions, the endothelium 

has a very low level of cell turnover[364]. 

Activation of endothelial cells initiates an inflammatory cascade resulting in recruitment of 

leukocytes to the damaged site, which has been proposed as an initiating factor in early aneurysmal 

change. Inflamed tissue is entered by leukocytes through non-specialised postcapillary venules 

which have been transiently activated by an inflammatory stimulus to capture leukocytes from the 

circulation and attract them into tissue[363]. 

Leukocyte/endothelial cell interactions are facilitated by a number of adhesion molecules and 

chemo-attractants which function in a multistep cascade initiated by a small group of cell-adhesion 

molecules (selectins) which capture leukocytes from the bloodstream via transient ligand 

interactions. These interactions slow down the flow of leukocytes, resulting in them “rolling” along 

the endothelium (the “rolling phase”). Multiple selectins with subtly differing properties facilitate 

this process; P-selectin and its ligand P-selectin glycoprotein-1 initiate capturing, E-selectin stabilises 

and slows down the rolling process, and integrin leukocyte function-associated antigen-1 (LFA-1) 

further supports rolling and transforms it into the arrested state[363, 365-368].  

Chemotactic factors present on the endothelial surface bind to G-protein coupled receptors on the 

leukocyte surface leading to the activation of leukocyte integrins which further improve the affinity 

for ligands such as intercellular adhesion molecule-1 (IaneurysmM-1) and vascular cell-adhesion 

molecule-1 (VaneurysmM-1) on the endothelium (the “firm-adhesion phase”)[363] [369]. These two 

families of aneurysm are also responsible for the subsequent migration of leukocytes through the 
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endothelium and into the vessel wall (“emigration phase”) where they promote further 

inflammation. 

Endothelial erosion promotes leukocyte adherence to the vessel wall, allowing invasion of the IEL by 

macrophages and leukocytes [103]. The degree of endothelial damage seen in the vessel lumen is 

dependent on the magnitude of injury to the endothelial cells and capacity for endothelial repair. 

Although this repair may be facilitated by migration and differentiation of the surrounding 

endothelium, mature endothelial cells are terminally differentiated and thus have a limited capacity 

for further proliferation and repair of damaged areas [364].  

Endothelial progenitor cells (EPCs) are circulating, bone marrow derived cells which share properties 

with embryonic angioblasts[370]. They are produced by bone marrow in an immature form and 

change their progenitor properties in the circulation[364]. Endothelial damage and dysfunction 

appears to be the trigger for release of these cells from the bone marrow, and is regulated by a 

variety of enzymes, growth factors, ligands and cell surface receptors[364].  Acute myocardial 

infarction, burn injuries, or vascular trauma such or acute limb ischaemia or coronary artery bypass 

grafting have been shown to elicit rapid mobilisation of EPCs into the circulation[364, 371]. The 

process by which these cells subsequently home in upon the damaged vessel, differentiate into 

mature endothelial cells and effect repair is unclear. Lower levels of circulating EPCs have been 

correlated with an increased overall cardiovascular risk profile[364, 372-374]; these patients exhibit 

a decreased number of circulating EPCs which become senescent more rapidly than those of 

controls. Risk factors specifically associated with intracerebral aneurysm pathogenesis such as 

hypertension and cigarette smoking have likewise been reported to correlate with decreased levels 

of circulating EPCs; whether these factors impact directly upon the mobilisation and half-life of EPCs, 

or, owing to continuous cycles of damage and repair, simply deplete the circulating pool of EPCs 

requires further study[364, 372, 374].    
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Wall remodelling and Inflammation 
 

The central nervous system is immunologically active, with various immune and inflammatory 

mediators interacting in a highly orchestrated environment[375]. An inflammatory component to 

aneurysm pathogenesis was first suggested by Virchow in 1847[376], with other historic studies 

describing inflammatory cell infiltration at the aneurysm neck[377]. The importance of these early 

findings were mostly ignored for decades, however various studies intermittently hypothesised 

inflammation to be a critical factor in aneurysm formation[45, 291]. Interest in this area was 

rekindled after a number of studies reported inflammatory infiltrates, macrophages, T- and B-

lymphocytes in the walls of aneurysms [45, 103, 361] and increased levels of proteolytic enzymes in 

the serum of patients harbouring aneurysms[361]. An increased level of inflammatory infiltrate and 

degradation of matrix proteins in the walls of ruptured relative to unruptured aneurysms has been 

demonstrated[103]. 

Recent studies have demonstrated inflammatory vessel wall remodelling to be key factors in 

aneurysm pathogenesis, from early aneurysmal change to rupture[44, 47, 49, 104, 113, 293, 378]. 

The net effect of the inflammatory response is the balance between pro- and anti-inflammatory 

cytokines. Pro-inflammatory cytokines such as monocyte chemo-attractant protein-1 (MCP-1), IL-1, 

8, 18, INF-g and, TNF-a are predominantly secreted by macrophages and lymphocytes. Several 

studies have demonstrated the presence of these cytokines in aneurysm walls, however it is unclear 

whether their relative over-activity induces aneurysm pathogenesis, or occurs in response to other 

pathological insults inducing early aneurysmal change[73, 350, 379]. The relative paucity of anti-

inflammatory mediators such as IL-10 in the wall suggests either absence or suppression of T helper 

type-2 (Th-2) cells, however Th-2 cells have previously been demonstrated in the aneurysm wall[73, 

unpublished data]. 

Other pro-inflammatory mediators such as leukotrienes (LTs) and various lipid mediators may also 

contribute to this pro-inflammatory state. LTs are a group of pro- inflammatory lipid mediators 
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derived from arachidonic acid. 5-lipoxygenase (5-LO) is involved in LT production and has been 

implicated in various pathophysiological inflammatory disorders including asthma, rheumatoid 

arthritis and atherosclerosis[73]. They may play an indirect role in the induction of pro-inflammatory 

cytokines such as TNF⍺ via LT[380]. 5-LO inhibitors significantly decrease TNF⍺ production; it’s exact 

role in aneurysm pathogenesis remains to be determined, however it may represent a promising 

target for future therapies. 
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Inflammatory cell infiltration of vessel walls 
 

Several studies report inflammatory cell infiltration in the aneurysm wall [45{Frosen, 2004 #88, 113, 

291, 378]. Factors triggering inflammatory cell adhesion to and infiltration of the damaged arterial 

wall are incompletely understood, however loss of normal endothelial cell function is thought to be 

an important initiating factor[381, 382]. Therapies aimed at attenuating the inflammatory response 

including NF-KB inhibitors[383], free-radical scavengers, statins[384] and inhibitors of mast cell 

degeneration [385] have been investigated in animal models. Although these appear to slow 

aneurysm formation and progression, their role in prevention of aneurysm rupture remains less 

clear. 

As discussed, Chyatte[45] et al demonstrated inflammation and immunological reaction due to focal 

pockets of matrix metalloproteinases and other proteolytic enzymes in the aneurysm walls of 

patients with both ruptured and unruptured aneurysms. These infiltrates were dispersed throughout 

the wall, indicating a generalised inflammatory response. Leukocyte infiltration and VSMC damage in 

both unruptured and ruptured aneurysms was also observed by Kataoka[103]. 

 

Matrix Metalloproteinases 
 

Matrix metalloproteinases (MMPs) include collagenases, gelatinases, and membrane-type MMPs. 

These are a family of structurally related, zinc containing proteolytic enzymes which play a key role 

in embryonic development, wound healing, vascular remodelling, cellular migration, extracellular 

matrix haemostasis and neointimal formation [386]. They are produced by many tissues and are 

either secreted from the cell or remain anchored to the plasma membrane.   

Their site of action is primarily the cell surface or extracellular space, and activity is tightly regulated 

on many levels including inhibition of endogenous inhibitors such as a-2 macroglobin and tissue 
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inhibitors of metalloproteinases (TIMPs)[387]. Like MMPs, the expression of TIMPs is controlled 

under physiological conditions to maintain a balance of production and turnover of the extracellular 

matrix[388]. Disruption of this balance may result in pathological turnover of matrix. Once activated, 

MMPs participate in a broad range of physiological and potentially pathological processes. Other 

molecules whose biological activity is regulated by MMPs include pro-inflammatory cytokines such 

as TNF⍺[389], fibroblast growth factors and receptors (FGF, FGFR) [390], plasminogen and activators 

of plasminogen[391], and endothelin [392]. 

 

Nuclear factor  
 

Nuclear factor-kappa B (NF-κB) is a transcription factor implicated in the inflammatory 

response[393]. It is present in the cytoplasm in a non-active form and is activated by cleavage of an 

inhibitor subunit (IκB) in response to inflammatory stimuli. The result is mRNA expression of 

multiple cytokines, adhesion molecules and growth factors[393].  Transcription and activation of NF-

κB from the endothelium upregulates adhesion molecules, triggers macrophage infiltration and 

creates a pro-inflammatory environment in the adventitia and media[394], and is a major 

contributing factor in the pathogenesis of atherosclerosis[395]. Activated NF-κB has also been 

demonstrated in aneurysm walls and particularly so in the endothelium. Haemodynamic stress and 

endothelial injury may be precipitating factors in its transcription[278]. Inhibition of NF-κB has been 

shown to significantly reduce the incidence of early aneurysmal change when administered within 

one week of initiation of aneurysm pathogenesis in animal models, suggesting a role for NF-κB in 

very early aneurysmal change[383] Genes upregulated by NF-κB activation include MMPs,  iNOS, IL-

1b and MCP-1[396], which are functionally important in aneurysm pathogenesis. 
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Tumour Necrosis Factor 
 

Tumour Necrosis Factor–alpha (TNF⍺) is a potent pro-inflammatory cytokine which triggers 

endothelial activation with increased monocyte adhesion; the hallmark of the inflammatory 

response[73]. It alters the function of the blood brain barrier (BBB) allowing inflammatory cells to 

cross the endothelium and enter the vascular lumen matrix. In addition to induction of specific 

cytokines, TNF⍺ may further contribute to matrix degeneration indirectly by activating other pro-

inflammatory signalling molecules such as Tissue Factor (TF), Nitric Oxide (NO), von Willebrand 

factor and platelet activating factor(PAF)[397]. TNF⍺ may also exert an indirect effect on the 

aneurysm wall via activation of other signalling molecules such as TF, adhesion molecules for 

leukocytes, release of IL-1, von Willebrand factor, PAF and endothelin[73, 397].  

 

TNF⍺ amplifies several pro-inflammatory gene pathways and exerts a pro-apoptotic effect on 

VSMCs. The principal cells producing TNF⍺ are macrophages and monocytes, however it is also 

produced by B cells, T cells, NK cells, Kupffer cells, glial cells and adipocytes[397]. It acts via distinct 

receptors, TNFR-1 and -2, the principal difference between which is the presence of a death domain 

(DD) on TNFR-1 which is absent in TNFR-2[73, 398]. TNFR-1 is constitutively expressed in most 

tissues and is the key mediator of TNF⍺ signalling for most cell types[398]. It is an important 

activator of both cell death and survival signals[398-400]. TNFR-2 is expressed in endothelial and 

immune related cells and has an affinity for TNF⍺ five times that of TNFR-1[400]. Interaction of TNF⍺ 

with TNFR-1 or -2 induces either an inflammatory response or apoptosis/survival of the cell via 

recruitment of different adaptor proteins. 
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Jayaraman et al[73] demonstrated significant expression of TNF⍺ in the walls of ruptured 

aneurysms. TNF⍺ upregulation appears to correlate with a number of known risk factors for 

aneurysm formation including haemodynamic stress, hypertension, and increasing age. Its 

production is also upregulated in response to environmental insults such as tobacco smoke and 

alcohol, which are recognised independent risk factors for aneurysm formation and rupture[73]. 

TNF⍺ is selectively expressed at regions of increased haemodynamic stress such as arterial branch 

points and along the curvature of major vessels, and appears to be more significantly expressed in 

the walls of ruptured aneurysms[73].  

 

The effects of TNF⍺ in a murine animal model of intracranial haemorrhage were explored by Siren et 

al[401]. Histological examination of the brains of the rats most impaired by intracerebral 

haemorrhage demonstrated increased infiltration of leukocytes expressing immunoreactive IL-1b, IL-

6 and TNF⍺ around blood vessels, cerebral ventricles and meninges. Treatment with a recombinant 

type-1 soluble human (rh-) TNF receptor completely prevented intracerebral haemorrhage in this 

model, suggesting TNF-a to be a necessary causal factor for intracranial blood vessel activation and 

rupture. 

Conversely, in small animal models of atherosclerosis, accelerated plaque development was 

observed in mice lacking the TNFR-1 receptor, suggesting that at least some level of TNFR-1 

mediated signalling has a protective effect on the vessel wall. 

These seemingly contradictory findings underline the importance of the inflammatory system in 

cerebrovascular haemostasis. They also suggest that a threshold of TNF⍺ activity is important in 

intracerebral aneurysm pathogenesis. Jayaraman[73] hypothesised that TNF–a is expressed during 

early aneurysmal change and is mostly membrane-bound on luminal endothelial cells, leading to 

endothelial cells activation and further TNF⍺ expression. This in turn leads to endothelial cells 
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dysfunction and apoptosis, providing an opening for aneurysm formation and infiltration of 

inflammatory cells into the inner layers of the arterial wall. Subsequent TNF⍺ secretion by these 

inflammatory cell infiltrates initially causes increased VSMC growth[402], which is swiftly followed by 

apoptosis due to increased macrophage infiltration, leading to MMP generation and structural 

breakdown of mural proteins. However, when these inflammatory infiltrates are inactivated or 

reduced beyond a certain threshold by either anti-inflammatory cytokines or other modulators of 

the inflammatory response, the increased VSMC growth caused by the now attenuated 

inflammatory response may lead in increased stability in the aneurysm wall, lessening the risk of 

rupture. 

Although there is little definitive evidence implicating TNF⍺ in aneurysm formation, its strong 

association with known risk of aneurysm formation and its significant expression in aneurysm walls 

and role in inflammatory cell infiltration provide a provocative correlation with aneurysm 

pathogenesis. Characterisation of TNFR- mediated signalling events during aneurysm growth may 

lead to a better understanding of aneurysm pathogenesis. 

 

Significance of Fibrosis in aneurysm walls 
 

In contrast with the rapidly evolving vascular changes, oedema and neutrophilic infiltration 

characteristic of acute inflammatory reactions, fibrosis is an end–phase process typically resulting 

from chronic inflammation. An inflammatory process, having continued for a protracted period of 

time (typically several months) leads to tissue remodelling and repair[403]. Most chronic fibrotic 

disorders have in common a persistent irritant which sustains the ongoing production of growth 

factors, proteolytic enzymes, angiographic factors and fibrogenic cytokines, which stimulate the 

deposition of connective tissue elements which progressively remodel and destroy normal tissue 

architecture[403-406]. 
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Aneurysm walls may remain intact for a very prolonged period[2, 407], suggesting strong 

maintenance and repair mechanisms. They do, however, tend to increase in size[197, 407], with the 

aneurysm wall undergoing morphological changes which are likely different in those which remain 

intact versus those which ultimately rupture[45, 103]. These morphological changes appear to be 

independent of aneurysm size, location or bleb formation, however some may be associated with 

younger patient age at presentation [2] 

Frosen et al[2], in their histological study of unruptured and ruptured human aneurysms, observed 

morphological changes associated with remodelling of the aneurysm wall in prior to rupture, 

allowed the description of four distinct wall-types: 

1. Endothelialised wall with linearly organised VSMC 

2. Thickened wall with disorganised VSMC 

3. Hypocellular wall with myointimal hyperplasia or organised thrombus  

4. Extremely thin, thrombus lined hypocellular wall (the most prevalent type in ruptured 

aneurysms),  

In keeping with earlier studies[103], they found thick, intima like walls, and very thin, degenerate 

walls with hyaline deposits to be more prevalent in unruptured and ruptured aneurysms 

respectively. “Stable”, unruptured aneurysms, on the other hand, demonstrated more proliferation 

and migration of VSMCs, resulting in the formation of a thick, fibroid layer on the luminal surface of 

the vessel.  

The observation of this fibrotic layer in the aneurysm wall led Frosen[408] to consider whether 

“macrophages may stimulate (V)SMCs to change phenotype and proliferate, thus promoting 

fibrosis”. Interestingly, the degree of VSMC proliferation and T-Cell and macrophage infiltration was 

increased in aneurysm walls resected less than 12 hours post rupture, suggesting the presence of at 

least some inflammatory cell infiltrates in the aneurysm wall preceded the acute inflammatory cell 
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infiltration associated with rupture; in healthy arterial walls, such infiltrates generally occur in 

response to injury during the first 24 hours or later[409]. It would appear that in response to an 

undefined event prior to rupture, the aneurysm wall becomes unstable and undergoes 

morphological change reflecting an imbalance between the effect of factors predisposing to rupture 

and those maintenance and repair mechanisms attempting to prevent it. Although adaptive 

responses of arteries to luminal stressors attempt to negate these stressors, it would somehow 

appear that in aneurysmal subarachnoid haemorrhage, the responses themselves may predispose to 

rupture due to increased matrix proteolysis[2, 50, 408, 410] 

 

 

. 
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Part 2 

Abstract 

As naturally occurring aneurysms in laboratory animals are very rare, various animal models of 

intracerebral aneurysm pathogenesis have been designed in multiple species including rodents, 

rabbits and also higher mammals such as dogs, sheep, pigs and primates[1]. There are two major 

classes of animal models of aneurysm development; those used to evaluate underlying mechanisms of 

aneurysm formation, which are discussed in detail below, and those principally used in the trialling 

novel endovascular techniques and devices. [2] (these are generally canine, ovine or porcine models 

using surgically induced aneurysms, usually in the carotid artery)[3-6]. 

Relatively few animal models of cerebral aneurysms are available, and most incorporate a high 

incidence of rupture [2, 7-11]. Some have incorporated induction of systemic hypertension and 

stereotactic intracranial elastase infusion[2].  The aneurysms produced by such studies have been 

rapidly formed (2-6 weeks), and have been relatively large (even giant) [7, 8, 10-14].  This questions 

their representativeness to human pathogenesis as most human aneurysms are small to medium in 

size relative to their parent vessels and appear to develop over a protracted period[15-23].   

Appreciation of the limitations of these models is of paramount importance; information gained from 

animal studies should be carefully evaluated for relevance[24]. The aim of this study was to develop 

an animal model of the changes associated with the early aneurysm pathogenesis. 
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Animal Models of Intracranial Aneurysm Formation 

Introduction 

Surgically Induced Aneurysms 

Various techniques for inducing aneurysm formation in animal models have been described in the 

early literature[25-30]. Broadly speaking, these can be subdivided into two categories; those involving 

aneurysms resulting from direct arterial injury or surgery, and those induced by stimulating known risk 

factors for aneurysm formation in humans[31]. 

 Vein pouch models involve microsurgical grafting of a patch of autologous vein to a surgically created 

arteriotomy. German et al[32] first reported this technique in 1954. In brief, a small wedge is cut from 

the medial corner of the left common carotid artery, a partial end-to-side anastomosis of the left 

common carotid to the right common carotid is fashioned, and a previously harvested vein segment is 

sutured to the notch formed by the anastomosis.  A number of variations on this technique have been 

reported including end-to-side anastomosis of an external jugular vein graft to the common carotid 

artery [33], suturing of an autologous vein graft to an end-to-side anastomosis of the left common 

carotid artery to right common carotid artery[34], via an arteriovenous fistula method[35] or via 

microsurgical construction on the wall of the basilar artery [27]. Although these models may 

accurately model the geometry and haemodynamic microenvironment of human aneurysms, all 

spontaneously manifest histologic changes not seen in true saccular arterial aneurysms[36, 37]. In 

addition, the manipulation of the arterial and venous pouch endothelium during construction of the 

aneurysm releases various factors which lead to scarring and obliteration of the aneurysm over time, 

confounding any long-term observations or results of therapeutic intervention[37]. 
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Aneurysms induced by haemodynamic manipulation alone 

The early work of Hassler[25] described induction of pre-aneurysmal change and macroscopic 

aneurysm formation in a rabbit model via ligation of the common carotid artery. Subsequent analysis 

of the intracerebral arteries revealed structural changes in the arterial walls with an increase in the 

size of medial defects. Macroscopic aneurysms were induced in six of 42 rabbits. The calibre of the 

posterior communicating, ophthalmic and anterior and middle meningeal arteries was noted to be 

increased to a greater degree in younger animals and tended to become more pronounced over time 

(i.e. the observed increase was greater in animals euthanized five months after ligation compared with 

those euthanized after one month.). These findings confirmed the authors’ prior expectation that the 

increase in haemodynamic stresses secondary to carotid ligation would lead to histological changes in 

the arterial wall. 

The alterations in vessel calibre on the side of the ligation led the authors to hypothesise that 

pathology of the internal carotid artery (e.g. stenosis) may cause variations in the calibre of the 

intracranial arteries. The paucity of these findings in younger animals was felt to be due to an 

increased ability of younger animals to develop anastomoses and collateral circulatory pathways 

between the internal and external carotid systems. The observed macroscopic and histological 

changes in the intracranial arteries demonstrated the susceptibility of the arteries to “hydraulic 

imbalance” or increased haemodynamic stress. 

 

Aneurysms induced by haemodynamic manipulation and surgical induction of hypertension 

Observations from these early models suggested that a critical factor in aneurysm induction and 

growth was altered circulation and haemodynamic forces in the Circle of Willis. This hypothesis was 

backed by later studies[38-41]  inducing aneurysm formation via haemodynamic manipulation alone, 

however the long incubation time (approaching 12 months in some models) limited their utility. 
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Similarly, hypertension was determined to be an important, but non-essential factor in aneurysm 

pathogenesis in these models; although the combination of hypertension and carotid ligation was 

shown to aggravate degenerative changes in the vessel walls, non-hypertensive rats treated with 

carotid ligation alone still developed aneurysms[41] 

The idea that increased haemodynamic stress, when coupled with other it factors causing fragility of 

the arterial wall may accelerate the pathophysiological process leading to aneurysm formation, Handa 

et al[31] developed a model of aneurysm induction in adult Sprague-Dawley rats via a combination of 

unilateral ligation of the common carotid artery, surgical induction of hypertension via right 

nephrectomy, and Beta-aminopropionitrile (BAPN) feeding. 

BAPN is a lathrogen. its mechanism of action is inhibition of lysyl oxidase, which initiates cross-linkage 

formation between elastin and collagen.  When fed to young or rapidly growing animals, connective 

tissue becomes abnormally fragile and a variety of connective tissue pathologies arise[42, 43]. This 

commonly manifests as loss of tensile strength and elasticity of great vessels such as the aorta[44]The 

action of BAPN is exclusive to collagen and elastin during the synthesis phase only; under physiological 

circumstances mature animals are not susceptible to its effects. Hypertensive stress, however, induces 

increased collagen and elastin synthesis in the arterial wall[45-47]. 

Renal hypertension was induced via a number of methods. Surgical hypertension was achieved via 

right nephrectomy at the time of carotid artery ligation followed by administration of 

Deoxycorticosterone acetate (DOCA) via a twice weekly subcutaneous injection commencing one 

week after surgery.  DOCA is a mineralocorticoid used to augment surgically induced hypertension. It 

increases the permeability of cell membranes and capillaries, and accelerates the inflammatory 

process[48]. DOCA has a propensity to cause significant alterations in ion transport by VSMCs in the 

vessel wall, reducing the ability of calcium to stabilise the membrane. This may be a contributory 

factor in vascular reactivity and development of vascular hypertrophy in vessels under chronic 
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hypertensive stress[48]. DOCA is not essential in the development of aneurysms[31, 49], however its 

use increases the yield of aneurysms. 

1% NaCl solution was also given as drinking water. Alternatively, renal infarction hypertension was 

induced in place of DOCA hypertension. 

In the second week following the initial surgery, BAPN was added to the diet for all rats. As with the 

earlier study of Hashimoto[50], surgical hypertension was initially induced via unilateral nephrectomy 

and augmented by DOCA administration; this was replaced by induction of hypertension via bilateral 

ligation of the posterior branches of the renal artery bilaterally. 

Regardless of methodology, all rats were made hypertensive and fed BAPN. They were then divided 

into three cohorts; those with no carotid ligation, those with unilateral carotid ligation, and those with 

bilateral carotid ligation. No aneurysms were found in rats without carotid ligation. Aneurysms 

developed at the anterior communicating artery/anterior cerebral artery junction and ipsilateral 

proximal PCA in those rats who underwent unilateral ligation, and aneurysms were found exclusively 

in the posterior circulation of those rats which underwent bilateral carotid ligation. These findings 

appeared to confirm earlier hypotheses on aneurysm development; namely that abnormal 

haemodynamic stress in the Circle of Willis is of primary importance in aneurysm induction and 

formation, and that in surgically manipulated models, aneurysms preferentially occurred at the sites 

where haemodynamic stresses were expected to increase.  

The observed locations of aneurysm formation represented the expected areas of maximal 

haemodynamic stress. Similarly, rats having undergone bilateral ligation demonstrated preponderance 

to aneurysmal development in the posterior circulation, again in keeping with the expected increase in 

haemodynamic stress. Furthermore, aneurysms were invariably induced on the side contralateral to 

carotid ligation, in keeping with the intended haemodynamic manipulation. 
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These findings appeared to support previous hypotheses regarding aneurysm pathogenesis in man, 

where an increased incidence of aneurysm formation on the anterior communicating artery was 

observed in patients with inequalities in the proximal segment of the anterior cerebral artery. This 

anomaly resulted in formation of a considerable shunt of blood across the anterior communicating 

artery to the contralateral anterior cerebral artery, thus subjecting the small anterior communicating 

artery to increased haemodynamic stress. Similarly, human aneurysms had been observed in other 

vessels under increased haemodynamic stress, such as those associated with arteriovenous 

malformations[51] and anatomical anomalies such as agenesis of the internal carotid artery[52]. 

This study was important for a number of reasons. Firstly, it demonstrated that aneurysms were 

inducible in experimental animals. Its primary advantages over previously described models, as 

reported by the authors, were the apparent ease with which aneurysms were cultivated in a large 

number of rats, and the apparent similarities in anatomy and natural history with human aneurysms. 

Most of the induced aneurysms arose at the apex of arterial bifurcations. Gap formation and leukocyte 

adhesion was observed at the endothelial cell junction, similar to previously reported findings of 

human studies[53]. Some observed morphological characteristics, such as aneurysmal bleb formation 

which were associated with an increased risk of aneurysm rupture have subsequently been identified 

as independent risk factors for aneurysmal subarachnoid haemorrhage in humans[54-57]. 

The procedure for aneurysm induction described in this model have been largely superseded by more 

modern methods. However, the study was notable for the apparent ease in which aneurysms were 

induced and the relatively high number of aneurysms produced. By pharmacologically augmenting 

surgically induced hypertension, aneurysms were induced in 30-70% of animals within three or four 

months. This was a significant improvement on previous models using carotid ligation alone, which 

often required an incubation period of 12 months or more[41]. In addition, the aneurysms induced 

were similar in histological analysis and natural history to human cases, allowing an early perspective 

on the dynamic aspects of aneurysm pathophysiology “as a living and metabolising structure”. 
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Pharmacological facilitation of aneurysm induction 

Induction of aneurysms using toxic materials to degrade the arterial wall in both intracranial and 

extracranial arteries has been described. Mc Cune et al[29] designed a model of  abdominal aortic 

dissection in dogs involving injection of nitrogen mustard beneath the aortic adventitia. White et 

al[30] adapted this method to the intracranial arteries using hypertonic saline, hyaluronidase and 

nitrogen mustard directly into the walls of the intracranial arteries of dogs with varying results. Troupp 

et al[58] described a similar technique focused on the external carotid artery in a rabbit model. 

Although reasonably successful, the lesions produced were not histologically comparable to human 

aneurysms. 

On the hypothesis that increased haemodynamic stress on weakened cerebral arteries might induce 

structural fragility in the arterial wall, Hashimoto et al described cerebral aneurysm formation in a rat 

model1. This model relied on multiple factors for aneurysm induction.  

BAPN was used to induce structural fragility in the arterial wall. Whilst the authors accepted its 

administration was not essential for aneurysm induction, it significantly increased the number of 

aneurysms cultivated. Handa[31] declared that administration of BAPN alone without carotid ligation 

was insufficient for aneurysm induction, confirming the earlier work of Hashimoto[40]. BAPN 

administration was again demonstrated to significantly increase the yield of aneurysms formed.  

The yield of well-formed, saccular aneurysms induced in animal models which omit BAPN is less than 

30%[31, 59, 60]. Hashimoto and others cautioned that the tendency of BAPN to cause pathological 

changes in the arterial wall may confound any histological analysis of CA development, leading the 

authors to recommend its use only in models where a high incidence of CA formation was required, 

such as haemodynamic studies. 
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Hypertensive Models 

Methods of induction of hypertension 

Unilateral common carotid artery ligation, administration of BAPN, subcutaneous DOCA injection, and 

salt loading in drinking water are common methods of inducing hypertension in animal models. This 

strategy was first reported by Hashimoto et al[39, 50, 61, 62]. This model was hampered by its 

relatively low incidence of CA formation (n=11/30) and long incubation period (averaging 11-21 

weeks). Subsequent variations added ligation of the posterior branches of the renal arteries bilaterally 

to induce hypertension[39] improving the yield of CAs induced (n=18/13) and shortening the 

incubation time to 16 weeks. 

Jamous et al[63, 64] augmented the model further by using oophorectomy in an attempt to increase 

the aneurysm yield. Ligation of the right CCA and posterior branches of the bilateral renal arteries of 7-

week old Sprague-Dawley rats was performed, with initiation of hypertension via salt loading in the 

drinking water one week later. Oophorectomy was performed at a second operation one month after 

the initial procedure.  The incidence of aneurysm formation was 60% over an incubation period of 

three months in rats who underwent oophorectomy compared with 20% of rats who underwent an 

identical initial procedure without oophorectomy. In addition, the size of aneurysms produced in the 

oophorectomy cohort was significantly larger. 

This concept of exposure to and/or modification of environmental risk factors to produce aneurysms 

in animal models was further developed by Abruzzo[36] et al in  endothelial nitric oxide synthase-3 

(eNOS-3 knockout) mice. This study reported induction of aneurysms in two of six eNOS-3 knockout 

mice after an average survival period of 20.4 months (+/- 1.5 months) post-surgical ligation of the left 

common carotid artery. The same study failed to induce any aneurysms in thirty wild-type, 7 NOS-2 

knockout, or 8 plasminogen activator inhibitor (PAI)-1 female mice using the same technique after a 

similar survival period. 
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The Blotchy mouse phenotype exhibits one of a series of mutations at the X-linked “mottled” locus. In 

male hemizygotes, the different allelic variants result in various phenotypes with connective tissue 

disorders of varying severity[65]. Male Blotchy mice have a propensity to develop extracranial 

aneurysms (especially of the ascending aorta)[66]. Using common carotid ligation, a low yield of 

aneurysm development in normotensive Blotchy mice was reported by Coutard et al[67].  The 

aneurysms produced were described as “a close succession of small dilatations in arteries of the 

complex of the anterior artery and anterior communicating artery”, with no macroscopic aneurysms 

seen. Ligation of the left common carotid artery alone similarly failed to induce macroscopic aneurysm 

formation in a normotensive wild-type control group.  The authors compared this with both wild-type 

and blotchy mice which had undergone renal artery ligation to induce hypertension. A significantly 

increased incidence of CA formation in the blotchy mice was seen. 

The Jamous model substituted administration of BAPN for oestrogen deficiency to increase the 

incidence of aneurysm formation. This model demonstrated that oophorectomy and oestrogen 

deficiency led to significantly increased yields of aneurysms in rats, consistent with previous 

epidemiological human studies identifying female sex, especially in post-menopausal years, as a 

significant independent risk factor for de novo aneurysm development [47, 68, 69]  and supporting the 

hypothesis of a protective role of oestrogen against the development and progression of CAs. 

Stereotactic Elastase Models 

Degeneration or disruption of the internal elastic lamina of intracranial arteries is a recognised 

component of the pathophysiological process of aneurysm development. Histopathological analysis of 

aneurysm walls often exhibits a continuum of degeneration ranging from almost intact to severely 

degenerate in the neck to fundus direction[70]. These degenerate changes exhibit a decrease in the 

number of mural cells, specifically VSMCs, and gaps in the medial raphe filled with tendon-like fibres. 

The aneurysm wall itself typically lacks an internal elastic lamina. Human studies suggest that serum 

elastase and collagenase levels are elevated in patients with aneurysms[71-74]. Histological studies of 
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collagenase and elastase activity in aneurysm walls demonstrate high levels of MMP-2 and -9 

activity[74] in both human and animal models[75]. 

Elastase and collagenase are the major proteinases present in the aneurysm wall, and are known to be 

produced by macrophages in other vascular pathologies such as Abdominal Aortic Aneurysm (AAA) 

[76-78]. Degradation of the Extracellular Matrix (ECM) within the vessel wall leads to further damage 

via further upregulation of proteinases. MMP-9, in addition to its proteinase activity, is also a regulator 

of macrophage migration and infiltration across the ECM[11, 79], Some studies suggest that inhibition 

of  proteinase activity may slow or suppress the development of aneurysms[75].  

Building on these findings of degeneration and disruption of the elastic lamina being key 

characteristics of cerebral aneurysm pathogenesis, Nuki et al[14] developed a small animal model of 

aneurysm induction via a single stereotactic injection of elastase into the basal cisterns of 

hypertensive mice. The aneurysms produced “recapitulated the key features of human intracranial 

aneurysms”. 

Elastase was used to induce disruption of the internal elastic lamina, and hypertension induced via a 

continuous infusion of Angiotensin-II via an implanted subcutaneous pump. Using a dose of 35 

milliunits of elastase with continuous infusion of Angiotensin-II at a rate of 1000ng/kg/min, aneurysms 

were induced in 77% (n=34 of 44) of mice along the Circle of Willis or one if its major branches. The 

authors demonstrated a dose-dependent relationship between aneurysm induction and elastase 

concentration, demonstrating yields of 0%, 10%, 30%, and 77% of aneurysms using concentrations of 

0.0 (i.e. placebo), 3.5, 17.0, and 35.0 milliunits of elastase respectively. Histological assessment of the 

CAs produced revealed varying degrees of structural pathology similar to that reported in histological 

studies of human aneurysms; degenerate vascular walls with thick segments and loss of the internal 

elastic lamina. 



15 

This method of aneurysm induction demonstrated a dose-dependent relationship between the 

incidence of aneurysm formation and the concentration of the Angiotensin-II infusion. Higher yields of 

aneurysms were seen in mice receiving a more concentrated volume (0%, 20%, and 77% at 0 (PBS 

infusion), 500 or 1000 ng/kg/min Angiotensin-II respectively). The magnitude of hypertension induced  

appeared to be dependent Angiotensin-II concentration (111.0 +/- 6.7, 127.0 +/-18.8, and 142.0 +/- 

37.0 mmHg at  0 (PBS infusion), 500 or 1000 ng/kg/min  Angiotensin-II respectively), supporting the 

hypothesis underpinning this model; that exaggeration of known risk factors (in this case 

hypertension) may lead to CA formation.   

The combination of stereotactic injection of elastase and Angiotensin-II induced hypertension 

represented an important new small animal model of CA induction. Nuki demonstrated the 

combination of hypertension and degeneration of the internal elastic lamina induced by a single 

stereotactic injection of elastase into the cerebrospinal fluid resulted in a high incidence of aneurysm 

formation in a comparatively brief period. By modifying the stereotactic co-ordinates (to 1.2mm 

rostral, 0.7mm lateral to bregma, and advancing the stereotactic injection needle to 0.3mm from the 

skull base), Hosaka et al[10] achieved even higher yields of aneurysms, inducing macroscopic 

aneurysm formation of 100% of mice receiving elastase doses of 5, 10, or 20ul of 10u/ml elastase 

solution, and in 90% of mice receiving 10uL of 1.0u/mL elastase solution (n=10 each cohort). The 

Hosaka model was the first murine model to consistently induce aneurysm rupture in a dose-

dependent manner. 
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Rationale for this project and model chosen. 

The aim of this study was to develop an animal model of the changes associated with the early 

aneurysm pathogenesis. 

We sought to build on previous studies, using a contemporary model of murine aneurysm induction; 

the model described by Nuki[14] was chosen as our template. The methods used in our study differed 

slightly from those used in prior studies, for example, we used lower elastase doses to ameliorate the 

severity of vessel wall injury.  Notwithstanding, the dose, rate and mode of human angiotensin II 

delivered in our study and magnitude of hypertension achieved, conformed to that of prior studies. 

 

Methodology 

Approval for animal studies was obtained from the local ethics committee (Approval no. A1926). 

Experimental work performed in accordance with the institutional and ethical guidelines of James 

Cook University, Australia, and conforming to the Guide for the Care and Use of Laboratory Animals 

(National Institutes of Health, USA). 

20 male C57/BL6 mice aged 12-14 weeks, of mean weight 25.5±0.4g, were used. Under isoflurane 

general anaesthesia (2% isoflurane in 2L/minute oxygen), mice were secured in a stereotactic frame.  

A small right sided burr-hole was made 1.2 mm rostral and 0.7 mm lateral to the bregma. A 10µl 

Hamilton blunt tipped microliter syringe was adjoined to a semi-automated repeating dispenser and 

advanced until contact with the skull base was achieved, then withdrawn 0.3 mm and either 

methylene blue dye (control group) or elastase solution (experimental group) was infused into the 

basal cisterns. The incision was then closed with sutures.  

To induce chronic hypertension, a constant infusion of Angiotensin-II (Angiotensin-II), dissolved in 

phosphate buffered saline, was continuously infused via an implanted micro-osmotic pump (placed 
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subcutaneously at a point 5 mm cephalad to the base of the tail immediately after closure of the 

cranial wound.  The Angiotensin-II dose was determined by use of a weight-based algorithm delivering 

1000 ng/kg/min [12, 14, 80, 81] 

Two study groups were employed:  

 

1. Sham operative controls 

A dilute solution of methylene blue dye was infused into the right basal cistern of 5 mice at a rate of 

2µl/min using the stereotactic method described above. Induction of hypertension via Angiotensin-II 

was not used  via was not used in this group. 

 

2. Experimental group 

10µl of elastase solution (1.0u/ml) was injected manually into the right basal cistern of 15 mice at a 

rate of 2µl/min using the stereotactic method described above. 

Following the procedure, animals were recovered under a heat lamp, housed individually, and 

observed for a period of 2-3 weeks using a previously validated rodent neurological scoring system[82, 

83].  Blood pressure (BP) was measured by standard tail cuff manometry at 3 time points. At the 

completion of the observation period, each mouse was euthanized using CO2 and the entire head 

immersion-perfused in 10% formaldehyde for a period of 14 days. 

Results 

28 arterial bifurcations from 12 brains were examined. Massive sub-arachnoid haemorrhage was 

observed in 1 mouse.  Formation of a macroscopic aneurysm without SAH was observed in 1 mouse. 

Pre-aneurysmal changes were observed in 8/12 (58%) brains: Endothelial change in 8/8 and Internal 

elastic lamina degeneration in 6/8. Hypertension was successfully induced in a time-dependent 
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manner. All 5 sham controls survived both the procedure and the observation period. Two of the 15 

experimental mice died in the immediate post-procedural period. Four of the remaining 13 

experimental died during the observation period (17-21 days). 

Twelve brains from the 15 experimental mice were examined for histological changes associated with 

pre-aneurysm formation. In the experimental group, where n=28 bifurcations were harvested from 

n=12 brains, pre-aneurysm changes were observed in 7/12 (58%) brains, amongst 12/28 (43%) 

bifurcations. Internal elastic lamina degeneration was specifically observed in n=8.  All bifurcations 

with internal elastic lamina degeneration also showed endothelial change. N=1 macroscopic aneurysm 

was identified at one bifurcation point (fig 3) 

Of the sub-group of n=4/13 mice which died during the observation period (17-21 days), endothelial 

change was observed in n=3, whilst concomitant internal elastic lamina degeneration was observed in 

n=1 bifurcation. 

 

Description of our model 

Technique 

Mouse model 

Approval for animal studies was obtained from the local ethics committee (Approval no. A1926). and 

experimental work performed in accordance with the institutional and ethical guidelines of James 

Cook University, Australia, and conforming to the Guide for the Care and Use of Laboratory Animals 

(National Institutes of Health, USA). Mice were housed in an individually ventilated, 

temperature/humidity-controlled cage system (Aero IVC Green Line; Tecniplast) on a 12-hour 

light/dark cycle and maintained on normal laboratory chow and water ad libitum. 20 male C57/BL6 

mice (Animal Resources Centre, Canning Vale, WA, Australia) aged 12-14 weeks, of mean weight 
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25.5±0.4g, were used.  Under isoflurane general anaesthesia (GA) (2% isoflurane in 2L/minute oxygen), 

mice were secured in a stereotactic frame (Model 940 Linear Scale Digital Display, David Kopf 

instruments, Tujunga, CA, USA).  A small right sided burr-hole was made 1.2mm rostral and 0.7mm 

lateral to the bregma (co-ordinates were obtained from the Mouse Brain Atlas[84] and had been 

validated by a previously described model[10]). A 10 µl Hamilton blunt tipped microliter syringe 

(Model 701N, Hamilton Instruments, Nevada, LV, USA) was adjoined to a semi-automated repeating 

dispenser (Model PB600-1, Hamilton Instruments, Nevada, LV, USA) and advanced until contact with 

the skull base was achieved. It was then withdrawn 0.3 mm and either methylene blue dye (control 

group) or elastase solution (experimental group) was infused into the basal cisterns (see below).  The 

incision was then closed with sutures.  

Two study groups were employed:  

1. Sham operative controls 

A dilute solution of methylene blue dye was infused into the right basal cistern of 5 mice at a rate of 

2µl/min using the stereotactic method described above. Hypertension was not induced in this group 

 

2. Experimental group 

10µl of elastase solution (1.0u/ml) was injected manually into the right basal cistern of 15 mice at a 

rate of 2µl/min using the stereotactic method described above. 

Following the procedure, animals were recovered under a heat lamp, housed individually, and 

observed for a period of 2-3 weeks using a previously validated rodent neurological scoring system[82, 

83]. 

Mice were removed from the stereotactic apparatus and recovered under an infra-red heat lamp. 
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Once ambulant and feeding, and in the absence of any perceived neurological deficit, the mice were 

transferred to individual cages. 

Operative time (i.e. from induction to completion of GA) for sham controls was 31 ± 4 mins. Total 

procedural time (i.e. from induction of GA to observable recovery of spontaneous movements) for 

sham controls was 45 ± 5 mins. Total procedural time for the experimental cohort was 60 ± 8mins: 

operative time was 34 ± 3.0 mins and recovery time 14 ± 2 mins. 

 

Figure 1. Placement of the mouse in the stereotactic apparatus. Prior to the surgical component of the procedure, the eyes 
were lubricated and taped shut and the surgical site prepared with an antiseptic solution. The mouse was covered with a 
warming blanket. 

 

Induction of Hypertension 
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To induce chronic hypertension, a constant infusion of A-II, (Sigma Aldrich, Castle Hill, NSW, Australia), 

dissolved in phosphate buffered saline, was continuously infused. This was achieved via an implanted 

Alzmet micro-osmotic pump (model 1004, Durect Corporation, Cupertino, CA 95014) which was 

placed subcutaneously at a point 5mm cephalad to the base of the tail immediately after closure of 

the cranial wound.  The A-II dose was determined by use of a weight-based algorithm delivering 

1000ng/kg/min 

Blood pressure (BP) was measured by standard tail cuff manometry at 3 time points: Baseline (24 

hours pre-intervention); interim (8-10 days post-procedure); and final at 24 hours prior to euthanasia.  

Systolic (sBP), diastolic (dBP) and mean (mBP) were recorded. 

 

Post-Procedural Observations 

In the post-procedural period mice were housed individually and observed for a period of between 

two to three weeks, during which time they were checked twice daily. Each mouse was inspected 

visually for general condition and observations recorded using a previously described 5-point 

neurological scoring system (grade 0, normal function; grade 1, reduced eating or drinking activity 

demonstrated by weight loss >2g); grade 2, flexion of the torso and forelimbs upon lifting the whole 

animal by the tail; grade 3, circling to one side with normal position at rest; grade 4 leaning to one side 

at rest; grade 5, no spontaneous activity or death)[82, 83, 85-87]. 

Mice were observed for normal behaviours such as climbing, response of vibrissae to touch, and 

general activity such as spontaneous feeding and drinking. In addition to the above system, a 

neurological deficit was noted if an animal exhibited asymmetric limb movements, asymmetry of 

forepaw stretching when being held by the tail, or a slow/asymmetric reaction to vibrissae 

stimulation. None of the mice surviving the pre-defined incubation period exhibited a new-onset 

neurological deficit or signs of pain or distress during observation. 
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The surgical incisions were assessed twice daily. All incisions healed within the first three to four days, 

with no wound infection or dehiscence encountered. All the micro-osmotic pumps remained in situ for 

the duration of the observation period. The surgery appeared well tolerated by the mice during the 

healing period, with no signs of irritation such as excessive grooming, scratching or excessive loss of 

fur surrounding the incisions observed. The procedure was performed on a total of four cohorts of five 

mice each (n=20). 

At the completion of the observation period, mice were placed under deep isoflurane GA (flow rate 

4L/min) until agonal breathing was observed. Each mouse was then euthanized using CO2. The entire 

head was thereafter removed and immersion-perfused in 10% formaldehyde for a period of 14 days. 
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Necropsy 

Removal of mouse brain from cranial vault. 

This procedure was performed under x 3.5 loupe magnification using standard bench illumination. If 

during the dissection there was uncertainty regarding anatomical landmarks, or the plane of dissection 

became unclear, the remainder of the procedure was performed under x10 light microscopy. 

Dissection was performed using standard microsurgical instruments and technique. 

The mouse head was removed from the 10% formaldehyde perfusion, and excess fluid removed with 

an absorbent tissue. A heavy arterial clamp was applied to the loose skin around the nose. Using a size 

22 blade, a dorsal sagittal incision was made from the tips of the clamps to the back of the skull. The 

skin was reflected anteriorly, and soft tissue and musculature removed. 

The skeletonised head was then placed supine. The calvarium was removed in a piecemeal fashion. 

Care was taken not to damage the underlying brain when crossing suture lines and on removal of the 

frontal and nasal bones due to increased thickness of the bone at these locations. 

The base of the brain could now be visualised, and the skull base now removed using similar 

piecemeal technique. The basilar artery and posterior aspects of the temporal lobes served as useful 

landmarks when performing this stage of the procedure, and the utmost care was taken not to 

inadvertently damage the ventral surface of the brainstem. 

Owing to the entry points of the internal carotid arteries and exiting points of the cranial nerves, 

removal of the remainder of the skull base proved to be the most technically challenging part of the 

procedure. In approximately half of the skulls this was best achieved by the use of gentle retraction of 

the brain from the skull base and careful division of the arteries and vessels close to the bone using a 

fine microsurgical scissors, working in a caudad-cranial direction. 
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For the remainder of the brains, application of this technique threatened to cause compressive 

deformity of the frontal lobes. Brains which exhibited this phenomenon were significantly less pliant 

than their counterparts. Why this occurred was unclear.  

Average procedural time was 37 minutes respectively. Upon removal of each brain, arteries of the 

circle of Willis and their major bifurcation points were inspected under both x3.5 loupe and x10 light 

microscopy magnification, photographed, placed in fresh containers of 10% formaldehyde and stored 

at room temperature pending formal histological processing. All major bifurcation points visualised 

during dissection were processed, however owing to fragility of the specimens a variable number of 

bifurcations were harvested from each brain. 

 

Statistical Analysis 

Inter-group comparisons were compared using analysis of variance. Statistical significance was 

assessed at P<0.05.    
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Results 

 

Of 20 mice, 5/5 sham controls survived both the procedure and the observation period. Two of the 15 

experimental mice died in the immediate post-procedural period, presumably due to the stress of the 

procedure. Four of the remaining 13 experimental died during the observation period (17-21 days). 

The cause of death was not readily apparent in three of these mice. Three cerebral artery bifurcations 

were harvested from two of these mice. The remaining mouse was found to have suffered a massive 

SAH (fig. 3): owing to the severity of tissue disruption incurred, no viable bifurcations could be 

harvested; this specimen was excluded from analysis. Mortality was thus n=6. 

 

Hypertension 

Hypertension was successfully induced in a time-dependent manner. All mice underwent 

acclimatisation to tail-cuff plethysmography in the pre-operative period by performing a single daily 

reading over the course of three days. Ten pre-operative, interim and pre-euthanasia systolic blood 

pressure (sBP) measurements were taken per mouse, with the highest and lowest values excluded. 

 Pre-operative, interim and pre-euthanasia sBP was 91 ± 2.0 mmHg, 116 ± 2 mmHg and 157 ± 3 mmHg 

respectively (p<0.001). 
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Figure 2. Preoperative, Interim and Pre-Euthanasia systolic blood pressure measurements in the experimental cohort 
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Figure 3. Formalin fixed specimen demonstrating a large volume haematoma in the subarachnoid space (red arrows) over 
the right brain convexity 

 

Twelve brains from the 15 experimental mice were examined; the two mice that died during the 

procedure were excluded from this analysis. The brain of another mouse that died during the 

observation period was rendered unsuitable for analysis during processing and was also excluded. A 

total of 28 arterial bifurcations were harvested. One macroscopic cerebral aneurysm was observed 

(fig. 4). 
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Figure 4. Unruptured macroscopic cerebral aneurysm. The aneurysm is observed in the anterior circulation (red arrow) 

 

 

Histological assessment. 

After removal of the brain from the vault, and prior to fixation, macroscopic aneurysm formation (i.e. 

a saccular aneurysm visible either to the naked eye, or under x3.5 magnification), and any associated 

SAH, were sought by direct vision. The brains were then fixed in 10% neutral buffered formalin. 

Following fixation, the brains were processed using a Leica Peloris tissue processor. 

The total processing time was 87 h. Each stage, excluding the wax stages, was performed at 35°C. The 

tissue was kept under vacuum during processing. Following processing, the brain slices were blocked 

in paraffin wax and cooled on an ice plate. Blocked paraffin brains were sectioned at eight microns on 

a Leica RM2235 Manual Rotary Microtome. Sections were floated out on a water bath at 35°C, 
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collected on silanized activated slides and dried overnight. The tissue was kept under vacuum during 

processing. 

All sections were examined, and arterial bifurcation points identified and analysed, by an experienced 

histopathologist blinded to the outcome of the index animal. 

Macroscopic cerebral aneurysm formation (saccular cerebral aneurysms visible either to the naked 

eye, or under x3.5 magnification), and any associated SAH, were sought by direct vision or by 

dissecting microscopy. Macroscopically intact arterial bifurcation points were analysed by an 

experienced histopathologist (LK), blinded to the outcome of the index animal, for changes suggestive 

of early CA formation.   Endothelial change was classified into three distinct stages as per the 

classification system proposed by Jamous et al[64, 88-90] (Table (2). We classified internal elastic 

lamina degeneration change using the classification system proposed by Aoki et al[91] (Table 3), in 

keeping with previous human and animal studies of aneurysm pathogenesis detailing progressive 

internal elastic lamina degeneration as a key feature of aneurysm pathogenesis[14, 92-95]   

Analysis was limited to identification of endothelial change () (i.e. endothelial detachment, sub-intimal 

thickening, and inflammatory cell infiltration with or without arterial wall protrusion) and 

degeneration of the internal elastic lamina (internal elastic lamina degeneration). 

endothelial change was classified into three distinct stages as per the classification system proposed 

by Jamous et al[89], with Stage 3 change representing macroscopic aneurysm formation, i.e.: 

 

 

 

 

 

 

 

Table 1: Histological categorisation of the vessel-wall endothelial change (EC) associated with early cerebral aneurysm (CA) 
formation. Modified after Jamous et al.[89] 

Categorisation of vessel wall endothelial changes 

Stage 1  Endothelial change only 

Stage 2 a Endothelial change with apical intimal pad elevation 

 b Late inflammatory change with destruction/protrusion of vessel wall 

Stage 3  Macroscopic saccular aneurysm formation 
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Similarly, internal elastic lamina degeneration was classified using the system proposed by Aoki et 

al[91], which described internal elastic lamina degeneration relative to the surrounding elastic lamina 

(Table 3) 

 

 

 

 

 

Table 3: Histological categorisation of vessel-wall internal elastic lamina degeneration (IELD) associated with early cerebral 
aneurysm formation. Modified after Aoki et al.[75] 

 

Histopathological findings 

In the experimental group, where n=28 bifurcations were harvested from n=12 brains, pre-aneurysmal 

changes were observed in 7/12 (58%) brains, amongst 12/28 (43%) bifurcations (figs 2 & 3). Type I 

change was observed in one bifurcation, Type 2a in n=9, Type 2b in n=2 and Type 3 (i.e. macroscopic 

cerebral aneurysm) in n=1. Internal elastic lamina degeneration was specifically observed in n=8.  All 

bifurcations with internal elastic lamina degeneration also showed EC (figs 3, 4 & 5). One macroscopic 

cerebral aneurysm was identified at one bifurcation point (fig 4) 

Of the sub-group of n=4/13 mice which died during the observation period (17-21 days), endothelial 

change was observed in n=3 (stage 1 in n=1, and Stage 2a in n=2), whilst concomitant degeneration of 

the internal elastic lamina was observed in one bifurcation. (Fig. 5). 

One macroscopic aneurysm was identified at one bifurcation point (fig 3): seven bifurcations were 

harvested from this mouse.  Both endothelial change-2b and internal elastic lamina degeneration-2 

Categorisation of vessel wall Internal Elastic Lamina change 

Stage 1 Continuous 

Stage 2 Fragmented 

Stage 3 Complete disappearance 
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were observed in these bifurcations, whilst the internal elastic lamina degeneration-3 was observed 

within the aneurysm itself (fig 8,9). 

 

Figure 4. VerHoeff’s Van Gieson stain is useful in demonstrating atrophy of elastic tissue. This slide shows EvG staining of a 
control vessel wall. The endothelium (red arrow) and internal elastic lamina (black arrow) are intact. The vessel is of 
normal thickness. 
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Figure 5. Haematoxylin and Eosin stain (H&E Staining) is a combination of two histological stains; haematoxylin and eosin. 
Haematoxylin stains cell nuclei blue, and eosin stains cytoplasm and extracellular matrix pink. This H&E stain of an arterial 
bifurcation demonstrates mild pathological features associated with early cerebral aneurysm formation (i.e. mild endothelial 
change and mild internal elastic lamina degeneration [internal elastic lamina degeneration]) on H&E staining, HP. Both red 
arrows depict loss of endothelium (endothelial change-1). See Table 1 and Table 2 for histological classifications. 
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Figure 7. The same bifurcation point seen in Fig.6, this time stained with EvG. The slide shows moderate pathological features 
associated with early aneurysm formation. Example of internal elastica fragmentation (‘Reuterwall’s tear’, IELD-3). Short 
black arrow depicts flattening of IEL corrugations (IELD-2). Long black arrow depicts IEL fragmentation (‘Reuterwall’s tear’, 
IELD-3) combined with endothelial cell detachment and sub-intimal thickening/apical pad elevation (endothelial change-2A  
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Figure 6. H&E staining of the thickened arterial wall (right) in the vicinity of a macroscopic aneurysm (left). There is 
extensive inflammatory infiltration and protrusion of the vessel wall (red arrow). 

 

 

Figure 7. Severe pathological changes associated with macroscopic cerebral aneurysm formation on Silver staining: 
unruptured cerebral aneurysm (HP). There is complete absence of the media and internal elastic lamina (IELD-4) within the 

A B 
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unruptured aneurysm (A) wall, and replacement by amorphous connective tissue. Inflammatory cells are seen below the 
aneurysm (red arrow). The associated bifurcation (B) demonstrates an area of medial thickening (black arrow). The 
bifurcation B generally exhibits advanced endothelial change (endothelial change-2B) and advanced IELD (complete 
absence, IELD-4). See Table 1, 2 for histological classification, H&E = haematoxylin and eosin, HP = high power, IELD = 
internal elastica degeneration.  

 

 

Of the sub-group of 4/13 mice that died during the observation period, two brains were processed. 

Endothelial change was observed in 2/2 (endothelial change-1, internal elastic lamina degeneration-2 

in a mouse dying at Day 8/21, and endothelial change2a, internal elastic lamina degeneration-2 in a 

mouse dying at Day 6/21). One bifurcation harvested from one mouse that died in the immediate 

post-procedural period contained no abnormalities. 

Of the n=12 brains successfully processed, one mouse showed macroscopic cerebral aneurysm 

formation, with pre-aneurysmal changes seen at the bifurcation points of n=7 mice. A total of n=28 

arterial bifurcation points were harvested, showing varying degrees of degeneration and structural 

abnormalities. SAH without cerebral aneurysm was observed in n=1 brain.  This sample showed 

massive disruptive parenchymal haemorrhage with subarachnoid extension, however on microscopy 

and histopathological analysis an obvious arterial aetiology was not visualized, and this brain was 

excluded from analysis. Macroscopic cerebral aneurysm without SAH was observed in one brain. The 

endothelium in this sample exhibited primarily type 2b change, with type 2 and 3 internal elastic 

lamina degeneration in the area of the cerebral aneurysm. The cerebral aneurysm wall was notably 

thinner than the surrounding arterial wall. 

Pre-cerebral aneurysm changes were observed in n=12 bifurcations. Of these, Type I change was 

observed in n=1, Type 2a change in n=9, type 2b change in n=2 and Type 3 change (i.e. macroscopic 

cerebral aneurysm formation) in n=1. internal elastic lamina degeneration was specifically observed in 

n=8; all bifurcations with internal elastic lamina degeneration also showed endothelial change. 
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Mouse Number Endothelial Change Internal Elastic Lamina Degeneration Bifurcations seen 

1 None IELD-1 2 

2 EC-2a IELD-2 1 

 EC-2b IELD-3 1 

 None IELD-1 1 

3 None IELD-1 3 

4 None IELD-1 3 

5 EC-1 IELD-2 2 

 EC-2a IELD-3 2 

6 EC-2b IELD-3 2 

7 EC-2b IELD-3 2 

 EC-2b IELD-4 1 

 EC-3 IELD-4 1 

8 EC-2b IELD-3 1 

9 EC-1 IELD-3 1 

 EC-2a IELD-3 1 

10 EC-2a IELD-3 1 

 EC-2b IELD-3 2 

11 EC-2a IELD-3 1 

Table 4. Pathological features associated with early cerebral aneurysm formation observed. Pathological features of early 
cerebral aneurysm formation were observed in 8 of 11 (73%) brains, and in 18 of 27 (67%) bifurcations. All cerebral artery 
bifurcations with internal elastic lamina degeneration (IELD) also demonstrated endothelial change (EC). Where EC was 
absent, IELD was also absent: i.e. in 3 mice (Nos. 1, 3 and 4) no endothelial abnormalities were found amongst the 
bifurcations harvested  
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Discussion 

Prior studies have successfully incorporated systemic hypertension and intracranial elastase infusion 

to produce cerebral aneurysm formation in rodents [7, 8, 10-14].  The cerebral aneurysms formed in 

such studies have typically been rapidly produced: i.e. within a period of 2-6 weeks.  This questions 

their representativeness with regard to many, if not most, human cerebral aneurysms observed 

clinically.  The studies of Hassler [25, 53, 96-98] and others [99, 100] [101] have previously suggested 

that most cerebral aneurysms initially develop from vessels with pre-aneurysmal changes; and that, in 

many such vessels, pre-aneurysmal change leading to cerebral aneurysm leading to subarachnoid 

haemorrhage may be delayed [16, 46, 102].   

A further feature of current  models is that the sizes of the cerebral aneurysms so formed have been 

relatively large. This further questions their representativeness to human cerebral aneurysm 

pathogenesis since numerous clinical studies have shown that most cerebral aneurysms, either those 

that remain unruptured for variable periods of time, or those that present acutely with rupture and 

subarachnoid haemorrhage, are relatively small in size [23, 103].  Moreover, disparately large cerebral 

aneurysm size may also, at least in part, explain a further aberrant feature of extant murine models: 

i.e. that all exhibit a high incidence of rupture [2, 7-11].  Both ISUIA I and ISUIA II demonstrated that 

cerebral aneurysm rupture risk is correlated with aneurysm size[15] . 

We therefore sought to produce pre-aneurysmal changes, to more closely mimic the slower time 

course presumed in cerebral aneurysm development [16, 46, 102].    Such a model would therefore be 

more appropriate for the investigation of factors which either stimulate or inhibit pre-aneurysmal 

development in previously normal vessels, or which stimulate or inhibit subsequent pre-aneurysmal → 

cerebral aneurysm development (± rupture).  Extant models have hitherto not been structured to 

address each of these sequences separately.   
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The methods used in our study therefore differed slightly from those of prior studies: in particular, 

regarding both the amount, and mode, of elastase delivered.  Whilst previous studies have 

incorporated a micro-infusion pump to deliver elastase; we, by contrast, incorporated a semi-

automated dispenser and microliter syringe to manually deliver elastase into the right basal cistern.  

The efficacy of latter had been proven in our pilot study (subsequently used the control arm in our 

main study) in which we substituted methylene blue for elastase.  Furthermore, the dosage of elastase 

administration administered in our study was also at the lower limit of that formerly used by Nuki [14]. 

The manual technique used in our study removed some of the need for specialised equipment and 

training which would otherwise have been required.  

The higher doses of elastase used in prior studies[14] certainly achieved a higher incidence of cerebral 

aneurysm formation than in our study. Although Hosaka et al[10] reported a stereotactic 

elastase/Angiotensin-II mouse model of cerebral aneurysm induction female C57/BL6 mice using 

identical incubation times, stereotactic co-ordinates and elastase and Angiotensin-II dosages to our 

study, their model also incorporated renovascular hypertension and common carotid artery ligation. 

The exaggeration of the haemodynamic insult required for the initiation of such accelerated cerebral 

aneurysm pathogenesis may, as previous authors have themselves indeed acknowledged [14], ‘skip’ 

key events in the sequence [normal artery → pre-aneurysmal → cerebral aneurysm ± SAH] which may 

play a key role in clinical cases.  Notwithstanding, the dose, rate and mode of human angiotensin II 

delivered in our study (0.11µl/h, subcutaneously) conformed to that of prior studies.  

In our study, n=15/15 brains were harvested, of which 12/15 could have feasibly yielded pre-

aneurysmal or cerebral aneurysm changes (i.e. from mice which had survived beyond the total 

procedural time).  From these n=12 brains, n=28 arterial bifurcations were harvested.  Massive sub-

arachnoid haemorrhage without cerebral aneurysm formation was observed in one brain: 

unfortunately, due to massive tissue disruption, neither cerebral aneurysm, nor any bifurcations, could 

be harvested here.  One macroscopic saccular cerebral aneurysm without subarachnoid haemorrhage 
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(fig 4) was observed in one other case. Taken together, these results suggest that, despite having used 

lower doses of elastase, the sequence [normal artery → pre-aneurysmal → cerebral aneurysm ± SAH] 

may still remain accelerated.  Hypothetically, by lowering the dose of elastase further still, the 

sequence progression [normal artery → pre-aneurysmal → cerebral aneurysm ± SAH] may be further 

retarded.  

 

The role of hypertension and haemodynamic stress on cerebral vessels was first investigated by 

Forbus[99] who demonstrated haemodynamic pressure to be maximal at arterial branch points, 

correlating with the origin site of many aneurysms. This propensity to aneurysmal pathogenesis was 

attributed to small defects in the tunica media (“loci minoris resistentiae”); critically, however, Forbus 

also found many media defects without apparent cerebral aneurysm formation. Stehbens[102, 104-

106] noted medial defects to be common around the apex of arterial bifurcations, supporting the 

hypothesis that these may have been produced by greater wall stresses produced. Carmichael[100] 

proposed cerebral aneurysm formation be dependent on the combination of both a medial defect and 

a superimposed insult to the internal elastic lamina. Hassler[98] noted minor defects in all age groups, 

but major defects mostly in older adults, concluding that minor defects progress to major defects with 

age. This correlated with his other observation that micro-aneurysms (<2mm) progress to macroscopic 

aneurysms (>2mm) over a protracted time period[98]. 

 

 The ability to sense and transduce local haemodynamic forces is unique to endothelial cells [107]. 

Chronic derangement of haemodynamic forces initiates an inflammatory response resulting in 

adaptive alterations in vessel wall shape and composition[108]. These morphological alterations are 

thought to represent a critical step at the earliest stages of aneurysm formation. Using renovascular 

hypertension and common carotid artery ligation,  Jamous et al[89] induced cerebral aneurysms in a 
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rat model with a three month incubation time. Based on their findings, the authors proposed a novel 

classification of endothelial change leading to cerebral aneurysm formation (Table 1, fig 3). 

Inflammation is a known critical factor in the development of atherosclerosis[109-111] and abdominal 

aortic aneurysm formation[112-115]; however its role in human cerebral aneurysm initiation, 

development, and ultimately rupture remains to be more completely understood[7, 11, 116-120] 

 

Degeneration or disruption of the internal elastic lamina of intracranial arteries is similarly accepted to 

be a component of human aneurysm pathogenesis[121-125]. Histological analysis of cerebral 

aneurysm walls often exhibits a continuum of internal elastic lamina degeneration, ranging from 

almost intact to severely degenerate to absent[10, 14, 36, 121-124]. The aneurysm wall itself typically 

lacks an internal elastic lamina. Human studies suggest that serum elastase and collagenase levels are 

elevated in patients with cerebral aneurysms[71-74], consistent with histological studies of expression 

of collagenase and elastase activity in cerebral aneurysm tissue in both human studies and animal 

models[74, 75]. 

 

Pre-cerebral aneurysm changes were sought in our study as EC or internal elastic lamina degeneration 

at major arterial bifurcations [108, 126-134].  Compared to control mice, mice with pre-aneurysmal 

changes revealed thickened vascular walls, with endothelial and internal elastic lamina disruption at 

arterial bifurcations.  In our study, internal elastic lamina degeneration was specifically observed in 

n=8.  All bifurcations with internal elastic lamina degeneration also showed EC.  Such findings are 

consistent with previous histopathological studies of both animal-model and human cerebral 

aneurysm histopathology [1, 7, 10, 14, 36, 53, 116, 118, 135-143].  Interestingly, similar pre-

aneurysmal changes were seen in rats, with renal hypertension without elastase use (see below)[63, 

64, 88, 89]. 



41 

The peri-procedural mortality observed in our study was within previously reported limits [2, 8, 81].  

Mice were observed for 2-3 weeks prior to euthanasia: n=6 died during this interval, including n=2 

which did not survive GA. Operative times (25min and 20min) and total procedural times (30 and 25 

min) for both these mice were comparable with those of the rest of the experimental group. Autopsy 

of one of these mice revealed multiple haemorrhagic lesions at large arterial aortic branch points, in 

addition to a large intracerebral haemorrhage. No arterial bifurcations were successfully harvested 

from this mouse. Autopsy of the second mouse which died prior to recovery from anaesthesia 

revealed no obvious intracranial or systemic pathology.  One cerebral artery bifurcation was harvested 

from this mouse. Histological of this cerebral artery bifurcation did not reveal either EC or internal 

elastic lamina degeneration.  Notwithstanding, survival duration beyond the total procedural time did 

not represent an obvious factor in pre-aneurysmal development in our study.  Thus, 3/4 mice which 

died during the observation period demonstrated pre-aneurysmal changes.  By contrast, 4/9 who 

survived the observation period failed to demonstrate pre-aneurysmal changes at necropsy.  

Notwithstanding, the second mouse which died prior to emergence from anaesthesia revealed no 

obvious intracranial, nor systemic, pathology.  Whilst n=1 bifurcation was harvested from this mouse it 

did not reveal either EC or internal elastic lamina degeneration.  This suggests that a certain minimum 

time period is required following the experimental procedure for pre-aneurysmal changes to occur.   

It is possible that Angiotensin-II use may have directly caused some of the changes in the sequence 

[normal artery → pre-aneurysmal → cerebral aneurysm ± SAH] observed in our, and others, study. For 

example, Angiotensin-II is associated with various non-haemodynamic effects, such as the promotion 

of inflammation, and the induction of reactive oxygen species [7, 112, 144]. Angiotensin-II also exerts 

several direct effects potentially relevant to cerebral aneurysm pathogenesis, including stimulation of 

monocyte recruitment [145], activation of macrophages[109] and enhanced oxidative stress[110]: all 

potentially capable of contributing to cerebral aneurysm formation independent of systemic 

hypertensive stress. Angiotensin-II is also involved in “outside-in” signalling on endothelial cells [146], 

and increases the binding of various inflammatory cells to endothelium [145]: these may be 
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contributory factors towards the endothelial dysfunction that is associated with cerebral aneurysm 

initiation [146].   

 

Previous studies have therefore suggested that the non-haemodynamic effects of Angiotensin-II are a 

major causative factor in progression of lesions in murine models toward aortic arterial aneurysm 

formation [147]: notwithstanding, their relative contribution toward cerebral aneurysm pathogenesis 

is currently unknown.  The possibility that Angiotensin-II use may have directly caused some of the 

changes in the sequence [normal artery → pre-aneurysmal → cerebral aneurysm ± SAH] observed 

could be tested by using alternative methods of inducing hypertension [9, 64, 67, 88, 89, 93].  

However, as aforementioned, Jamous produced similar pre-aneurysmal changes were seen in rats, 

with renal hypertension without elastase use[88, 89].  Notwithstanding, since our model reproduced 

pre-aneurysmal and cerebral aneurysm formation, it remains valid (and retains experimental utility) 

irrespective of the precise mechanism of pre-aneurysmal or cerebral aneurysm pathogenesis. 
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Conclusion 

Evidence of pre-aneurysmal, cerebral aneurysm or SAH was observed in 69% od mice: pre-aneurysmal 

alone in 58%.  We have described a simpler model than hitherto, which is more cost effective, and 

which specifically lends itself towards studying pre-aneurysmal changes in mice. This model could be 

used to study factors which potentially advance or impair the progression pre-aneurysmal changes 

toward subsequent cerebral aneurysm formation and/or rupture. 

To our knowledge, this is the first description of stereotactic injection of elastase using a manual 

technique. The rate of administration was similar to that described in previous models using 

automated pumps; our peri-procedural mortality was also within reported limits. Our method may 

represent an equally efficacious and potentially more cost-effective method of stereotactic injection 

of substrate, without the requirement for specialised equipment.  

Using lower dose elastase solution than previously employed we developed a model of early CA 

pathology. Our model demonstrated that the spectrum of known early cerebral aneurysm pathology 

can be created at multiple bifurcations in mice, with the degree of endothelial change appearing to 

correlate with severity of degeneration of the internal elastic lamina. This model may permit the study 

of factors which could potentially advance or slow the progression of cerebral aneurysm formation.  

The use and further development of this model may serve as a simple, low-cost and reproducible 

method of induction pf pre-aneurysmal change in future studies using various inhibitors, knockout or 

transgenic mice to test the roles of specific pathways in aneurysm pathogenesis. 

 

Although requiring further refinement, or model offers an opportunity to study the molecular 

mechanisms of cerebral aneurysm pathogenesis. Future development of these models may result in 

further identification and definition of pathways of cerebral aneurysm formation, Screening of specific 
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molecular targets may become feasible and practical, allowing the development of pharmacological 

agents capable of modification of the processes leading to cerebral aneurysm formation and rupture. 

By building on previous studies, we have described a small animal model of cerebral aneurysm 

induction, which validates previous works and appears to recapitulate the key pathological processes 

leading to cerebral aneurysm induction and formation in humans. 
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Appendix: 

Observations and Technical Considerations 

Measurement of blood pressure 

One of the requirements of this model was induction and maintenance of a hypertensive state to 

facilitate pre-aneurysmal induction. The method of achieving this aim (placement of a subcutaneous 

micro-osmotic pump delivering a constant dose of Angiotensin II) has been described. 

Systolic, diastolic and mean blood pressure (BP) was measured in all mice undergoing the elastase 

protocol on three occasions; pre-operatively, pre-euthanasia, and at an interim point approximately 

halfway through the observation period. BP was measured using the non-invasive tail cuff method. 

This involves utilisation of a tail-cuff placed on the tail to occlude blood flow. Upon deflation, a second 

sensor placed distal to the cuff monitors the blood pressure. The distal sensor measures BP by 

detecting the first appearance of the pulse whilst deflating or disappearance of the pulse on inflation 

of the cuff. This may be achieved via light emitting technology (i.e. use of a light-based/LED sensor) 

(photoplethysmography), use of a piezoelectric current (piezoplethysmography), or by use of a 

specifically designed differential pressure transducer to measure blood volume in the tail. This Volume 

Pressure Recording method utilises a volumetric analysis of both blood flow and volume in the tail. It 

has a number of distinct advantages over photoplethysmography or piezoplethysmography; it relies 

upon a volumetric method of measuring blood flow so is not prone to measurement artefact related 

to ambient light. It is independent of the animal’s skin pigmentation.  In addition, movement artefact 

is greatly reduced.  

In our study, all measurements were taken via tail-cuff plethysmography using a volume pressure 

plethysmograper and infra-red warming blanket (Kent Scientific).  This method was chosen for a 

number of reasons. Its accuracy and dependability when compared with invasive methods has 

previously been validated in BP measurement mice[148] and has been used successfully in previously 

described rodent models of CA formation[7, 8, 14, 63, 64, 88, 90, 149-151].  It does not require a 
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surgical procedure or insertion of an invasive pressure-monitoring device and is more cost effective 

than more invasive methods. In addition, it is the preferred method of BP measurement in rodents at 

the JCU VBU.  

Standard operating protocol of BP measurement in mice was followed. Initial attempts to measure BP 

under isoflurane anaesthesia were unsuccessful, therefore an awake method was used.  Animals were 

restrained using a proprietary rodent holder incorporating a darkened nose cone, allowing constant 

observation of the mouse whilst simultaneously limiting the animal’s view and creating a low-stress 

environment. The mouse’s muzzle was allowed to protrude through the front of the nose cone to 

facilitate breathing. The tail of the mouse was fully extended through the rear hatch opening of the 

holder.  A brief period of acclimatisation approximating 15 minutes allowed for each mouse prior to 

obtaining BP measurements. During BP measurement, the holder was rested on an infra-red warming 

blanket to maintain proper core body temperature. All measurements were taken at room 

temperature as per standard operating procedures. 

A total of ten readings were recorded for each mouse, with both the highest and lowest recorded 

measurements omitted prior to statistical analysis. 

Although this method has been validated in mice as small as 8 gm, in our study difficulties were 

encountered in obtaining consistent, consecutive BP measurements in mice weighing less than 24g. 

This typically manifested as a requirement for multiple insufflation/deflation cycles of the tail cuff to 

obtain a single BP value. Although initially ascribed to a lower tail blood volume secondary to the 

stress experienced by the mice during the procedure, similar difficulties in obtaining BP were 

encountered in otherwise outwardly calm mice. In addition, these issues were more consistently 

noted in lighter mice (i.e. those weighing below the median weight) and were encountered during 

preoperative, interim and pre-euthanasia BP measurements. 
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Thus, it could be inferred from this data that the size of the mouse was a determining factor in 

successful BP measurement. Although measurement of BP via the tail-cuff method using the Ceva 

system has been validated in low weight juvenile mice, our experience with this system is that more 

rapid measurements are obtained with mice over 25 g. 
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Angiotensin-II induced hypertension 

Hypertension was induced via constant subcutaneous infusion of a weight-determined dose of 

Angiotensin-II via an osmotic minipump. This method was selected as it is routinely used in the JCU 

VBU for this purpose. Angiotensin-II dosage was determined in a weight-dependent manner (see 

appendix for table). This necessitated accurate weighing of the mouse, the empty micro-osmotic 

pump, the volume of angiotensin to be placed in the pump, and the post-fill pump to ensure accuracy 

of the angiotensin-II dose. Although technically straightforward, the time taken to achieve this for 

each cohort of five mice added considerably to the set-up time of the procedure. Obtaining an 

accurate weight for each mouse initially proved problematic due to the activity of the animals; this 

was best facilitated by weighing the mouse after very brief spell (<30 sec) in the anaesthesia induction 

chamber. Although not sufficient to induce full anaesthesia, this method sufficiently sedated the 

mouse to allow placement on a scale and an accurate weight to be obtained. The mouse was then 

allowed to recover from this prior to induction of full anaesthesia and placement in the stereotactic 

apparatus.  Due to the time taken to weigh and fill the Alzet pump with angiotensin-II (the accuracy of 

the dosage of which was dependent on obtaining an accurate weight of the mouse into which it was 

to be implanted), this method was felt preferable to a prolonged period under full anaesthesia to 

which the mouse would have been subjected. 

The method by which the Alzet micro-osmotic pump was implanted has been described in a previous 

chapter. Previously described models describe placement of the Alzet pump via a 1cm, parasagittal 

incision 1cm cephalad from the base of the tail, and fashioning a small subcutaneous pocket between 

the skin and muscle layers using a pair of forceps [8]. Our method of placement differed slightly in that 

the incision used for subcutaneous placement of the was made at a point remote from the eventual 

placement site of the pump (i.e. intrascapular, with the pump placed just cephalad to the base of the 

tail. To create a pocket, the skin at the caudad end of the incision was grasped with forceps and tented 

away from the underlying muscle layers. A small, blunt tipped scissors was then inserted and opened 
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to create a subcutaneous defect whilst leaving the underlying pannniculous carnosus and vascular bed 

intact. The pump was then inserted and using fingers gently manipulated subcutaneously to its final 

position. This aspect of the procedure took no more than 5 minutes for any mouse. Wounds were 

checked on a twice daily basis; all healed in a satisfactory manner within 3-4 days and appeared well 

tolerated by the mouse. No mouse exhibited signs of stress or irritation at the wound site. Unexpected 

explantation of the pump due to wound dehiscence is a recognised complication of this aspect of the 

procedure, however this was not observed in our study. 

The use of a weight determined dose of Angiotensin-II via constant infusion leads to a measurable rise 

in blood pressure as early as one week, and may maintain a hypertensive state for the duration of the 

infusion, typically up to 28 days[8, 80, 144, 152-154]. In addition to its hypertensive effects, 

angiotensin-II infusion can induce a number of non-haemodynamic effects such as induction of ROS 

and promotion of inflammation[7, 8, 80, 145]. In addition, Angiotensin-II may significantly increase 

adhesion of monocytes to endothelium, probably via Angiotensin-II type II receptors[145]. Whether 

this factor in and of itself may facilitate pre-aneurysmal changes by augmenting the 

monocyte/endothelial interaction required for cerebral aneurysm induction remains uncertain. 

Although pharmacological hypertension may also be induced via alternative methods such as 

norepinephrine infusion or dietary DOCA administration, the overall hypertensive effect of these 

methods tends to be of a lesser magnitude and of less significance over time than that induced by 

Angiotensin-II infusion. The experience of the VBU is that Angiotensin-II infusion induced hypertension 

via the subcutaneous method tends to consistent, reproducible and sustained for the duration of the 

project. 
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Stereotactic injection of elastase - Validation of stereotactic co-ordinates 

The method by which the stereotactic injection of elastase was performed has been described in 

previous chapters. Briefly, a small right sided cranial burr-hole was made using a 2mm fine-tipped burr 

attached to an electric drill at a point 1.2mm rostral and 0.7mm lateral right of the bregma.  These co-

ordinates were obtained from both the Mouse Brain Atlas and had been validated by a previously 

described model. In a pilot study using these co-ordinates, Hosaka et al[10] reported a 100% incidence 

of successful infusion of bromophenol blue into the right basal cisterns surrounding the Circle of Willis 

(n=10). This compared favourably with the authors’ alternative co-ordinates (1.2mm rostral and 

1.0mm lateral of bregma) and those of previously described models (2.5mm posterior to bregma and 

1.0mm lateral to midline)[14], which resulted in successful administration of substrate to the basal 

cisterns in 30% and 60% respectively. These results were broadly in keeping with our pilot study to 

assess the feasibility of stereotactic injection of a substrate (methylene blue) into the cerebrospinal 

fluid space using the co-ordinates described by Nuki et al (i.e. 2.5mm posterior to bregma, 1.0mm 

lateral of Bregma and 5.0mm ventral to the skull surface), in which we demonstrated a 60% incidence 

of successful administration of dye to the cerebrospinal fluid space (n=3/5). A notable consideration in 

using these co-ordinates, however, was an apparent variability in the accuracy of needle placement 

when using these co-ordinates which appeared dependent on the operator and age of the mouse. To 

account for this, the authors advised a “series of test injections using dye… was extremely important 

to ensure the correct placement of the needle tip at the right basal cistern” and “the co-ordinates 

described (we) described in the original paper[14] should be regarded as a guideline”[8]. However, 

their recommendation that “…at least 10 test injections are needed before each operator establishes 

the appropriate coordinates that yield stable aneurysm induction”, was neither financially or ethically 

feasible for our model. Although our pilot study used the co-ordinates described by Nuki et al, for the 

purposes of our elastase study stereotactic co-ordinates with the highest reported incidence of 

successful administration of substrate to the cerebrospinal fluid spaces surrounding the Circle of Willis 

were used. 
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Depth of needle placement was likewise a critical factor in ensuring successful administration of 

substrate; too deep and the substrate would not be able to leave the needle due to physical 

obstruction at the skull base, whereas too shallow a placement ran the risk of elastase injection into 

the brain parenchyma and subsequent induction of an intracerebral haemorrhage. Even when the 

needle had breached the brain parenchyma, and in the subarachnoid space, injection of elastase when 

the tip was too close to the brain surface often resulted in diffuse haemorrhage from the surface of 

the brain as reported in previous models[8]. To minimise the risk of this occurrence, and with 

reference to cross sectional imaging of the Mouse Brain Atlas and co-ordinates and technical advice 

provided by previous models, an initial depth of 5mm of the blunt-tipped needle ventral to the brain 

parenchyma was achieved, then depth of placement was slowly increased in 0.1mm increments until 

slight resistance to further advancement due to contact with the skull base was encountered. This 

typically resulted in a slight bowing of the 26G needle, visible to the naked eye. At this point, and again 

using 0.1mm increments, the needle tip was withdrawn until the needle appeared straight, then 

withdrawn by a further 0.3mm immediately prior to elastase infusion. The average and median depths 

of needle tip at point of resistance were 4.93 and 5.0mm respectively. Although these measurements 

were not validated using dye, and further test or calibration procedures performed, 13 of our cohort 

of 15 mice survived the procedure, and no stigmata of needle misplacement (collagenase-induced 

intraparenchymal haematoma, extensive haemorrhage in the subdural space, etc.) felt to be 

attributable to the procedure were demonstrated on necropsy of these 13 mice. In addition, no 

breach of the skull base due to the needle tip was seen on dissection under loupe magnification or 

light microscopy. 

 Of note, however, of the two mice who died in the peri-operative period, needle tip placement was to 

a depth of 6.1mm and 5.0mm respectively. In the case of the mouse with the deeper tip placement, 

this would suggest that intraparenchymal injection of elastase was not the cause of periprocedural 

mortality. The depth of tip placement of the other mouse was at the median point of the other 13 

mice, all of which tolerated the injection without incident.  
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Method of Elastase infusion 

In previously described models, the stereotactic injection of substrate has been performed using a 

narrow calibre needle (usually a 26G Hamilton syringe Model 701 with a blunt tip) and an ultramicro-

infusion pump, typically at a rate of between 0.2-2ul/min[7, 8, 14, 81]. Our laboratory did not have 

access to this equipment; therefore an alternative method of injection of elastase was conceived. 

A semi-automated repeating dispenser (Model PB600-1, Hamilton Instruments, Nevada, LV, USA) was 

attached to the stereotactic apparatus via a detachable arm. The PB600 dispenser is a versatile, semi-

automated dispenser designed to deliver liquid volumes of 0.5-50uL repeatedly up to 50 times. The 

dispenser is designed to achieve this by mechanically advancing the syringe plunger 0.047” with each 

depression of the dispenser button. Based on a 6cm scale (i.e. the length of the Hamilton syringe 

barrel at full volume), this action advances a fluid column within the syringe 2% of the syringe’s 

volume with each click (i.e. 1/50 the total volume of an attached syringe was dispensed with each 

push of the dispenser button). Although designed for hand-held use, we found that the dispenser was 

easily incorporated into the stereotactic frame. A 10ul Hamilton blunt tipped microliter syringe (Model 

701N, Hamilton Instruments, Nevada, LV, USA) was installed into the dispenser, and the whole 

apparatus attached to the stereotactic apparatus. A 10ul syringe was chosen as not only was this the 

desired volume of elastase to be infused in our model, but the dispensing rate of 0.2uL per click also 

facilitated easy manual control of the rate of infusion to within the limits reported in previous models 

(i.e. 0.2-2uL/min) 

Verification of the needle tip location in response to adjustment of the stereotactic co-ordinates was 

confirmed using graph paper prior to commencement of the project. Once the burr-hole had been 

performed, the drill was removed from the stereotactic frame. The base of the burr-hole was 

inspected to confirm complete breach of the calvarium, and the dura carefully punctured using a 
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sharp tipped 26G needle. The dispenser/needle apparatus was at this point attached to the system, 

and the desired co-ordinates for injection attained by zeroing the needle tip placement relative to the 

bregma and positioning the needle along the XY axis in the desired location (i.e. 1.2mm rostral and 

0.7mm lateral right of bregma). This invariably resulted in the needle tip being placed in the centre of 

the burr-hole prior to intracranial advancement. The location of the needle tip was then zeroed on the 

brain surface prior to ventral advancement as described. Once satisfactory intracranial placement of 

the needle tip had been achieved as described above, 10ul of Elastase solution (1.0u/ml) was then 

injected manually into the right basal cistern at a rate of 2ul/min over a period of 5 minutes (i.e. 0.2uL 

per click at six second intervals). Upon completion of the infusion, the needle was slowly withdrawn, 

and the brain surface carefully inspected for signs of trauma or haemorrhage. The cranial wound was 

then closed in a single layer under loupe magnification with a clear monofilament suture as described 

in the operative chapter. 

The volume of elastase infused with each click was dependent on the length of the plunger arm 

relative to the index rod of the dispenser. To ensure accuracy, this was calibrated when each syringe 

was inserted into the device. Calibration was a quick and straightforward procedure; the plunger 

assembly was retracted fully, then the dispenser button repeatedly depressed, counting the number 

of clicks, until the index rod no longer advanced. The index rod/plunger lengths were then adjusted 

appropriately, and the test repeated until 50 dispenses was achieved. Calibration took between 2-4 

minutes approximately for each procedure. As a new syringe was used for each mouse per cohort, this 

was performed prior to induction of anaesthesia for each mouse to ensure any impact on operative 

duration was minimised. 
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