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Abstract: With an increased level of interest in promoting science, technology, engineering, and maths
(STEM) careers, there are many ways in which drone and geospatial technology can be brought into
the education system to train the future workforce. Indeed, state-level government policies are even
stipulating that they should be integrated into curriculum. However, in some cases, drones may be
seen as the latest toy advertised to achieve an education outcome. Some educators find it difficult to
incorporate the technology in a meaningful way into their classrooms. Further, educators can often
struggle to maintain currency on rapidly developing technology, particularly when it is outside of
their primary area of expertise as is frequently the case in schools. Here, we present a structured
approach to using drones to teach fundamental geospatial technology concepts within a STEM
framework across primary/elementary, middle, secondary, and tertiary education. After successfully
working with more than 6000 participants around the world, we encourage other scientists and those
in industry using drones as part of their research or operations to similarly reach out to their local
community to help build a diverse and strong STEM workforce of the future.

Keywords: drones; UAV; UAS; STEM; education; mapping

1. Introduction

Over the past decade, drones have become useful tools for collecting scientific data, in particular
aerial photography. These aerial images have been used across a variety of mapping applications
including (but not limited to) assessing agricultural crop health [1–3], biodiversity [4], coral reef benthic
habitats [5–8], estuarine habitats [9], forest structure [10,11], topography and geomorphology [12],
fires and disaster management [13–16], and rangelands [17]. As a commercially available and relatively
cost-effective platform, drones have democratized remote sensing data capture by allowing individuals
to capture their own data rather than rely on expensive and highly specialized aerial survey companies.
Opening the market for individuals to capture their own data has therefore provided considerable
benefits across many scientific disciplines.

With drone-based aerial data capture so easily accessible, the skills of mission planning and
photogrammetry are also no longer locked-up with specialist aerial surveyors. A variety of software
applications are available to assist users with planning data capture missions, though some fundamental
skills are still required to ensure the data are useful [18]. This foundation knowledge can make the
difference between capturing ‘pretty pictures’ and data from which robust and reliable information
can be extracted.

As drone platforms and their associated software become more advanced, the entry level for
capturing robust data is lowered. Many off-the-shelf platforms operate in similar ways, are stable and
safe in flight, and are capable of semi-autonomous missions [19]. This means that the physical flight
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component is less challenging to master, and the user can focus on the data capture specifications.
The skills are also transferable across different platforms. It is this simplicity and similarity between
platforms that allows us to use the most basic minidrones to teach geospatial technology fundamentals
that are still applicable with more advanced platforms, including traditional aerial survey aircraft
and satellite imaging systems. This same simplicity means that we can educate students of all ages
and backgrounds.

With the applications of drone-captured data becoming more valuable to the scientific community
and remote-sensing industry, it is within the interest of these groups to encourage early exposure and
education for students to the foundations of this technology. Therefore, the aim of this paper is to
describe a structured learning program that can be used by teachers and drone industry professionals
to engage with students. The goal of the program is to use drones to promote confidence in geospatial
foundations and provide meaningful insight into the possibilities of drone-based technology in the
future workforce. We further hope that by providing a simple framework to educate and engage,
we can encourage those who use drones as part of their research and operations to similarly engage
with their local schools to share their experiences, act as role models, and help increase diverse and
inclusive representation in the industry.

2. Contextual Background

The State Government of Queensland, Australia, is at the forefront of supporting the emerging
drone industry. In 2017, they released their Drone Strategy, which calls for drones to be considered
within the school curriculum and included within the Department of Education’s science, technology,
engineering, and maths (STEM) programs [19]. The rationale for this is to prepare students for future
workforce opportunities where this emerging technology is being used.

However, introducing drones into education programs needs to go beyond learning basic flight
skills. While the drone itself may represent exciting technology and bring with it a thrill of flying,
drones bring an opportunity to think more broadly about using technology to solve sophisticated
challenges. Indeed, as automation technology develops over the coming years, we will see less need
for manual drone pilot skills [20,21]. Instead, there will be an increasing requirement for analytical and
data skills [22,23] around using drones as a tool to solve problems.

Using drone technology to solve problems also links with other state-based strategic interests.
The Queensland Government’s Space Industry Strategy, released in 2020, positions drones as part of
the earth observation sector, and a key component of growing Queensland’s aerospace industry [24].
The strategy further references the Department of Education’s STEM programs, and the need to build
teacher capabilities, and engage more students in STEM learning. Fortunately, drone technology is one
such area that inspires interest across a broad range of students [25,26].

With drones being positioned by government and industry in the earth observation sector,
integrating geography skills into drone-based learning is crucial to ensuring that students develop
relevant skills for the future. Geosciences has been identified as one of the three most important
emerging and evolving disciplines, alongside nanotechnology and biotechnology [27]. However,
the demand for a geo-enabled workforce is starkly contrasted with student enrolment [25]. Geography in
the Australian Curriculum is classified under Humanities and Social Sciences, and runs the risk of
being overlooked in the Queensland Governments call to include drone education under the STEM the
curriculum. Through the Geography curriculum, students gain knowledge and understanding of the
interconnectedness of people and environments, as well as consumer needs and economic drivers.
This is overlaid with skills related to questioning, research, data analysis, evaluation, reflection, and
communication. These are critical skills for the future workforce, and where drone-specific elements
can be woven into the Australian Curriculum to provide engaging, real-world applications for students
in the classroom.

Spatial thinking is a crucial skill for the future workforce, and the current curriculum’s dissociation
of geography from the more heavily supported STEM subjects may be contributing to the lack of
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geospatial professionals. This may be addressed by better positioning STEM as a cross-curriculum
learning opportunity, rather than in a siloed approach to subjects. A report by the Australian Council
for Educational Research has voiced similar concerns that teaching school subjects in isolation from
each other is not preparing students for work in the 21st century, where interdisciplinary skills will
become increasingly required to address societal challenges [23].

Interdisciplinary teaching approaches often require students to identify a problem and generate
a solution, and drones are one option for supporting these opportunities in an enjoyable way [28].
Such opportunities will hopefully support developing a future workforce with an emphasis on creating
rather than just consuming technology [29]. With this in mind, we describe below the challenges
faced when using drones as a learning support tool in schools to encourage geospatial and STEM
thinking, as well as an approach we are currently using to overcome the challenges and provide
exciting learning opportunities. We consider this from the perspective of a classroom teacher who
is aiming to implement authentic drone education themselves, but also from the perspective of a
drone professional who may wish to consider offering their industry experience as a role model to a
local school.

3. The Challenges of Drones in Schools

There are two key areas of challenge to consider when bringing drones and other emerging
technology into the classroom:

1. Skills and expertise of the classroom teacher; and
2. Understanding and implementing the regulatory framework, including developing appropriate

risk management procedures.

Further, it is often difficult to address the regulatory framework in the absence of the appropriate
skills and expertise of the teaching staff.

3.1. Teaching Expertise

A report by the Australian Council for Educational Research found that 26% of Grade 7–10
teachers and 15% of Grade 11–12 teachers were teaching out-of-field [30]. Teaching out-of-field is
where qualified teachers are assigned subjects for which they have not studied above a first year at
university, and have not studied the appropriate teaching methodology [31]. Without this experience,
out-of-field teachers lack content knowledge as well as the correct pedagogical approach required to
effectively engage the students in meaningful learning.

A key attribute of highly effective teachers is a thorough understanding of the subjects they
teach [32]. Teaching subjects outside of their discipline knowledge reduces teacher competence,
which has been directly linked to teacher burnout rates [33]. The impacts of out-of-field teaching are
also directly related to low-quality student learning, and decreases in effective classroom management,
impacting student engagement [34]. Geography and Information Technology (IT) have some of
the highest rates of out-of-field teaching (40% and 34%, respectively) and maths and physics have
out-of-field teaching rates of around 20% [30]. For teachers already struggling with the implications of
out-of-field teaching and preparing lessons for subjects outside of their expertise, bringing drones and
technology into the classroom can be a daunting task [35]. To help overcome these barriers, in this
paper, we propose a framework for a standardised program to provide a step-by-step process of
introducing drones into student learning, building industry standard skills, and creating future role
models in the process (Figure 1).
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Figure 1. Introducing drone technology into the classroom via structured programs may increase STEM
participation in schools, leading to an increase in these skills in the future workforce, and creating role
models to inspire the next generation of students. This positive spiral has the potential to rapidly grow
the industry. Without an intervention or appropriate upskilling for teachers, the downward spiral may
be realised.

From 1994–2012, there was a decrease in the number of students enrolling in intermediate to
advanced mathematics (−12% and −6%, respectively), and decreases of 6–8% in participation in all
science subjects except for earth science (+0.3%) [36]. In the absence of more recent data, it is unclear if
this trend has further declined; however, Australia has seen a marked deterioration in student scores
based on reading, mathematical and scientific literacy across all schooling levels according to the
Programme for International Schools Assessment (PISA) [37]. These reports highlight the need for
further support to be provided to teachers, if we are going to increase the number of students, with the
right skills, and the right content knowledge, to join a STEM workforce.

3.2. Risk Management

In Australia, drones are governed by the Civil Aviation Safety Authority (CASA), and there
are clear regulations around how they can be used, both indoors and outdoors. In other countries,
using drones indoors is often not covered by the Federal aviation authorities. Teachers should therefore
always research the specific government regulations around flying drones or minidrones in their school
before planning to incorporate them into classroom activities.

In addition to federal regulations, teachers are required to undertake a risk identification process
and mitigate risks in a similar way to other learning activities and programs. Flying minidrones
within the confines of a school gymnasium or classroom is not without risk, but some basic mitigation
strategies are simple to implement (Table 1).
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Table 1. Risk Assessment for using drones in schools.

Hazard Likelihood Consequence Mitigation Strategies

Damage to eyes from
propeller blades Low Personal injury including

loss of vision

Flying in an appropriate spacious location
Wearing safety or prescription glasses

Having a designated ‘flight zone’ and ‘safe zone’
Ensuring students are aware of signal to land

Ensuring students do not enter ‘flight zone’ whilst any
drones are airborne

Outlining importance of safety checks following a crash to
ensure propellers are properly attached

Classroom management procedures

Damage to skin from
propeller blades Low Personal injury including cuts,

abrasions, blood loss.

Flying in an appropriate spacious location
Having a designated ‘flight zone’ and ‘safe zone’
Ensuring students are aware of signals requiring

them to land
Ensuring students do not enter ‘flight zone’ whilst any

drones are airborne
Removing batteries from drones when not in use

Classroom management procedures

Damage to overhead property (e.g.,
fans, projectors, etc) Low

Financial loss from replacing
equipment

Drone falls from height onto student
who may suffer personal injury

Flying in an appropriate spacious location
Limiting flying height to shoulder level

Retracting overhead obstructions where possible
(nets, hoops, etc)

Classroom management procedures

Fire or explosions from
lithium batteries Low Personal injury

Damage to property

Removing batteries from drones when not in use
Storing batteries in a cool, dry location inside a lithium

storage bag when not in use
Only charging batteries when persons are

present to observe

Damage to drones or tablets Moderate Financial loss from replacing
equipment or parts

Flying in an appropriate spacious location
Classroom management procedures
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4. Success with Drones in Schools—Our Approach

There are many different ways in which drone technology can be introduced to students. Here we
describe the approach that we have used over the past three years to provide an immersive learning
experience that is flexible enough to engage students of all ages. We introduce the interdisciplinary and
real world tenets that are fundamental to STEM education and encourage students to conceptualise
problems and design solutions with geospatial thinking, rather than button clicking [25,38].

Over the course of 2.5 h, we encourage students to imagine themselves as geospatial scientists
and professional drone pilots first on the scene of an area impacted locally relevant natural disaster.
They then use a minidrone (e.g., Parrot Mambo [39] or DJI Tello [40]) to capture data (photos) to
document the extent of the damage to share with a hypothetical local authority. In ‘crew’ of three,
they are given rotating roles of the pilot in charge, co-pilot, and chief reporter. These roles are designed
to mimic job requirements on a mapping mission, and are deliberately incorporated so that students can
imagine themselves as a scientist rather than concede to the common ‘white lab coat’ stereotype of the
profession [41]. Together, the students work in their crews to conceptualise the problem and apply their
knowledge to design a mapping solution, using experiential learning [42]. Importantly, all students are
actively involved in flying and programming their drones, rather than passively observing (Figure 2).

Drones 2020, 4, x FOR PEER REVIEW 6 of 11 

4. Success with Drones in Schools—Our Approach 

There are many different ways in which drone technology can be introduced to students. Here 

we describe the approach that we have used over the past three years to provide an immersive 

learning experience that is flexible enough to engage students of all ages. We introduce the 

interdisciplinary and real world tenets that are fundamental to STEM education and encourage 

students to conceptualise problems and design solutions with geospatial thinking, rather than button 

clicking [25,38]. 

Over the course of 2.5 h, we encourage students to imagine themselves as geospatial scientists 

and professional drone pilots first on the scene of an area impacted locally relevant natural disaster. 

They then use a minidrone (e.g., Parrot Mambo [39] or DJI Tello [40]) to capture data (photos) to 

document the extent of the damage to share with a hypothetical local authority. In ‘crew’ of three, 

they are given rotating roles of the pilot in charge, co-pilot, and chief reporter. These roles are 

designed to mimic job requirements on a mapping mission, and are deliberately incorporated so that 

students can imagine themselves as a scientist rather than concede to the common ‘white lab coat’ 

stereotype of the profession [41]. Together, the students work in their crews to conceptualise the 

problem and apply their knowledge to design a mapping solution, using experiential learning [42]. 

Importantly, all students are actively involved in flying and programming their drones, rather than 

passively observing (Figure 2). 

 

Figure 2. Students work in ‘crew’ to (A) conduct safety checks on their drone with an predefined 

checklist on their tablet; (B) practice manual flight skills; (C) design a mapping solution with 

corresponding block coding to survey a hypothetical natural disaster site; (D) test their code over the 

survey site, represented by a satellite image printed on a 2 × 2 m cloth mat; and (E) evaluate their 

results. 

4.1. Learning Framework around School Drone Program 

The following components are ubiquitous to geospatial drone data capture missions, regardless 

of the specific scenario or equipment: 

1. Safety check to consider the location (in conjunction with local regulations), personal protective 

equipment, and the drone with its accessories; 

2. Create a flight plan (manual or autonomous) to ensure areas of interest are adequately captured 

in the detail required; and 

3. Evaluate flight plan and data captured for quality and coverage. 

Using the above components, we created activities that can be used across K-12 and tertiary 

education to introduce students to fundamental concepts of geospatial technology. Specific learning 

Figure 2. Students work in ‘crew’ to (A) conduct safety checks on their drone with an predefined checklist
on their tablet; (B) practice manual flight skills; (C) design a mapping solution with corresponding
block coding to survey a hypothetical natural disaster site; (D) test their code over the survey site,
represented by a satellite image printed on a 2 × 2 m cloth mat; and (E) evaluate their results.

4.1. Learning Framework around School Drone Program

The following components are ubiquitous to geospatial drone data capture missions, regardless
of the specific scenario or equipment:

1. Safety check to consider the location (in conjunction with local regulations), personal protective
equipment, and the drone with its accessories;

2. Create a flight plan (manual or autonomous) to ensure areas of interest are adequately captured
in the detail required; and

3. Evaluate flight plan and data captured for quality and coverage.

Using the above components, we created activities that can be used across K-12 and tertiary
education to introduce students to fundamental concepts of geospatial technology. Specific learning
objectives and activities covered are age appropriate in three case study groups—elementary/primary;
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middle/secondary; and tertiary. The program is also mapped to the national curriculum standards
in Australia.

We used Bloom’s Taxonomy [43] in our pedagogical approach to encourage learning that goes
far deeper than the simple pleasure of flying. As any scientist who uses drones for data capture will
attest to, the manual flight component of a project is miniscule when compared to the essential tasks of
planning the mission and evaluating the data. With a problem-based learning approach, the program
allows students to progress through the Taxonomy from remember to understand, apply, analyse,
evaluate, and finally to the highest order to create new ideas, thoughts, and processes.

We designed the ‘real-world’ problem-based scenario specifically to exploit the benefits of
collaborative community and create an authentic learning environment [29]. We scaffold the task with
the drone mission components mentioned above:

1. Safety—All students regardless of age or education level are required to undertake a pre-flight
safety check. Our safety checklist is freely available within the Epicollect5 mobile application by
searching ‘minidrone’. We use this to guide students through a discussion about where and how
to operate their drone safely and legally.

2. Flight Planning—We set up a large cloth floor mat of a satellite image in a local area. It is also
possible to use Lego or similar to create the impacted township. Students review the area and
sketch a conceptual design of their flight plan. They then use the mobile applications Tynker [44]
(for Parrot Mambo), Tello EDU [45] or DroneBlocks [46] (for DJI Tello) to program their drone to
conduct an autonomous mission and capture the data. It is also possible to use Scratch, Python,
or JavaScript to program the drone.

3. Evaluate—Students evaluate how effective their code was in making the drone fly according to
their mission, make adjustments to their plan, and re-fly if required.

In order for the program to be successful and challenging to students of varying ages and
experiences, we have tailored aspects of the general framework accordingly. It is important to recognize
that these activities can be undertaken by a confident classroom teacher, but we are also advocating for
other scientists and industry professionals to use our framework to get involved with their local schools.

4.1.1. Elementary/Primary Education

Youngest students focus on personal safety and responsibility rather than federal aviation
regulations. High adult to student ratios for supervision are also critical. We introduce block
coding with upper primary/elementary students, and practice manual flight with the younger grades.
Manual flight is used to improve fine motor skills and spatial visualization [28], as well as to ensure
students begin to understand basic flight operations.

4.1.2. Middle/Secondary Education

Students in this age group are ready to see the link between using minidrones and drones that are
better suited to capturing data under real-life scenarios. They can start to use more advanced text-based
software programming for their mission planning (e.g., Python and Swift) as well as incorporating
looping or repeat functions within their code. Programming skills are important within the digital
technologies curriculum, and are also of great benefit to scientists more broadly for processing large
datasets [47], so this is a good introduction. Students explore their mission planning solutions and the
tradeoffs between area covered and spatial detail achieved when altering flight altitude.

In some cases, students may have access to a larger drone (or data captured from one) and
we introduce basic GIS mapping analysis and show the link between the minidrone activities and
‘real world’ applications. One popular activity is to create an orthomosaic and digital surface model
(DSM) of school grounds, and assess the amount of tree shade available (Figure 3). This allows students
to explore their school campus from a new perspective, and also make recommendations to the school
for ways to increase shady recreation space.
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Figure 3. Students capture drone data to create and analyse (A) an orthomosaic; (B) digital surface
model (DSM); and (C) map of their school campus for the purpose of calculating the amount of
tree shade.

4.1.3. Tertiary Education

Tertiary students also explore the foundation learnings similar to younger students as per
Sections 4.1.1 and 4.1.2. However, we extend the focus to remote sensing and the capabilities
of the sensor or payload on the drone. Students use the minidrone to calculate camera field of
view, image swath width, and pixel resolution at any given flying height. This provides them
with practical skills related to determining the spatial characteristics of data sets they may acquire.
They are then required to synthesise this with their theoretical knowledge of spectral and temporal
requirements of data capture, as well as necessary overlap and sidelap of photos within mission
planning. This allows them to design an optimal data collection mission under a given scenario to
resolve an environmental challenge.

4.2. Evaluating School Drone Programs

To date, we have used the above approach to run in excess of 250 programs with more than 6000
participants in schools and community groups around Australia, the United Kingdom, the United
States, and Indonesia. We have further trained local volunteers with drone or geospatial backgrounds
based in Nepal, India, Tanzania, Panama, Fiji, Jamaica, Papua New Guinea, Senegal, United States,
the Philippines, Mongolia, and Uganda who are able to apply the learning framework in their
own context, in the local language. It is incredibly important to partner with volunteers from
local communities to run this type of training for it to become a sustainable learning model [48].
Local scientists and industry representatives are familiar with the inherent challenges of their locations
that they need to overcome [49], and also provide more authentic role models and learning experiences
for local students.

We are, therefore, confident that the concepts and structure have a robust formula that can be
replicated around the world to help build an interest and skills in drone and geospatial technology.
Independent research conducted prior to, and following a subset of our programs indicated that more
girls would consider STEM subjects in the future after participating in the program [50]. However,
the authors also caution against labelling activities as ‘STEM’, as often this may only attract those
students who are already predisposed to having an interest in that area. Therefore, it is important to
show the range of exciting applications of drone technology to capture the attention of students with
diverse interests and perspectives to offer the future workforce. More work is required to conduct
a longitudinal study to determine the long-term impact of interventions and programs like this on
students and their future career paths.
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5. Conclusions

The rise of drones captured the attention and imagination of scientists around the world. It has
also allowed us to put geospatial technology in the hands of students of all ages with a fun ‘toy’ as a
learning support tool. We have used these minidrones to create a real-world, hands on STEM program
to teach geospatial technology fundamentals with a problem-based learning approach. The framework
of the program supports students to progress from basic knowledge and understanding through
to synthesising ideas and creating new solutions. This program can be tailored to students across
all age levels, from primary/elementary through to tertiary, and also for professional development
training. As drones have the ability to be used for a variety of scientific, monitoring, and humanitarian
purposes, we further encourage the program as a way to build local capacity in developing countries
through training local community volunteers. The local connection is particularly important to provide
authentic and sustainable learning opportunities in the local language, with local role models and
relevant context. Through helping students to experience geospatial and drone technology in such a
fun and interactive program, we hope to encourage a new wave of innovative geospatial scientists
in the future workforce. We encourage other scientists who use drones as part of their research and
operations to similarly reach out to their local schools to share their experiences, act as role models,
and help increase diverse and inclusive representation in STEM.
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