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A B S T R A C T   

Coral bleaching, cyclones, outbreaks of crown-of-thorns seastar, and reduced water quality (WQ) threaten the 
health and resilience of coral reefs. The cumulative impacts from multiple acute and chronic stressors on “reef 
State” (i.e., total coral cover) and “reef Performance” (i.e., the deviation from expected rate of total coral cover 
increase) have rarely been assessed simultaneously, despite their management relevance. We evaluated the 
dynamics of coral cover (total and per morphological groups) in the Central and Southern Great Barrier Reef over 
25 years, and identified and compared the main environmental drivers of State and Performance at the reef level 
(i.e. based on total coral cover) and per coral group. Using a combination of 25 environmental metrics that 
consider both the frequency and magnitude of impacts and their lagged effects, we find that the stressors that 
correlate with State differed from those correlating with Performance. Importantly, we demonstrate that WQ 
metrics better predict Performance than State. Further, inter-annual dynamics in WQ (here available for a subset 
of the data) improved the explanatory power of WQ metrics on Performance over long-term WQ averages. The 
lagged effects of cumulative acute stressors, and to a lesser extent poor water quality, correlated negatively with 
the Performance of some but not all coral groups. Tabular Acropora and branching non-Acropora were the most 
affected by water quality demonstrating that group-specific approaches aid in the interpretation of monitoring 
data and can be crucial for the detection of the impact of chronic pressures. We highlight the complexity of coral 
reef dynamics and the need of evaluating Performance metrics in order to prioritise local management 
interventions.   

1. Introduction 

Coral reefs in all tropical oceans are under pressure from a variety of 
local (e.g., runoff, fishing) and global (global warming, cyclones) pres-
sures leading to progressive coral loss, the so-called ‘coral reef crisis’ 
(Pandolfi et al., 2003). Understanding cumulative impacts from multiple 
stressors is critical for successful management of coral reefs (Anthony 
et al., 2013). Although cumulative impacts have been identified as key 
drivers of reef health, there are still large knowledge gaps in our un-
derstanding of both the effects of individual stressors and the interplay 
of local and global stressors on the health and resilience of reef 

ecosystems (Ban et al., 2014; Harborne et al., 2017). Coral cover as a 
proxy for State is the most common metric used to evaluate reef health, 
however reef resilience largely depends on reef recovery potential after 
disturbance (Osborne et al., 2017). Measuring how reef recovery com-
pares with the expected reef growth potential (i.e., expected in the 
absence of stressors) can provide information about changes in Perfor-
mance over time. The impact of multiple stressors on both indicators of 
reef health, measured as State and Performance, has rarely been assessed 
simultaneously (Thompson et al., 2020). 

The frequency and magnitude of stressors are critical for evaluating 
impacts on ecosystem responses (Connell et al., 1997; Hall et al., 2012; 
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Mellin et al., 2019b). Contrasting sensitivities of coral communities 
further contribute to variation in: i) magnitude of impacts (Madin et al., 
2014; Hughes et al., 2018b; Mellin et al., 2019b), ii) coral recovery 
potential (Osborne et al., 2017; Ortiz et al., 2018; Mellin et al., 2019a) 
and iii) the interactions among global-acute stressors (Ban et al., 2014; 
Vercelloni et al., 2017) and local stressors (Fabricius et al., 2010; 
Oxenford and Vallès, 2016; Sully and Woesik, 2020; Wooldridge and 
Done, 2009). The increased frequency of intense cyclones and mass 
bleaching events due to heat stress are also threatening the persistence 
of coral reef communities (Emanuel, 2005; Hughes et al., 2018a). Spe-
cifically, on the Great Barrier Reef (GBR), the world’s largest coral reef 
ecosystem and a World Heritage site these two acute stressors, as well as 
the outbreaks of crown-of-thorns starfish (CoTS) have caused simulta-
neously massive impacts along and across the entire extent of the 
ecosystem. However, these impacts vary spatially and temporally 
(Osborne et al., 2011; Mellin et al., 2019b) due to variations in impact 
intensity, spatial extent, and frequency (e.g. De’ath et al., 2012; Puoti-
nen et al., 2016, 2020). The overall decline in total coral cover in the 
GBR Marine Park due to multiple stressors has been well documented 
(De’ath et al., 2012). However, cumulative impacts on the Performance 
of specific coral groups has been less explored. 

Measuring the contribution of water quality (WQ) to the State and 
Performance of the GBR at a regional scale has proven challenging, with 
studies reporting contrasting conclusions regarding the relative impor-
tance of different WQ parameters on the GBR (Lam et al., 2018; Cec-
carelli et al., 2019; MacNeil et al., 2019; Mellin et al., 2019a). Reduced 
water quality in inshore areas of the GBR Marine Park is a result of the 
increased loads of fine sediment, nutrients, and pesticides discharged 
from land use changes in the GBR catchment (Brodie and Fabricius, 
2008; Kroon et al., 2012). Specifically, terrestrially-sourced dissolved 
inorganic nitrogen (DIN) may be linked to increased frequency of CoTS 
through proliferation of phytoplankton as larval food (Fabricius et al., 
2010; Wooldridge and Brodie, 2015; Brodie et al., 2017), and to 
increased susceptibility of scleractinian coral to bleaching and disease 
prevalence (Wooldridge and Done, 2009; Wiedenmann et al., 2013; 
Morris et al., 2019). River runoff reduces WQ by affecting parameters 
such as light availability and salinity, which are drivers of reef health 
(De’ath and Fabricius, 2008; Fabricius et al., 2013, 2016). While there is 
empirical data linking poor WQ to decreasing coral health (Berkelmans 
et al., 2012; Humanes et al., 2017a, 2017b), the link to reductions of 
coral cover on the GBR is less clear (Fabricius et al., 2012). For example, 
while the abundance of juvenile corals is negatively affected by in-
creases in Chlorophyll-a and total suspended solids, adult populations 
are unaffected (Thompson et al., 2014). In addition, challenges for 
evaluating WQ include the availability of data at relevant spatial and 
temporal scales, the use of different metrics, and the fact that multiple 
WQ variables are highly correlated with each other. As a result, the ef-
fect of WQ on the GBR has often been assessed using proxies such as 
Secchi depth (Lam et al., 2018) or a single compound metric (MacNeil 
et al., 2019; Mellin et al., 2019a). However, because impacts likely differ 
among taxonomic groups (De’ath and Fabricius, 2008; Fabricius et al., 
2012) given differences in traits such as growth rate, depth range, and 
colony morphology among others (Madin et al., 2016) the evaluation of 
a single compound WQ variable may be of limited use to identify the 
most likely mechanisms of regional coral degradation. Assessment of 
impacts from specific WQ variables aids with identification of key 
environmental parameters for monitoring and targeted management. 

Here, we applied a comprehensive approach to improve our under-
standing of cumulative impacts of multiple stressors on reef ecosystems 
by using state-of-the-art data characterizing the abiotic environment 
and disturbance regime from two regions of the GBR. We combined i) 
25 years of coral cover data evaluated at the level of four morphologi-
cally different coral groups (i.e., Acropora tabular, Acropora branching, 
other branching corals, and massive/submassive/encrusting corals), ii) 
the exposure of 122 reefs to acute disturbances using intensity and fre-
quency metrics and iii) multiple environmental drivers and indicators of 

water quality. Importantly, we compare cumulative impacts of acute 
disturbances and WQ on two reef metrics: State (i.e., coral cover) and 
Performance (an index based on growth model predictions introduced by 
Thompson et al., (2020)). We assessed these responses separately on the 
total coral community and per each coral group. We specifically assess 
Acroporids (tabular vs branching) because they are among the most 
sensitive species to the impacts of coral bleaching (Hughes et al., 
2018b), cyclones (Adjeroud et al., 2009) and CoTS (Pratchett et al., 
2017). 

Our study aimed to assess 1) whether Performance is a better indi-
cator of cumulative impacts than the commonly used State metric or 
whether both metrics together can provide a more meaningful measure 
of impacts from multiple stressors and 2) whether divergent responses to 
multiple stressors by different coral groups are being masked, when 
metrics encompass the total coral community (as most frequently done 
for the GBR). We also explicitly test the importance of improved tem-
poral resolution in WQ data by comparing models with long-term av-
erages vs. yearly WQ data which at the scale of individual reefs is often 
limited for long-term studies. Considering two indicators of reef health 
(State and Performance), and many possible combinations of stressors 
(acute + several metrics describing different aspects of water quality), 
we identify and quantify the contribution of stressors that jointly have 
the best explanatory value for the State and Performance of GBR reefs, to 
inform better targeted management options. 

2. Methods 

2.1. Reef responses 

The impact of multiple stressors on corals was evaluated using two 
reef metrics: ‘State’ i.e., observed coral cover, and ‘Performance’, an 
index reflecting deviation from expected change in cover provided no 
acute disturbances occurred. Absolute percentage coral cover data were 
obtained on an annual or biannual basis for 122 reefs (335 reef sites) by 
the AIMS Long-Term Monitoring Program (LTMP) and Marine Moni-
toring Program (MMP) between 1992 and 2017. Reef specific time series 
vary in length depending on the starting date of monitoring programs. 
Coral cover was estimated at 5–9 m depth from replicated permanent 
photo- and video belt transects at each site using photo-point intercept 
methods (see Abdo et al., 2004; Jonker et al., 2008 for methods). Total 
coral cover and cover of four specific coral groupings, namely Acropora 
tabular, Acropora branching, other (non-Acropora) branching, and non- 
Acropora massive/submassive and encrusting species (MSE) were used 
for this study. We identified the most common taxa which were then 
grouped based on taxonomy and colony morphology (relevant for 
growth rate estimates). Free-living growth forms and foliose species 
with low abundance were only included in total coral cover estimates 
(Table S1). Reefs were separated in two main regions for analyses: 
Central [16–21◦S] and South [21–25◦S] GBR. 

Here “Performance” is interpreted as an index of reef functioning that 
evaluates, within each region (Central and South), the observed State (i. 
e. for total coral cover and that of each coral group) relative to the ex-
pected State based on model predicted rates of coral cover increase 
(Thompson et al., 2020). Predicted rates of coral cover increase where 
derived by fitting Bayesian Gompertz equations to a subset of the 
monitoring time-series between 1992 and 2001. The same form of 
equation was applied for each coral group: 

lnCGroupt=rCGroup+lnCGroupt− 1+
(
− rCGroup/lnK

)
×ln(HCt− 1+SCt− 1)+ε  

where, CGroupt is the group-specific cover at time t, SC = soft corals, HC 
= all hard corals and K is the community size at equilibrium (100 – the 
cover of loose silt and sand substrate). Prior to model fitting, the 
observed changes in coral cover at each reef were standardised to 1 year 
intervals (i.e. 365 days) since the previous observation to account for 
variability in the time spanned between consecutive surveys. 
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Observations directly following a known acute disturbance were 
excluded, as per Thompson and Dolman (2010). The use of pre-2002 
data for model parameterization was based on previous work showing 
large reductions in GBR reef recovery rates after the mass bleaching 
event that took place in 2002 (Osborne et al., 2017; Ortiz et al., 2018). 
This approach allowed us to retain enough data to include in the models 
assessing impacts on Performance because only years not used in the 
parameterisation of expected cover (i.e., from 2002 onwards) and with 
no acute disturbance were used for modelling Performance (Central =
885 observations, South = 747 observations). Importantly, while only a 
small portion of inshore reefs were sampled during the early part of the 
study period (Central = 330 observations, South = 311 observations) we 
did not find any bias in the calculation of Performance due to shelf po-
sition that could limit the interpretation of results (Fig. S1). 

Specific modelled rates of coral cover increase for each coral group 
within regions were estimated for each site using the observed coral 
cover in year x to calculate the expected coral cover in year x + 1 to 
obtain the group-specific expected coral cover over the evaluated 
period. For total Performance (i.e., including all surveyed coral species), 
a separate parameterisation of the Gompertz model was obtained 
differentiating the rates of coral cover increase for Acroporidae vs. all 
other hard coral families, which were then combined for predicting the 
total cover population growth rate (as per Osborne et al., 2017; 
Thompson et al., 2020). The location of the observed coral cover relative 
to the distribution of expected cover was used to scale reef Performance 
for the total coral community and per coral group using a quantitative 
score system (0–1) (as per Thompson et al., 2020, Table 1). Due to low 
growth rates for MSE, the distribution of expected changes in cover for 
this group had a low median and narrow range, meaning that the rela-
tive variability in scores due to sampling error rather than change is 
higher for this group. To reduce variability in scores for MSE the 
thresholds for scoring where broadened (Table 1). For years where there 
was no survey, each reef was scored based on the mean score value of the 
previous year(s) (lag-1 or lag-2 if necessary), i.e. assumes consistent 
growth since the last observation. 

2.2. Acute disturbance data 

Temporally and spatially explicit acute disturbance data was either 
collated from existing sources or generated for this study (Table 2). 
Metrics of acute disturbances include measures of the magnitude and 
frequency (i.e. presence/absence) of exposure. CoTS densities were 
collected along the coral cover transects (MMP) and during AIMS manta- 
tow surveys (LTMP reefs). Data from each survey technique was com-
bined by standardising transect CoTS densities to manta tow area and 
correcting for sampling bias due to higher detectability (by a factor of 
9.3) on transects compared to manta tows (AIMS, unpublished data). To 

predict CoTS on reefs and years with no survey data, we used spatio- 
temporal Inverse Distance Weighting analysis with the function idwST 
from the R-package geosptdb which considers the value of a point from 
the weighted (with power value = 2) averages of values of the nearest 
neighbours (n = 3) in terms of the spatio-temporal locations (time factor 
= 1) (Melo and Melo 2015). Frequency of CoTS outbreaks was deter-
mined as a factor additional to CoTS density, with an outbreak defined 
as CoTS densities > 0.22 individuals per tow (Moran and De’Ath 1992). 

Site-level frequency of storms and bleaching-risk events were 
derived from GBR-wide models of cyclone and heat stress (Degree 
Heating Week, DHW) exposure as presence/absence data (Table 2). 
GBR-wide model predictions may not capture disturbance observed at 
the scale of sites, for what frequency data was adjusted with field ob-
servations to better represent true disturbances. For example, cyclone 
exposure which measures hours of damaging waves based on wave 
height thresholds (Puotinen et al., 2016) can sometimes understimate 
the true wave climate when swell waves track beyond the storm or non- 
cyclone winds help build waves. ‘Frequency of storm impacts’ therefore 
includes the AIMS in situ observation of storms as agents of coral mor-
tality that were not captured in cyclone layers. Frequency of bleaching 
or bleaching-risk mortality events was considered for DHW above 3 
(Hughes et al., 2018b), but because satellite-derived data may fail in 
capturing in situ conditions and coral bleaching can also be caused by 
other environmental stressors, our bleaching-risk metric was com-
plemented by AIMS in situ records of bleaching causing coral mortality 
even at DHW below 3. 

Exposure to acute disturbances was assigned to each reef site and 
year relative to the date of benthic surveys. If the disturbance occurred 
before the survey on a given year, that disturbance was assigned to the 
year of the survey; if the disturbance occurred after the survey that same 
year, the disturbance was assigned to the following year. The frequency 
of each acute disturbance and its cumulative lagged effects were eval-
uated using windows of 1, 3 or 5 years (Table 2). Time windows were 
chosen given the average temporal gap between consecutive surveys for 
a given reef and the availability of historical data for testing lagged ef-
fects. Cumulative effects of all disturbances combined (i.e., CoTS out-
breaks + storms + bleaching) were also evaluated. The rationale for this 
metric is to represent the combined effects of recurrent acute distur-
bances and the critical role of recent history for the State and Perfor-
mance of coral reefs. 

2.3. Environmental and local disturbance data 

Thresholds of water quality that correlate to negative impact on 
corals may depend on the time window evaluated (i.e., annual vs. sea-
sonal average) (De’ath and Fabricius, 2008). Therefore, we focused on 
the WQ environment associated with the wet-season (i.e., Dec-April) to 
better assess the influence of pollutants from catchment run-off and its 
importance in predicting State and Performance at the scale of GBR re-
gions (Fig. 1). The selected WQ variables (Table 2) are known to have a 
direct and strong effect on coral health and have been targeted for 
management (Brodie et al., 2016). For example, Chlorophyll-a, provides 
an estimate of phytoplankton biomass associated to river discharge 
(Brodie et al 2016). Reductions in coral recruitment and loss of species 
diversity have been associated with elevated sedimentation and eutro-
phication whereas light reduction from turbidity reduces calcification 
and shifts in coral community structure (Fabricius, 2005). Salinity was 
represented as a cumulative index based on the number of days of 
exposure to low (<30 PSU) salinity by adding the salinity units below 30 
for every day that salinity was below this threshold (i.e., 

∑
(30 – 

salinity) × days) following Berkelmans et al., (2012) and Brinkman 
et al., (unpublished data). Metrics of environmental DIN are likely poor 
representatives of terrestrially-sourced DIN as DIN is rapidly 
bio-assimilated (Brodie et al., 2016). Therefore, we explored an addi-
tional metric of nutrients, river DIN (as per Wolff et al., 2018), which 
reflects the total river DIN load that enters the system in runoff and 

Table 1 
Criteria to scale Performance based on the location of observed cover relative to 
the distribution of expected cover (based on Thompson et al. 2020). MSE =
massive/submassive/encrusting corals. Upper and lower boundaries include 
95% of the distribution of predicted changes in cover.  

Performance score Observed cover change between surveys 

Better than 
expected 

1 Greater than double (or triple for MSE) the upper 
boundary of expected distribution 

0.9 At double (or triple for MSE) the upper boundary of 
expected change 

0.8 Between upper and double (or triple for MSE) the upper 
boundary of expected change 0.7 

Expected 0.6 Equal to upper boundary of expected change 
0.5 At the median of expected change 
0.4 Equal to lower boundary of expected change 

Worse than 
expected 

0.3 Below lower boundary of expected change 
0.2 
0.1 No change 
0 Decline  
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reaches each reef in any form (Fig. 1). River DIN is based on the yearly 
(wet-season) volume of discharge of all the rivers (from 1992 to 2017) 
that influences each reef based on circulation models and estimated DIN 
concentrations at each river mouth (Wolff et al., 2018) and it is the only 
WQ metric used here with yearly data available throughout the whole 
time-series (Table 2). Minimum distance to the coast (selected among 
other distance metrics based on correlation coefficients, Fig. S2) ac-
counts for inherent geomorphological characteristics that may affect the 
reef response to disturbances. Categorization of reef management status 
accounts for the relative importance of fishing management in 
explaining State and Performance (Table 2). 

2.4. Statistical analyses 

The relative importance of multiple stressors on the State and Per-
formance of the GBR was analysed separately per coral group within 
each region (i.e., 5 coral groups × 2 regions × 2 response metrics = 20 
models). Two sets of data were considered for analyses: The first set 
which includes long-term wet-season averages for most WQ metrics 
except river DIN, was used for modelling State (from 1992 to 2017) and 
Performance (from 2002 to 2017) (Table 1, Fig. 1). The second set which 
includes yearly data for all WQ variables was only used for modelling 
Performance from 2010 to 2017 (Table 1). This shorter dataset consisted 
in 123 and 117 observations for Central and Southern GBR respectively. 
The intention of this set of models was to test the potential limitations in 

Table 2 
Summary of acute disturbances and environmental variables selected for modelling. Shaded columns indicate the years of available data. Metric descriptions 
correspond to each available (i.e., shaded) year. In the absence of yearly WQ data (i.e., non-shaded years), long-term averages were used for the first set of analyses 
(1992–2017). Yearly data for all drivers was used for the second set of analyses (2010–2017).  

Fig. 1. Spatial variability in WQ metrics. Values represent reef-level long-term means from 2010 to 2017 except for River DIN available from 1992 to 2017. 
Chlorophyll a (mg m− 3 Chl a), Salinity Index (days below optima), Fine suspended sediments (kg m− 3) and environmental DIN (mg m− 3) were extracted at 5 m depth 
from GBR4 eReefs models. PAR (mol photons m− 2 d− 1) corresponds to light at 8 m depth based on Magno-Canto et al. (2019). River DIN (mg m− 3) represents the 
total concentration of N derived from river discharge DIN (based on Wolff et al. 2018). Reef location per region indicated in top right inset map. Some scales are 
transformed for visualization. 
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evaluating the relative importance of WQ metrics for Performance in 
long-term cumulative impact assessments, where year to year variability 
in environmental data was often lacking. Models comparing WQ data 
were restricted to the same period (i.e. 2010–2017). 

We used a full-subset model selection approach that allows testing all 
possible combinations of the predictor variables with generalised addi-
tive mixed models (GAMMS) (Fisher et al., 2018). State and Performance 
were modelled independently for each coral group and region due to the 
strong regional differences in disturbance patterns and water quality. 
Site-level (the lowest replication unit) State was modelled as absolute 
proportional cover of each coral group. Both State and Performance 
metrics were bounded between > 0 and < 1 and fitted with Beta dis-
tribution. We identified the predictors considered for modelling based 
on the correlation coefficients among all variables (Fig. S2). A conser-
vative correlation value of 0.7 (Fisher et al., 2018) was chosen above 
which the most meaningful variable of each pair was selected based on 
ecological knowledge about their likely effects of coral population dy-
namics. Data transformations (e.g., log or square-root) were applied 
when necessary to improve the distribution of predictors. To account for 
spatial and temporal covariance among observations, a random term for 
sites nested within reefs, a smooth term of reef latitude coordinates (in 
kilometres using the Universal Transverse Mercator (UTM) coordinate 
system), and a smooth term of time (date of survey) were included in the 
model. This spatio-temporal structure was used as the null model, 
against which all possible models were built. Longitude was not 
included in the null model to avoid masking effects of WQ variables most 
of which show a gradient with distance to the coast. Given the amount of 
data available for model fitting, the maximum number of fixed pre-
dictors was restricted to 5 in any one model. The basis dimension used to 
represent the smooth terms was restricted to k = 3 to reduce overfitting. 
Further restrictions in multicollinearity (<0.28) were applied during 
model runs for excluding collinear models (Fisher et al., 2018). 
Penalized-likelihood criteria estimates (AIC) using model weights were 
used to evaluate competing models by comparing model delta values 
(ΔAICc < 2) (Burnham and Anderson 2002). 

Two outputs were derived from this approach: First, we measured 
the relative importance of each modelled predictor based on model 
weights summed across all the models where any given predictor was 
present (Fisher et al., 2018). Because sums of AIC model weights are 
really a measure of relative importance of models and provide little 
information about contribution of predictors to variance reduction, the 
second output was the identification of the strongest predictors for 
explaining State and Performance. The best predictors were evaluated 
from selected candidate models (within ΔAICc < 2) based on the most 
parsimonious model (i.e., with the lowest number of variables), and the 
variable contribution to deviance explained among competing models 
(i.e., with similar number of predictors). Final models were refitted 
using Restricted Maximum Likelihood (REML) to get best fitted curves 

and evaluated visually using diagnostic plots (Fig. S3). All statistical 
analyses were performed in R version 3.4.3 (R Core Team 2017) using 
the R packages mgcv (Wood 2017) and FSSgam (Fisher et al., 2018). 

3. Results 

The state of GBR reefs has been variable over the 1992–2017 period, 
but the permanent transect data studied here show that the overall mean 
in total coral cover at 5–9 m depth is greater in the Southern than Central 
GBR (31.2% ± 16.8% Standard Deviation-SD vs. 24% ± 14.0% SD) 
(Fig. S4). On average, the proportion of MSE corals (i.e. relative to total 
coral cover) was the highest in both regions (0.28–0.31). Acroporids 
contributed more to Southern (Tabular: 0.24, branching: 0.17) than 
Central cover (Tabular: 0.17, branching: 0.07) whereas other branching 
species contributed significantly more to Central (0.20) than Southern 
cover (0.07). 

Visual inspection of the Performance metric (Fig. 2) for total coral and 
MSE showed a clear reduction from the expected rate of cover increase 
since 2002: the distribution of Performance scores were predominantly 
below 0.5, which represents the rate of increase observed prior to 2002 
during periods of no acute disturbances. Importantly, low performance 
was not driven by the reduced sampling of inshore reefs during 
parametrization (Fig. S1). Tabular Acropora underperformed (i.e., cover 
increase was below the lower boundary of expected change) 51–54% of 
the time in both regions, whereas branching corals (Acropora and non- 
Acropora) underperformed slightly more often in the Central region 
compared to the Southern region (~55% vs. ~ 45% of the time 
respectively). 

4. Drivers of state 

In the Central GBR, models of State for the 1992–2017 period showed 
high level of agreement in identifying the most important predictors of 
State among all coral groups (i.e., total cover and each of the four coral 
groups). In the Southern GBR, coral groups differed in their responses to 
these predictors (Fig. 3), hence there was less agreement in the relative 
importance of predictors for total State and that of specific coral groups 
(Fig. S5). 

Based on the ’best’ models for the Central GBR (with R2 ranging from 
0.33 to 0.68, Table S2, Fig. S6) the strongest predictors correlated 
negatively with each State metric, but explained different amounts of 
variance among coral groups (Tabular Acropora > Total cover > MSE >
branching Acropora > other branching, Fig. 3). Reefs experiencing two 
or more years of CoTS outbreaks in the previous 5 years (exposure level 
at the 95th percentile of data, Fig. 3) showed 30% less total coral cover 
(58% less tabular Acropora, 28% less branching Acropora and 19% less 
MSE cover) than reefs without an outbreak within the same period. A 
single storm impact in the previous 5 years (exposure level at the 50th 

Fig. 2. Distribution of Performance scores (i.e. devia-
tion from expected growth rates in the absence of 
acute disturbances) obtained for the period 
2002–2017 for each coral group in Central and 
Southern GBR (n = observations). Reef sites showing 
the expected growth scored values within red dashed 
lines (scores ~ 0.5). Coral groups: Total coral cover 
(black), Acropora tabular (blue), Acropora branching 
(red), other non-Acropora branching (green), massive- 
submassive-encrusting species (purple). (For inter-
pretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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percentile of data) related to an average 15% decline in State of most 
coral groups except tabular Acropora. Exposure to heat stress above 2.3 
DHW was detrimental for the State of most coral groups except 
branching Acropora corals which were also unaffected by the 5 yr-cu-
mulative frequency of bleaching-risk events (i.e., Occurrence of 
bleaching in-situ and DHW > 3 over 5-year period). 

The ‘best’ models for the Southern region (with R2 ranging from 0.47 
to 0.68, Table S2, Fig. S6) explained a similar amount of variance in the 
State of total coral cover and the cover of tabular Acropora (24% and 
23%, respectively) with the same combination of stressors (Fig. 3). 
Variability in the State of branching Acropora and non-Acropora, and 
MSE was mostly explained by reef location and time and poorly 
explained by the best predictors (4%, 6% and 1% variance explained, 
respectively). Therefore, their effect is not discussed in detail here. A 
single metric combining the cumulative frequency of all acute distur-
bances (i.e., total number of disturbance events over a 5 yr period) 
explained most of the variability of the State of tabular Acropora and 
total coral cover on Southern GBR. Total coral cover was up to 40% 
lower with 3 disturbances over a 5 yr period whereas the cover of 
tabular Acropora was 38% lower with 2 disturbances over a 5 yr period. 
The frequency of bleaching or bleaching-risk events were associated 
with greater total coral cover and tabular Acropora coral cover (Fig. 3) 
suggesting the negative impacts of the single ‘all acute’ metric are most 
likely related to the combined impact of CoTS outbreaks and storms. 
Salinity and sediments were the only WQ metrics in selected ‘best’ 
models for Southern State of Acropora tabular and MSE (Table S2, 
Fig. S5) but with no significant contribution to variance explained. 

5. Drivers of performance 

For comparison, we modelled impacts on Performance on the same 
exposure dataset as State. However, to further explore the importance of 
more detailed WQ data we also used a shorter dataset with higher res-
olution in WQ data. For the long dataset, models show that in the 
absence of acute disturbances, the lagged effect of cyclones (i.e., metric 
of exposure to cyclone magnitude in previous year) was the most com-
mon predictor for Performance. Some metrics of importance for total 
Performance were uninformative at the level of specific coral groups and 
vice versa (Fig. 4 and Fig. S7 for Relative importance scores). Specif-
ically, WQ metrics (mainly environmental and river sourced DIN) were 
less important for total Performance compared to that of other branching 
corals (in Central) and MSE in the Southern GBR where river DIN 
correlated positively to MSE Performance contributing to 25% of 
explained variance (Figs. 4, S8). 

Although WQ metrics appeared more often in final models of Per-
formance compared to State, the strongest predictors of Performance were 
the lagged effects of acute disturbances. Total Performance was also 
negatively correlated to the lag of all acute impacts combined in Central 
GBR and specifically to lag CoTS densities in Southern GBR, where it 
also correlated positively with the previous exposure to heat stress (lag- 
DHW). Our models on specific coral groups show that previous pro-
longed CoTS outbreak conditions (5 yr-outbreaks) in Central GBR were 
consistently the most important driver of low Performance for tabular 
Acropora and branching corals (Acropora and non-Acropora) during non- 
disturbance years. Interestingly, while the recovery of tabular Acropora 
was negatively affected by the lagged effects of intense cyclones, it was 
higher with greater past storm frequency in Central GBR. Positive 

Fig. 3. Effect of the strongest predictors (columns) for each State metric (rows) for the Central and Southern GBR (1992–2017 dataset). Solid lines are the partial 
effects attributable to each of the variables on ‘best’ GAMMs ± 95% confidence. Dashed vertical lines indicate data at 50th and 95th percentiles. Only predictors 
contributing to explaining variance are shown. Percentages indicate total variance explained by predictors (% outside the plots) in the ‘best’ model and the relative 
contribution of each predictor (% inside plots) to the total variance. Common axes at the base of each column unless indicated with icon on each plot. Fig. S6 shows 
partial residual plots for all predictors and best models. 
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correlations with lag-DHW were also obtained for the Performance of 
branching corals (Acropora and non-Acropora) but not MSE corals in 
Southern GBR. 

While models of Performance showed overall lower explanatory 
power (R2 ranging from 0.19 to 0.29; Table S3) and lower consistency 
across coral groups than State models, several competing models were 
obtained for Performance differing mostly by the presence of WQ metrics 
(Table S3). River DIN, environmental DIN, and salinity appeared in final 
models for branching non-Acropora (DIN metrics) and tabular Acropora 
(Salinity) explaining a small proportion of the variability in Performance 
(Fig. 4). Based on these results, we explored further the impact of WQ 
metrics on Performance using a shorter time-series (2010–2017) where 
the annual values for all WQ variables were available. Analyses were 
limited by the small sample size, and further restricted by dropping 
many years with acute disturbances. The remaining data points (123 and 
117 in Central and South respectively) make model selection ineffective 
given the large number of predictors included in the models (up to 7 

continuous predictors: 5 fixed + 2 covariates, each with k = 3). There-
fore, only the relative importance scores of WQ metrics were evaluated 
(Fig. S9). The difference in importance score values between models 
with and without yearly variability in WQ (i.e., subtracting the score 
obtained with long-term averages from the score values obtained with 
yearly data) showed an increase in relative importance of Chl a, salinity, 
and river DIN on Southern GBR but not on Central WQ where only PAR 
show an increase in importance when year-to-year variability in WQ was 
explicitly modelled (Fig. 5). We chose a difference >0.8 units as 
meaningful changes in variable importance scores considering our re-
sults from the complete data set showing that variables with importance 
scores >0.8 had some explanatory power in the ‘best’ models (Figs. 4, 
S9). 

6. Discussion 

The cumulative impact of multiple stressors but in particular acute 

Fig. 4. Predicted effects of acute and chronic stressors (columns) on Performance for the period 2002–2017 per coral group (rows) for the Central and Southern GBR. 
Percentages indicate total variance explained by predictors (% outside the plots) in the ‘best’ model and the relative contribution of each predictor (% inside plots) to 
the total variance. Metrics other than those at the base of each column are indicated with icon on each plot. Solid lines are the partial effects attributable to each of 
the variables based on GAMMs ± 95% confidence. Dashed vertical lines indicate data at 50th and 95th percentiles. Pink and white areas on plots indicate worse and 
better than expected Performance, respectively. Only predictors contributing to explain variance are shown. Fig. S8 shows partial residual plots for all predictors and 
best models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Change in WQ importance score for predicting 
Performance (total and by coral groups) per region 
(Central and Southern GBR). Change is measured as 
the difference in score value obtained in models with 
yearly (Yr) variability in WQ metrics minus values 
obtained with long-term averaged (Av) WQ values 
(Change = Yr-Av). Scores based on GAMMs with full- 
subsets approach using 2010–2017 dataset (see each 
model heatmap in Fig. S9). Only changes beyond red 
dotted lines (difference in scores >0.8) are considered 
meaningful. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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stressors and their long-lasting effects are the greatest contributors to the 
overall degradation of the GBR. We show that Performance (i.e., the rate 
of coral cover increase) on the GBR is susceptible to both acute and 
chronic stressors. Accordingly, Performance scored worse than expected 
in comparison with pre-2002 data. More than half of the reefs under-
performed between 2002 and 2017. Our results are consistent with 
previous studies detecting reductions in recovery rates on the GBR 
(Osborne et al., 2017; Ortiz et al., 2018). Low Performance on the GBR is 
driven mainly by the cumulative impacts of acute stressors and to a 
lesser extent, by the effect that poor water quality has on specific coral 
groups. Our results highlight that metrics based on total coral cover are 
insufficient when evaluating the impact of multiple stressors given 
corals respond differently to variation in environmental conditions. 
Particularly for State metrics, group-specific impacts associated to heat 
stress were masked using total coral cover. For Performance, group- 
specific water quality effects were masked with the reef-level metric 
based on total cover growth. Importantly, we show that a lack of his-
torical data for water quality may limit our ability to detect water 
quality (WQ) effects at regional scales. By comparing two metrics of reef 
health (State and Performance) we also demonstrated that WQ effects are 
stronger predictors of Performance than State. 

The prolonged exposure of reefs to multiple acute disturbances affect 
reef State and reef recovery (Performance). However, modelling the State 
and Performance of specific coral groups show that corals responded 
differently to acute stressors. State decline is mostly attributed to re-
ductions in tabular Acropora which correlated negatively to all acute 
disturbances in Central GBR but not Southern GBR where it correlated 
positively to bleaching-risk events (in the period covered here). Low or 
sub-optimal Performance is mostly attributed to low recovery of 
branching non-Acropora corals in Central GBR due to the prolonged 
lagged effects of CoTS outbreaks and low recovery of MSE after recur-
rent cyclones in Southern GBR. Differential responses between the 
Central and Southern regions and between measures of intensity versus 
frequency of disturbances highlight the complex dynamics of coral reef 
ecosystems and the importance of evaluating different exposure metrics 
on structurally-different coral communities to understand overall im-
pacts on reefs. These results may help understand why some regions of 
the GBR perform better than others in the face of repeated acute and 
chronic stressors. 

Performance of tabular Acropora responded positively to frequency of 
storms. One explanation for this positive effect is the time spanned be-
tween recurrent disturbances and benthic surveys which was not 
captured with our frequency metric over a 5 year period. Only 4 of the 
19 reefs exposed to three storm events within the previous 5 year period 
experienced a storm in the year previous to surveys. Hence, time 
allowed for tabular Acropora to recover on most reefs. While coral loses 
after cyclones tend to be higher on reefs dominated by fragile mor-
phologies such as branching and plate corals (Madin and Connolly, 
2006; Foster et al., 2011), Acroporids in particular tend to show greater 
recovery after physical disturbance from cyclones (Halford et al., 2004; 
Adjeroud et al., 2009). 

Crown of thorns Seastar (CoTS) densities alone was a poor predictor 
of reef health (i.e., State and Performance). Instead, a cumulative metric 
of CoTS based on prolonged exposure to densities above 0.22 per manta 
tow (i.e. above threshold for incipient outbreaks) was the best predictor 
of CoTS impact on State and Performance. Despite that some Southern 
reefs experience CoTS outbreaks more frequently than in Central GBR (e. 
g., in the Swains region), CoTS alone were a weak predictor of State in 
the Southern GBR. The most likely explanation for this result is the fact 
that the metric of all acute disturbances combined was the strongest 
predictor and already incorporates frequency of CoTS outbreaks. Simi-
larly, during periods of no disturbance, the legacy effect of CoTS con-
tributes to overall reef degradation by limiting Performance in Southern 
GBR. The legacy effect of CoTS is likely to affect periods of recovery after 
outbreaks as the remaining individuals (also with densities that are 
below the outbreak threshold) continue to feed on the surviving corals. 

The contribution of CoTS as leading causes of coral loss and poor re-
covery of Acropora populations on the GBR has been previously docu-
mented (Osborne et al., 2011; De’ath et al., 2012; Vercelloni et al., 
2017). Here we provide further evidence of CoTS undermining the 
Performance of branching non-Acropora corals and the cover status of 
non-branching coral communities (i.e., MSE which include Montipora 
spp). While Acropora and Montipora are the preferred prey of Acanthaster 
spp., their feeding preferences are flexible and depend on the abundance 
and distribution of prey (Pratchett et al., 2017). 

Until 2018, the Southern GBR had experienced less widespread 
heating stress (95 percentile below 3.66 DHW) compared to northern 
and Central GBR (95 percentile below 5.29 DHW annual maxima). The 
Southern GBR escaped the devastating impacts of heat stress that cause 
massive bleaching and coral mortality in the northern and Central GBR 
during 2016 and 2017 (Hughes et al., 2018b). Our model results support 
these patterns showing that 1) exposure to DHW above 2.3 was an 
important predictor of reduced coral cover in Central GBR where reefs 
experienced DHW up to 5.29, 2) DHW was a poor predictor of regional 
reef degradation (low cover and low rates of cover increase) in the 
Southern GBR where most reefs experienced DHW below 3.7 during the 
same period, and 3) the frequency of bleaching and bleaching-risk 
events have no detectable impact on corals in the Southern GBR. Our 
findings with impacts being measurable at > 2.3 DHW are consistent 
with recent analysis of the GBR bleaching data from 2016 which show 
substantial mortality occurring at 3–4 DHW (Hughes et al., 2018b). An 
apparent positive impact of bleaching-risk events on Southern GBR may 
indicate that our threshold of DHW is still below thermal threshold for 
corals in the Southern region or simply that very few reefs experienced 
levels much higher than this threshold. As heat stress was lower in the 
Southern GBR, the positive correlation with Performance may be an in-
dicator that the temperature optimum in Southern reefs is higher than 
the historic summer average, and that mild marine heat waves may 
accelerate colony growth. Our threshold of 2.3 DHW for cover decline of 
different coral groups in Central GBR coincides with that estimated by 
Ceccarelli et al., (2019) for total coral cover of inshore GBR reefs alone. 
Unfortunately, with the latest marine heat wave delivering DHW in 
excess of 3 over much of the GBR in 2020 (NOAA 2018, updated daily) it 
is likely that the spatial patterns observed in our models with respect to 
the response of corals to DHW and bleaching-risk events will change. 

Relative to some acute disturbances, modelled or remotely sensed 
WQ variables explained little of the variability in reef health (i.e., State 
and Performance). The strong explanatory power detected for acute 
disturbances, and the lack of long time-series in WQ data are likely 
contributing to these results. Ceccarelli et al., (2019) obtained similar 
results while evaluating the effect of chlorophyll a, turbidity and the 
frequency of exposure to highly turbid flood plumes (the “primary” 
water type) on total coral cover (here, reef State) of inshore GBR reefs. In 
their study, negative effects of reduced WQ variables were measurable, 
but the effect size was smaller than that of acute disturbances. This is 
despite the fact that inshore reefs are much more exposed to changes in 
WQ that the overall area investigated here (comprising both inshore and 
offshore reefs). We only detected negative impacts of WQ (low salinity 
and elevated River DIN) in Performance metrics affecting only few coral 
groups in Central GBR when WQ metrics were evaluated as long-term 
averages. While we assess a very comprehensive dataset for WQ met-
rics for the GBR, these are modelled products rather than in-situ ob-
servations, which limits their accuracy and potential explanatory power 
as some metrics may under-estimate real concentrations as well as 
under-estimating WQ variability (Skerratt et al., 2019; Robson et al., 
2020). Despite this, WQ metrics appeared in competing models evalu-
ating Performance (albeit low explanatory power), suggesting they are 
likely to be better metrics for assessing the rate of cover increase po-
tential than State (i.e., cover). The frequency of flood plumes encom-
passing multiple WQ variables was recently identified as an important 
predictor of reef resilience (Mellin et al., 2019a). Lack of strong spatial 
influence of individual WQ metrics across the continental shelf can also 
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limit the evaluation of their importance in our study. Despite not having 
large explanatory power as drivers, our analysis suggested several WQ 
parameters as important contributors to the final models. Greater tem-
poral resolution (as shown with the reduced dataset with yearly vari-
ability) in variables such as Chl a, and river DIN, resulted in these being 
more important predictors of Performance in southern reefs albeit having 
a more localised impact of poor WQ compared to central reefs. During 
the period we evaluated Performance, southern reefs had shown fast 
recovery offshore (faster than in the Central region). This lead to a 
greater difference in recovery between areas affected by poor WQ versus 
those with no water quality issues. The results of this analysis however, 
need to be interpreted with caution given there is debate around the use 
of summed Akaike weights as a metric to quantifying relative variable 
importance (Galipaud et al., 2014, but see Giam and Olden, 2016). 

River DIN with yearly historical values along the entire dataset had 
better explanatory power compared to all other WQ metrics, particularly 
in Central GBR where its relative importance was comparable to that of 
acute stressors. With the exception of some inshore reefs in the dataset, 
southern reefs are further removed from the coast and therefore less 
likely to suffer WQ impact from land runoff. Here, central mid shelf reefs 
experienced on average five-fold greater river DIN than southern mid 
shelf reefs. Negative WQ impacts associated with river runoff on coral 
reef communities have also been demonstrated at smaller scale studies 
along water quality gradients (Fabricius and De’ath, 2004; Thompson 
et al., 2020). 

Water quality can have indirect effects on coral health and Perfor-
mance not captured in our analyses. Although still under debate 
(Pratchett et al., 2017) WQ decline (increased nutrients) may increase 
phytoplankton food for CoTS larvae thus increasing numbers of sur-
viving larvae for settlement (Fabricius et al., 2010), an effect which is 
further enhanced by elevated temperatures (Uthicke et al., 2015). 
Increased imbalances in dissolved inorganic nutrients may also increase 
bleaching susceptibility and coral disease risk (Wiedenmann et al., 
2013), whereas corals adapted to turbid waters may exhibit higher 
bleaching tolerance (Sully and Woesik, 2020). The reason our analyses 
were not able to tease apart these effects are: i) Lack of historical data as 
shown with our shorter term analyses, ii) spatial resolution not being 
adequate (i.e., data derived from 1 km and 4 km models may not be 
representative of environmental conditions experienced at the scale of 
surveys for biological data), iii) limited accuracy of modelled variations 
in WQ, and iv) interactive effects not having been explicitly tested in our 
models. However, data presented here and in previous studies suggest 
that WQ at least has a modulating effect on coral State and Performance. 
Improved future monitoring designs should ensure that in addition to 
monitoring of biota sufficient data on abiotic parameters is collected to 
allow teasing apart the role of WQ variables on the State and Performance 
of coral reefs in the future. 

Coral reefs have experienced more intense and more frequent 
climate-related disturbances over the last few years (Hughes et al., 
2018b). Our models show that lagged effects of cumulative acute im-
pacts are impairing reef recovery by slowing down coral cover increase. 
The accelerated pace at which reefs are experiencing disturbance that 
also impede reef recovery may lead to the loss of the ecosystem func-
tioning and resilience. Typical metrics of coral reef health based on total 
coral cover may be insufficient to capture changes in the coral com-
munity structure which is key to understanding and predicting how reefs 
can cope with recurrent disturbance regimes. Metrics capturing dy-
namics of coral growth and recovery processes (here, Performance) add 
valuable information to state metrics particularly when seeking guid-
ance for prioritization of management actions. Local actions centred in 
controlling CoTS outbreaks on some reefs including reductions in WQ 
pressures are needed along with global efforts to reduce global warming 
and ocean acidification. Differentiating key components of the coral 
community (i.e., coral types) and regular monitoring of WQ can provide 
a better understanding of the relative importance of acute vs. chronic 
stressors on the GBR at regional scales. 
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